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ABSTRACT

Recent years have witnessed rapid progress of diffusion models, which signifi-
cantly advance the development of Text-to-Video (T2V) generation. Compared
to Text-to-Image (T2I) generation, T2V models encounter additional challenges,
including temporal consistency, motion coherence, and adherence to physical con-
straints across frames. To address these challenges, we propose a novel two-stage
framework, i.e., Complex-Scenario-Aware Prompt Refinement (CSAPR), to im-
prove prompt the quality for T2V generation. CSAPR consists of two stages,
i.e., prompt refinement and prompt verification. In the prompt refinement stage,
CSAPR classifies user prompts into one of eight representative categories and
applies targeted rewriting strategies guided by predefined meta prompts. In the
prompt verification stage, CSAPR aligns semantic atoms from the original prompt
with decomposed chunks of the refined prompt, ensuring that the refined prompt
faithfully preserves the intended semantics while avoiding inconsistencies. Ex-
tensive experiments on three benchmarks, i.e., VBench, EvalCrafter, and T2V-
CompBench, demonstrate that CSAPR significantly improves alignment with user
intent and video generation quality in complex scenarios (up to 1.40% in terms of
average score).

1 INTRODUCTION

The rapid advancement of diffusion models (Peebles & Xie, 2023; Rombach et al., 2022) has revo-
lutionized Artificial Intelligence Generated Content (AIGC), with applications ranging from image
and video generation to 3D content creation (Guo et al., 2025; Huang et al., 2025b; Lin et al., 2025;
Zhang et al., 2025a), speech and audio synthesis (Luo et al., 2023; Liu et al., 2024b; Oh et al., 2024),
and controllable editing (Lee et al., 2025; He et al., 2025; Wang et al., 2025d), driving new opportu-
nities in entertainment, education, design, and human–computer interaction. Amid these advances,
Text-to-Video (T2V) generation has emerged as a particularly compelling direction. Compared
to Text-to-Image (T2I) generation, T2V demands visually realistic frames together with temporal
coherence, motion dynamics, and adherence to physical and causal constraints, thereby posing a
substantially more challenging yet impactful research problem.

Recent works (Hao et al., 2023; Zhan et al., 2024b;a) have demonstrated that the prompts optimized
by Large Language Models (LLMs) yield high-quality and user-aligned outputs when fed into diffu-
sion models. This improvement arises while user-provided prompts tend to be concise and may omit
the detailed descriptions favored by AIGC models. Specifically, high-quality prompts are expected
to provide precise character and scene descriptions, follow specific expression patterns and incor-
porate domain-specific terminology for stylistic expression (Parsons, 2022; Witteveen & Andrews,
2022; Brade et al., 2023; Zhan et al., 2024a).

However, existing prompt refinement approaches are generally designed for T2I tasks, which typ-
ically involve employing retrieval-augmented generation to expand prompts (Sun et al., 2024), tai-
loring prompts based on user preferences (Zhan et al., 2024b;a), and enhancing prompts through
entity-specific descriptions (Ozaki et al., 2025). While these strategies are often sufficient for pro-
ducing a single coherent image, they fall short when applied to T2V generation, which introduces
substantially greater complexity. In video generation tasks, models are required to simultaneously
guarantee temporal consistency, ensure motion coherence, capture causal dependencies, and com-
ply with physical laws across frames. Although RAPO (Gao et al., 2025) attempts to enrich textual
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descriptions by constructing a relation graph to retrieve terms relevant to user prompts, it primarily
focuses on inter-object relations while overlooking challenges distinctive to video generation, such
as abstract descriptions or temporal consistency. More importantly, RAPO relies excessively on
relevance-based prompt retrieval and augmentation, which cannot provide a deeper understanding
of the motivations behind prompt rewriting or explicit guidance for refinement in complex scenarios.

To address these challenges, we summarize seven representative complex scenarios that pose signif-
icant difficulties for diffusion models in generating videos that align with user expectations. Since
each scenario introduces unique challenges for T2V generation, distinct strategies are required to
address them systematically. Motivated by this insight, we propose a novel two-stage framework,
i.e., Complex-Scenario-Aware Prompt Refinement (CSAPR).

CSAPR is designed to enable the prompt refinement model to understand the underlying reasons
why a generation request may be difficult for a T2V model to fulfill, and to employ targeted rewriting
strategies accordingly. To achieve this, CSAPR adopts a two-stage framework that includes prompt
refinement and prompt verification. In the refinement stage, CSAPR classifies the user input into
one of the seven challenging scenarios or identifies it as a non-challenging case. According to the
classification result, a pre-defined rewriting guideline is selected and employed as a meta-prompt
to guide the rewriting process. In the verification stage, CSAPR extracts the original prompt into
atoms and decomposes the rewritten prompt into multiple chunks. A semantic alignment process is
then performed to verify whether the rewritten chunks adequately preserve and reflect the meaning
of the original atoms. If verification is successful, the refined prompt is delivered to the T2V model.
Otherwise, the rewriting model is provided explicit feedback about missing or conflicting semantic
elements and instructed to regenerate the refined prompt. The major contributions are summarized
as follows:

• We summarize seven challenging scenarios in T2V generation tasks and propose targeted
improvement strategies for each scenario. To our knowledge, this is the first work that
investigates prompt refinement for video generation in complex scenarios.

• Our prompt rewriting strategy is grounded in understanding the challenges faced by T2V
models and is explicitly guided by well-defined objectives throughout the rewriting process.

• We additionally design a prompt verification method to ensure that the rewritten prompts
neither omits any user-specified elements nor introduces conflicts with the user prompt.

• Extensive evaluations on VBench, EvalCrafter, and T2V-CompBench demonstrate the ef-
fectiveness of our prompt refinement approach for T2V generation tasks.

2 RELATED WORK

In this section, we present the existing works on T2V generation and prompt refinement approaches.

2.1 TEXT-TO-VIDEO GENERATION

With the rapid progress of diffusion transformers and large-scale generative models (Rombach et al.,
2022; Peebles & Xie, 2023), T2V generation (Singer et al., 2023; Chen et al., 2024a) has emerged as
a pivotal task in content creation. Building on this trend, recent research has advanced T2V models
along multiple directions. Architectural innovations have introduced scalable designs, such as ex-
pert transformers (Yang et al., 2025) and linear-complexity attention modules (Wang et al., 2025b),
which improve both efficiency and model capacity. Training-free and plug-and-play inference ap-
proaches further enhance motion dynamics and spatial fidelity without additional training by exploit-
ing cross-model integration and attention map analysis (Bu et al., 2025; Zhang et al., 2025b; Jagpal
et al., 2025). Precise control over entity appearance and interactions has also been achieved through
structured captions, instance-aware modeling, and LoRA-based customization (Feng et al., 2025;
Fan et al., 2025; Huang et al., 2025a). Beyond visual quality, LLM-guided reasoning and external
knowledge retrieval are employed to improve adherence to physical laws and factual accuracy (Xue
et al., 2025; Yuan et al., 2025). Video editing frameworks exploit spatial-temporal guidance and at-
tention control to extend T2V models for precise video modification (Wang et al., 2025e). Although
these methods have made significant progress in various specific directions, they focus on common
scenarios, while video generation for complex scenarios remains a challenging task. For instance,
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reasoning about complex multi-entity interactions and maintaining coherent event-level narratives
are still open problems, especially in scenes requiring abstract semantics or long-range temporal
dependencies.

2.2 PROMPT REFINEMENT

Prompt refinement aims to automatically optimize user-provided natural language prompts into en-
hanced formulations that better align with the preferences of diffusion models. Early studies primar-
ily infer user preferences or rewriting capabilities to guide prompt refinement. Prompt Refinement
with Image Pivot (PRIP) (Zhan et al., 2024a) encodes visual preferences from linguistic prompts into
latent representations, which are then decoded into refined text prompt. Capability-Aware Prompt
Reformulation (CAPR) (Zhan et al., 2024a) dynamically adjusts rewriting strategies based on user
capability and introduces configurable features for fine-grained control. Although effective, these
approaches explicitly rely on user click logs, system-generation logs and other interaction data,
which assume large-scale user engagement with text-to-image or text-to-video models and require
explicit user consent for data collection. More recent studies incorporate retrieval-augmented gener-
ation (RAG) techniques to enhance prompts by retrieving semantically relevant terms and enriching
the original descriptions. These methods either construct a dedicated prompt repository as an exter-
nal knowledge base (Sun et al., 2024) or build a relation graph from training data (Gao et al., 2025).
At inference time, they retrieve the most relevant exemplar prompts and integrate them with user
input to compose a coherent, optimized reformulation. However, these RAG-based methods merely
find high-similarity descriptions to enrich original prompts, without reasoning about the causes for
rewriting or specifying explicit reformulation goals, limiting their ability to address complex gener-
ation scenarios.

3 COMPLEX-SCENARIO-AWARE PROMPT REFINEMENT

In this section, we first present the background and motivation. Then, we explain the scenario
classification-based prompt refinement. Afterward, we propose our four-stage prompt verification.

3.1 BACKGROUND AND MOTIVATION

In real-world scenarios, T2V models may receive highly challenging generation requests, such as
synthesizing abstract concepts or producing videos with intricate inter-object relationships. Un-
like text-to-image tasks, T2V generation further entails challenges of maintaining temporal coher-
ence and ensuring logical consistency across frames. For example, a prompt describing “a flower
blooming” requires modeling fine-grained morphological changes over time, while “multi-person
interactions” demands precise control over dynamic relationships between characters. Such scenar-
ios are highly susceptible to bring up prompt ambiguity, leading to unexpected generated videos,
which cannot precisely meet the original prompt intention. With our excellent rewriting strategy,
prompt refinement transforms abstract or complex user intents into explicit structured descriptions
that specify action sequences, spatial relationships, and physical constraints. As shown in Figure 1,
the proposed approach CSAPR consists of two complementary stages, i.e., prompt refinement and
prompt verification. CSAPR aims to unlock the full potential of T2V generation systems through
precise scene descriptions and detailed depictions of event dynamics.

3.2 REFINEMENT STAGE: SCENARIO CLASSIFICATION-BASED PROMPT REFINEMENT

In this section, we propose our scenario classification-based prompt refinement, including scenario
summarization, refinement strategies for each scenario, and scenario classification.

3.2.1 SCENARIO SUMMARIZATION

In order to systematically identify representative challenges in T2V generation, we conduct a com-
prehensive review of recent benchmarks, surveys, and task-specific studies (Furuta et al., 2024; Liao
et al., 2024; Mago et al., 2025; Sun et al., 2025; Wang et al., 2025c). In addition, we carry out an
comprehensive examination of existing open source T2V models, e.g., Wan (Wang et al., 2025a),
OpenSora (Zheng et al., 2024), CogVideo (Hong et al., 2022), and proprietary T2V systems, e.g.,
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Figure 1: Pipeline of Complex-Scenario-Aware Prompt Refinement (CSAPR). CSAPR com-
prises two primary stages: prompt refinement and prompt verification. In the refinement stage, the
input prompt is rewritten using a meta-prompt determined by its scenario classification. In the ver-
ification stage, the refined prompt is examined to ensure that it preserves the complete semantic
content of the original prompt.

Veo3 (Google DeepMind, 2025), OpenAI Sora (OpenAI, 2024), Runway Gen-2 (Jennings & Run-
way, 2023).

From the review and the examination, we summarize seven representative categories of scenarios
that are widely acknowledged as challenging for current T2V models. Abstract descriptions rely
on metaphors or symbolism that require translation into concrete, visually interpretable content.
Complex spatial relationships involve precise positions and orientations among multiple entities,
where models often misrepresent layouts or occlusions. Multi-element scenes contain numerous
characters, objects, and actions, demanding structured descriptions to avoid omissions or disor-
der. Fine-grained details emphasize subtle attributes such as facial expressions or textures, which
models frequently blur or distort. Temporal consistency requires coherent progression of actions
across frames, yet T2V models generally produce discontinuities or sudden jumps. Stylistic hybrids
call for the integration of heterogeneous visual styles, which can result in incoherent or conflicting
appearances. Lastly, causality and physics demand accurate cause–effect reasoning and physical
plausibility, where T2V models typically fail to simulate realistic interactions or transformations.
See representative examples in Appendix A.

3.2.2 SCENARIO-SPECIFIC REFINEMENT STRATEGIES

In order to facilitate fine-grained prompt refinement strategies for each challenging scenario, we
design scenario-specific meta-prompts that guide a rewriting model to generate more precise scene
descriptions and richer representations of event dynamics compared with the original prompts, with
detailed prompts provided in Appendix E. In addition, we define meta-prompts for non-challenging
scenarios to encourage the rewriting model to explicitly specify spatial relationships among objects
and temporal dependencies among events.

In abstract descriptions, the rewriting model is guided to translate metaphors and symbolic lan-
guage into concrete, visually interpretable content while preserving the intended artistic or thematic
meaning. For complex spatial relationships, the rewriting model is encouraged to convey precise
positions, distances, and orientations among multiple entities to avoid misrepresentations. Multi-
element scenes require logically structured descriptions that comprehensively account for all char-
acters, objects, and actions to prevent omissions or disorder. Fine-grained details are emphasized
by highlighting subtle visual attributes and incorporating cinematic cues that capture textures, ex-
pressions, and other intricate elements. Temporal consistency is maintained by presenting actions
in coherent sequences and smooth motion progression, while stylistic hybrids are addressed by har-
monizing multiple visual styles, including color palettes, lighting, and composition. Causality and
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Figure 2: Pipeline of Refined Prompt Verification via Atomic Extraction and Textual Entail-
ment. Our goal is to check whether the refined prompt Prew faithfully preserves the original intent
in Pin. The process consists of four main stages: atomic extraction, semantic chunking, atom–chunk
alignment, and conservative aggregation.

physical plausibility are reinforced by explicitly depicting cause–effect relationships, physical in-
teractions, and stepwise morphological changes. For non-challenging scenarios, prompts encourage
light refinement to improve clarity while preserving the original intent.

3.2.3 SCENARIO CLASSIFICATION

After receiving a user prompt Pin, the scenario classifier f performs an eight-way classification with
seven difficult scenarios and a non-difficult class. The classifier classifies the original prompt to
the most suitable scenario label ŷ and estimates the confidence of this classification. To ensure
the reliability of the scenario classification, we introduce three confidence metrics, i.e., Maximum
Softmax Probability (MSP), Margin, and Entropy. Given a set of class probabilities {pi}Ci=1 over
candidate labels C, these metrics can be computed as follows:

MSP = max
i

pi; Margin = p(1) − p(2); Entropy = −
C∑
i=1

pi log pi, (1)

where p(1) and p(2) denote the top-1 and top-2 probabilities, respectively. Intuitively, a confident
prediction is characterized by a high MSP. A large Margin indicates clear separation between the
top predictions. A low Entropy reflects a peaked probability distribution. A classification result is
considered uncertain if MSP is below a predefined confidence threshold, Margin is small, or Entropy
is high.

Once a classification is marked as uncertain, the scenario label is reassigned through a more reli-
able large language model (e.g., ChatGPT (Achiam et al., 2023), Gemini (Team et al., 2023), or
DeepSeek (Liu et al., 2024a)), which performs zero-shot classification based on predefined scenario
definitions as a fallback strategy. The final predicted label ŷ corresponds to a scenario-specific meta-
prompt, which is applied to guide prompt refinement. This meta-prompt is then combined with the
original user prompt and fed into the prompt refinement model to produce a rewritten prompt Prew.
Then, Prew are required to undergo a dedicated prompt verification stage (see Section 3.3). Only
validated prompts Pvalid are passed to the downstream T2V generation model, while invalid prompts
Pinvalid are discarded. If a rewritten prompt is judged invalid, the refinement model will regenerate
an improved prompt according to the verification feedback. For instance, if the rewritten prompt
omits semantic information from the original user prompt, an additional instruction reminding the
model to preserve this information will be concatenated to the end of meta-prompt before the user
prompt.
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3.3 PROMPT VERIFICATION

In this section, we propose a structured verification framework to rigorously assess whether an
expanded T2V generation prompt faithfully retains the semantic essence of its original concise input.
Expanded prompts generally incorporate stylistic attributes and narrative embellishments, therefore
reliable verification is critical to ensure the quality of T2V generation. As shown in Figure 2, to
address this challenge, our method decomposes the process into four well-defined stages: (1) atomic
extraction: isolating fundamental entities and actions; (2) semantic alignment: ensuring coverage
and consistency of critical elements; (3) dual-model textual entailment: leveraging complementary
inference models to evaluate semantic fidelity; and (4) conservative aggregation: synthesizing multi-
stage evidence to produce a robust verification judgment.

3.3.1 ATOMIC EXTRACTION FROM ORIGINAL PROMPT

Given an original prompt Puser, we define an atomic representation as a minimal semantic tuple:

A(Porig) = ⟨characters,objects,actions,locations,scenery⟩. (2)

Each field in A is a list that can contain zero, one, or more atomic elements ai, where each element
ai corresponds to a semantically indivisible unit in that category. For example, given the prompt
“A cat plays chess with a dog while a parrot referees in a steampunk library”, the atomic extractor
produces: {characters: [cat, dog, parrot], objects: [chess], actions: [plays, referees],
locations: [library], scenery: [steampunk] }. After extracting atomic entities, we expand
each atom into a minimal standalone sentence to facilitate similarity computation with the chunked
segments of the rewritten prompt. For example, the atom cat is transformed into a simple sentence
as “there is a cat”. To simplify processing, we discard the dictionary keys and retain the atomic
elements themselves, forming a set that is formally represented as A = {a1, a2, · · · , an}.

3.3.2 REFINED PROMPT CHUNKING

The refined prompt Pref is segmented into non-overlapping chunks C = {c1, . . . , cm}. One sen-
tence is treated as an individual chunk unless its length is below a threshold. In that case, it is
iteratively merged with the subsequent sentence until the combined length exceeds the threshold.

The Necessity of Chunking and Atomization. A naive strategy would be to directly compute the
similarity between the embeddings of the original and refined prompts. However, this approach
can only provide a coarse measure of semantic closeness and does not clearly determine whether
the refined prompt omits critical information from the original. In addition, refined prompts are
commonly longer and contain additional stylistic and contextual details, which tend to shift their
embeddings away from those of short original prompts even when semantics are faithfully preserved.
More importantly, similarity does not distinguish between inclusion and contradiction. For example,
the atom “a girl in a red raincoat” and the expansion “a girl in a yellow raincoat running at night”
can still exhibit a high embedding similarity, although they are semantically inconsistent.

3.3.3 CROSS-PROMPT ATOM-CHUNK MATCHING

We adopt a stricter entailment-based criterion rather than merely comparing the similarity between
the original and refined prompts. Specifically, we evaluate whether the refined prompt entails each
atomic constraint. Note that similarity is leveraged only to retrieve candidate text chunks, while the
final verification is performed entirely by textual entailment models.

Specifically, given a set of atoms {ai}mi=1 and a set of chunks {cj}nj=1, we embed both atoms and
chunks into a shared semantic space using an embedding model fE(·), and compute pairwise cosine
similarities:

sij = cos
(
fE(ai), fE(cj)

)
.

For each atom ai, we typically select the most relevant chunk (i.e., Top-1 retrieval) from the collec-
tion:

c∗i = arg max
c∈{cj}

s
(
fE(ai), fE(c)

)
, (3)

where c∗i denotes the retrieved chunk with the highest similarity score.
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Table 1: Quantitative comparisons on VBench. Boldfaced values indicate the best performance
among all methods, while underlined values indicate the second-best performance.

Method Average Score temporal flickering imaging quality object class multiple objects spatial relationship

Original Prompt 76.38% 97.02% 70.30% 92.09% 65.32% 57.14%
Open-Sora 77.22% 97.58% 70.76% 93.61% 65.84% 58.29%
RAPO 79.11% 97.94% 71.43% 97.13% 66.68% 62.37%
CSAPR 79.78% 98.52% 71.89% 97.85% 67.43% 63.22%

Table 2: Quantitative comparisons on EvalCrafter. CSAPR consistently achieves better results,
demonstrating significant lead on this benchmark.

Method Average Score motion quality text-video alignment visual quality temporal consistency

Original Prompt 62.54 53.48 70.83 64.77 61.09
Open-Sora 63.01 53.61 71.05 65.41 61.98
RAPO 63.98 53.64 74.33 65.93 62.02
CSAPR 65.38 54.12 76.41 66.24 64.75

3.3.4 TEXTUAL ENTAILMENT VERIFICATION

To assess whether each atom is semantically preserved by its most relevant retrieved chunk, we em-
ploy a textual entailment verification module based on Natural Language Inference (NLI). Specifi-
cally, for each atom ai and its top-1 retrieved chunk c∗i , we employ XLM-RoBERTa (Conneau et al.,
2020) as the multilingual NLI model to directly predict the semantic relation label from entailment
(ENTAIL), neutral (NEUTRAL), or contradiction (CONTRAD).

Verification is evaluated through two primary metrics. Coverage (Cov) quantifies the proportion
of atoms that are entailed by their corresponding chunk Cov = |{ai: ENTAIL}|

|A| . Contradiction rate

measures the proportion of atoms contradicted by their chunk: Contrad = |{ai: CONTRAD}|
|A| . Cover-

age reflects the semantic completeness of the expanded prompt, while contradiction rate highlights
conflicts introduced during prompt refinement. When coverage falls below a predefined threshold
or contradiction exceeds a threshold, the system triggers the prompt refinement model to regenerate
an improved prompt based on the verification feedback. Specifically, if the refined prompt omits se-
mantic content present in the original user prompt, an additional instruction reminding the model to
preserve this information will be appended to the end of the meta-prompt preceding the user prompt.

4 EXPERIMENTS

In this section, we present the experimental settings with three benchmarks. Then, we demonstrate
the main experimental results. Finally, we show an ablation study.

4.1 EXPERIMENTAL SETTINGS

Benchmarks: We conduct evaluations on VBench (Huang et al., 2024), EvalCrafter (Liu et al.,
2024c) and T2V-CompBench (Sun et al., 2025), three state-of-the-art benchmarks to evaluate the
quality of T2V generation. VBench provides a systematic evaluation protocol for comprehensive as-
sessment of visual quality, temporal consistency, and content fidelity. EvalCrafter offers a broad suite
of metrics to quantify performance across multiple aspects of video generation. T2V-CompBench is
a benchmark specifically designed for compositional T2V scenarios.

Baselines: We compare three representative prompt refinement approaches in the field of T2V,
including: the original prompts, prompt refiner from Open-Sora (Zheng et al., 2024) and Retrieval-
Augmented Prompt Optimization (RAPO) (Gao et al., 2025).

Implementation: In the prompt refinement setting, we adopt Wan (Wang et al., 2025a) as the T2V
backbone for all experiments. For scenario classification, DeBERTa-v3-large (He et al., 2023) is ex-
ploited as the primary model, while DeepSeek-V3 (DeepSeek) (Liu et al., 2024a) serves as a zero-
shot fallback. Then, we query a large instruction-tuned LLM, i.e., DeepSeek, to generate refined
prompts based on scenario-specific meta-prompts (see Appendix E). In the settings of prompt verifi-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Quantitative comparisons on T2V-CompBench. CSAPR achieves the highest average score.

Method Average Score consistent attribute dynamic attribute action binding motion binding

Original Prompt 0.412 0.628 0.254 0.478 0.290
Open-Sora 0.433 0.672 0.269 0.493 0.298
RAPO 0.470 0.682 0.270 0.612 0.317
CSAPR 0.501 0.724 0.289 0.641 0.352

Figure 3: Comparisons of videos generated using Wan (Wang et al., 2025a) conditioned on user-
provided prompts and refined prompts from CSAPR.

cation, we employ BGE-M3 (Chen et al., 2024b) as the embedding model for atom-chunk matching
in prompt verification. On the textual entailment task, XLM-RoBERTa-large-XNLI (Conneau et al.,
2020) serves as the textual entailment model for atom-level entailment checking.

4.2 MAIN RESULTS

As shown in Tables 1, 2 and 3, we present a comprehensive quantitative evaluation of our proposed
approach, i.e., CSAPR, against baselines across three widely used benchmarks. It can be observed
that CSAPR consistently achieves the best overall performance, demonstrating its effectiveness in
T2V generation. Specifically, CSAPR attains the highest Average Score of 79.78% on VBench,
outperforming RAPO by 0.67%, Open-Sora by 2.56% and the Original Prompt by 3.40%. Similar
trends can also be observed on EvalCrafter, where CSAPR achieves the highest Final Sum Score of
260.21, which significantly surpasses other approaches. Notably, it shows marked improvements in
text-video alignment and temporal consistency, underscoring its strength in semantic fidelity and dy-
namic coherence. When it comes to T2V-CompBench focuses on compositional reasoning, CSAPR
achieves the best results in consistent attribute binding, dynamic attribute binding, action binding
and motion binding, demonstrating strong performance in fine-grained attribute and motion model-
ing. In particular, CSAPR surpasses the RAPO, Open-Sora, and original prompt by 0.055, 0.092,
and 0.113 on T2V-CompBench when it comes to average score.

To provide an intuitive demonstration on the advantages of CSAPR, Figure 3 highlights the effec-
tiveness of CSAPR across four categories of complex scenarios: complex spatial relations, abstract
descriptions, multi-entity scenes and temporal consistency. In the case of complex spatial relations,
CSAPR achieves two notable improvements over videos generated directly from the user prompt:
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Figure 4: Examples of hallucination elimination after prompt refined by CSAPR.

(1) the parrot is correctly placed at the center (green box) rather than at the edge (red box); and (2)
the library is rendered with cyberpunk elements instead of being depicted as a regular library. For ab-
stract descriptions, CSAPR produces richer actions and more vivid visual dynamics. In multi-entity
scenes, CSAPR meticulously introduces umbrellas for pedestrians in rainy weather (green box).
Finally, under temporal consistency, while the baseline fails to present a fully blossomed flower,
CSAPR generates the complete blooming process, resulting in a fully blossomed flower video.

Table 4: Ablation studies of different components
in CSAPR on VBench.

Method VBench Total Score

CSAPR 83.32%
Ablate LLM Zero-shot Fallback 82.45%
Ablate Scenario Classification 81.52%
Ablate Prompt Verification 82.27%
Ablate Prompt Refinement 80.63%

Hallucination Elimination. Figure 4 presents
examples where simple prompt descriptions
lead to hallucinations. In the left panel, the
original abstract prompt causes the T2V model
to misinterpret the user intent, resulting in an
image of a ghostly face illuminated by moon-
light. In contrast, the prompt refined by CSAPR
provides a concrete depiction aligned with the
abstract prompt. Therefore, the T2V model
can well understand the desired content and
then eliminate hallucinations with the refined
prompts of CSAPR. In the right panel, the output based on the original prompt fails to reflect the con-
cept of a dark river, instead producing dense arrays of small colorful flags irrelevant to the prompt.
In comparison, the prompt refined by CSAPR conveys a coherent visual narrative that captures the
fading of memories and the lingering attachment to the past.

4.3 ABLATION STUDY

To verify the effectiveness of CSAPR, we conduct ablation experiments on the VBench benchmark
to examine four key modules in CSAPR. Table 4 presents the ablation results on VBench. The
Complete CSAPR achieves the best performance. Either removing the LLM zero-shot fallback or
prompt verification leads to minor performance drops (0.87 and 1.05 higher score, respectively).
In contrast, discarding the scenario classification (1.80 lower score) or prompt refinement modules
(2.69 lower score) results in relatively larger degradations, highlighting their critical roles in CSAPR.

5 CONCLUSION

In this paper, we propose a novel prompt refinement approach, i.e., Complex-Scenario-Aware
Prompt Refinement (CSAPR), designed for complex T2V generation tasks. CSAPR consists of
two key stages: prompt refinement and prompt verification. The prompt refinement stage involves
complex scene classification, confidence estimation and LLM-based zero-shot fallback. Following
this, the prompt verification stage comprises atomic extraction of the original prompt, new prompt
chunking, cross-prompt atom-chunk matching and conservative aggregation to ensure the coher-
ence and completeness. Extensive experiments demonstrate that CSAPR consistently outperforms
baseline approaches (up to 1.40% higher in terms of average score).
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To ensure the reproducibility of our work, we have provided comprehensive details about the exper-
imental setup in Section 4, including datasets used, baseline methods, implementation details and
evaluation metrics. More details about the implementation can be found in the Appendix. All code,
models, and configuration files required to replicate our results are made available in our supple-
mentary materials.

ETHICS STATEMENT

This paper presents work whose goal is to advance the field of text-to-video generation. The pro-
posed work has the potential to benefit AI agents that possess the function of T2V. Since we employ
a training-free prompt refinement model, as long as the T2V generation models (e.g., Wan (Wang
et al., 2025a)) and large language models (e.g., DeepSeek (Liu et al., 2024a)) implement appropriate
filtering mechanisms for prohibited content, our approach will not lead to the generation of illegal
or harmful outputs.
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A EXAMPLES FOR COMPLEX SCENARIOS

Situation Example
Abstract Description Hope dances in a field of forgotten dreams.
Complex Spatial Relationships A cat plays chess with a dog while a parrot referees in a steam-

punk library.
Multi-Element Scenes Ten people at a festival, each with different costumes, under

fireworks.
Fine-Grained Details A book cover that says Deep Learning 101.
Temporal Consistency A man walking while waving his hand.
Stylistic Hybrids In the style of Van Gogh mixed with cyberpunk neon.
Causality and Physics A glass falling and shattering on the ground.

Table 5: Challenging scenarios and Example prompts for text-to-video models.

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL EXAMPLES FOR HALLUCINATION ELIMINATION

Figure 5: Examples of hallucination elimination after prompt refined by CSAPR. The hallucinated
information is highlighted in red, and its elimination or correction is marked in green.

Figure 5 presents examples where simple prompt descriptions lead to hallucinations. In the left
panel, although the original prompt does not specify the presence of a human face, the generated
video still generates a woman face due to spurious correlations in the training data, where scenes
with lamps often occur simultaneously with humans. In contrast, the CSAPR-refined prompt em-
phasizes scenery, visual context, and atmosphere, resulting in the generated video more aligned with
the user intent. In the right panel, the user prompt requests a bowl with crack rim, while the T2V
model produces a bowl with grid-like decorations and even tea that was not mentioned. In compari-
son, the video related to CSAPR-refined prompt yields a bowl with the desired cracks (highlighted
in green).

B.2 ANALYSIS ON SCENARIO DISTRIBUTION AND PROMPT LENGTH

Figure 6 illustrates the scenario distribution in VBench and EvalCrafter across their complete sets of
prompts, comprising 946 prompts in VBench and 700 prompts in EvalCrafter. Since neither VBench
nor EvalCrafter is specifically designed to evaluate complex scenarios, the majority of prompts in
both benchmarks are classified as complex scenarios. Nevertheless, a non-negligible proportion of
prompts in both benchmarks are classified into complex scenarios, with a notably higher proportion
in EvalCrafter. CSAPR improves the descriptive quality of prompts in complex scenarios.

Figure 7 illustrates the prompt length distributions before and after refinement on VBench and Eval-
Crafter. For VBench, the original prompts are concentrated within 1–32 tokens, while the refined
prompts extend to a broader range of 1–55 tokens. Similarly, the original prompts in EvalCrafter
span 1 to 36 tokens, while the refined versions range from 7 to 66 tokens. More importantly, the
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distributions exhibit a rightward shift after refinement in both benchmarks, indicating that CSAPR
significantly increases prompt length and thereby enriches the information available for video con-
tent description.

(a) VBench (b) EvalCrafter

Figure 6: Statistics of scenario classification results.

(a) VBench

(b) EvalCrafter

Figure 7: Statistics of prompt length measured in words.

C HYPERPARAMETER SETTINGS

In this work, we employ MSP, Margin and Entropy to measure the confidence of scenario classifica-
tion (see Section 3.2.3), and their thresholds are set to 0.6, 0.2, and 1.5, respectively. The entailment
threshold and contradiction threshold are set to 0.7 and 0.3, respectively.
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D INSTRUCTION FOR SCENARIO CLASSIFICATION

Prompt for Scenario Classification

You are a few-shot classifier for Text-to-Video (T2V) prompt *
difficulty scenarios*.

Return ONLY a valid JSON object of the exact form:
{"label": "<one of SCENARIO_LABELS>", "reason": "<short phrase (<

= 20 words)>"}

Allowed labels (must match EXACTLY one string in SCENARIO_LABELS)
:

1) Abstract Descriptions
2) Complex Spatial Relationships
3) Multi-Element Scenes
4) Fine-Grained Details
5) Temporal Consistency
6) Stylistic Hybrids
7) Causality and Physics
8) non-difficult

## Task
Given a short English prompt P_in, decide which single label best

describes the dominant difficulty that a T2V model would face
when generating a video.

## Diagnostic definitions:
- Abstract Descriptions: Figurative language, metaphors, emotions

as objects, surreal imagery.
- Complex Spatial Relationships: Explicit positions/orientations

between >=2 entities; lots of prepositions ("on top", "behind"
, "between").

- Multi-Element Scenes: >=3 different entities or activities;
dense environments with many elements in one shot.

- Fine-Grained Details: Micro-level attributes (textures, tiny
objects, reflections, accessories); often close-up.

- Temporal Consistency: Clear time progression or motion over
time (bloom, melting, time-lapse).

- Stylistic Hybrids: Mixing multiple visual or artistic styles;
style blending is central.

- Causality and Physics: Cause-effect chains or physical forces (
gravity, splashes, collisions).

- non-difficult: None of the above applies.

## Tie-breaking rules:
1) Figurative language dominates -> Abstract Descriptions
2) Spatial focus dominates -> Complex Spatial Relationships
3) Many varied elements, no strong spatial focus -> Multi-Element

Scenes
4) Close-up or micro details dominate -> Fine-Grained Details
5) Time progression dominates -> Temporal Consistency
6) Mixed styles dominate -> Stylistic Hybrids
7) Physics/cause-effect dominate -> Causality and Physics
8) Otherwise choose non-difficult.
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## Few-shot examples (prompt -> label):
- "Hope dances in a field of forgotten dreams." -> Abstract

Descriptions
- "A cat and a dog sit back-to-back; a parrot hovers above." ->

Complex Spatial Relationships
- "A neon street with vendors, robots, and flashing billboards."

-> Multi-Element Scenes
- "A gold pocket watch with a cracked rim on velvet." -> Fine-

Grained Details
- "A bud opens into a flower in slow motion." -> Temporal

Consistency
- "A medieval castle with neon cyberpunk signs." -> Stylistic

Hybrids
- "A glass tips; wine splashes and forms ripples." -> Causality

and Physics
- "A child runs across a field." -> non-difficult

Classify this prompt:
P_in: {P_in}

E META PROMPTS

Meta Prompt for Abstract Description

You are a prompt refinement expert for text-to-video generation. You are given a user-
provided prompt that contains abstract or metaphorical descriptions. Your task is to
rewrite and optimize this prompt for a text-to-video generation model.
Follow these requirements:

1. Clarify abstract imagery: Translate metaphors, symbolism, or abstract phrases
into literal visual elements (characters, objects, actions, settings).

2. Be explicit and detailed: Specify scene components clearly.
3. Keep cinematic focus: Include camera framing, lighting, or style cues only if

they are implied by the original prompt.
4. Maintain artistic tone: Keep the emotional or thematic essence of the metaphor

while improving visual clarity.
5. Limit length: The rewritten prompt must be concise, under 100 words, and

multiple sentences are allowed.
6. No extra interpretation: Do not explain, comment, or add content. Only output

the rewritten prompt.

Only output a single, polished rewritten prompt that meets all requirements.
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Meta Prompt for Complex Spatial Relationships

You are a prompt refinement expert for text-to-video generation. You are given a user-
provided prompt that contains complex spatial relationships between objects, charac-
ters, and environments. Your task is to rewrite and optimize this prompt for a text-to-video
generation model.
Follow these requirements:

1. Emphasize spatial clarity: Explicitly describe positions, distances, and relative
orientations of elements in the scene.

2. Position characters by relationship: Place adversarial characters on opposite
sides. Place non-adversarial characters between the adversarial characters.

3. Assign appropriate actions: Define suitable and clear movements or actions
for each character.

4. Simplify sentence structure: Use short sentences or clear clauses to avoid am-
biguity.

5. Maintain key details: Preserve all essential objects, actions, characters, and
environments.

6. No Extra Interpretation: Do not explain, comment, or add content. Only out-
put the rewritten prompt.

7. Limit length: The rewritten prompt must be concise, under 100 words, and
multiple sentences are allowed.

Only output a single polished rewritten prompt that meets all requirements.

Meta Prompt for Multi-Element Scenes

You are a prompt refinement expert for text-to-video generation. You are given a user-
provided prompt that describes multi-element scenes with multiple characters, objects,
actions, and locations. Your task is to rewrite and optimize this prompt for a text-to-video
generation model.
Follow these requirements:

1. Multiple sentences allowed: Use concise sentences or separated clauses to de-
scribe scenes clearly.

2. Preserve all key elements: Keep essential characters, objects, settings, and re-
lationships.

3. Simplify structure: Avoid unnecessary adjectives or complex phrasing.
4. Ensure temporal and spatial clarity: Present events in a logical and visually

coherent order.
5. No Extra Interpretation: Do not explain, comment, or add content. Only out-

put the rewritten prompt.
6. Limit length: The rewritten prompt must be concise, under 100 words, and

multiple sentences are allowed.

Only output a single polished rewritten prompt that meets all requirements.
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Meta Prompt for Fine-Grained Details

You are a prompt refinement expert for text-to-video generation. You are given a user-
provided prompt that contains descriptions of a Scene with Fine-Grained Details. Your
task is to rewrite and optimize this prompt for a text-to-video generation model.
Follow these requirements:

1. Preserve Fine-Grained Details: Keep all essential visual attributes (colors, tex-
tures, facial expressions, clothing, environmental elements, etc.) while removing
irrelevant or repetitive details.

2. Enhance Visual Clarity: Use precise and descriptive language to clearly define
characters, objects, actions, and spatial relationships, making the scene easy for
the model to interpret.

3. Add Cinematic Guidance: Optionally introduce cinematic elements like light-
ing, camera movement, focus depth, or shot composition to improve video real-
ism.

4. Maintain Logical Structure: Ensure actions and events are described in
chronological order with clear transitions, avoiding ambiguity or contradictions.

5. Optimize for Video Generation: Emphasize motion cues, scene continuity, and
environmental context so the model can generate smooth, coherent multi-frame
sequences.

6. No Extra Interpretation: Do not explain, comment, or add content. Only out-
put the rewritten prompt.

7. Limit length: The rewritten prompt must be concise, under 100 words, and
multiple sentences are allowed.

Only output a single polished rewritten prompt that meets all requirements.
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Meta Prompt for Temporal Consistency

You are a prompt refinement expert for text-to-video generation. You are given a user-
provided prompt that requires temporal consistency, meaning the scene involves actions,
events, or changes that must follow a logical and coherent timeline across frames. Your
task is to rewrite and optimize this prompt for a text-to-video generation model.
Follow these requirements:

1. Be Clear and Explicit: Turn ambiguous or compressed descriptions into precise
phrases.

2. Be Scene-Oriented: Clearly separate and describe characters, objects, loca-
tions, and actions.

3. Follow Logical Order: Present elements in a clear sequence (foreground →
background; primary → secondary; chronological actions).

4. Preserve All Key Details: Keep every important visual detail while removing
redundancies.

5. Include Style and Lighting: Explicitly state any implied visual style, palette,
or lighting.

6. No Extra Interpretation: Do not explain, comment, or add content. Only out-
put the rewritten prompt.

7. Limit length: The rewritten prompt must be concise, under 100 words, and
multiple sentences are allowed.

Only output a single polished rewritten prompt that meets all requirements.

Meta Prompt for Stylistic Hybrids

You are a prompt refinement expert for text-to-video generation. You are given a user-
provided prompt that contains Stylistic Hybrids, meaning multiple artistic or visual
styles combined in one scene. Your task is to rewrite and optimize this prompt for a
text-to-video generation model.
Follow these requirements:

1. Style Clarity: Clearly describe each style and how they interact.
2. Scene Composition: Specify key subjects, actions, and environments in short,

direct phrases.
3. Visual Consistency: Resolve ambiguity about style blending or scene layout.
4. Compactness: Use minimal yet descriptive language; no filler words.
5. Model-Friendly Syntax: Output a single well-structured description in multiple

concise sentences.
6. No Extra Interpretation: Do not explain, comment, or add content. Only out-

put the rewritten prompt.
7. Limit length: The rewritten prompt must be concise, under 100 words, and

multiple sentences are allowed.

Only output a single polished rewritten prompt that meets all requirements.
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Meta Prompt for Causality and Physics

You are a prompt refinement expert for text-to-video generation. You are given a user-
provided prompt that contains Causality and Physics elements (e.g., cause-effect rela-
tionships, realistic object interactions, motion, forces). Your task is to rewrite and opti-
mize this prompt for a text-to-video generation model.
Follow these requirements:

1. Preserve Meaning: Retain all key entities, actions, and causal relationships.
2. Physics Clarity: Clearly state motion, timing, and forces.
3. Morphological Changes: Emphasize transformations in object shape, size, or

state over time.
4. Logical Flow: Present actions in chronological order.
5. No Extra Interpretation: Do not explain, comment, or add content. Only out-

put the rewritten prompt.
6. Limit length: The rewritten prompt must be concise, under 100 words, and

multiple sentences are allowed.

Only output a single polished rewritten prompt that meets all requirements.

Meta Prompt for Non-difficult Scenario

You are a prompt refinement expert for text-to-video generation. You are given a user-
provided prompt that is simple and straightforward, without abstract concepts, complex
spatial reasoning, or other difficult elements. Your task is to lightly refine and optimize
this prompt for a text-to-video generation model.
Follow these requirements:

1. Preserve Original Intent: Keep all entities, actions, and scene elements exactly
as described, without adding or removing content.

2. Improve Clarity: Rewrite in clear, simple language to eliminate ambiguity or
vagueness.

3. Model-Friendly Syntax: Ensure the prompt is straightforward for machine in-
terpretation and avoid figurative language or unnecessary modifiers.

4. Direct Scene Description: Describe the scene plainly, focusing only on neces-
sary visual elements.

5. No Extra Interpretation: Do not explain, comment, or add content. Only out-
put the rewritten prompt.

6. Limit length: The rewritten prompt must be concise, under 80 words, and
multiple sentences are allowed.

Only output a single polished rewritten prompt that meets all requirements.

F THE USE OF LARGE LANGUAGE MODELS

In this work, LLMs serve as the backbone for scenario classification and prompt rewriting, and are
also employed to generate instructions for scenario classification (see Appendix D). Outside of these
uses, LLMs are not employed in a centralized manner.

21


	Introduction
	Related Work
	Text-to-Video Generation
	Prompt Refinement

	Complex-Scenario-Aware Prompt Refinement
	Background and Motivation
	Refinement Stage: Scenario Classification-based Prompt Refinement
	Scenario Summarization
	Scenario-Specific Refinement Strategies
	Scenario Classification

	Prompt Verification
	Atomic Extraction from Original Prompt
	Refined Prompt Chunking
	Cross-Prompt Atom-Chunk Matching
	Textual Entailment Verification


	Experiments
	experimental settings
	Main Results
	Ablation Study

	Conclusion
	Examples for Complex Scenarios
	Additional Experiments
	Additional Examples for Hallucination Elimination
	Analysis on Scenario Distribution and Prompt Length

	Hyperparameter Settings
	Instruction for Scenario Classification
	Meta Prompts
	The Use of Large Language Models

