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Abstract
Machine Learning and AI have the potential to trans-
form data-driven scientific discovery, enabling accurate
predictions for several scientific phenomena. As many
scientific questions are inherently causal, this paper
looks at the causal inference task of treatment effect
estimation, where we assume binary effects that are
recorded as high-dimensional images in a Random-
ized Controlled Trial (RCT). Despite being the sim-
plest possible setting and a perfect fit for deep learn-
ing, we theoretically find that many common choices
in the literature may lead to biased estimates. To
test the practical impact of these considerations, we
recorded ISTAnt, the first real-world benchmark for
causal inference downstream tasks on high-dimensional
observations as an RCT studying how garden ants (La-
sius neglectus) respond to microparticles applied onto
their colony members by hygienic grooming. Com-
paring 6 480 models fine-tuned from state-of-the-art
visual backbones, we find that the sampling and mod-
eling choices significantly affect the accuracy of the
causal estimate, and that classification accuracy is not
a proxy thereof. We further validated the analysis,
repeating it on a synthetically generated visual data
set controlling the causal model. Our results sug-
gest that future benchmarks should carefully consider
real downstream scientific questions, especially causal
ones. Further, we highlight guidelines for represen-
tation learning methods to help answer causal ques-
tions in the sciences. Code and data are available at
https://github.com/CausalLearningAI/ISTAnt.

1. Introduction
Uncovering the answer to many scientific questions requires
analyzing massive amounts of data that humans simply
cannot process on their own. For this reason, leveraging
machine learning and AI to help answer scientific questions
is one of the most promising frontiers for AI research. As
a result, AI is now predicting how proteins fold (Jumper
et al., 2021), new materials (Merchant et al., 2023),
precipitation forecasts (Espeholt et al., 2022), and animal
behaviors (Sun et al., 2023). Even predicting counterfactual

1Institute of Science and Technology Austria 2Inria, Ecole
normale supérieure, CNRS, PSL Research University. Correspon-
dence to: Riccardo Cadei <riccardo.cadei@ist.ac.at>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

outcomes for treatment effect estimation appears to be
possible (Feuerriegel et al., 2024). In scientific applications,
these predictions are often incorporated into broader
analyses to draw new physical insights. In this paper, we
focus on the problem of estimating the strength of the causal
effect of some variable on another, which is a common type
of question across disciplines (Robins et al., 2000; Samet
et al., 2000; Van Nes et al., 2015; Runge, 2023).

While our discussion and conclusions are general, we follow
a simple real-world example throughout the paper: behav-
ioral ecologists want to study the social hygienic behavior in
ants and, thereby, the ability of the insects to remove small
particles from the body surface of exposed colony members.
Such grooming behavior performed by nestmates plays an
important role in restoring a clean body surface of the con-
taminated individual, which, in case of infectious particles
being groomed off, assures the health of the individual and
prevents disease spread through the colony’s (Rosengaus
et al., 1998; Hughes et al., 2002; Konrad et al., 2012). To
study whether different microparticles differ systematically
in their induction of grooming behavior, the biologists thus
perform an experiment under controlled conditions, where a
focal worker ant is treated randomly with either of two mi-
croparticle types, and the behavior of two untreated colony
members towards the treated ant is filmed in multiple repli-
cates. This is followed by detailed behavioral observation
to quantify ant activity, as well as statistical data analysis
to determine if treatment has a significant effect. This step
could obviously be entirely replaced with deep learning,
dramatically accelerating the workflow. In fact, many data
sets and benchmarks have been proposed with the specific
reason of supporting downstream science in behavioral ecol-
ogy and biology (Sun et al., 2023; Beery et al., 2018; Kay
et al., 2022; Chen et al., 2023) and other scientific disci-
plines (Beery et al., 2022; Lin et al., 2023; Moen et al.,
2019).

Our paper questions the simplicity of this narrative in both
theory and practice. While we take experimental behavioral
ecology as an example for our motivation and experiments,
our theoretical results and experimental conclusions are gen-
eral, and we expect them to be applicable across disciplines.
Our key contributions can be summarized as follows:
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• We theoretically show how many design choices can af-
fect the answer to a causal question, from the data used
for training, the architecture choices, and even seemingly
innocuous standard practices like thresholding the predic-
tions into hard labels, or using held out accuracy for model
selection (a common practice in many AI for science
benchmarks, e.g., (Sun et al., 2023)). To facilitate future
research on representation learning for causal downstream
tasks, we formulate the representation desiderata to ob-
tain accurate estimates for downstream causal queries
together with best practices.

• To showcase the practical impact of these design choices,
we design and collect a new dataset, ISTAnt, from a
real randomized controlled trial, reflecting a real-world
pipeline in experimental behavioral ecology, which we
will release to accelerate research on representation learn-
ing for causal downstream tasks. To the best of our knowl-
edge, this is the first real-world data set specifically de-
signed for causal inference downstream tasks from high-
dimensional observations.

• On our dataset, we fine-tune 6 480 state-of-the-art meth-
ods (Dosovitskiy et al., 2020; Zhai et al., 2023; Radford
et al., 2021; He et al., 2022; Oquab et al., 2023) in the few-
and many-shot settings. Empirically, we confirm that the
seemingly innocuous design choices like which samples
to annotate, which model to use, whether or not to
threshold the labels, and how to do model selection have
a major impact on the accuracy of the causal estimate.
Since our ground-truth estimate of the causal effect
depends on the trial’s design, we propose a new synthetic
benchmark based on MNIST (LeCun, 1998) controlling
for the causal model, and we replicated the analysis.

2. Setting
We consider the RCT setting, where binary treatments T
are assigned randomly within an experiment with controlled
conditions W . In many applications, the binary effects
Y are not measured directly. Instead, we collect high-
dimensional frames X from a video of the experiment. Our
goal is to estimate the causal effect of T on Y , which is
quantified by the estimation of the Average Treatment Ef-
fect (ATE), i.e.:

ATE := E[Y |do(T = 1)]− E[Y |do(T = 0)]. (1)

Assuming an RCT (i.e., Ignorability Assumption (Rubin,
1978)) is the ideal setting for causal inference because the
ATE directly identifies in the Associational Difference (AD),
i.e.,

AD := E[Y |T = 1]− E[Y |T = 0]. (2)

However, annotating Y from the high-dimensional record-
ings X requires costly manual annotations from domain

experts. Leveraging state-of-the-art deep learning models,
we can hope to alleviate this effort. Instead of labeling all
the data, we only partially annotate it. We introduce a binary
variable S, indexing whether a frame is annotated by an ex-
pert or not. We denote the annotated samples with Ds =
{(Wi, Ti,Xi, Yi) : Si = 1}ns

i=1 and the not annotated ones
with Du = {(Wi, Ti,Xi) : Si = 0}nu

i=1. We use Ds to train
or fine-tune a deep learning model to estimate the labels on
Du. Next, we leverage the Ignorability Assumption on the
full RCT to identify the ATE in the AD and consistently es-
timate it. Ideally, it would be most useful if Ds = ∅, but for
the purpose of this paper, we assume that at least some sam-
ples can be annotated, for example, during quality controls.

Besides the clear statistical power considerations, recov-
ering the full RCT enables the identification of the causal
estimands. Estimating the ATE only on Ds may not be
feasible even if one aims to adjust for W due to possible
violations of the Positivity Assumption (i.e., 0 < P (T =
1|W = w) < 1 ∀w : P(W = w) > 0). In princi-
ple, S should be assigned randomly (independent from any
other variable), but for practical reasons, it is often a func-
tion of the experiment settings W . For example, when we
annotate grooming in behavioral experiments, we usually
identify the beginning and end of the behavior in the video
and propagate the labels to all the frames in between. The
experimental setup can be described with the causal model
in Figure 1, where we omit the corresponding exogenous
random noises for simplicity.

Motivating Application and the ISTAnt Dataset. Ants
show strong hygiene behaviors and remove any particles
that attach to their body surface, including dust, dirt, and
infectious particles. In a process termed “grooming”, they
use their mouthparts to pluck off adhering particles, collect
and compact them in a pouch in their mouth, and later
expulse them as pellets. As a social behavior, ants groom
one another to keep all colony members clean and healthy.
To understand how social insects like ants may react to
changes in their ecosystem, it is of great interest to research
in collective hygiene how different particles differentially
affect the intensity of grooming by colony members. For
this purpose, we recorded groups of three Lasius neglectus
worker ants interacting in a controlled environment, where
we treated one focal ant by applying either of two micropar-
ticle types to its body surface and observed the grooming
activity of the other two towards it. Our exemplary task is
to estimate the causal effect of the microparticle type on
ant behavior. An example of these recordings used to build
our new benchmark is reported in Figure 2.
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Figure 1: Causal Model for generic partially annotated sci-
entific experiment: T treatment, W experimental settings,
X high-dimensional observation, Y outcome, S annotation
flag.

(a) Grooming (blue to focal) (b) No Action

Figure 2: Examples of high-dimensional observations X
with corresponding annotated social behaviour Y from IS-
TAnt (ours).

Key research question. Predicting animal behavior is a
standard machine learning and computer vision task (Sun
et al., 2023; Chen et al., 2023). At the same time, we hope
to use these predictions within the context of a causal down-
stream task. In this paper, we question whether the naive
application of deep learning methods leads to consistent
estimates that can be used to draw scientific insights, even
if the data we collect is ideal, i.e., a randomized controlled
trial. Likewise, in causal inference, the factual effects are
always assumed to be given, and the statistical considera-
tion of using machine learning to estimate them is missing.

3. Biases in downstream ATE estimation from
ML pipelines

In this section, we formalize a model’s bias for a down-
stream Treatment Effect Estimation and its relationship with
(vanilla) prediction accuracy measures. We then highlight
possible sources of biases from both the data and the model.

Definition 3.1 (Treatment Effect Bias). Be f : X → Y a
model for EY [Y |X = x]. We define the treatment effect

bias of f w.r.t. a treatment T on an effect Y and a (high-
dimensional) signal X as:

TEB :=

EX|do(T=1)[f(X)]− EY |do(T=1)[Y ]︸ ︷︷ ︸
Interventional Bias under Treatment


−

EX|do(T=0)[f(X)]− EY |do(T=0)[Y ]︸ ︷︷ ︸
Interventional Bias under Control

 (3)

f is treatment effect unbiased if TEB = 0, i.e., the differ-
ence among the systematic errors per intervention (over/un-
der estimating) compensates, or directly, the average treat-
ment on the predicted effects equals the true ATE (despite
possible misclassification).

Lemma 3.1 (Informal). Assuming the setting de-
scribed in Section 2. A predictive model f for
the factual outcomes with accuracy 1-ϵ can lead to
|TEB(f)| = ϵ

mint P (T=t) ≥ 2ϵ, which invalidates any
causal conclusion when the ATE is comparable with ϵ
and/or the dataset is unbalanced in T.

A formal statement and proof for Lemma 3.1 is reported in
Appendix A.1. Lemma 3.1 explicits that misclassification
can lead to biased causal conclusion, but not necessarily.
Clearly, if the prediction accuracy is perfect (i.e., ϵ = 0),
also the objective of treatment effect estimation is perfect.
However, for each error rate ϵ > 0, several predictions
with different treatment effect biases are possible, from 0
to the worst-case scenario ϵ

mint P (T=t) , which drastically
invalidates any causal conclusion for ϵ ≫ 0 or strongly
unbalanced dataset with respect to the treatment assignment.
Accuracy and similar metrics do not provide a full picture
of the goodness of a model for such a downstream task.

Due to the Fundamental Problem in Casual Inference (Hol-
land, 1986), we cannot estimate the treatment effect bias
directly. By design (i.e., Ignorability Assumption), the inter-
ventional expectations are identified in the conditional ones
on the whole population, but not on Ds individually due to
the effect modifications activated by conditioning on S. Still,
in practice, a validation set, ideally Out-of-Distribution from
the training sample in Ds, can be considered to approximate
the TEB.

Links to Fairness This idea of enforcing similar
performances (or at least similar systematic errors) among
the treated and controlled groups can be revisited in terms
of fairness requirements (Verma and Rubin, 2018). In
particular, it strictly relates to Treatment Equality (Berk
et al., 2021), where the ratio of false negatives and false
positives for both treated and control groups is enforced to
be the same, while in TEB we measure the difference, but
in a similar spirit. In our setting, the difference is actually a
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more stable measure since the ratio can be ill-defined when
the number of false positive predictions approaches 0. This
discussion leaves open where the bias originates and, in the
fairness literature, this is reflected in the distinction between
bias preserving and bias transforming metrics (Wachter
et al., 2021). For our purposes, the data as a whole is
assumed unbiased in principle since we assume an RCT, but
the sampling scheme S could introduce bias in the training
data. Orthogonally, the model choices can amplify existing
data biases differently or even introduce new ones.

Data bias from sampling choice From the assumed
causal model illustrated in Figure 1, we have that
P(X,Y )|S=0 generally differs from P(X,Y )|S=1. Indeed,
conditioning on S acts as an effect modification on X and
Y . It follows that the risk in predicting Y over the annotated
population can differ from the expected risk over the whole
population, i.e.:

E(X,Y )|S=1[L(f(X), Y )] ̸= E(X,Y )[L(f(X), Y )]. (4)

Due to this distribution shift, we should expect some gener-
alization errors at test time through empirical risk minimiza-
tion even if ns → ∞. It follows that the Conditional Aver-
age Treatment Effect (CATE) estimate for the experimental
settings poorly represented in Ds can introduce bias in Du.

Mitigation: Randomly assigning S is crucial to suppress
any backdoor path and avoid generalization errors. Model
selection should also take into account the TEB. Although
we cannot estimate it directly, a validation set, ideally Out-
of-Distribution in W , should be considered to bound the
TEB, replacing the interventional distributions with the
corresponding conditionals.

Model bias from the encoder choice Since X is high-
dimensional, we decompose the model f in h ◦ e, where
e is an encoder potentially pre-trained on a much larger
corpus through a representation learning algorithm and h is
a simple decoder (e.g., multi-layer perceptron) for classifi-
cation. A good representation should be both sufficient and
minimal (Achille and Soatto, 2018). If a representation is
only sufficient, redundant information from W or S could
be preserved, potentially leading to systematic errors on Du

due to spurious correlations and the abovementioned covari-
ates shift. Frozen state-of-the-art models are most likely
not minimal for our task, making the sampling choices even
more relevant. If the representation is not sufficient, then it
is biased by definition.

Mitigation: Before deploying a new backbone, one should
attempt to quantify its biases. If needed, new methodologies
to mitigate this bias during adaptation should be investi-
gated. Overall, models with lower bias may be preferable
even if they have lower accuracy.

Discretization Bias We can encounter a final source of
bias in post-processing the predictions. Indeed, despite the
majority of the classification methods directly modeling the
conditional expectation E[Y |X = x], we could naively
be tempted to binarize this estimate to the most probable
prediction or setting a fixed threshold. See indeed how the
default choices for the predict module, even in estab-
lished libraries, e.g., Logistic Regression implementation in
sklearn.linear_model (Pedregosa et al., 2011), is
to output the most probable prediction directly. Similarly,
even econML, the most popular library for causal machine
learning (Battocchi et al., 2019), allows for binary outcome
prediction methods. Despite being apparently innocent and
common practice in classification, discretizing the condi-
tional expectation is biased for downstream treatment effect
estimation.

Theorem 3.1. [Informal] Let a binary classification
model converge to the true probability of the outcome
given its (high-dimensional) signal. Then, its dis-
cretization (i.e., rounding the prediction to {0,1} with a
fixed threshold) also converges, but to a different quan-
tity with a different expectation. It follows that, for
causal treatment effect estimation from ML pipelines,
discretizing the predictions biases the ATE estimation.

A formal statement and proof of Theorem 3.1 is reported in
Appendix A.2. It shows that even if we rely on a consistent
estimator of the factual outcome for each subgroup, its dis-
cretization would still converge but on a different quantity,
i.e., it is biased. There is then no reason to discretize a model
for EX [Y |X] if we can model it directly e.g., using sigmoid
or softmax activation). Likewise, if there is uncertainty over
human annotations (e.g., because multiple raters disagree),
the soft label should be used and not the majority one.

Example 1. To intuitively visualize this result, consider a
generative process following the causal model introduced in
Figure 1. Let f̂ a model for E[Y |X = x] trained by logistic
regression over n samples and f̂∗ its discretization. Let the
Empirical Associational Difference (EAD) of f̂ converge to
its AD, then the EAD of f̂∗ still converges but to its own AD,
which significantly differs (depending on the randomness
in P(Y |X) mechanism). In Figure 3, we report the results
of a Monte Carlo simulation for an instance of this gener-
ative process. A full description of the Structural Causal
Model and theoretical derivation of the limits is reported in
Appendix B.1.
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Figure 3: Monte-Carlo simulation of the discretization bias’ con-
vergence result.

Mitigation: Never arbitrarily discretize predictions for
downstream treatment effect estimation.

4. Related Works
Representation learning for scientific applications
The setting we consider is very common, and there are
several benchmarks that have studied representation
learning as a means to help domain experts in sciences,
for example, (Sun et al., 2023; Beery et al., 2018; Kay
et al., 2022; Chen et al., 2023) in ecology alone. However,
these works focus on downstream prediction accuracy
following standard machine learning evaluation practices,
which do not necessarily indicate good downstream causal
predictions. One notable positive example is (Beery et al.,
2018), as computing the prediction accuracy separately
for different locations allows us to estimate the bias of the
model. Overall, we argue that when the ultimate purpose of
training a machine learning model is to support scientists in
answering some research question that is causal in nature,
the specific question should be part of the design and
evaluation of the benchmark. For this reason, our paper
uniquely starts from the causal downstream task. Only then
can we formalize the properties that methods should have in
order to do well and be useful in answering the overarching
scientific question. To the best of our knowledge, ours is the
first real-world computer vision data set with an associated
well-defined and real causal downstream task.

Causal representation learning In our analysis (both the-
oretically and experimentally), we focused on traditional
representation learning algorithms, but there is a whole
community interested in identifying causal variables from
high-dimensional observations (Schölkopf et al., 2021). Su-
perficially, identifying Y may be useful to estimate the ATE.
However, all existing methods seem to cover two main

classes of assumptions that are unfortunately inapplicable
to our setting. Interventional methods (Ahuja et al., 2023;
Buchholz et al., 2023; Squires et al., 2023; Varici et al.,
2023; Zhang et al., 2024) require intervening on the be-
havior Y , which is practically impossible and, even if we
could, then we would not need to identify it. Multi-view
approaches (Ahuja et al., 2022; Brehmer et al., 2022; Lo-
catello et al., 2020; von Kügelgen et al., 2021; Yao et al.,
2024) would require access to positive and negative pairs
of samples with respect to Y . However, it is not clear how
to construct such pairs in our setting without knowing Y
already. Further, all these approaches only cover continu-
ous variables. A notable exception is (Kivva et al., 2021),
which covers discrete variables but has a non-degeneracy
assumption (Assumption 2.4) that is severely violated in
our case (i.e., most pixels are not affected by the behavior
variable because ants are small). For these reasons, despite
having a very clear causal downstream task, we had to re-
sort to classical representation learning algorithms that are
not identifiable. We hope that our data set can serve as a
new real-world benchmark for developing algorithms with
realistic assumptions that can be applied in practice.

Other Related Works In causal inference, only
Chakrabortty et al. (2022) shows how to use semi-
supervised learning to perform imputation on missing effect
annotations. Unfortunately, their setting is comparatively
very low-dimensional (observations are 200 binary vari-
ables). Instead, we consider high-dimensional real-world
images in a representation learning setting, which intro-
duces additional new challenges as described in Section 3.
Remarkably, they do not discute discretization bias. Curth
et al. (2024) already mentioned that the Positivity and Ignor-
ability/Unconfoundness Assumptions are critical for using
machine learning in the context of ATE estimation. How-
ever, their work does not explain precisely how confound-
ing effects can arise in the representation learning setting,
which we thoroughly addressed. Close in spirit to our dis-
cussion are (Angelopoulos et al., 2023; Zrnic and Candès,
2024), considering the role of predictions in statistical esti-
mates. Our setting is related but additionally motivated by
the hope of leveraging causal identification properties on
the prediction-powered dataset.

5. Experimental setup
We validate the theoretical results from Section 3 on our
new real-world dataset. We assume Ds ∪ Du being a full
RCT, and we compare the treatment effect biases among
several design choices in annotating and modeling. Over-
all, we fine-tuned 6 480 different models and tested all the
mitigations proposed. We then replicate the experiments on
CausalMNIST, a new synthetic benchmark we propose that
allows controlling for the causal effect.
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5.1. New real-world dataset: ISTAnt

We applied microparticles to the body surface of a (focal)
Lasius neglectus worker ant and recorded the behavioral
reaction this treatment elicits in two other worker ants from
the same colony. To distinguish between the treated indi-
vidual and the untreated two nestmates, the latter had been
color-coded by a dot of blue or orange paint, respectively,
before the experiment. We used two different microparticle
treatments to compare grooming responses by the nestmates
between treatment types, assigning them at random (i.e.,
RCT). For five batches, we simultaneously filmed nine ant
groups of three ants each under a single camera setup in a
custom-made box with controlled lighting and ventilation.
In total, we collected 44 videos1 of 10 minutes at 30fps
each for a total of 792 000 frames annotated following a
blind procedure, and we run the analysis at 2fps for a total
of 52 800 frames. More details about the experiment de-
sign are reported in Appendix C. We remark that this is the
first real-world data set for treatment effect estimation from
high-dimensional observations, which we will release to ac-
celerate future research. Since it encompasses a real-world
scientific question, we can, at best, enforce the Ignorability
Assumption by design in the trial. We do not have actual
control over the underlying causal model and the causal
effect. We take the treatment effect estimation computed
with the expert annotations as ground truth.

Annotation Sampling Annotating frames individually
is significantly more expensive in terms of time and not
adopted in practice. The practical gold standard through
current software for human annotation is per-video random
annotation, where only a few videos taken at random are
fully annotated. We compared this criterion with per-video
batch (W1) and per-video position (W2) annotation criteria,
where only the videos in certain batches or positions were
considered in Ds. For each of the three criteria, we fur-
ther considered a many-shots (Ds ≫ Du) and a few-shots
setting (Ds ≪ Du). Details about the dataset splitting per
annotation criteria are in Appendix D.1.

Modeling We modeled f as a composition of a freezed
pre-trained encoder e and a multi-layers perceptron h fine-
tuned on Ds. For the encoder, we compared six different
established Vision Transformers (ViT), mainly varying the
training procedure: ViT-B (Dosovitskiy et al., 2020), ViT-L
(Zhai et al., 2023), CLIP-ViT-B,-L (Radford et al., 2021),
MAE (He et al., 2022), DINOv2 (Oquab et al., 2023). For
each encoder, we considered the representation extracted (i)
by the class encoder (class), (ii) by the average of all the
other tokens (mean), or (iii) both concatenated (all). For

1One video was discarded for analysis since a leg of one of the
two nestmates got stuck in the dot of the color code, impairing its
behavior.

each representation extracted we trained different heads,
varying the number of hidden layers (1 or 2 layers with
256 nodes each with ReLU activation), learning rates (0.05,
0.005, 0.0005) for Adam optimizer (Kingma and Ba, 2014)
(10 epochs) and target (independent double prediction of
’blue to focal’ and ’orange to focal’ grooming, or unique
prediction of grooming either ’blue to focal’ or ’orange to
focal’) via (binary) cross-entropy loss. We either discretized
or not the output of the model, already in [0, 1] due to the
sigmoid final activation. For each configuration, we repeated
the training with five different random seeds. A summary
of the architectures and training description is in Appendix
D.2.

Evaluating For each trained model, we computed the
binary cross-entropy loss, accuracy, balanced accuracy,
and TEB on validation; and accuracy, balanced accuracy,
TEB, and TEB using discretization on the full dataset
D = Ds ∪ Du (where the average potential outcomes in
the TEB are estimated by the sample mean). Since the ATE
does not have a reference scale, for interpretation purposes,
we replaced the TEB with Treatment Effect Relative Bias
(TERB = TEB/ATE) in the visualizations.

5.2. CausalMNIST

CausalMNIST is a new synthetically generated visual
dataset we designed for downstream treatment effect es-
timation. It is a colored manipulation of the MNIST dataset
(LeCun, 1998), following an underlying generative process
in agreement with the causal model assumed in our frame-
work (see Figure 1). We explicitly controlled the ATE and
generated 400 different samples from such a population
(each one as large as the MNIST dataset, i.e., 60k images),
allowing for Monte-Carlo simulations to accurately provide
confidence intervals of our estimations. We omitted a com-
parison among pre-trained encoders since the visual task
is relatively simple and can be solved directly by a simple
convolutional neural network in a supervised fashion. A
full description of the dataset is in Appendix E, together
with its experiments, which align with our conclusions from
ISTAnt.

6. Results
Annotating criteria matter Theory suggests that biased
annotating criteria (i.e., depending on the experimental
settings) can lead to biased treatment effect estimation,
wrongly retrieving the conditional treatment effect on un-
seen experimental settings. Figure 4 validates this obser-
vation, particularly in the few-shots regime. Despite the
average estimation of the TEB is (almost) always biased, as
illustrated in Table 1, the distribution for (per-video) ran-
dom annotation is more centered towards 0. The benefits of
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random sampling are less obvious in the many-shots regime
since Du becomes less and less Out-of-Distribution. Still,
this setting is rarely the case in practice since scientist hope
to label |Ds| ≪ |Du| frames to have a concrete advantage
in their workflow.
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Figure 4: Violin plots comparing the Treatment Effect Rela-
tive Bias (TERB) per annotation criteria in few and many
annotations regime. Biased annotations lead to biased ATE
estimation (i.e., TERB̸=0) and random annotation should
be preferred.

Annot. Criteria t p-value

Many
Random 3.581 4 ·10−4

Experiment 1.918 0.0564
Position 14.982 ≈ 0

Few
Random -4.46 1.3 ·10−5

Experiment -13.417 ≈ 0
Position -11.250 ≈ 0

Table 1: Two-sided t-test for H0 : E[TEB(f)] = 0 over the
200 best models in overall Balanced Accuracy per splitting
criteria. We found statistical evidence to reject the hypothe-
sis that even the best models alone are unbiased for (almost)
each annotation criterion.

Encoder Bias Vanilla classification evaluation (e.g., ac-
curacy, F1-score, etc.) well describes the goodness of a
representation for a predictive downstream task. However,
it is still unclear how to measure the goodness of a represen-
tation for a causal downstream task since we do not directly
observe the ground truth (fundamental problem of Causal
Inference). Even in our simple setting where we can easily
identify the treatment effect over the whole population, it is
not possible to condition just on a biased subsample (e.g.,
the validation set). Figure 5 shows clearly how the TERB
doesn’t correlate with balanced accuracy on the whole sam-
ple once it is sufficiently good (i.e., > 0.9). Even among
models with balanced accuracy > 0.95 we estimated TERBs
up to ± 50%, which can drastically lead to wrong causal
conclusions. Among the different encoders, MAE is sig-
nificantly underperforming all the others. We postulate the
reason for this gap is that the masked reconstruction training
leads to overly focus on background conditions instead of
the comparatively small ants. Evidence for this hypothesis

is reported in Table 2 where we observe that for ‘position’
splitting criteria, the Fréchet Distance between the extracted
embeddings by MAE in Ds and Du is maxima and signifi-
cantly higher than for the other splittings, probably due to
spurious correlation with the background which is indeed
non changing as much for “random” and “experiment” split-
ting. Despite some (e.g., DINOv2 and CLIP-ViT-L) having
better downstream predictive performances, the other en-
coders all have similar TERB ranges. New criteria to better
estimate and bound the treatment effect bias already on val-
idation and methodologies to unbias these models during
training are required.

Discretization Bias We considered the absolute value of
the TEB over all the 6 480 fine-tuned models, evaluating in-
dependently the models predicting both ‘Blue to Focal’ and
‘Orange to Focal’ grooming for a total of 9 720 evaluations.

0.75 0.80 0.85 0.90 0.95
Balanced Accuracy

0.6

0.4

0.2

0.0

0.2

0.4

0.6
TE

RB
CLIP-ViT-L
CLIP-ViT-S
DINOv2
MAE
ViT-L
ViT-S

Figure 5: Scatter plot comparing the TERB and balanced
accuracy in prediction among the 20 best models per 6 estab-
lished encoders. Despite different downstream prediction
performances, all the encoders (with excepts of MAE) lead
to similar TERB (up to ± 50%).

Encoder Fréchet Distance (FD)

Random Experiment Position

CLIP-ViT-L 422.6 ± 87.9 461.2 ± 151.7 605.2 ± 130.0
CLIP-ViT-S 329.6 ± 113.7 341.7 ± 120.2 486.8 ± 97.6

DINOv2 360.0 ± 183.3 413.0 ± 222.5 514.4 ± 244.9
MAE 275.0 ± 20.9 211.8 ± 16.5 760.9 ± 122.4
ViT-L 499.7 ± 32.0 503.4 ± 108.6 681.7 ± 159.0
ViT-S 308.7 ± 69.8 307.4 ± 67.7 423.9 ± 103.9

Table 2: FD distance among Ds and Du, representing the
average distribution distance (± standard deviation) after
normalization per encoder varying splitting criteria (e.g.,
few and many shots regime) and tokens considered. Rep-
resentations with higher FD distance on position splitting
(where the background changes the most) compared to the
other splitting rely on more spurious correlations for our
task (i.e., not minimal).
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We tested (t-test):

H0 : E[|TEB(f)|] = E[|TEB(1[0.5,1](f))|]vs
H1 : E[|TEB(f)|] < E[|TEB(1[0.5,1](f))|] (5)

We found strong statistical evidence to confirm that discretiz-
ing the model outcome worsens treatment effect estimation
(t statistic=-10.42, p-value=1.07 · 10−25), confirming Theo-
rem 3.1 .

Prediction is not Causal Estimation Distinct statistical
and causal objectives cannot be used as a proxy for one
another. We already formalized this in Lemma 3.1 and par-
tially observed it in Figure 5. In Figure 6, we systematically
show it by comparing the rank-correlation among 1 620
models. We further observed that simply computing the
TEB on a small validation is a better predictor of the TEB
over the full dataset than the metrics focused on prediction
accuracy (even on the full dataset). For the few-shot and
experiment sampling (the most realistic), if we select the
single best model on validation based on the TEB versus
the accuracy, we underestimate the effect by 11% and
18%, respectively. While this is not perfect, is a significant
improvement. We encourage future research to investigate
theoretical generalization guarantees and new techniques
to approximate the TEB on validation data.

Discussion Overall, our results clearly show that it is
possible to leverage pre-trained deep learning models to
accelerate the annotation of experimental data and obtain
downstream causal estimates that are consistent with those
from domain experts. At the same time, we find that ex-
perimental practices need to incorporate the specific needs
of these causal downstream tasks. While our theoretical
statements are “worst case scenarios” and only indicate that
bias can arise (but does not always have to), we find em-
pirical validation that it unfortunately easily manifests in
practice. Remarkably, the fact that we performed and col-
lected data within a randomized controlled trial, which is
the best-case scenario of causal inference, did not alleviate
the issue. Therefore, we can expect that the opportunities
for bias can be even greater in observational settings, and
even greater care is needed in model selection with the TEB
and adaptation-time debiasing techniques.

7. Conclusions and Limitations
As AI models are increasingly used to answer scientific
questions and support human decision-making, it is impor-
tant to understand how design choices in machine learning
pipelines affect the final results. In this paper, we took
a closer look at the impact of pre-trained deep learning
models in answering downstream causal treatment effect
questions. We presented a real-world example in experimen-
tal behavioral ecology, creating the first-ever data set for
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Figure 6: Spearman rank-order correlation matrix compar-
ing different metrics for model selection on validation (sub-
script val) and over the full dataset (subscript D). We con-
sidered all the 1 620 fine-tuned models to predict ‘Blue to
Focal’ or ‘Orange to Focal’ grooming in few-annotations
regime (i.e., |Ds| ≪ |Ds|). Standard prediction metrics
on validation correlate, but they are almost independent of
the |TEB|val. Similarly, they correlate with the prediction
metrics on the full dataset but poorly predict the |TEB|D.
On the other hand, |TEB|val is the most correlated metric
with |TEB|D, unlike even the prediction metrics on the full
dataset.

treatment effect estimation from high-dimensional observa-
tions. Both theoretically and empirically, we observed that
common choices, most notably discretizing the predictions
and using in-distribution accuracy for model selection, can
significantly affect the downstream conclusions. Two clear
limitations of this work are that we did not do anything
to the training to mitigate the bias, we kept the backbones
frozen, and we did not incorporate the unlabelled data for
semi-supervised training. Here, it would be very interesting
to study how tools developed in the fairness literature can
be extended to causal questions. For future benchmarks
targeting scientific applications, we remark that it is vital
to include the actual downstream question in the design of
the data set. Otherwise, there is a risk that any model pro-
duced on that data may be unusable in practice, as it can bias
the answer on an otherwise perfectly designed experiment.
Finally, we would recommend that future work in causal
representation learning starts from a clear downstream task
like the one presented in this paper and works backward to
reasonable assumptions. To facilitate this process, we will
release our data set including all the experimental variables,
so that relevant future work on e.g., discovering confound-
ing or semi-supervised effect discovery, can take place on a
real problem.
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A. Proofs
A.1. Proof of Lemma 3.1

Lemma. Let T ∼ Be(pT ), Y ∼ Be(pY ), X ∼ PX

and let f : X → [0, 1] a model for EY [Y |X = x].
Assuming (i) Ignorability (i.e., T ⊥ Y |do(T =
1), Y |do(T = 0)) , (ii) EX [|1[k,1](f(X)) =
f(X)|] = 0 where k ∈ [0, 1], and (iii) f with ac-
curacy 1− ϵ, i.e., :

P
(
1[k,1](f(X)) = Y

)
= 1− ϵ with ϵ ∈ [0, 1],

(Classification Accuracy)
then |TEB(f )|≤ ϵ

mint P (T=t) and the worst-case
|TEB(f )|= ϵ

mint P (T=t) ≥ 2ϵ is reached when all the
misclassification over (or under) estimates the factual
outcome in the smaller in size treatment group.

Proof. Starting from the definition of Treatment Effect Bias
and using assumption (i):

|TEB(f)| = |(EX|do(T=1)[f(X)]− EY |do(T=1)[Y ]︸ ︷︷ ︸
Interventional Bias under Treatment

)−

− (EX|do(T=0)[f(X)]− EY |do(T=0)[Y ]︸ ︷︷ ︸
Interventional Bias under Control

)| =

= |(EX|T=1[f(X)]− EY |T=1[Y ]︸ ︷︷ ︸
ϵ1

)−

− (EX|T=0[f(X)]− EY |T=0[Y ]︸ ︷︷ ︸
ϵ0

)| =

= |ϵ1 − ϵ0| ≤ |ϵ1|+ |ϵ0| (6)

where

ϵt := EX|T=1[f(X)]− EY |T=1[Y ] ∀t ∈ {0, 1} (7)

represent the overestimation of each conditional outcome
expectation (i.e., conditional bias under treatment/control).

By assumption (iii) and the law of total probability:

ϵ = P
(
1[k,1](f(X)) ̸= Y

)
=

= P
(
1[k,1](f(X)) ̸= Y |T = 0

)
· P(T = 0)+

+ P
(
1[k,1](f(X)) ̸= Y |T = 1

)
· P(T = 1). (8)

By Jensen’s inequality and linearity of the expected value:

|ϵt| = |E(X,Y )|T=t[f(X)− Y ]| ≤
≤ E(X,Y )|T=t[|f(X)− Y |] =
≤ E(X,Y )|T=t[|f(X)− 1[k,1](f(X))|]+
+ E(X,Y )|T=t[|1[k,1](f(X))− Y |] =

= E(X,Y )|T=t[|f(X)− 1[k,1](f(X))|]+
+ P

(
1[k,1](f(X)) ̸= Y |T = t

)
. (9)

Combining Equation 8 and 9 we using the assumption (ii),
for all t ∈ {0, 1} we have:

ϵ ≥ |ϵ0| · P(T = 0) + |ϵ1| · P(T = 1)−
− EX [|1[k,1](f(X)) = f(X)|] =

= |ϵ0| · P(T = 0) + |ϵ1| · P(T = 1) (10)

And finally, combining this with Equation 6, we get:

|TEB(f)| ≤ ϵ

mint P (T = t)
. (11)

The bound we found corresponds to the worst-case scenario
where we misclassify, only overestimating or only underes-
timating, always in the least probable treated group. Since
T is binary, then (mint P (T = t)) > 0.5, and so the thesis.

Comment: Assumption (ii) is only used to find the worst-case
scenario explicitly. Similar results can be stated bounding
this discretization error.

A.2. Proof of Theorem 3.1
Theorem. Let T ∼ Be(pT ), Y ∼ Be(pY ) and X ∼
PX . For all t ∈ {0, 1}, let τ̂n(X, t) a succession
converging in mean L1 to τ(X, t) := EY [Y |X, T =
t], i.e.,

EX [|τ̂n(X, t)− τ(X, t)|] n−→ 0 (12)

Let τ̂∗n(X, t) = 1[k,1] (τ̂n(X, t)) for all n and
τ∗(X, t) = 1[k,1] (τ(X, t)), where 1[k,1] : R →
{0, 1} is the indicator function with threshold k ∈
[0, 1]. Assuming τ(X, t) having continuos CDF (i.e.,
Fτ(X,t) ∈ C0), then:

EX [|τ̂∗n(X, t)− τ∗(X, t)|] n−→ 0 (13)

but

EX [τ∗(X, t)] ̸= EX [τ(X, t)] ∀k ∈ [0, 1]/k̄,
(14)

i.e., they are generally different unless for a value
k̄ ∈ [0, 1] depending on the distribution of τ(X, t)
(not observed in practice).

Proof. Convergence in mean L1 of that binarized estimator
(Equation 13) follows directly from the fact the L1 conver-
gence implies convergence in distribution and Portmanteau
Thereom (using the continuity assumption of τ(X, t) CDF).

It only remains to show that the expectations of their limits
generally differ. By developing the expected value of the
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τ∗(X, t) we have, for all t ∈ {0, 1}, k ∈ [0, 1]/k̄:

EX [τ∗(X, t)] =

∫
1[k,1]τ(X, t) dPX = (15)

= P(τ(X, t) ≥ k) ̸= EX [τ(X, t)] (16)

where, by definition, k̄ is the α-quantile for τ(X, t), with
α = 1− EX [τ(X, t)] (uniqueness due to the continuity of
τ(X, t) CDF).

B. Additional Examples
B.1. Full Description Example 1

Let’s consider the following structural causal model in align-
ment with the generative process in Figure 1. Noises:

nT ∼ Be(pT ) (17)

nW , nX
i.i.d.∼ N (0, 1) (18)

nY ∼ N (0, σ2
Y ) (19)

where pT ∈ (0, 1) and σ2
Y > 0. and structural equations:

T := nT (20)
W := nW (21)
X := T +W + nX (22)
Y := 1[0,+∞)(X + nY ) (23)

By the Law of Total Probability and additivity of Gaussian
distributions, it follows:

X ∼ N (pT , 2 + pT · (1− pT )) (24)
X|T = 1 ∼ N (1, 2) (25)
X|T = 0 ∼ N (0, 2) (26)

Y |T = 1 ∼ Be

(
ϕ

(
1√

2 + σ2
Y

))
(27)

Y |T = 0 ∼ Be(0.5) (28)

Y ∗ :=

{
1 if EY [Y |X] > 0.5

0 if otherwise
(29)

Then:

Y ∗|T = 1 ∼ Be(ϕ(1/
√
2)) ≈ Be(0.76) (30)

Y ∗|T = 0 ∼ Be(0.5) (31)

And:

ADY,T = ϕ

(
1√

2 + σ2
Y

)
− 0.5 (32)

ADY ∗,T = ϕ(1/
√
2)− 0.5 ̸= ADY,T (33)

Let f̂(x) a logistic regression estimator for E[Y |X = x]
and:

f̂∗(x) :=

{
1 if f̂(x) > 0.5

0 if otherwise
∀x ∈ R. (34)

Setting pT = 0.5 and σ2
Y = 1, we run a Monte-Carlo sim-

ulation with 50 different random seeds per sample size n,
estimating the associational difference by the empirical as-
sociational difference (EAD), i.e., using the sample mean.
The results are reported in Figure 3. We observe that f̂
leads to a consistent estimate of the true associational differ-
ence, which corresponds to the ATE due to the Ignorability
Assumption encoded in the causal model:

EADf̂(X),T

n−→ ADY,T = ATEY,T (35)

and so:

EADf̂∗(X),T

n−→ ADY ∗,T = ATEY ∗,T (36)

But, according to Theorem 3.1, its discretization is biased:

ADY ∗,T−ADY,T =
(
ϕ(1/

√
2)− ϕ(1/

√
3)
)
≈ 0.042 > 0

(37)
and more generally, the stronger is the variance in the effect
random noise nY , the bigger is the bias.

C. ISTAnt
In our study, we analyzed grooming behavior in the ant La-
sius neglectus in groups of three worker ants. The workers
for the experiment were obtained from their laboratory stock
colony, which had been collected from the field in 2022 in
the Botanical Garden Jena, Germany. Ant collection and all
experimental work were performed in compliance with in-
ternational, national and institutional regulations and ethical
guidelines. For the experiment, the body surface of one of
the three ants was treated with a suspension of either of two
microparticle types (diameter 5 µm) to induce grooming
by the two nestmates, which were individually color-coded
by application of a dot of blue or orange paint, respectively.
The three ants were housed in small plastic containers (diam-
eter 28mm, height 30mm) with moistened, plastered ground
and the interior walls covered with PTFE (polytetrafluo-
roethane) to hamper climbing by the ants. Filming occurred
in a temperature- and humidity-controlled room at 23°C
within a custom-made filming box with controlled lighting
and ventilation conditions. We set up nine ant groups at a
time (always containing both treatments) and placed them
randomly on positions 1-9 marked on the floor in a 3x3 grid
with a distance of about 3mm from each other. The experi-
ment was performed on two consecutive days. Videos were
acquired using a USB camera (FLIR blackfly S BFS-U3-
120S4C, Teledyne FLIR) with a high-performance lens (HP
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Series 25mm Focal Length, Edmund optics 86-572) in OBS
studio 29.0.0 (Bailey, 2017) at a framerate of 30 FPS and a
resolution of 2500x2500 pixels. From each original video
(105x105 mm), we generated 9 individual videos .mkv
(each 32x32 mm, 770x770 pixels) by determining exact
coordinates per container from one frame in GIMP 2.10.36
(Kimball and Mattis, 2023) and cropping of the videos with
FFmpeg 6.1.1 (Tomar, 2006). Annotation was performed
over two consecutive days by three observers who had not
been involved in the experimental setup or recording and
were unaware of the treatment assignments to ensure bias-
free behavioral annotation. They annotated the behavior
of the ants during video observations, using custom-made
software that saves the start and end frames of behaviors
marked in a .csv file. In one of the videos, one of the
nestmates’ legs got inadvertently stuck to its body surface
during the color-coding, interfering with its behavior, so the
video was discarded. This left 44 videos from 5 indepen-
dent setups (n=24 of treatment 1 and n=20 of treatment 2)
of 10 minutes each for a total of 792 000 annotated frames.
For each video, we provide the following information: the
number of the set to which it belongs (1-5); the number of
the position within the set reflecting the position of the ant
group under the camera (1-9), for which we also provide
‘coordinates’ in the 3x3 grid (taking values -1/0/1 for both
X and Y axis); treatment (1 or 2); the hour of the day when
the recording was started (in 24h CEST); experimental day
(A or B); the top left coordinate of the cropping square from
the original video (CropX/CropY); the person annotating
the video (given as A, B, C); the date of annotation (1: first
day, 2: second day) and in which order the videos were
annotated by each person (both reflecting a possible training
effect of the person).

D. Detailed Experimental Settings
In this section, we provide additional information on the
experimental settings for the main experiments (on ISTAnt
dataset). In particular, we describe the annotation splitting
criteria selected, then the modeling choices and the training
details. We run all the analyses using 48GB of RAM, 20
CPU cores, and a single node GPU (NVIDIA GeForce
RTX2080Ti). The main bottleneck in the analysis is the
feature extraction from the pre-trained Vision Transform-
ers. We estimate 96 GPU hours to fully reproduce all the
experiments described in the main paper.

D.1. Splitting Criteria

Let W1 ∈ {1, ..., 5} representing the number of batch exper-
iment and W2 ∈ {1, ..., 9} the relative position of a video
inside its batch. We defined the annotation splitting criteria
based on the value of the experiment settings W1 and W2,
in agreement with Table 3.

Annotations Criteria Ds ns Du nu

Many
Random (W1,W2) /∈ Ω 42 000 (W1,W2) ∈ Ω 10 800

Experiment W1 ̸= 5 42 000 W1 = 5 10 800
Position W2 ̸= 8 46 800 W2 = 8 6 000

Few
Random (W1,W2) ∈ Ω 10 800 (W1,W2) /∈ Ω 42 000

Experiment W1 = 1 10 800 W1 ̸= 1 42 000
Position W2 = 1 6 000 W2 ̸= 1 46 800

Table 3: Annotation splitting criteria details for the extensive
experiments on ISTAnt described in Section 5 and 6.

where Ω = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 1), (3, 2), (4, 3),
(4, 4), (5, 9)}. For validation (used to generate the Figure 6)
we consider 1 000 random frames from Du.

D.2. Additional Models details

We extracted once the embedding of each frame in the
dataset using a pre-trained encoder, and we fine-tuned multi-
layer perceptron (MLP) heads for classification according
to the training details reported in Table 4. We considered
the following encoders for feature extraction, also report the
corresponding Hugging Face code ID for reference:

• (Dosovitskiy et al., 2020):
google/vit-base-patch16-224

• ViT-L (Zhai et al., 2023):
google/siglip-base-patch16-512

• CLIP-ViT-B (Radford et al., 2021):
openai/clip-vit-base-patch32

• CLIP-ViT-L (Radford et al., 2021):
openai/clip-vit-large-patch14-336

• MAE (He et al., 2022),:
facebook/vit-mae-large

• DINOv2 (Oquab et al., 2023):
facebook/dinov2-base

Encoder (token) refers to which embedded tokens were con-
sidered for representation from each ViT. ‘class’ stands for
the class taken, ‘mean’ for the mean of all the other to-
kens and ‘all’ for their concatenation. Task refers to which
outcome we aimed to model directly: either the two inde-
pendent grooming events (‘Blue to Focal’ and ‘Orange to
Focal’) or the single grooming event (‘Blue or Orange to
Focal’). Overall, we finetuned:

n = nsplitting criteria · nencoders · ntokens · ntasks·
· nhidden layers · nlearningrates · nseeds

= 6 · 6 · 3 · 2 · 2 · 3 · 5 = 6480 (38)

heads.
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Model/Hyper-parameters Value(s)

Encoders [CLIP-ViT-L, CLIP-ViT-S, DINOv2, MAE, ViT-L, ViT-S]
Encoder (token) [class, mean, all]

MLP (head): hidden layers [1,2]
MLP (head): hidden nodes 256

MLP (head): activation function ReLU + Sigmoid output
Tasks [all, or]

Dropout No
Regularization No

Loss BCELoss (with positive weighting
Loss: Positive Weight

∑ns
i=1 1−Yi∑ns

i=1 Yi

Learning Rates [0.05, 0.005, 0.0005]
Optimizer Adam (β1 = 0.9, β2 = 0.9, ϵ = 10−8)
Batch Size 256

Epochs 10
Seeds [0,1,2,3,4]

Table 4: Model and training details for the extensive experi-
ments on ISTAnt described in Section 5 and 6.

E. CausalMNIST
E.1. Data generating process

To replicate the results on ISTAnt controlling for the causal
model, we proposed CausalMNIST: a colored manipulated
version of MNIST (LeCun, 1998), defining a simple causal
downstream task (treatment effect estimation). Starting
from MNIST dataset, we manipulated the background color
B of each image (1: green, 0: red), and the pen color P
(1: white, 0: black) to enforce the following Conditional
Average Treatment Effect:

E[Y |do(B = 1), P = 1]− E[Y |do(B = 0), P = 1] = 0.4
(39)

E[Y |do(B = 1), P = 0]− E[Y |do(B = 0), P = 0] = 0.2
(40)

and Average Treatment Effect:

E[Y |do(B = 1)]− E[Y |do(B = 0)] = 0.3 (41)

where Y is a binary variable equal to 1 if the represented
digit is strictly greater than d ∈ R, 0 otherwise. Arjovsky
et al. (2019) already proposed a colored variant of MNIST as
a benchmark for robustness in a multi-environment setting,
but without controlling for any causal model and presenting
a causal downstream task. A simple interpretation of this
new task is estimating the effect of the background on the
chances of writing a big digit (i.e., greater than d).

To obtain a sample from such a population manipulating
MNIST dataset, we converted each gray image into a RGB,
coloring the background B and the pen P according to
Bayes’ rule:

P (B = b, P = p|Y = y) =

=
P (Y = y|B = b, P = p) · P (B = b, P = p)

P (Y = y)

∀b, p, y ∈ {0, 1} (42)

Since the digits in MNIST dataset are uniformly distributed:

Y ∼ Be(pY ) (43)

where pY = (9− d)/10.

We then set:
B,P

i.i.d.∼ Be(0.5) (44)

and:

P (Y = 1|B = 1, P = 1) = pY + 0.2 (45)
P (Y = 1|B = 0, P = 1) = pY − 0.2 (46)
P (Y = 1|B = 1, P = 0) = pY + 0.1 (47)
P (Y = 1|B = 0, P = 0) = pY − 0.1 (48)

in agreement with the Law of Total Probability and assum-
ing d ∈ {1, 2, ..., 7}.

Overall, the final structural causal model can be summarized
as follows:

• Noises (independent):

nB ∼ Be(0.5) (49)
nP ∼ Be(0.5) (50)
nX ∼ PnX (51)
nY ∼ PnY (52)

• Structural equations:

B := nB (53)
P := nP (54)
X := f1(B,P, nX) (55)
Y := f2(X, nY ) (56)

where PnX , PnY , f1 and f2 are unknown and character-
istic of MNIST dataset. The corresponding causal model
matches the setting described in Section 2 where B repre-
sents the treatment T and P the experiment settings W . In
this analysis, we set d = 3. Six examples of colored hand-
written digits from CausalMNIST are reported in Figure
7.

E.2. Experimental Setting

Annotation Sampling Similarly to ISTAnt experiments,
we compare the random annotation, where S is assigned

Figure 7: Random samples from CausalMNIST dataset.
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independently from P , and a biased annotation, where only
the images with a black pen (P = 0) are annotated in both
few and many annotation setting. The biased annotation
criteria don’t provide any information in Ds about the white
pen (P = 1) CATE, and retrieving the annotations on Du

becomes mandatory. Unfortunately, a model could misclas-
sify the new images under this covariate shift or hallucinate
just for a specific treatment group (e.g., green background
and white pen), leading to a biased estimate of the ATE. In
Table 5, we summarize the 4 different annotation sampling
proposed. For validation, we consider a random subsample
of Du as large as Ds. Please observe that for the biased
subsampling, not all the images with black pen (P=0) are
allocated Ds. Indeed, since P(P = 0) = 0.5 > ns

ns+nu
(in

both few and many annotations regime), then Du contains
both images of hand-written digits in white and black.

Annotations Criteria Ds ns Du nu

Many Random random 12 000 random 48 000
Biased only black (P=0) 12 000 the remaining 48 000

Few Random random 1 800 random 58 200
Biased only black (P=0) 1 800 the remaining 58 200

Table 5: Annotation splitting criteria details for CausalM-
NIST experiments.

Modeling Since the vision task is relatively simple, i.e.,
extracting features from a pre-trained VisionTransformer
is unnecessary, we don’t replicate the comparison among
different backbones, but we directly model the outcome
through a simple Convolutional Neural Network. On the
other hand, since we have control over the data-generating
process, we generated CausalMNIST 100 times for each an-
notation sampling criteria using different random seeds, and
we trained a Convolutional Neural Network (ConvNet) for
each of them (i.e., Monte Carlo simulations). This way, com-
paring the different models, we still replicated the results for
(i) data bias, (ii) discretization bias, and (iii) evaluation met-
rics already obtained for ISTAnt. The proposed ConvNet
architecture consists of two convolutional layers followed
by two fully connected layers. The first convolutional layer
applies 20 filters of size 5x5 with ReLU activation, followed
by a 2x2 max-pooling layer. The second convolutional layer
applies 50 filters of size 5x5 with ReLU activation, followed
by another 2x2 max-pooling layer. The output feature maps
are flattened and passed to a fully connected layer with
500 neurons and ReLU activation. The final fully connected
layer reduces the output to a single logit for binary classifica-
tion (mapped to a probability through the sigmoid function).
Table 6 reports a full description of the training details for
such a ConvNet.

Hyper-parameters Value(s)

Pre-Processing Normalization
Dropout No

Regularization No
Loss BCELoss

Loss: Positive Weight No
Learning Rates 0.001

Optimizer Adam (β1 = 0.9, β2 = 0.9, ϵ = 10−8)
Batch Size 64

Epochs 6
Seeds {0,1, ..., 99}

Table 6: Training details for the ConvNets training on
CausalMNIST.

Evaluation We collected the same evaluation metrics for
each training on both validation and the full dataset as de-
scribed in Section 5.

E.3. Results

We run all the analysis using 10GB of RAM, 8 CPU
cores, and a single node GPU (NVIDIA GeForce
RTX2080Ti). The main bottleneck of each experiment is
re-generating a new version of CausalMNIST from MNIST
dataset. We estimate a total of 6 GPU hours to reproduce
all the experiments described in this section.

Annotation criteria matter Theory suggests that biased
annotating criteria (i.e., depending on the experimental
settings) can lead to biased treatment effect estimation,
wrongly retrieving the conditional treatment effect on un-
seen experimental settings. Figure 8 validates this obser-
vation, and the results are validated via the t-tests reported
in Table 7. Overall, the results perfectly align with the
analogous discussion on ISTAnt.
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Random Biased
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Figure 8: Violin plots comparing the Treatment Effect Rela-
tive Bias (TERB) per annotation criteria criteria in few and
many annotations regime varying the seeds. Biased anno-
tations lead to biased ATE estimation (i.e., TERB̸=0) and
random annotation should be preferred.
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Annot. Criteria t p-value

Many Random 4.421 2.5 ·10−5

biased 4.030 1.1 ·10−4

Few Random 1.607 0.111
Biased 3.911 1.7 ·10−4

Table 7: Two-sided t-test for H0 : E[TEB(f)] = 0. We
found statistical evidence to reject the hypothesis that f is
unbiased for (almost) each annotation criterion.

Discretization bias We considered the absolute value of
the TEB over all the 400 experiments, and we tested (t-test):

H0 : E[|TEB(f)|] = E[|TEB(1[0.5,1](f))|] (57)

versus:

H1 : E[|TEB(f)|] ̸= E[|TEB(1[0.5,1](f))|] (58)

We found no statistical evidence to reject the null hypothesis
(t statistic=1.188, p-value=0.235). Still, this result doesn’t
contradict Theorem 3.1, where we show that predictions, dis-
cretized and not, generally differ in expectation, but they can
still be close (by chance). Some evidence of this undesired
discretization effect can still be observed in the distribu-
tion of the TEB(f ) and TEB(1[0.5,1](f)) as illustrated in
Figure 9 for both random and biased sampling. In random
sampling, in particular TEB(1[0.5,1](f)) mean in random
sampling is positive and 72.5% higher than TEB(f ) mean.
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Figure 9: Violin plots of the TERB of the model (discretized
or not) for both random and biased annotation sampling,
varying number of annotations (few/many) and seeds.

Prediction is not Causal Estimation Distinct statistical
and causal objectives cannot be used as a proxy for one
another. We already formalized this in Lemma 3.1 and
discussed it for ISTAnt dataset. In Figure 10 and 11, we sys-
tematically show it again for our new synthetic benchmark
by comparing the rank-correlation among 200 ConvNets
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Figure 10: Spearman rank-order correlation matrix compar-
ing different metrics for model selection on validation (sub-
script val) and over the full dataset (subscript D). We con-
sidered all the 200 models trained with random sampling,
varying the number of annotations (few and many) and seeds.
Standard prediction metrics on validation strongly correlate,
but they are less associated with |TEB|val. Similarly, they
correlate with the prediction metrics on the full dataset but
poorly predict the |TEB|D. On the other hand, |TEB|val is
the most correlated metric with |TEB|D, unlike even the
prediction metrics on the full dataset.

using random and biased sampling, respectively. Both matri-
ces fully align with the discussion presented for the ISTAnt
dataset in Section 6.
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Figure 11: Spearman rank-order correlation matrix com-
paring different metrics for model selection on validation
(subscript val) and over the full dataset (subscript D). We
considered all the 200 models trained with biased sampling,
varying the number of annotations (few and many) and seeds.
Standard prediction metrics on validation strongly correlate,
but they are less associated with |TEB|val. Similarly, they
correlate with the prediction metrics on the full dataset but
poorly predict the |TEB|D. On the other hand, |TEB|val is
the most correlated metric with |TEB|D, unlike even the
prediction metrics on the full dataset.
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