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Abstract

Deep learning models are increasingly deployed in safety-critical tasks where
predictions must satisfy hard constraints, such as physical laws, fairness require-
ments, or safety limits. However, standard architectures lack built-in mechanisms
to enforce such constraints, and existing approaches based on regularization or
projection are often limited to simple constraints, computationally expensive, or
lack feasibility guarantees. This paper proposes a model-agnostic framework for
enforcing input-dependent linear equality and inequality constraints on neural
network outputs. The architecture combines a task network trained for prediction
accuracy with a safe network trained using decision rules from the stochastic and
robust optimization literature to ensure feasibility across the entire input space. The
final prediction is a convex combination of the two subnetworks, guaranteeing con-
straint satisfaction during both training and inference without iterative procedures
or runtime optimization. We prove that the architecture is a universal approximator
of constrained functions and derive computationally tractable formulations based
on linear decision rules. Empirical results on benchmark regression tasks show
that our method consistently satisfies constraints while maintaining competitive
accuracy and low inference latency.

1 Introduction

Failing to encode safety, fairness, or physical constraints has become one of the most fundamental
limitations of standard deep learning models, hindering their widespread deployment in safety-critical
domains, such as energy systems, autonomous vehicles, and medical diagnostics [1, 2]. However,
strictly guaranteeing constraint satisfaction on a neural network poses a significant challenge, particu-
larly in time-sensitive settings and when the constraints are high-dimensional or input-dependent.

Popular approaches to promote constraint satisfaction use penalty-based regularization, where the
constraint violations are penalized in the loss function or reward; however, these approaches, known
as soft methods, are unable to provide zero constraint violation during the training and inference
stages and their penalty coefficients are difficult to determine. Recent work has explored projection-
based strategies either as post-hoc methods or incorporated into training, which guarantees hard
constraint satisfaction. Nevertheless, these methods often face scalability and run-time limitations, as
they generally require iterative procedures or solving optimization problems during inference. For
detailed discussions on methods for satisfying hard constraints, the reader is referred to Section 2.
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Figure 1: Proposed framework.

In this paper, we propose a framework for embedding input-output linear constraints directly into
neural networks with low run-time complexity without any iterative procedure. The proposed
architecture has two subnetworks: a task network, trained to minimize prediction loss, and a safe
network, designed to ensure feasibility with respect to the constraint set. The proposed framework is
agnostic to the task network, which is trained using stochastic gradient-descent algorithms, while
the safe network is computed using a decision rule approach independent of the training of the task
subnetwork. The final output is computed as a convex combination of the two subnetworks. This
structure, illustrated in Figure 1, allows for seamless integration into end-to-end training pipelines
and provides constraint satisfaction during training and inference stages.

The main contributions of this work are as follows:

Framework for input-output linearly constrained predictions. We propose a framework for
embedding hard linear and input-dependent constraints directly into neural networks. The framework
produces constraint-satisfying outputs in a single forward pass, and can be incorporated into any
standard deep learning models.

Theoretical guarantees and inference complexity analysis. We provide a universal approximation
theorem that characterizes the expressive power of the proposed architecture and proves that it can
approximate any continuous, constraint-satisfying function arbitrarily well. Moreover, we provide a
detailed analysis of the inference complexity, showing that the proposed framework introduces negli-
gible overhead compared to the task network forward pass, particularly when exploiting constraint
sparsity or when the left-hand constraint coefficients are input-independent.

Benchmarking against state-of-the-art methods. We compare our method to existing projection-
based and penalty-based approaches on multiple tasks, showing superior constraint satisfaction, and
competitive inference time and accuracy.

The remainder of the paper is organized as follows: Section 2 presents the related work on hard
methods to enforce constraints. Section 3 introduces the notation and problem statement, describes the
proposed framework, and presents the theoretical analysis of the proposed framework and complexity
analysis. Section 4 details the training of linear decision rules. Section 5 shows the numerical
experiments to evaluate the performance of the proposed methodology. Finally, Section 6 concludes
the paper and outlines our future work.

2 Related work

Activation functions Simple constraints can be enforced using activation functions. For example,
softmax can enforce probabilistic simplex constraints, while box constraints can be addressed using
sigmoid or clipped ReLU activations followed by post-scaling to match the desired bounds.

Projection approaches These methods enforce constraints by projecting the output of the neural
network orthogonally into the constraint set using differentiable optimization layers. In most cases,
such methods require solving optimization problems during training and inference stages [3, 4, 5].
In special cases, there exist closed-form solutions for such optimization problems, represented as
differentiable layers, bypassing the need to solve them during inference [6, 7]. For linear constraints,
[8] propose a fast projection method for input-dependent constraints, based on a generalization of
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closed-form projections for single constraints. However, their approach assumes that the number of
constraints is less than the number of variables–an assumption that excludes a wide range of realistic
problems in the constrained optimization literature. Other procedures involve iterative procedures,
including alternating projection methods and their extensions [9, 10, 11], and unrolling differentiable
gradient-based corrections [12]. However, iterative and optimization-based projection methods can
be computationally expensive and slow to converge, particularly for problems with complex or large
numbers of constraints.

Sampling approaches Inner approximation of convex constraint sets can be constructed by sampling
the constraint set. A feasible point can be characterized as a convex combination of the vertices and
rays obtained during the sampling step. These approaches have been proposed for homogeneous
linear constraints [13] and convex polytopes [14]. However, this approach shows two limitations: (i)
the number of feasible samples needed grows exponentially with the dimension of the output space,
and (ii) it is restricted to constraint sets that are invariant with respect to the input.

Preventive learning This approach aims to enforce constraint satisfaction by shaping the training
process so that the network learns to avoid infeasible regions rather than correcting outputs post hoc.
[15] propose a framework that integrates constraint information into the loss function via preventive
penalties and feasible region sampling, encouraging the model to produce constraint-satisfying
outputs throughout training. However, these approaches rely on carefully balancing penalty terms
and may still suffer from feasibility violations.

Gauge functions These works, which are non-iterative, are based on gauge functions that are a
generalization of norms [16]. Tabas and Zhang [17, 18] propose gauge mapping, which maps a
hypercube to a polytope, ensuring that the network output remains within the target polytope. One
of the limiting assumptions of this method is that a feasible point of the target polytope is known.
Li et al. [19] address this issue by solving an optimization problem during training and inference to
find the feasible point. However, such approach is impractical for input-dependent target polytopes.
For a family of convex input-independent constraints, Tordesillas et at. [20] propose RAYEN, which
utilizes analytic expressions for the gauge functions, to project infeasible predictions onto the target
constraint set. Recently, Liang et al. [21] proposed Homeomorphic Projection, which uses an
invertible neural network to map the constraint set to a unit ball, enabling efficient projection via
bisection but requiring a known interior point and adding inference overhead.

Our framework, inspired by decision rules from stochastic and robust optimization [22], generalizes
the gauge mapping approach to enforce input-dependent linear constraints in neural networks through
a non-iterative, closed-form correction. In contrast to existing state-of-the-art methods, it guarantees
hard constraint satisfaction without requiring feasible points, iterative solvers, or specialized deep
learning architectures at inference time.

3 Proposed framework

Notation We model the input space as a probability space (Rk,B(Rk),P), where B(Rk) denotes
the Borel σ-algebra over Rk, and P is a probability measure with support X ⊂ Rk. The space of
all Borel-measurable, square-integrable functions from Rk to Rn is denoted by L2

k,n. The space of
continuous functions from X to Rn is denoted by C(X ,Rn). We denote by Sk the set of symmetric
matrices in Rk×k. Given a matrix A ∈ Rm×n, A⊤ denotes its transpose. The identity matrix is
denoted by I with appropriate size inferred from the context. The standard basis vector with 1 in the
first component and zeros elsewhere is denoted by e1 ∈ Rk. The notation M ⪰ 0 denotes that matrix
M is symmetric positive semidefinite. All inequalities involving vectors are understood elementwise.
nnz(·) denotes the number of non-zero elements.

3.1 Problem setup

For a parameterized function fψ : X ⊂ Rk → Rn, we aim at enforcing the following constraint set
C(x) := {y ∈ Rn | G(x)y = g(x), H(x)y ≤ h(x)}, (1)

where C(x) ⊂ Rn denotes the constraint set associated with input x ∈ X . We assume that C(x) is a
nonempty and convex set for each x ∈ X . The matrices G(x) ∈ Rmeq×n and H(x) ∈ Rmineq×n and
vectors g(x) ∈ Rmeq and h(x) ∈ Rmineq are linearly dependent on x and define meq equality and
mineq inequality constraints, respectively.
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Without loss of generality, we represent (1) as

A(x)fψ(x) + s(x) = b(x), s(x) ≥ 0, ∀x ∈ X . (2)

where m = meq +mineq denotes the number of constraints, A(x) ∈ Rm×n denotes the left-hand
side coefficient whose first meq rows correspond to the equality constraints. b(x) ∈ Rm denotes the
right-hand side coefficient b(x) = Bx for some B ∈ Rm×k, and s(x) denotes the slack variable
whose first meq elements are equal to 0. The ℓth row of the left-hand side coefficient A(x) is
representable as x⊤Aℓ for some matrix Aℓ ∈ Rk×n, where ℓ = 1, . . . ,m.

3.2 Proposed framework

We propose an architecture composed of two subnetworks: a safe network, which is designed to
produce outputs that satisfy the linear constraints in (2) for all inputs x ∈ X , and a task network,
which focuses on optimizing task-specific performance, such as minimizing a loss function. The
outputs of these two networks are combined to form the final prediction of the overall architecture.

Specifically, given an input x, the final output is defined as a convex combination of the outputs of
the task and safe networks:

fψ(x) = (1− αψ(x))f
TN
θ (x) + αψ(x)f

SN
ϕ (x), (3)

where fTN
θ (x) and fSNϕ (x) denote the outputs of the task and safe networks parameterized by θ and

ϕ, respectively. The overall parameter vector is denoted by ψ := (θ, ϕ). The scalar αψ(x) ∈ [0, 1]
is an input-dependent scalar that determines the relative contribution of the safe network to ensure
feasibility of the final output.

Task network The goal of the task network is to provide an output that minimizes the loss function.
The proposed framework is agnostic to the specific architecture of the task network, i.e., it can
accommodate any neural network model and whose parameters can be learned using gradient-based
methods. The output of the task network is corrected by an equality correction module reported in
[6], which orthogonally projects the task network output onto the affine subspace defined by the set
of equality constraints. The equality constraint satisfaction module is derived in closed-form from the
KKT-conditions. The details can be found in the Appendix.

Safe network The role of the safe network is to provide a feasible point satisfying the equality and
inequality constraints. A key challenge in enforcing input-dependent constraints is to ensure that
the predicted output remains feasible for all realizations of the input space x ∈ X . To this end,
we propose to find the parameters of the safe network using a decision rule approach, a technique
with a strong foundation in optimization under uncertainty [22]. Decision rules, also known as
policies in the context of stochastic and robust optimization, provide a tractable approach to modeling
adjustable decisions under uncertainty. A decision rule defines a functional mapping from uncertain
parameters to decisions that are immune to the uncertainty set, i.e., they satisfy the constraints for
all the realizations of the uncertainty set X . Formally, if x ∈ X denotes an uncertain input drawn
from a known uncertainty set, a decision rule specifies a function y(x) that determines the decision
corresponding to each realization of x. This formulation closely resembles the prediction task in
supervised and reinforcement learning, where the goal is to learn an input-output mapping.

Neural network output The output of the task network, fTN
θ (x), is projected to satisfy the equality

constraints, while the output of the safe network, fSNϕ (x), is constructed to satisfy both equality and
inequality constraints for all x ∈ X . We define the final network output as in (3). To ensure that the
final output satisfies the inequality constraints, we compute the smallest value of αψ(x) ∈ [0, 1] such
that

H(x)fψ(x) ≤ h(x),

i.e., such that the convex combination is feasible. The equality constraints are satisfied by construction,
since both fTN

θ (x) and fSNϕ (x) lie in the affine subspace defined by the equality constraints.

To compute αψ(x), we define the residual slack vectors:

sTN
θ (x) := h(x)−H(x)fTN

θ (x), sSNϕ (x) := h(x)−H(x)fSNϕ (x),

which quantify the pointwise satisfaction margin of the inequality constraints for each network output.
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Let I := {i ∈ {1, . . . ,mineq} | sTN
θ,i (x) < 0} denote the set of inequality constraints violated by the

task network. For each such constraint, we determine the minimum value of αψ(x) ∈ [0, 1] such that
the corresponding convex combination becomes feasible. The tightest such value across all violated
constraints yields:

αψ(x) := max
i∈I

−sTN
θ,i (x)

sSNϕ,i(x)− sTN
θ,i (x)

. (4)

This construction ensures that the final output fψ(x) satisfies all constraints in C(x), while staying
as close as possible to the task network output within the feasible set. Note that although αψ(x) is
computed from the slack vectors sTN

θ (x) and sSNϕ (x), which depend on the outputs of the task and
safe networks parameterized by θ and ϕ, respectively, it is evaluated using a max operation that is
subdifferentiable almost everywhere. This allows gradients to propagate only through the constraint
index that achieves the maximum, while all other terms are treated as constant.

To make this explicit, consider the loss L(fψ(x), y). By the chain rule,

∂L
∂θ

=
∂L

∂fψ(x)
·
(
∂fψ(x)

∂fTN
θ (x)

· ∂f
TN
θ (x)

∂θ
+
∂fψ(x)

∂αψ(x)
· ∂αψ(x)

∂θ

)
.

In this expression, the term ∂αψ(x)/∂θ is nonzero only for the constraint selected by the max, leading
to sparse gradients with respect to θ. As a result, the effective update to the task network is modulated
by both the selected constraint and the value of αψ(x), reflecting the degree of feasibility violation in
the task output.

3.3 Computing the safe network

The safe network is computed offline, separately from the training of the task network. We formulate
the computation of the safe network as the following optimization problem:

maximize
fSN
ϕ ∈L2

k,n,s∈L2
k,m,t

t

subject to A(x)fSNϕ (x) + s(x) = b(x)

s(x) ≥ t

}
P-a.s.

(5)

where the slack variable s(x) is introduced to express inequality constraints in standard form. The
objective in (5) encourages the safe network output to lie deep in the interior of the feasible region.
The larger the slacks in the safe output, the more flexibility we have to interpolate while preserving
feasibility. As a result, the final output remains closer to the task network prediction, reducing
conservativeness. Note that problem (5) is an infinite-dimensional optimization problem since the
variables, fSNϕ and s, live in function spaces and the constraints must hold for all x ∈ X almost surely.

While problem (5) guarantees feasibility, it is intractable in general since finding its optimal value is
known to be #P-hard [23]. To obtain a tractable surrogate, we can restrict the functional form of the
decision rules [22]. Prior efforts include forms of decision rules to be affine [24], segregated affine
[25], piecewise affine [26, 27], and trigonometric polynomial [28] functions. In Section 4, we provide
computationally tractable inner approximations of problem (5), which can be efficiently solved using
state-of-the-art constrained optimization solvers.

3.4 Theoretical guarantees

We prove that, under mild conditions on the task and safe network function classes, the proposed
architecture is a universal approximator of continuous functions that satisfy input-dependent linear
constraints.

Assumption 1 (Task Network Function Class). Let X ⊂ Rk be compact. The task network function
class Ftask ⊆ C(X ,Rn) satisfies the universal approximation property: for any continuous function
f∗ : X → Rn and any ε > 0, there exists a function fTN

θ ∈ Ftask such that

sup
x∈X

∥fTN
θ (x)− f∗(x)∥ < ε.
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Assumption 2 (Safe Network Function Class). Let C(x) ⊂ Rn be a convex constraint set for each
x ∈ X . The safe network function class Fsafe ⊆ C(X ,Rn) is such that for all fSNϕ ∈ Fsafe,

fSNϕ (x) ∈ C(x), ∀x ∈ X .

Moreover, for every x ∈ X , the convex hull of the set {fSNϕ (x) | fSNϕ ∈ Fsafe} is dense in C(x).

Theorem 1 (Universal Approximation with Constrained Output). Let X ⊂ Rk be compact, and let
f∗ : X → Rn be a continuous function such that f∗(x) ∈ C(x) for all x ∈ X , where C(x) ⊂ Rn is
a convex, input-dependent constraint set. Suppose Assumptions 1 and 2 hold.

Then, for any ε > 0, there exist functions fTN
θ ∈ Ftask, fSNϕ ∈ Fsafe, and a scalar α ∈ [0, 1] such

that the convex combination

fψ(x) = (1− α)fTN
θ (x) + αfSNϕ (x)

satisfies fψ(x) ∈ C(x) for all x ∈ X , and

sup
x∈X

∥fψ(x)− f∗(x)∥ < ε.

3.5 Inference complexity

Equality Projection of Task Network Output WhenG(x) is input-independent, the projection can
be efficiently implemented by exploiting the closed-form structure in (16) without explicitly forming
the dense matrix I−ḠG, where Ḡ := G⊤(GG⊤)−1 denotes the left pseudo-inverse ofG ∈ Rmeq×n,
used to project onto the affine set defined by the equality constraints. The projection is computed as
x− Ḡ(Gx) + Ḡg, requiring two matrix-vector products with G and Ḡ, both costing O(nmeq), and
lightweight vector additions at O(n). Thus, the overall inference complexity is O(nmeq), regardless
of the density of Ḡ. WhenG(x) is input-dependent, the projection must be recomputed for each input.
In the dense case, the dominant costs are forming G(x)G(x)⊤ with O(nm2

eq) and inverting it with
O(m3

eq), resulting in an overall complexity of O(nm2
eq +m3

eq). In the sparse case, matrix-vector
products cost O(nnz(G(x))), while forming G(x)G(x)⊤ costs O(nnz(G(x))meq). The inversion
remains O(m3

eq), leading to a total cost of O(nnz(G(x))meq +m3
eq + n).

Safe Network, Slack, and Convex Combination Complexity The safe network forward pass
consists of a dense matrix-vector product Fx, resulting in a computational cost of O(nk). The slack
computation, defined as s(x) = h(x)−H(x)f(x), requires computing H(x)f(x). In the dense case,
this operation incurs a cost of O(mineq n), while in the sparse case, it reduces to O(nnz(H(x))),
depending on the sparsity of H(x). The calculation of the blending parameter α involves evaluating
mineq scalar inequalities and thus has a cost of O(mineq). Finally, the convex combination of the
task and safe network outputs requires O(n) operations.

Total Inference Complexity Overall, the proposed framework achieves low inference complexity,
summarized in Table 1. The dominant cost arises from the task network forward pass, denoted by
CTN, which refers to the computational complexity of a single forward pass through the task network.
The remaining components introduce negligible overhead, especially when exploiting sparsity in the
constraint matrices.

Table 1: Total inference complexity of the proposed framework. nnz(·) denotes the number of
non-zero elements.

Constraints Coefficients G(x) Total Complexity

Dense Input-dependent O
(
CTN + nm2

eq +m3
eq + nk +mineq n

)
Input-independent O (CTN + nmeq + nk +mineq n)

Sparse Input-dependent O
(
CTN + nnz(G(x))meq +m3

eq + nk + nnz(H(x)) + n
)

Input-independent O (CTN + nmeq + nk + nnz(H) + n)
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4 Offline computation of safe networks with decision rules

4.1 Linear decision rules for linear constraints

To reduce the computational tractability of problem (5), we restrict the functional form of the safe
network to linear functions of the input, as follows:

fSNϕ (x) = Fx, (6)

where F ∈ Rn×k. Additionally, we assume that the input space X ⊂ Rk to be a nonempty, compact
set defined as:

X :=
{
x ∈ Rk

∣∣ e⊤1 x = 1, x⊤Pjx ≥ 0, j = 1, . . . , l
}
, (7)

for some symmetric matrices Pj ∈ Sk. Note that set X corresponds to the intersection of l ellipsoids
intersected with an affine hyperplane constraint e⊤1 x = 1. For the sake of notational simplicity
and without loss of generality, we assume that the first component of any x ∈ X is equal to 1.
Furthermore, we assume that the linear hull of X spans Rk. Under these assumptions, the slack
variable s(x) becomes a quadratic function of the input x and problem (5) is approximated as:

maximize
F,S,t

t

subject to F ∈ Rn×k, S = (S1, . . . , Sm) ∈
(
Sk

)m
, t ∈ R

x⊤AℓFx+ x⊤Sℓx = b⊤ℓ x, ℓ = 1, . . . ,m

x⊤Sℓx ≥ t, ℓ = meq + 1, . . . ,m.

}
P-a.s.,

(8)

We note that problem (8) is a semi-infinite problem due to the finite number of variables, but an
infinite number of quadratic constraints. To make the above problem tractable, we first handle the
equality constraints. Since all constraints are continuous in x, we can symmetrize and rewrite the ℓth
quadratic equality constraint as follows:

x⊤Hℓx = 0, ∀x ∈ X , (9)

where Hℓ :=
1
2

(
AℓF + F⊤A⊤

ℓ − e1b
⊤
ℓ − bℓe

⊤
1

)
+ Sℓ is a symmetric matrix.

Since the constraint is quadratic and homogeneous in X , it equivalently holds over the conic hull of
X , denoted cone(X ). Given that X spans Rk by assumption, cone(X ) has a non-empty interior. The
Hessian of the mapping x 7→ x⊤Hℓx is given by 2Hℓ. Consequently, if the quadratic form vanishes
over the interior of cone(X ), it follows that the Hessian must be Hℓ = 0 [29]. Thus, the original
semi-infinite equality constraint admits the equivalent finite-dimensional representation Hℓ = 0. This
reformulation substantially enhances tractability, as it replaces the intractable semi-infinite constraint
with a linear matrix equality.

Next, we can use Proposition 1 to approximate the semi-infinite constraints in (8), simplifying it into
the following semidefinite program (SDP):

maximize
F,S,t

t

subject to F ∈ Rn×k, S = (S1, . . . , Sm) ∈
(
Sk

)m
,Λ ∈ Rm×l, t ∈ R

1

2

(
AℓF + F⊤A⊤

ℓ

)
+ Sℓ =

1

2

(
e1b

⊤
ℓ + bℓe

⊤
1

)
, ∀ℓ = 1, . . . ,m

Sℓ −
l∑

j=1

ΛℓjPj − tI ⪰ 0, ∀ℓ = meq + 1, . . . ,m

Λ ≥ 0.

(10)

The above SDP constitutes an inner approximation of the original problem in (8) in the general case.
This means that the feasible set of the SDP is contained within that of the original problem, ensuring
tractability at the cost of some conservatism. However, when l = 1, this approximation becomes exact,
and the SDP formulation recovers the original feasible set without loss of generality. This property
follows from classical results on the tightness of SDP relaxations for single quadratic constraints.
A key advantage of problem (10) is that it yields a SDP whose size grows polynomially with the
dimensions of the input and output spaces, as well as with the number of constraints defining X . This
ensures that the problem can be solved efficiently using state-of-the-art interior-point methods.
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4.2 Linear decision rules for jointly linear constraints

A special case of the previously presented framework arises when the left-hand side matrix is input-
independent, i.e., A(x) ≡ A, while the right-hand side remains input-dependent as b(x) = Bx,
where B ∈ Rm×k is fixed. Under this assumption, the constraints of problem (5) reduce to the
following jointly linear form:

AfSNϕ (x) + s(x) = Bx, s(x) ≥ 0, ∀x ∈ X . (11)

To gain further tractability, we assume the input space X ⊂ Rk to be a nonempty, compact polyhedron
defined as:

X := {x ∈ Rk | Px ≥ p}. (12)

for some matrix P ∈ Rl×k and vector p ∈ Rl. Without loss of generality, we assume that the first
component of any x ∈ X is equal to 1. Furthermore, we assume that the linear hull of X spans Rk.
Under these assumptions, the slack variable s(x) becomes a linear function of the input x. We note
that the input space defined in (12) is a special case of the general input space in (7).

With the above assumptions, problem (5) is approximated as:

maximize
F,S,t

t

subject to F ∈ Rn×k, S ∈ Rm×k, t ∈ R
AFx+ Sx = Bx,

Sx ≥ tv,

}
P-a.s.

(13)

where v = (1{i>meq})
m
i=1. To enable a tractable reformulation of problem (13), we can use Proposi-

tion 2 to reformulate the semi-infinite constraints, simplifying it into the following linear program:

maximize
F,Λ,t

t

subject to F ∈ Rn×k,Λ ∈ Rm×l, t ∈ R
AF + ΛP = B,

Λp ≥ tv,

Λ ≥ 0.

(14)

The key advantage of the reformulated problem (14) is that it is a linear program whose size grows
polynomially with the dimensions of the input and output spaces, as well as with the number of
constraints defining X . This makes the problem efficiently solvable using state-of-the-art linear
programming solvers.

Limitations, extensions, and scalability considerations While the proposed framework is demon-
strated on regression tasks, it naturally extends to classification and actor-critic reinforcement learning
methods such as DDPG, where state-dependent action constraints can be enforced. In classification,
constraints can be applied in logit space or directly on the softmax outputs. Many distributional
constraints (e.g., total variation distance) can be expressed as linear constraints and are therefore
supported by our method. Extending to stochastic policy gradient methods like PPO is more involved,
as projection alters the action distribution and affects log-probability computation.

The architecture remains highly efficient at inference, relying on simple projection and convex
combination operations. The main computational cost arises during training, when determining
the safe network parameters involves solving optimization problems that scale polynomially with
the problem size. Scalability can be improved by exploiting sparsity, decomposability, and GPU
acceleration, significantly reducing training overhead for large-scale applications.

5 Numerical experiments

Tasks We evaluate our framework on two end-to-end constrained optimization learning tasks:

DC Optimal Power Flow (DC-OPF): The task is to predict the optimal generation output for
varying demands. The demands are assumed to be upper and lower bounded around a nominal
value [30]. This task corresponds to a case of jointly linear constraints. We consider both the
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linear and quadratic formulations of the DC-OPF problem to capture different objective structures
commonly used in practice. The uncertainty levels are set to ±40% for the 14-bus and 57-bus cases,
±10% for the 30-bus and 200-bus cases, and ±30% for the 118-bus case. Due to space limitations,
we present a subset of the quadratic formulation results in the main paper; the remaining results,
along with those for the linear formulation, are provided in Section C.3 of the Appendices.

Portfolio Optimization: The task is to predict optimal portfolio allocations under uncertain maturity
and rating of bonds[31], which are upper and lower bounded ±40% around a nominal value. This
task corresponds to a case of input-dependent left-hand side uncertainty.

The specific architecture and training configurations of the neural networks used in our experiments
are detailed in Section C.2 of the Appendices.

Baselines We compare our framework with the following baselines:

Optimizers: We employ Gurobi and OSQP [32], two state-of-the-art solvers for constrained opti-
mization problems, to obtain the optimal solutions for both tasks. To enhance convergence speed,
both solvers are warm-started using the outputs of a neural network trained to learn the mapping from
demands to (i) generation outputs for the DC-OPF problem and (ii) maturity and rating of bonds for
the portfolio optimization problem.

Post projection: A neural network is first trained to learn the same mapping as above. Its predictions
are projected onto the feasible set by solving a quadratic optimization problem that minimizes the
Euclidean distance between the network output and the feasible set defined by the constraints.

Alternating projection method (APM): An iterative feasibility correction approach that alternates
projections onto the equality and inequality constraint sets until a feasible point is reached or a
maximum number of iterations is exceeded.

Extrapolated alternating projection method (EAPM) [33]: A variant of APM that accelerates
convergence by introducing an extrapolation factor based on the previous iterate, effectively reducing
the number of projections required to reach feasibility. This method maintains the same feasibility
guarantees as APM but achieves faster convergence in practice.

Deep Constraint Completion and Correction (DC3) [12]: This approach uses equality completion
and unrolled projected gradient corrections for satisfying constraints.

Linear Decision Rule (LDR): We assess the performance of the linear decision rule used in the safe
network without relying on the task network.

The implementation of all the methods can be found at this GitHub repository https://github.
com/li-group/DecisionRuleNet.

Evaluation Metrics We assess the performance of the proposed framework and baselines using
the following metrics: (i) Optimality Gap: to measure the percentage deviation of the predicted
solution’s objective value from the optimal value computed by the optimizer (Gurobi), (ii) Feasibility:
to quantify the degree to which the predicted solution violates the problem’s inequality and equality
constraints, and (iii) Inference speed: to capture the average computation time in miliseconds required
to generate a prediction for a given input. The details can be found in the Appendix.

Analysis of Results Table 2 shows that the proposed method consistently achieves zero constraint
violations across all tasks, matching the optimizers and outperforming DC3, which exhibits inequality
violations that increase with problem size. In terms of optimality, the proposed method maintains
gaps below 2.5% in all cases, significantly improving over DC3 and LDR in the portfolio task,
where gaps exceed 29% and 48%, respectively. APM achieves low violations but is substantially
slower, requiring up to 225 ms and hundreds of iterations for large systems. EAPM improves
on APM’s runtime but remains slower than the proposed method. Post-projection approaches are
more accurate than DC3 and faster than APM/EAPM but still lag behind the proposed method in
both speed and optimality. The proposed method achieves inference times under 3 ms across all
tasks, offering an order-of-magnitude speedup over iterative methods and even outperforming the
optimizers, whose runtime grows with problem size. Overall, these results demonstrate that the
proposed method provides the best balance between feasibility, optimality, and efficiency for both
the portfolio optimization and large-scale quadratic DC-OPF problems, scaling effectively while
maintaining high solution quality.
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Table 2: Results on both tasks over the held out test dataset. The optimality gaps, equality and
inequality violations are shown as mean (worst) values, and the values of time are indicated as the
average solve time milliseconds (average iterations required by the method).

Method Optimality Gap Equality Violation Inequality Violation Time

Portfolio optimization problem: n = 16,meq = 2,mineq = 9, k = 10

Proposed 2.35(6.37) 0.000(0.000) 0.000(0.000) 2.8(1)
Optimizer (Gurobi) 0.00(0.00) 0.000(0.000) 0.000(0.000) 0.2
APM 0.19(0.82) 0.000(0.000) 0.000(0.001) 78.9(109)
EAPM 3.55(8.91) 0.000(0.000) 0.000(0.001) 10.2(5)
DC3 29.6(36.7) 0.000(0.000) 0.053(0.123) 319.2(300)
LDR 48.56(59.52) 0.000(0.000) 0.000(0.000) 1.2(1)

DC-OPF (QP) 118-bus system: n = 1126,meq = 340,mineq = 768, k = 118

Proposed 1.10(2.13) 0.000(0.000) 0.000(0.000) 2.5(1)
Optimizer (Gurobi) 0.00(0.00) 0.000(0.000) 0.000(0.000) 4.1
Optimizer (OSQP) 0.00(0.00) 0.000(0.000) 0.000(0.000) 6.3
Post projection (Gurobi) 0.11(1.88) 0.000(0.000) 0.000(0.000) 10.1
Post projection (OSQP) 0.51(1.88) 0.000(0.000) 0.000(0.000) 5.5
APM 0.05(0.08) 0.000(0.000) 0.001(0.013) 117.6(156)
EAPM 1.50(2.25) 0.000(0.000) 0.000(0.000) 18.8(11)
DC3 5.44(7.19) 0.000(0.000) 0.004(0.080) 335.3(276)

DC-OPF (QP) 200-bus system: n = 1527,meq = 452,mineq = 1044, k = 200

Proposed 1.07(1.71) 0.000(0.000) 0.000(0.000) 2.6(1)
Optimizer (Gurobi) 0.00(0.00) 0.000(0.000) 0.000(0.000) 4.6
Optimizer (OSQP) 0.00(0.00) 0.000(0.000) 0.000(0.000) 15.1
Post projection (Gurobi) 0.23(1.49) 0.000(0.000) 0.000(0.000) 13.2
Post projection (OSQP) 0.22(1.49) 0.000(0.000) 0.000(0.000) 7.4
APM 8.55(9.45) 0.000(0.000) 0.166(0.181) 225.3(300)
EAPM 3.88(7.95) 0.000(0.000) 0.000(0.000) 78.7(50)
DC3 18.74(20.61) 0.000(0.000) 0.164(0.189) 360.5(300)

6 Concluding remarks and future work

In this work, we proposed a framework to enforce hard linear equality and inequality constraints on
the input-output mapping of neural networks. The framework leverages linear decision rules and
convex combinations of task and safe networks to provide feasibility guarantees over the entire input
space while preserving low run-time complexity. We provided tractable formulations based on robust
optimization duality and demonstrated their effectiveness on benchmark tasks.

Despite these promising results, our work presents limitations that warrant future research. First, while
linear decision rules offer simplicity and scalability, they may limit the expressiveness of the safe
network in highly nonlinear settings. Extending the framework to incorporate more flexible function
classes could improve approximation capabilities and reduce conservativeness. Second, the current
framework assumes that the input space and constraint sets are polyhedral and convex. Investigating
how to efficiently handle equality constraints and other families of sets, including non-convex or
time-varying, would broaden the applicability of the method to more realistic scenarios, such as safety-
critical control systems and autonomous decision-making. Third, although the proposed methods are
computationally efficient, their scalability could be further enhanced by exploiting problem structure.
When the constraints exhibit decomposability, sparsity, or low-dimensional manifolds, customized
algorithms could be designed to reduce computational overhead during training. Fourth, the feasibility
coefficient αψ(x) is computed using a piecewise differentiable maximum operator. While this allows
gradients to flow through the most violated constraint, it results in sparse and potentially unstable
updates. A promising direction is to use a straight-through estimator, preserving the exact maximum
in the forward pass to ensure feasibility while substituting a differentiable surrogate (e.g., softmax over
slack ratios) in the backward pass to improve gradient quality. Finally, from a theoretical perspective,
providing formal guarantees on the approximation error and feasibility margins introduced by the
convex combination of task and safe networks would offer deeper insights into the robustness and
generalization capabilities of the proposed architecture.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the document are properly justified in Sections 3 to 5,
which include the framework description, training of linear decision rules, and numerical
experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the proposed framework are detailed in Section 6 as future
lines of research.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper provides several theoretical results with their corresponding assump-
tions and proofs in the appropriate section and the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The proposed framework is clearly described. All the information for the
numerical experiments is stated in the main document while the selection of hyperparameters
is presented in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code are provided for the reproduction of the main experimental
results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides detailed descriptions of datasets, uncertainty levels, and
problem parameters. The experimental protocols, including data splits, training hyperparam-
eters, and optimizer settings, are specified in the main document and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results report both mean and worst-case metrics, providing
insights into variability. While error bars are not shown, the worst-case results complement
mean values, ensuring robust reporting of performance across test instances.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper specifies the computer resources, and average per-instance inference
times are reported. The total runtime and iteration counts for other methods are stated.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research complies with the NeurIPS Code of Ethics. The work involves
numerical experiments on publicly available problems without human subjects or sensitive
data. Ethical considerations such as fairness, privacy, and misuse are not applicable in this
context.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: The paper discusses the relevance of constraint satisfaction in safety-critical
applications such as energy systems, where ensuring feasible and physically consistent
outputs is essential. While the work has no direct societal deployment, it contributes
positively by enhancing reliability in machine learning models.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new datasets or pretrained models. All assets used
are either synthetic data generated under specified uncertainty levels or standard benchmark
systems.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve crowdsourcing, surveys, or experiments with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: No IRB approval is needed as the study does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No large language models (LLMs) were used in the core methodology, ex-
periments, or scientific analysis of the research. Any assistance from LLMs was limited to
non-substantive editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Handling Equality Constraints

To enforce equality constraints in the output of the task network, we orthogonally project its uncor-
rected output onto the affine subspace defined by the constraints. This projection can be formulated
as the following quadratic program [6]:

minimize
y

1

2

∥∥∥f̂TN
θ (x)− y

∥∥∥2
2

subject to G(x)y = g(x), (λ)

(15)

where f̂TN
θ (x) is the uncorrected task network output, and λ denotes the Lagrange multipliers

associated with the equality constraints.

This problem admits the following closed-form solution:

fTN
θ (x) = f̂TN

θ (x)−G(x)⊤λTN(x), (16)

where the optimal Lagrange multipliers are given by:

λTN(x) =
(
G(x)G(x)⊤

)−1
(
G(x)f̂TN

θ (x)− g(x)
)
. (17)

Alternatively, using the projection matrix Ḡ(x), the projected output can be written as:

fTN
θ (x) =

(
I − Ḡ(x)G(x)

)
f̂TN
θ (x) + Ḡ(x)g(x), (18)

where:
Ḡ(x) := G(x)⊤

(
G(x)G(x)⊤

)−1
.

Thus, Ḡ(x)G(x) acts as a projection onto the row space of G(x), ensuring that the output strictly
satisfies G(x)fTN

θ (x) = g(x) for any input x.

B Proofs

B.1 Additional Technical Results

Lemma 1 (Homogeneous S-Lemma [34, Lemma 3.1]). Let P, S ∈ Sk be symmetric matrices and
suppose there exists x̄ ∈ Rk such that x̄⊤Sx̄ > 0. Then, the following statements are equivalent:

1. For all x ∈ Rk, if x⊤Px ≥ 0, then x⊤Sx ≥ 0.

2. There exists λ ≥ 0 such that S ⪰ λP.

Proposition 1 ([29, Proposition 6]). Consider the following two statements for some fixed S ∈ Sk:

(i) ∃λ ∈ Rl with λ ≥ 0 and S −
∑l
j=1 λjPj − tI ⪰ 0.

(ii) x⊤Sx ≥ t P-a.s.

For any l ∈ N, (i) implies (ii). The converse implication holds if l = 1.
Proposition 2 ([29, Proposition 1]). Let X := {x ∈ Rk | Px ≥ p} be a nonempty, compact
polyhedron defined by P ∈ Rl×k and p ∈ Rl. Let t ∈ R be given. Then, for any z ∈ Rk, the
following statements are equivalent:

(i) z⊤x ≥ t for all x ∈ X .

(ii) ∃λ ∈ Rl+ such that P⊤λ = z, p⊤λ ≥ t.

B.2 Proofs

Proof of Theorem 1. By Assumption 1, for any ε > 0, there exists fTN
θ ∈ Ftask such that

sup
x∈X

∥fTN
θ (x)− f∗(x)∥ < ε.
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Let r(x) = fTN
θ (x) − f∗(x) denote the residual. Since f∗(x) ∈ C(x) and C(x) is convex, there

exists fSNϕ (x) ∈ Fsafe such that the point

fψ(x) = (1− α)fTN
θ (x) + αfSNϕ (x)

remains in C(x), for a sufficiently small α > 0, due to the convexity of C(x) and the density of the
convex hull of safe outputs in C(x) (Assumption 2).

Since convex combinations are continuous and preserve continuity, fψ ∈ C(X ,Rn), and by choosing
α sufficiently small, the deviation from f∗ remains bounded by ε. Hence,

sup
x∈X

∥fψ(x)− f∗(x)∥ < ε

and fψ(x) ∈ C(x) for all x ∈ X , completing the proof.

Proof of Proposition 1. (i) ⇒ (ii): Select any x ∈ Rn. Under the assumptions of statement (i), we
have:

0 ≤ x⊤

S −
l∑

j=1

λjPj − tI

x = x⊤Sx−
l∑

j=1

λjx
⊤Pjx− t∥x∥2.

Rearranging:

x⊤Sx ≥
l∑

j=1

λjx
⊤Pjx+ t∥x∥2.

Since λj ≥ 0 and assuming that x⊤Pjx ≥ 0 P-a.s., it follows that:

x⊤Sx ≥ t∥x∥2 ≥ t.

Since the choice of x was arbitrary, this establishes statement (ii).

(ii) ⇒ (i) if l = 1: When l = 1, statement (ii) implies:

x⊤Sx ≥ t for all x ∈ Rn with x⊤P1x ≥ 0.

This can be rewritten as:
x⊤P1x ≥ 0 =⇒ x⊤Sx ≥ t.

Assuming that the set {x : x⊤P1x ≥ 0} is nonempty, closed, and has nonempty relative interior (as
implied by the support of P), the homogeneous S-lemma 1 applies. Thus, there exists λ1 ≥ 0 such
that:

S − λ1P1 − tI ⪰ 0.

(ii) ⇏ (i) if l > 1: When l > 1, the result does not hold in general, since the set:

{x ∈ Rn : x⊤Pjx ≥ 0,∀j = 1, . . . , l}

may be nonconvex, and thus the S-lemma fails to extend to multiple inequalities. In particular, no
universal λ ≥ 0 exists in general such that the LMI in (i) is implied by (ii).

Proof of Proposition 2. We aim to prove the equivalence between the two statements.

(i) ⇒ (ii): Assume that z⊤x ≥ t for all x ∈ X . By the definition of X , this is equivalent to:

min
x∈Rk

{
z⊤x | Px ≥ p

}
≥ t.

This is a linear program, whose dual is given by:

max
λ∈Rl

{
p⊤λ | P⊤λ = z, λ ≥ 0

}
.

Since X is nonempty and compact (and thus the primal is feasible and bounded), strong duality holds,
yielding:

min
x∈X

z⊤x = max
λ≥0, P⊤λ=z

p⊤λ.
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Thus, the primal optimal value is at least t if and only if there exists λ ≥ 0 such that P⊤λ = z and
p⊤λ ≥ t. This proves statement (ii).

(ii) ⇒ (i) Assume there exists λ ≥ 0 such that P⊤λ = z and p⊤λ ≥ t. Then, for any x ∈ X :

z⊤x = λ⊤Px ≥ λ⊤p = p⊤λ ≥ t.

Thus, z⊤x ≥ t for all x ∈ X .

This proves the equivalence.

C Details on Numerical Experiments

C.1 Evaluation Metrics

We evaluate the performance of all methods using the following metrics:

Optimality Gap Measures the percentage deviation of the predicted solution ŷ from the optimal
solution y∗ obtained by the optimizer (Gurobi). Defined as:

Optimality Gap = 100 · c
⊤ŷ − c⊤y∗

c⊤y∗
, (19)

where c is the objective cost vector. A lower gap indicates a closer-to-optimal prediction.

Equality Violation Quantifies the relative violation of the equality constraints, normalized by the
magnitude of the right-hand side:

Equality Violation =
∥G(x)ŷ − g(x)∥2

1 + ∥g(x)∥2
. (20)

Inequality Violation Quantifies the degree to which the predicted solution violates the inequality
constraints, measured using the Euclidean norm of the positive part of the violation:

Inequality Violation =
∥max

(
H(x)ŷ − h(x), 0

)
∥2

1 + ∥h(x)∥2
. (21)

Inference Time Measures the average runtime in milliseconds required to generate a prediction for a
given input. For methods using iterative procedures (e.g., DC3, APM, EAPM), the inference time
includes both the forward pass and the correction steps. For the optimizer, it corresponds to the solve
time reported by Gurobi. All times were measured over the held-out test set, averaging across all
samples.

Dataset Generation For each problem, we generated 100 samples of the input x uniformly sampled
from the uncertainty set X . The reported metrics are averaged over these test samples. For all
methods, hyperparameters were selected based on a validation set and fixed across problem sizes to
ensure fairness.

C.2 Details on Hyperparameter Tuning

The ground truths for all instances were solved using the Gurobi solver on an Apple M2 Pro CPU
and 32GB of RAM. All neural networks were trained on a NVIDIA T4 Tensor Core GPU with
parallelization using PyTorch. The solve time reported in Table ?? was averaged by passing test
instances separately, rather than dividing the solve time of the batched instances by batch size, as the
GPU execution time does not scale linearly with batch size.

The following configurations and hyperparameters are fixed throughout all experiments and all
methods, based on preliminary experimentation to confirm the proper convergence of training.

• Epochs: 300 for DCOPF, 500 for portfolio optimization

• Optimizer: Adam

• Learning rate: 10−4
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• Batch size: 64

• Hidden layer number: 2

• Hidden layer size: 256

• Activation: ReLU

• Batch normalization: True

• Feasibility method stopping tolerance: 10−4

• Feasibility method maximum iterations: 300

• DC3 correction procedure momentum: 0.5

• DC3 correction learning rate: 10−4

The proposed method does not require any additional hyperparameters. However, we found empiri-
cally that pre-training the task network to minimize the mean squared error (MSE) with respect to
the safe network output fSNϕ (x) serves as an effective initialization strategy. This approach reduces
the risk of the model getting stuck in poor local minima in specific instances, without degrading
performance in other cases, as shown in Table 3. To ensure fair comparisons with other methods and
with the proposed method trained from scratch, we adopt 100 pre-training epochs followed by 200
training epochs for the DC-OPF experiments, and 150 pre-training epochs followed by 350 training
epochs for the portfolio optimization task.

Table 3: Results on both tasks over the held out test dataset. The optimality gaps, equality and
inequality violations are shown as mean (worst) values, and the values of time are indicated as the
average solve time milliseconds (average iterations required by the method).

Method Optimality Gap Equality Violation Inequality Violation Time

Portfolio optimization problem: n = 16,meq = 2,mineq = 9, k = 10

w/ pre-training 2.35(6.37) 0.000(0.000) 0.000(0.000) 2.8(1)
w/o pre-training 3.14(6.36) 0.000(0.000) 0.000(0.000) 2.8(1)

DC-OPF 14-bus system: n = 123,meq = 38,mineq = 84, k = 14

w/ pre-training 0.00(0.00) 0.000(0.000) 0.000(0.000) 2.1(1)
w/o pre-training 0.00(0.00) 0.000(0.000) 0.000(0.000) 2.1(1)

DC-OPF 30-bus system: n = 245,meq = 76,mineq = 168, k = 30

w/ pre-training 0.00(0.00) 0.000(0.000) 0.000(0.000) 2.2(1)
w/o pre-training 10.60(17.63) 0.000(0.000) 0.000(0.000) 2.2(1)

DC-OPF 57-bus system: n = 468,meq = 141,mineq = 324, k = 57

w/ pre-training 0.21(0.68) 0.000(0.000) 0.000(0.000) 2.2(1)
w/o pre-training 0.23(0.72) 0.000(0.000) 0.000(0.000) 2.2(1)

DC-OPF 118-bus system: n = 1126,meq = 340,mineq = 768, k = 118

w/ pre-training 1.27(2.00) 0.000(0.000) 0.000(0.000) 2.3(1)
w/o pre-training 1.15(2.65) 0.000(0.000) 0.000(0.000) 2.3(1)

DC-OPF 200-bus system: n = 1527,meq = 452,mineq = 1044, k = 200

w/ pre-training 0.99(1.78) 0.000(0.000) 0.000(0.000) 2.5(1)
w/o pre-training 0.89(1.35) 0.000(0.000) 0.000(0.000) 2.5(1)

The ALM method and the DC3 method were trained using a soft loss function with additional
penalty factor, which penalizes the violation of inequality constraints when the maximum number of
iterations is insufficient to reduce the violation below the specified tolerance. In Table 4, we present
the following tuning ranges for these methods’ hyperparameters with the final selected values in bold.
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Table 4: Penalty factor selection for ALM and DC3
Dataset DC3 ALM

DC-OPF 14-bus 0, 5000 0, 5000
DC-OPF 30-bus 0, 5000 0, 5000
DC-OPF 57-bus 0, 5000 0, 5000
DC-OPF 118-bus 0, 500, 5000 0, 5000
DC-OPF 200-bus 0, 500, 5000 0, 5000
Portfolio optimization problem 0, 0.5, 5 0, 0.5

Table 5: Results on the linear formulation of the DC-OPF problem over the held out test dataset.
The optimality gaps, equality and inequality violations are shown as mean (worst) values, and the
values of time are indicated as the average solve time milliseconds (average iterations required by the
method).

Method Optimality Gap Equality Violation Inequality Violation Time

DC-OPF (LP) 14-bus system: n = 123,meq = 38,mineq = 84, k = 14

Optimizer 0.00(0.00) 0.000(0.000) 0.000(0.000) 0.6
Proposed 0.00(0.00) 0.000(0.000) 0.000(0.000) 2.1(1)
APM 0.00(0.00) 0.000(0.000) 0.000(0.000) 42.8(61)
DC3 0.27(3.71) 0.000(0.000) 0.004(0.053) 315.6(291)
LDR 31.15(38.39) 0.000(0.000) 0.000(0.000) 0.9(1)

DC-OPF (LP) 30-bus system: n = 245,meq = 76,mineq = 168, k = 30

Optimizer 0.00(0.00) 0.000(0.000) 0.000(0.000) 0.98
Proposed 0.00(0.00) 0.000(0.000) 0.000(0.000) 2.2(1)
APM 0.00(0.00) 0.000(0.000) 0.000(0.000) 65.0(93)
DC3 0.72(2.34) 0.000(0.000) 0.014(0.045) 321.5(295)
LDR 10.20(17.19) 0.000(0.000) 0.000(0.000) 0.9(1)

DC-OPF (LP) 57-bus system: n = 468,meq = 141,mineq = 324, k = 57

Optimizer 0.00(0.00) 0.000(0.000) 0.000(0.000) 2.06
Proposed 0.21(0.68) 0.000(0.000) 0.000(0.000) 2.2(1)
APM 0.00(0.65) 0.000(0.000) 0.010(0.041) 108.5(154)
DC3 0.04(1.04) 0.000(0.000) 0.026(0.093) 321.2(292)
LDR 8.86(11.78) 0.000(0.000) 0.000(0.000) 0.9(1)

DC-OPF (LP) 118-bus system: n = 1126,meq = 340,mineq = 768, k = 118

Optimizer 0.00(0.00) 0.000(0.000) 0.000(0.000) 4.43
Proposed 1.27(2.00) 0.000(0.000) 0.000(0.000) 2.3(1)
APM 0.07(0.16) 0.000(0.000) 0.003(0.018) 123.9(172)
DC3 1.95(8.09) 0.000(0.000) 0.999(1.513) 335.6(300)
LDR 21.51(22.79) 0.000(0.000) 0.000(0.000) 0.9(1)

DC-OPF (LP) 200-bus system: n = 1527,meq = 452,mineq = 1044, k = 200

Optimizer 0.00(0.00) 0.000(0.000) 0.000(0.000) 5.47
Proposed 0.99(1.78) 0.000(0.000) 0.000(0.000) 2.5(1)
APM 0.72(4.98) 0.000(0.000) 0.017(0.057) 217.9(300)
DC3 18.89(21.10) 0.000(0.000) 0.210(0.235) 338.8(300)
LDR 11.54(12.91) 0.000(0.000) 0.000(0.000) 0.9(1)

C.3 Additional results for the DC-OPF problem task

C.3.1 Linear programming model results

Analysis of Results DC-OPF (LP) Table 5 shows that the proposed method consistently achieves
zero constraint violations across all tasks, matching the optimizer and outperforming DC3, which
exhibits increasing inequality violations as problem size grows. In terms of optimality, the proposed
method significantly improves over LDR, maintaining gaps below 1% in large-scale DC-OPF cases,
while LDR incurs gaps above 10% and up to 48% in the portfolio task. This highlights the benefit of
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combining the task and safe networks to balance accuracy and feasibility. In terms of runtime, the
proposed method achieves inference times under 3 ms across all tasks, providing orders-of-magnitude
speedups over DC3 and APM, which require hundreds of iterations and runtimes exceeding 300 ms
per instance. While LDR remains the fastest approach (< 1 ms), it does so at the expense of large
optimality gaps. Importantly, the proposed method is also significantly faster than the optimizer,
whose runtime grows with problem size. These results confirm that the proposed method offers the
best trade-off between feasibility, accuracy, and efficiency.

C.3.2 Quadratic programming model additional results

Table 6: Remaining results on the quadratic formulation of the DC-OPF problem over the held out
test dataset. The optimality gaps, equality and inequality violations are shown as mean (worst) values,
and the values of time are indicated as the average solve time milliseconds (average iterations required
by the method).

Method Optimality Gap Equality Violation Inequality Violation Time

DC-OPF (QP) 14-bus system: n = 123,meq = 38,mineq = 84, k = 14

Proposed 0.00(0.00) 0.000(0.000) 0.000(0.000) 2.3(1)
Optimizer (Gurobi) 0.00(0.00) 0.000(0.000) 0.000(0.000) 0.5
Optimizer (OSQP) 0.00(0.00) 0.000(0.000) 0.000(0.000) 0.6
Post projection (Gurobi) 0.37(1.84) 0.000(0.000) 0.000(0.000) 1.6
Post projection (OSQP) 0.37(1.84) 0.000(0.000) 0.000(0.000) 1.2
APM 0.00(0.00) 0.000(0.000) 0.000(0.000) 45.8(62)
EAPM 0.00(0.00) 0.000(0.000) 0.000(0.000) 4.8(2)
DC3 0.13(1.64) 0.000(0.000) 0.003(0.022) 331.6(291)

DC-OPF (QP) 30-bus system: n = 245,meq = 76,mineq = 168, k = 30

Proposed 0.00(0.00) 0.000(0.000) 0.000(0.000) 2.3(1)
Optimizer (Gurobi) 0.00(0.00) 0.000(0.000) 0.000(0.000) 1.0
Optimizer (OSQP) 0.00(0.00) 0.000(0.000) 0.000(0.000) 1.1
Post projection (Gurobi) 0.26(1.16) 0.000(0.000) 0.000(0.000) 2.3
Post projection (OSQP) 0.26(1.16) 0.000(0.000) 0.000(0.000) 1.0
APM 0.00(0.00) 0.000(0.000) 0.000(0.000) 69.0(95)
EAPM 11.13(16.19) 0.000(0.000) 0.000(0.000) 4.4(2)
DC3 0.57(3.73) 0.000(0.000) 0.011(0.067) 337.3(293)

DC-OPF (QP) 57-bus system: n = 468,meq = 141,mineq = 324, k = 57

Proposed 0.10(0.36) 0.000(0.000) 0.000(0.000) 2.5(1)
Optimizer (Gurobi) 0.00(0.00) 0.000(0.000) 0.000(0.000) 2.1
Optimizer (OSQP) 0.00(0.00) 0.000(0.000) 0.000(0.000) 2.6
Post projection (Gurobi) 0.11(0.65) 0.000(0.000) 0.000(0.000) 4.0
Post projection (OSQP) 0.11(0.65) 0.000(0.000) 0.000(0.000) 2.9
APM 0.03(0.15) 0.000(0.000) 0.000(0.003) 73.1(99)
EAPM 0.09(0.73) 0.000(0.000) 0.000(0.003) 9.2(5)
DC3 0.04(1.17) 0.000(0.000) 0.000(0.004) 306.7(264)

Analysis of Results DC-OPF (QP) Table 6 shows that the proposed method achieves zero
constraint violations across all systems, matching the optimizer and outperforming DC3, which
exhibits small but non-negligible violations. In terms of optimality, it maintains gaps below 0.1%,
closely matching Gurobi and OSQP and improving over post-projection baselines. APM and EAPM
also ensure feasibility but require significantly more iterations and runtime—especially APM, which
exceeds 70 ms on larger systems. In contrast, the proposed method achieves inference times under
3 ms, offering an order-of-magnitude speedup while retaining near-optimality. Post-projection
methods are faster than APM/EAPM but still slower and slightly less accurate than the proposed
method. DC3 remains the slowest, requiring over 300 iterations. Overall, the proposed method offers
the best trade-off between feasibility, optimality, and efficiency, scaling effectively with system size
while maintaining high solution quality.
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