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Abstract

Unsupervised anomaly detection is a critical task in many high-social-impact
applications such as finance, healthcare, social media, and cybersecurity, where
demographics involving age, gender, race, disease, etc. are used frequently. In
these scenarios, possible bias from anomaly detection systems can lead to unfair
treatment for different groups and even exacerbate social bias. In this work, first,
we thoroughly analyze the feasibility and necessary assumptions for ensuring group
fairness in unsupervised anomaly detection. Second, we propose a novel fairness-
aware anomaly detection method FairAD. From the normal training data, FairAD
learns a projection to map data of different demographic groups to a common
target distribution that is simple and compact, and hence provides a reliable base
to estimate the density of the data. The density can be directly used to identify
anomalies while the common target distribution ensures fairness between different
groups. Furthermore, we propose a threshold-free fairness metric that provides
a global view for model’s fairness, eliminating dependence on manual threshold
selection. Experiments on real-world benchmarks demonstrate that our method
achieves an improved trade-off between detection accuracy and fairness under both
balanced and skewed data across different groups.

1 Introduction

As machine learning techniques are increasingly being applied in high-social-impact fields such as
finance and justice, the fairness of machine learning systems receives a surge of attention. There are
growing studies [Larson et al., 2016, |[Hendricks et al., [2018| |Dastin| [2022] that exhibit discrimination
in real-world machine learning systems. For instance, analysis [Larson et al.;[2016|] on the COMPAS
(Correctional Offender Management Profiling for Alternative Sanctions), a recidivism risk prediction
system, shows a strong correlation between recidivism prediction and race, where African-American
individuals have a much higher risk of recidivism than Caucasian. It is vital to eliminate or mitigate
the possible disparity of machine learning algorithms between different demographic groups to ensure
social fairness.

In response, many researchers [Dwork et al.,[2012a, Zemel et al., 2013} [Tzeng et al., 2014, [Hardt
et al., 2016, Zafar et al.| | 2017a} |Agarwal et al.| 2019, |Oh et al.| 2022, Jovanovic et al.,|2023]] have
begun to propose fairness-aware machine learning algorithms, where one of the most common
paradigms is to learn a fair representation depending on a formal fairness principle [Hajian et al.|
2016} Hardt et al., [2016} [Zafar et al., 2017b, |Gajane, [2017]]. However, previous works on algorithm
fairness often focused on supervised machine learning tasks [Hardt et al.l 2016, [Agarwal et al., 2018|
2019]] and the study on the fairness issue in unsupervised anomaly detection [Pang et al., 2021] is
scarce. Anomaly detection (AD), aiming at identifying anomalous samples in data, plays a crucial
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role in many important fields such as finance, healthcare, social media, and cybersecurity, where
demographics, like age, gender, race, ethnicity, and disease, are used frequently. Given multiple
groups (> 2) partitioned by a protected social variable with multiple attribute values, a fair AD
method is supposed to ensure equal probabilities of samples being detected as anomalous (or normal)
across different demographic groupﬂ However, as shown by [Zhang and Davidson, [2021], existing
AD methods suffer from unfairness to some extent. In addition, Meissen et al.| [2023]] and [Wu et al.
[2024] found that the fairness of unsupervised anomaly detection models is easily affected by sample
proportion across different demographic groups.

Surprisingly, studies in the literature focusing on fairness in unsupervised AD are quite limited and
incomplete. Although there have been several attempts such as [Deepak and Abraham), 2020, Zhang
and Davidson, 2021} Shekhar et al., 2021, |Han et al.| 2023]], we still encounter, at least, the following
four problems or difficulties:

I The feasibility and necessary assumptions of ensuring fairness in unsupervised anomaly
detection haven’t been clearly discussed in the literature.
IT The trade-off between fairness and utility criteria (such as accuracy) does not meet pressing
practical needs.
IIT There is still a lack of global and convenient (threshold-free) evaluation metrics of fairness
for unsupervised anomaly detection methods.
IV There is a lack of research on the fairness issues under different data splitting strategies
including balanced and skewed data splitting across demographic groups.

In this work, we attempt to address the four difficulties. We present a novel fairness-aware unsu-
pervised AD method called FairAD. FairAD learns to map data from different demographic groups
to a common target distribution, which ensures statistical parity for different groups in the target
distribution space. The chosen target distribution is supposed to be simple and compact, where
simplicity ensures that sampling from the target distribution is easy, and compactness aims to obtain
a reliable decision boundary to distinguish between normal and abnormal samples. Furthermore,
in order to effectively evaluate fairness in anomaly detection, we propose a novel threshold-free
evaluation metric. Our main contributions are as follows.

* We discuss the group fairness issue and introduce two fundamental assumptions for any fairness-
aware (group fairness) unsupervised AD methods. Furthermore, we empirically demonstrate
that the assumptions are reasonable in real-world scenarios. (for Difficulty [[)

* We propose FairAD without introducing additional fairness regularization, which achieves
a coordinated optimization process for detection task and group fairness and improves the
fairness-utility trade-off, in comparison to existing methods. (for Difficulty

* We introduce a threshold-free fairness evaluation metric that holistically quantifies model fairness
across the entire decision spectrum, eliminating dependence on manual threshold selection. (for
Difficulty

* We consider both balanced and skewed data-splitting strategies across different demographic
groups and evaluate all baselines in the two settings. (for Difficulty

The experiments on real-world datasets show that our method achieves an improved trade-off between
detection accuracy and fairness and the results also verify the effectiveness of the proposed evaluation
metrics of fairness. The source code is provided in supplementary materials.

2 Related Work

2.1 Fair Representation Learning

Fair representation learning (FRL) [Cerrato et al.| 2024] focuses on mitigating biases and ensuring
fairness in machine learning systems by transforming data into latent space where sensitive attributes
(e.g., race, gender) have minimal or no influence on outcomes. It aims to achieve equity in predictions
across different demographic groups while maintaining task accuracy. The main technical routes
include: (1) adversarial learning to promote independence between latent features and sensitive
attributes [Xie et al., 2017, Madras et al.| 2018| [Zhang et al.,|2018]]; and (2) mutual information and
variational inference [Louizos et al.,[2015} Moyer et al.}[2018| |(Creager et al.,[2019} /Oh et al., |2022];
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and (3) introducing fairness constraints /Agarwal et al.|[2018]]. To some extent, these FRL techniques
constitute a key approach to building fair machine learning systems.

Building on the FRL techniques, a straightforward strategy for achieving fair anomaly detection
is to construct two-stage pipelines: (1) generating fair embeddings using existing FRL methods,
followed by (2) training an anomaly detector on these embeddings. However, this paradigm exhibits
two critical limitations in unsupervised anomaly detection scenario: (1) (Task Compatibility) most
FRL methods are not disentangled with downstream tasks (typically classification), making them
incompatible with unsupervised anomaly detection where all training samples belong to a single
(normal) class and lack auxiliary label information, and (2) (Detection Efficacy) on the other hand, the
task-agnostic representation is not guaranteed to be useful in distinguishing between normal samples
and anomalies, leading to low detection accuracy. In contrast, our proposed method introduces an
end-to-end framework with fairness mechanisms specifically designed for unsupervised anomaly
detection. Empirical results (see Sectiond)) also demonstrated that our proposed method achieves
significantly better detection accuracy than the two-stage pipelines while maintaining comparable
fairness.

2.2 Fairness in Anomaly Detection

Despite so many works on anomaly detection problems [Ruff et al., 2018| |Cai and Fanl 2022, [Han
et al., 2022, Bouman et al., [2024]], the studies on the fairness of anomaly detection are limited. To
the best of our knowledge, |Davidson and Ravi| [2020] first studied the fairness issue of outlier
detection and proposed a framework to determine whether the output of an outlier detection algorithm
is fair. Subsequently, Deepak and Abraham| [2020] studied the fairness problem of LOF (Local
Outlier Factor) [Breunig et al.,|2000|] and proposed a strategy to mitigate the unfairness of LOF on
tabular datasets. |[Zhang and Davidson| [[2021]] studied the fairness problem of Deep SVDD [Ruff]
et al.| 2018]] and proposed Deep Fair SVDD, which used an adversarial network to de-correlate the
relationships between the sensitive attributes and the learned representations. |Shekhar et al.| [2021]]
added statistical parity regularization and group fidelity regularization on AutoEncoder (AE) [Hinton
and Salakhutdinov, 2006] to mitigate the unfairness of AE-based anomaly detection methods. More
recently, Han et al.| [2023] studied counterfactual fairness, which is to ensure the consistency of the
detection outcome in the factual and counterfactual world to different demographic groups.

Adversarial training [Zhang and Davidson, |2021]] is known to be unstable, and fairness regularization
terms [Shekhar et al.| 2021]] often compromise detection performance, and counterfactual-based
methods [[Han et al., [2023]] introduce extra training complexity. In contrast to these methods, our
proposed method achieves a simple and coordinated optimization process for the detection task and
group fairness. Empirical results (See Section[d) also demonstrated that our method achieves superior
detection accuracy compared to these methods, while maintaining comparable or even better fairness.

3 Fairness-aware Anomaly Detection

3.1 Preliminary Knowledge

Unsupervised AD  Let X = {x1,%2, - ,X,} C R? be a set of n samples drawn from an unknown
distribution Dy and the samples from Dy are deemed as normal data. A point x € R? is deemed
to be anomalous if x is not drawn from Dy. Then, the goal of the unsupervised AD is to obtain a
decision function f : R? — {0, 1} by utilizing only X, such that f(x) = 0 if x is drawn from Dy
and f(x) = 1 if x is not drawn from Dx. Note that this is a standard setting of anomaly detection,
followed by most unsupervised AD methods [Ruff et al.,[2018} |Goyal et al., 2020} |Han et al., 2022,
Fu et al., [2024] Xiao et al.| 2025]], where models are trained exclusively on normal data. The main
difference among unsupervised AD methods is the design of the decision function f.

Group Fairness Demographic parity, a.k.a. statistical parity [Dwork et al.l 2012b]], demands the
existence of parity between different demographic groups, such as those defined by gender or race.
Weuse S € S :={s1, $2,..., Sk} to denote the sensitive or protected attribute and |S| = K > 2.
There are the following definitions of group fairness.

Definition 1 (Demographic parity [Agarwal et al 2018|). A predictor f : X — Y achieves
demographic parity under a distribution over (x,S,y) where y € {0, 1} be the data label if its



prediction {j := f(x) is statistically independent of the protected attribute S— that is, if P[f (x) =
718 =s]=P[f(x)=g]forall sand?q.

Definition 2 (Equal opportunity [|Gajane, [2017]]). Use the same notations of Definition|l| A predictor
f achieves equal opportunity under a distribution over (x,S,y) if its prediction § = f(x) is
conditionally independent of the protected attribute S given the label y = 1— that is, if P[§ =
1|S=sy=1=Plg=1|y=1]foralls.

In unsupervised AD, y = 0 and y = 1 represent normality and anomaly respectively. However,
the training data do not include any labeled anomalous samples, which means the predictor f will
never be guaranteed to learn sufficient information about the anomaly pattern. In Definition [2] (Equal
opportunity), y = 1 is presented explicitly and in Definition |l| (Demographic parity), y = 1 is
presented implicitly because P [f(x) = ¢ | S = s] and P [f(x) = ¢] depend on both normal samples
(y = 0) and anomalous samples (y = 1), thatis P [f(x) = 9] =P[f(x) =9 |y = 0] x P[y = 0] +
P[f(x) = ¢ |y = 1] x Py = 1]. Therefore, we have the following claim (proved in Appendix .

Claim 1. In unsupervised AD, neither demographic parity nor equal opportunity can be meaningfully
guaranteed if without any additional assumptions.

Note that “meaningfully” emphasizes the trivial solutions f(x) = 0 or 1 for any x are excluded. In
fact, without additional assumptions, any fairness involving anomalous data cannot be guaranteed in
unsupervised settings. It is worth noting that Shekhar et al.[[2021]] considered the equal opportunity
in unsupervised AD, where a fairness-unaware AD model (base model) is utilized first to predict
pseudo-label ¢ and then they used ¢ to ensure equal opportunity. Obviously, such a strategy has
a significant limitation: the result of equal opportunity depends on the detection performance of
the base model, of which fairness cannot be guaranteed. Therefore, for unsupervised AD, without
additional assumptions, it is only possible to guarantee the following fairness.

Definition 3 (Predictive equality [Chouldechoval 2017))). Let § := f(x). The false positive error
rate balance, a.k.a. predictive equality, is defined as

Plg=1|S=s,y=0=Plg=1|S=s;,y =0 1

where 5;,5; €S, 1 # j.

3.2 Fairness Discussion in Unsupervised Anomaly Detection

As evidenced by the preceding analysis, it is intractable to ensure group fairness both on normal
and abnormal data in unsupervised anomaly detection (UAD). However, existing works [Zhang and
Davidson, 2021} [Shekhar et al.l 2021} |Han et al., 2023[] have empirically demonstrated that group
fairness (demographic parity or equal opportunity) can be achieved to some extents by introducing
adversarial training, adding fairness constraints to optimization objective or generating counterfactual
samples for training. This suggests that there must be some natural conditions implicitly contributing
to group fairness in unsupervised anomaly detection. In real-world scenarios, anomalous instances
are not completely unrelated to normal instances; otherwise, the detection task would be trivial. It
is quite common that anomalous samples emerge as perturbed normal samples and the evolution
from normality to anomaly is gradual. For instance, in chemical engineering, flow control valves will
gradually block, leading to failure; in the mechanical field, bearings will gradually deform, resulting
in abnormal vibration signals. Meanwhile, some normal samples are naturally close to anomalous
samples. Therefore, it is possible to learn some patterns of anomaly from the normal training data
and we make the following assumption.

Assumption 1 (Learnable abnormality). Suppose X = {x1,X2,- - ,Xp} are independently drawn
from Dy. The abnormalities of both X and unknown anomalous samples can be correctly quantified
by a function T* : R? — R, and there exists a permutation © on X such that 0 < T*(x,,) <
T*(Xny) < +++ < T*(Xr, ), where a larger value of T*(x) means that x is not drawn from the
normal distribution Dx with a higher probability.

Assumption [T]reflects the fundamental expectation that normal data should be compact in the feature
space. Formally, this requires the existence of a bounding function 7* : R? — R such that observed
normal samples satisfy 7* (Xporma) < T *(Xabnormal)- This assumption ensures the learnability of
normal patterns while providing feasibility guarantees for the anomaly detection task. Based on
Assumption [T} 7* servers as an anomaly score function and performs extrapolation on anomalous



samples. Most existing UAD methods [Han et al.| 2022| |Bouman et al.| 2024] have demonstrated
that it is possible to learn an approximation of 7* from X’ that can generalize to unseen anomalous
samples. However, 7 *(x) may not be independent from a sensitive attribute S and hence can lead to
unfairness.

To achieve fairness on X', we split X" into different protected groups Xg—s, according to the values of
a sensitive attribute S. Therefore, a fair AD model § = f(x) on X’ is to ensure

Plg|x € Xs=s;, T"(Xr,) <7 < T (Xn, )]

= Pl | x € Xsa,, T (xm) < § < T*(xm,) @

where § := T*(x) denotes the anomaly level of x. Different from (I) that does not involve any
information about the anomaly, (2)) is associated with 7* (established in Assumption[I)), meaning
that it is possible to learn some information about the anomaly from X. Therefore, it is reasonable
to make the following assumptions for fairness on abnormal samples, where E := ‘]P’[g} | x €
Xsms,s T (Xm,) S5 < T (%, )] = Pl | X € X, T (%my) <9 < T (%x,)]].

Assumption 2 (Transferable fairness). Let X be the set of all unseen anomalous samples and
E=Pl§|x € Xs—s,, § > T*(xx,)] = Pl | x € Xs—s,, § > T*(Xr,)]|. There exists a small
constant ;> 1 such that E < pE.

Assumption 3 (Generalizable parity). Let X be the union of the set of all unseen anomalous samples
and the set of all unseen normal samples and E = |]P’[g] |x € Xs—,,0 < g] =Pl | x € Xg—s,,0 <
7] | There exists a small constant T > 1 such that E < TE.

Assumptionensures that when 7 is fair on the training data, it is also fair on unseen anomalous
data, provided that y is not too large, where 1 depends on real data distribution and the unknown
score function 7*. If E = 0 for any 1, j, the assumption implies equal opportunity. Similarly,
Assumption [3| implies demographic parity when E = 0. Therefore, the evaluation of a fair AD
method depends on both the fairness principle (e.g., demographic parity or equal opportunity) and
assumption. Indeed, Assumptions [2] 3| have already implicitly verified by existing fairness-aware
AD methods [Zhang and Davidson| 2021} [Shekhar et al.| 2021} [Han et al., [2023]]. Otherwise, it is
only possible to guarantee the predictive equality (I). In our experiments, the results on real-world
datasets validate the reasonability of the two assumptions again.

3.3 Model Formulation

3.3.1 Anomaly Detection via Compact Distribution Transformation

For unsupervised anomaly detection, density estimation [[Silverman, [2018]] is an effective strat-
egy [Zong et al.l 2018 |Ruff et al., [2018|, [Fu et al.} 2024] to distinguish between normal and abnormal
instances. However, the dimensionality of the data is often high and the data distribution in the
original space is complex, which makes density estimation challenging.

To solve this problem, we propose to learn a projection P : R? — R™ that transforms data distribution
Dy to a known target distribution D, that is simple and compact, while there still exists a projection
P’ : R™ — R? that can recover Dy from D, approximately, ensuring that the major information of
x can be preserved by z, where z ~ D,. Therefore, we aim to solve

min M(P(Dx), Dy)
P 3)
s.t. M(P'(P(Dy)), Dy) < ¢

where M+, -) denotes a distance metric between distributions and ¢ is some positive constant. Instead
of the constrained optimization problem (3)), we can simply solve the following problem

min M(P(Dx), Dy) + BM(P'(P(Dx)), Dx), @

where § > 0 is a trade-off hyperparameter for the two terms. We use two deep neural networks hy
and g,, with parameters ¢, ¢ to model P and P’ respectively. Now, the problem () becomes

%1 M(Dh,(x); Dz) + BM(Dy, (n,(x))> Px) (5)



However, problem (3) is intractable as data distribution Dy is unknown and Dy, 5(x)s Dy (hy(x))
cannot be computed analytically. Thus, we expect to measure the distance between distributions
using their finite samples because we can sample from D, and D, easily. A feasible and popular
choice of M(-,-) is the Sinkhorn distance [Cuturi, 2013]] between two distributions supported by

X = {Xl,XQ,...,an} andy - {ylay2a"'aYn2}:

Sinkhorn(X,)) := min (P, C)r + « Z P;;log(Py;),
0. (6)
st Pl=a,PT1=b,P>0

where P € R™1*"2 denotes the transport plan and C € R™*"2 is a metric cost matrix between
X and ). The two probability vectors a and b satisfy a’1 = 1,b71 = 1,1 = [1,1,---,1]T.
Other measures, such as the maximum mean discrepancy, can also be used, which is discussed
in the Appendix [F] Now, we use Sinkhorn distance to replace the first term in problem (3)), use
reconstruction error to replace the second term in problem (3)), and get the following optimization
objective

min Sinkhorn(h,(X) Z 1% — gu(ho(x:))|1? O

wherex; € X, Z ={z;:z; ~D,,i=1,...,n}, and ﬁ is a trade-off hyperparameter.

We may replace both the first and second terms in problem (3) using Sinkhorn distance, however,
which easily leads to a higher computational cost. Therefore, we use reconstruction error to replace
the second term in problem (5)). The reconstruction error term is a stronger constraint than P’, but it
is efficient and effective to preserve the core information from the original data distribution Dx.

Target distribution The target distribution should be simple and compact. The compactness
ensures that projected normal samples in the decision space lie in high-density regions, which
contributes to a reliable decision boundary. The simplicity ensures that sampling from the target
distribution is easy. Therefore, for the target distribution D,, we propose to use a truncated isotropic
Gaussian based on A/(0, 1) where truncation is to ensure that the target distribution is sufficiently
compact for normal data. Based on the target distribution, we can define a score function naturally
depending on density estimation.

Anomaly score Let hg- be the trained fairness-aware model. In inference phase, for a new sample
Xnew, W define a soft anomaly score (sof (Or a hard score depending on a threshold)

Score(Xpew) = Csoft(h¢* (Xnew)) = ”h(/)* (Xnew) ] (8)

which can measure the anomaly degree of x,,.y. By considering a threshold (with a certain significance
level) obtained from the training data scores, we get a hard score function (,,q With a binary output
in {0, 1}, indicating whether Xy, is normal or not. Actually, the density of X,y can be estimated as
(2m) =42 exp (—1 (Score(xpew))?).

3.3.2 Fairness via Shared Target Distribution

Directly finding a fairE] f while maintaining strong detection ability is non-trivial. A naive strategy
involves combining FRL techniques with UAD methods to construct two-stage pipelines, in which
the optimization objectives in the FRL stage are not tailored for the detection task. As a result, Such
pipelines often yield poor detection performance. Similarly, directly incorporating fairness constraints
into the optimization objectives of UAD methods also degrades detection performance. To avoid such
problems, we expect to find an end-to-end and coordinated learning process for the detection task and
group fairness. Based on the framework established in Section we can obtain a projection h4-
via compact distributional transformation, and then the detection task can be conducted effectively
by ¢ estimating the density of data in decision space. Thus, we obtain a detector f = ( o h and
9 = f(x) = ¢ o h(x). Notably, if / is fair for a protected variable S, we have

Plh(x) | x € Xs—s,, T (Xr,) <7 < T"(Xx,,)]

= Bh(x) | % € sy, T () < 7 < T* (xn )] ©

3Unless specified otherwise, all “fair" and “fairness" in this paper pertain to group fairness.



where s;, s; € S denote the attribute values of protected variable S.

It is easy to show that (proved in Appendix [A.2))
Proposition 1. For any (, if () is attained, then @) holds.

To obtain a fair & without introducing additional fairness constraints, we propose to map data across
different demographic groups into a common target distribution D,,. Naturally, the (3)) becomes

PP s (10)

It further follows that (proved in Appendix [A-3)
Proposition 2. If Y o M(P(Dxs_,), D,) = 0, then Q) is attained.

Therefore, combing Proposition[T]and Proposi-
tion 2} we conclude that solving problem (I0)
makes the decision function f as fair as possible
on the training data, in terms of predictive equal-
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in Section [3.31] we finally solve the relative density in the target distribution.
. , B
min S Sinkhorn(7s (), 2) + £ 3™ i = guha(x)) 2. an
T oses i=1

Notably, our approach achieves fairness across demographic groups of protected variables without
introducing additional fairness constraints, thereby fulfilling the dual objectives of detection efficacy
and group fairness. We call the method Im-FairAD. Figure T provides an illustration.

Variant of FairAD Besides the method presented by (TI), we also explore another feasible
optimization objective by directly minimizing the distribution distance of anomaly scores across
different groups, i.e., 5 n
min Sinkhom(hs(), Z) + = 3 x; = g (hs ()|
’ i=1 (12)
+A D Sinkhom(¢ (hg(Xs=s.)). ¢ (h(¥s=,))-
i#£]
The first and second terms focus on detection accuracy and the third term ensures fairness between
protected groups. We call the method Ex-FairAD. It is worth noting that the first term in (12,
mapping data distribution into target distribution, is necessary for Ex-FairAD because it determines
whether the score function (8) is feasible for Ex-FairAD. More detailed discussion and an ablation
study are provided in Appendix

3.4 Threshold-Free Fairness Metrics

To overcome the limitations (See Appendix [B.3) of fairness ratio, in this paper, we propose a new
fairness metric called Average Demographic Parity Difference (ADPD):

ADPD := 1 E }]P’(Score(X) > t,|S = s;) — P(Score(X) > t;|S = s;) (13)
n
k=1



where t;, € Score(X) denotes the anomaly score of single sample. In our proposed methods,
ty = ||he- (xx)||. ADPD is a threshold-free metric (such as AUC) for measuring demographic parity.
The range of ADPD is [0, 1) and a smaller ADPD means a higher fairness. Although we introduce a
novel threshold-free metric for fairness measure, this is not to imply that the threshold-dependent
metrics are useless. More discussion on threshold-free and threshold-dependent metrics is provided
in Appendix[B.3] We both use threshold-free and threshold-dependent metrics to evaluate all methods
in our experiments.

4 Experiments

Our experiments are conducted on six publicly available datasets from the literature on fairness in
machine learning [Zhang and Davidson| 2021}, |Chai and Wang| {2022, |Han et al., 2023} (Chen et al.,
2024]], where there are different kinds of sensitive information. The more detailed statistics of datasets
and data splitting are provided in Appendix [B.1] We both use standard (fairness-unaware) UAD
methods, two-stage pipelines (FRL technique + UAD methods), and end-to-end fairness-aware UAD
methods as baselines. The detailed experimental settings are provided in Appendix [B.2] We design
experiments to answer the following questions.

* [Q1] Can our proposed methods achieve better detection accuracy when maintaining comparable
or even better fairness?

* [Q2] How are the performances (including detection accuracy and fairness) of all compared
methods on balanced and skewed splitting?

* [Q3] Can fairness-aware unsupervised AD methods achieve fairness on anomalous data in
real-world scenarios, although anomalous samples are not used during the training?

4.1 Experimental Results

To answer [Q1], we visualize the trade-off between AUC and ADPD under balanced splitting (same
sample size across different demographic groups) in Figure [2] where the red star in the upper left
corner denotes the ideal fairness-aware anomaly detection. Compared with all the baselines, our
method achieves comparable or even better trade-off between detection accuracy and fairness in
almost all cases. The ADPD in Figure 2]is computed on all test data, including normal and abnormal
samples. The detailed numerical results and trade-off visualizations under skewed splitting (varying
sample size across different demographic groups) are provided in Appendix
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Figure 2: Accuracy-fairness trade-off on balanced splitting. Note that the baselines, FairOD and CFAD are
tailored to tabular data.

Further, the empirical results in Table[5|reveal a critical trend: when transitioning from balanced to
skewed splitting, fairness-aware AD methods exhibit degradation in group fairness, as evidenced by
significantly larger ADPD values in most cases. This suggests that fairness of existing fairness-aware
AD methods is easily affected by demographic imbalances and skewed sample proportions across
groups amplify fairness violations. By contrast, our proposed methods exhibit a robust fairness
preservation (slight fluctuation on ADPD) on balanced and skewed data splitting [Q2].

Fairness of Im-FairAD under balanced and skewed splitting When problem (6)) is solved well
that is ) 5 g M(h(Dxs_,), D) near to zero, whatever under balanced or skewed data splitting,
Im-FairAD can obtain fair h(Xs—) for different groups s. Therefore, Im-FairAD can guarantee (9)
according to Proposition 2| for both balanced and skewed data splitting [Q2].

Fairness of Im-FairAD on abnormal data



As there are no abnormal samples in the training - Bolanced Spliting . Skeved Splitin
set, the optimization processes of unsupervised :
fairness-aware AD methods do not exploit any
information directly from the abnormal data, and
hence may not consider the fairness in abnormal
data explicitly. To answer [Q3], we visualize
the ADPD of abnormal data from the test set
in Figure 3] More results on Titanic and SP
are provided in Appendix [D.1I} Compared to all
baselines, our proposed methods achieve better Figure 3: Fairness of all baselines on abnormal data
or comparable group fairness in most cases. On  from the test set.

the other hand, Deep Fair SVDD achieves better

group fairness than Deep SVDD (fairness-unaware) on abnormal data of all four datasets. Two-stage
pipelines (FarconVAE+LOF and FarconVAE+Deep SVDD) also achieve better group fairness than
LOF and Deep SVDD (fairness-unaware) on abnormal data. On COMPAS and Credit, FairOD and
CFAD both achieve better group fairness than Deep SVDD(fairness-unaware) on abnormal data. One
possible reason for the success of these methods especially ours is that the abnormal data may have
some similar latent structure as the normal data, or at least there exists a mapping (not too complex
between the normal data distribution Dy and the abnormal data distribution Dx, i.e., Dz = Q(Dx).
Thus, the AD methods can ensure fairness on abnormal data indirectly, where the intermediary is
the normal data, which also indicates that the Assumption |Z| is reasonable and can be accessed in
real-world scenarios. Particularly, our methods are based on distribution transformation and the
fairness of normal data can be transformed to abnormal data via the composition P o Q. That is also
why our methods are more effective in terms of fairness than other methods on abnormal data.

ADPD (on abnormal data)
ADPD (on abnormal data)

Adult COMPAS Credit CelebA T Adul COMPAS Credit CelobA

4.2 Evaluation by Threshold-Dependent Metric

We also use fairness ratio 21) from previous works [Zhang and Davidson|, 2021} [Shekhar et al., 2021]]
and F1-score to evaluate fairness and detection accuracy. For calculating fairness ratio and F1-score,
a threshold needs to be determined. We sort the anomaly scores of the training set in ascending order
and set the threshold to pN-th smallest anomaly score, where we set p = {0.90,0.95} and N denotes
the size of the training set. The results on COMPAS, Adult and Credit with p = 0.90 are reported
in Table [T} More results are reported in Appendix [D.2] Observing the Table [I] our methods still
achieve better detection accuracy while maintaining a better or comparable fairness ratio in almost
all cases [Q1]. Notably, the fairness ratio is highly sensitive to different thresholds (See all results
with p = {0.90,0.95} in Appendix . Consequently, a threshold-free fairness metric is essential
for evaluating the performance from a holistic view.

Table 1: Fl-score and fairness ratio on COMPAS, Adult and Credit with p = 0.90. The best two results are
marked in bold.

COMPAS Adult Credit

Methods fairness ratio T fairness ratio T fairness ratio T

Fl(%) 1 normal all F1(%) 1 normal all F1(%) 1 normal all
LOF 29.85(0.00) | 0.27(0.00) | 0.35(0.00) | 27.45(0.00) | 0.34(0.00) | 0.42(0.00) | 20.11(0.00) | 0.45(0.00) | 0.55(0.00)
Deep SVDD 31.30(5.17) | 0.49(0.18) | 0.58(0.18) | 44.73(4.72) | 0.54(0.24) | 0.63(0.11) | 23.31(7.75) | 0.76(0.12) | 0.74(0.20)
FarconVAE+LOF 14.28(0.00) | 0.69(0.00) | 0.77(0.00) | 22.87(0.00) | 0.63(0.00) | 0.62(0.00) | 15.06(0.00) | 0.88(0.00) | 0.88(0.00)
FarconVAE+Deep SVDD | 19.50(0.89) | 0.74(0.07) | 0.70(0.14) | 22.08(8.87) | 0.59(0.10) | 0.73(0.18) | 16.96(1.80) | 0.94(0.02) | 0.95(0.02)
FairOD 17.81(0.11) | 0.70(0.04) | 0.79(0.01) | 36.87(3.99) | 0.70(0.06) | 0.32(0.04) | 41.00(0.81) | 0.70(0.04) | 0.74(0.02)
Deep Fair SVDD 42.23(0.81) | 0.46(0.04) | 0.58(0.04) | 45.03(1.56) | 0.86(0.01) | 0.83(0.05) | 13.54(0.75) | 0.81(0.06) | 0.73(0.09)
CFAD 40.67(3.67) | 0.39(0.13) | 0.49(0.08) | 48.01(5.51) | 0.76(0.08) | 0.55(0.14) | 20.43(0.75) | 0.69(0.05) | 0.69(0.04)
Ex-FairAD (Ours) 42.30(5.88) | 0.71(0.18) | 0.74(0.15) | 52.75(2.19) | 0.87(0.11) | 0.92(0.03) | 53.70(2.53) | 0.79(0.03) | 0.90(0.04)
Im-FairAD (Ours) 47.49(4.32) | 0.65(0.28) | 0.68(0.09) | 56.04(4.70) | 0.72(0.06) | 0.84(0.07) | 54.32(3.43) | 0.81(0.08) | 0.90(0.04)

4.3 More Experimental Results and Analysis

Due to space limitations, the appendices contain more results and further experimental investigation.
Appendix [C} An extension of the proposed method to multiple protected attributes; Appendix
More numerical results and visualization; Appendix [E} Ablation study on the proposed methods
(Im-FairD and Ex-FairAD); Appendix B The selection of distance metric between distributions;
Appendix [Gt Time complexity and implementation cost analysis for proposed method; Appendix
The effectiveness analysis of the proposed methods on equal opportunity; Appendix [t Experimental

*This assumption is realistic because in many real scenarios, abnormality origins from normality.



investigation on contaminated training set (including unknown abnormal samples); Appendix
Experimental investigation on text data.

5 Conclusion

In this paper, we focused on the group fairness of unsupervised anomaly detection, clearly discussing
the necessary conditions of achieving group fairness, and proposed Im-FairAD and Ex-FairAD, two
novel fairness-aware anomaly detection methods. Considering the limitations of existing fairness
evaluation metrics used in previous works, we propose a novel threshold-free metrics ADPD, which
provides a holistic view for evaluating the fairness of methods.

Empirical results on real-world datasets indicated that the proposed two methods achieve a better
trade-off between detection accuracy and fairness than baselines. In most cases, Im-FairAD has better
performance than Ex-FairAD. Moreover, we analyzed the reason why fairness can be ensured on the
abnormal samples of the test set, although the model training process does not utilize any anomalous
samples.
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Answer: [Yes]
Justification: The limitation discussion are provided in Appendix [K]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
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the architecture clearly and fully.
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the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-

tions to faithfully reproduce the main experimental results, as described in supplemental

material?

Answer: [Yes]

Justification: All the data used in experiments are publicly available and we provide the

specific download URL in Appendix [B.I] Our source code is provided in supplementary

materials.
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
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results?
Answer: [Yes]
Justification: The detailed experimental settings are provided in Appendix [B.2]
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that is necessary to appreciate the results and make sense of them.
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material.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the hardware and software source used in our experiments in
Appendix [B.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

12.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

Justification:

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work aims to improve fairness of unsupervised anomaly detection system,
which is helpful to mitigate the social bias for different demographic groups to some extends.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets
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13.

14.

15.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We include the original URL links for all used data and software tool.
Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

19


https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

A Proof for Claim and Propositions

A.1 Proof for Claim 1

Proof. According to Definition [T} to achieve demographic parity, we need to guarantee
Plf(x) =¢| S = s] = P[f(x) = y] for all s and §. Therefore, we have

Plf(x) =4l = P[f(x) =9 |y = 0] x Ply = 0]
+ Plfx) =9 y=1]xPly=1]
However, only normal data (y = 0) can be accessed in unsupervised anomaly detection, which means

that we can only obtain P[f(x) = ¢ | y = 0] x P[y = 0] in such scenario. Therefore, demographic
parity cannot be guaranteed in unsupervised anomaly detection.

And according to Deﬁnition for achieving equal opportunity, we need to guarantee P[j = 1| .5 =
s,y =1 =Py = 1|y = 1] for all s. Obviously, we cannot obtain P[j = 1 | S = s,y = 1]
and P[§ = 1| y = 1] in unsupervised anomaly detection if without any additional assumptions.
Therefore, equal opportunity cannot be guaranteed in unsupervised anomaly detection. O

A.2  Proof for Proposition 1

We split A" into different protected groups Xs—g, according to the values of a sensitive attribute .S.
Therefore, a fair learning on X’ is to ensure

Plg | x € Xs—s,, T" (xx,)
=Plglxe XS:SJ"T*(XW1)

(Xr,,)]

-
T*(%x,) (19

I/\ I/\
I/\ I/\

we expect to find a h that map data from different demographic groups into a common target
distribution where an effective anomaly score function ( exist naturally.

Therefore, we obtain a detector f = ( o hand §j = f(x) = o h(x). Indeed, if h is fair for S, we
have

Plh(x) | x € Xs—s,, T*(Xx,)
= P[h(x) ‘ X € XS:SjaT*(XT"l)

(%]

-
T (%)) (1)

I/\ I/\
I/\ I/\

Proof. Equation indicates that h(x) is independent from S. Therefore, ((h(x)) is independent
from S, that is

P[C(h(x)) [ x € Xg—s,, T" (Xr,) T (%x,)]

= PIC(h(x)) [ x € Xs—s,, T (Xx,) T (%x,)]

where ((h(x)) = . O

INIA

<j
<j (1o

A.3 Proof for Proposition 2

Proof. Since M(-, ) is a distance metric between distributions, we have M(-,-) > 0. Therefore,

> M(P(Dx;_,),D,) =0

s€S
= M(P(DXSZ‘%),DZ) =0, Vi (17)
= P(Dxs_.,) = D, Vi
= P(Dxs_,,) = P(DXS:SJ, ), Vi, j.
It follows that
Plh(x) € P(Dxs_., )] = Plh(x) € P(Dus_,,)] (18)
holds for any ¢, j. Then

P[h(x)[x € Xs—s,] = P[h(x)|x € Xg—s ], (19)
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for any 4, j. This means h(x) is independent from .S. We obtain

Plh(x) | x € Xsmy, T (%r,) <5 < T (xr,)] 0
= Plh(x) [ x € Xs—s,, T"(xx,) <7 < T"(xx,)].
O
B Experimental Settings
B.1 Datasets and Baselines
The statistics of all datasets are provided in Table[2] The details of each dataset are as follows:
Table 2: Statistics of datasets.
Dataset Type | Dimension | Sensitive Variable Normal Set Abnormal Set
Adult tabular 14 gender income <50K income > 50K
COMPAS | tabular 8 race no recidivism within 2 years recidivism within 2 years
Credit tabular 23 age no default payment next month | default payment next month
Titanic tabular 7 gender no survived survived
SP tabular 32 gender general final grades extreme final grades
CelebA image | 64x64x3 gender attractive face plain face

. AdultE] [Becker and Kohavil [1996]] The dataset is from the 1994 Census Income database
contains 48,842 samples with 14 attributes, and gender (male or female) is selected as the
sensitive attribute. Following the previous work [Han et al.| 2023]], we removed the samples
with missing values.

. Creditﬂ ['Yeh, |2009]] The dataset is about customers’ default payments in Taiwan and contains
30,000 samples with 23 attributes. Age is selected as the sensitive attribute where one group
includes people from 30 to 60 years of age and the other is other age groups.

* Compay'|[Larson et al.;2016] The dataset contains 7,214 samples with 52 attributes. Following
previous works [[Larson et al., 2016, |Han et al., 2023]], we only selected African-American and
Caucasian individuals, yielding 5278 clean samples with 8 attributes. The sensitive attribute is
race (African-American and Caucasian).

. CelebAE] [Liu et al.,|2015]] The dataset contains 202,599 color face images. Following [Zhang
and Davidson| 2021, we resized all images to 64 x 64. Gender (male or female) is selected as
the sensitive attribute.

. Titani(ﬂ [Cukierski, [2012] The dataset is from a kaggle competition to predicting survival on
the Titanic. We removed the samples with missing values and obtained 712 clean samples with
8 attributes. Gender (male and female) is selected as the sensitive attribute.

. SPET] [[Cortezl 2008 The dataset is about student achievement in secondary education of two
Portuguese schools and contains 649 samples with 32 attributes. The data attributes include
student grades, demographic, social and school related features. Gender (male and female) is
selected as the sensitive attribute.

We used LOF [Breunig et al., 2000], Deep SVDD [Ruff et al.,2018]] as standard (fairness-unaware)

UAD baselines, FairOD [Shekhar et al.,[2021]], Deep Fair SVDD [Zhang and Davidson, |2021],

and

CFAD [Han et al.| 2023]] as end-to-end fairness-aware UAD baselines. We utilized FRL technique
FarconVAE [Oh et al., 2022]] to construct “FarconVAE+LOF” and “FarconVAE+DeepSVDD” as

two-stage pipelines.

Shttps://archive.ics.uci.edu/dataset/2/adult
Shttps://archive.ics.uci.edu/dataset/350/default+of+credit+card-+clients
https://github.com/propublica/compas-analysis
8https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
“https://www.kaggle.com/c/titanic/data
"https://archive.ics.uci.edu/dataset/320/student+performance
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The implementations of LOF and Deep SVDD are built using the PyOler] library [Zhao et al.,|2019].
FarconVAEEl Faiqu]E] and CFA are based on official codes and the hyperparameters are fine-
tuned according to the suggestions from original papers. In light of the unavailable implementation
for Deep Fair SVDD, we reproduce the code following the pseudo-code provided in the original
paper [Zhang and Davidson, 2021]).

B.2 Implementation Details

Neural Network Architectures For the tabular datasets Adult, COMPAS, Credit, Titanic and
SP, the neural networks for all methods are Multi-Layer Perceptrons (MLP). For the image dataset
CelebA, the neural networks used in all methods are Convolutional Neural Networks (CNN). We use
Adam [Kingma and Ba, |2015]] as the optimizer, and set coefficient a of entropy regularization term in
the Sinkhorn distance to 0.1 in all experiments.

Data Splitting For fairness problems in unsupervised anomaly detection, the proportion of sample
size across different demographic groups heavily influences the results [Meissen et al.| 2023 Wu
et al.,|2024]]. Therefore, in this work, we set balanced splitting and skewed splitting. The detailed
splits for the training set and test set are provided in Tables [3|and[d] Note that there is no balanced
splitting for Titanic and SP due to the limitations of extremely uneven samples size across different
demographic groups for Titanic and insufficient sample size for SP.

Table 3: Balanced data splitting on Adult, COMPAS, CelebA and Credit. PV denotes the protected variable.
‘Nor.” and ‘Abnor.” denote normal sample and abnormal sample, respectively.

Dataset (PV) Attribute Value Tgfzi: i(nl\% of.it Size (Nor}‘ eStSSi‘;te (Abnor.)
Adult (Gender) Flzlrﬁfle 2888 %888 }888
COMPAS (Race) Africag;ﬁ:lleerican 1888 528 %gg
CelebA (Gender) potale. 8000 4000 4000
Credit (Age) [(3)(31’152] 2888 3888 5888

Table 4: Skewed data splitting on all datasets. PV denotes the protected variable. ‘Nor.” and ‘Abnor.” denote
normal sample and abnormal sample, respectively.

Dataset (PV) | Attribute Value Tsrlazlé1 i(?\%oi?t Size (Nor§ eStssiite (Abnor.)
Adult (Gender) Flg/[n?ze 2888 T(O)gg 41‘888
COMPAS (Race) AfrlcaFléﬁg:ncan 22388 ‘1‘38 ‘1‘88
CelebA (Gender) Fl:[n?ﬁe 5888 411888 411888
Credit (Age) [(3)?f1e6r2] 3888 41‘888 41‘888
Titanic (Gender) Flg/[rriele 33320 gg gg
SP (Gender) Fl;/lneieie iig ;2 38

Evaluation Metrics Following previous works such as [Lahoti et al., 2020, |Buyl and De Bie,
2022]], we use the AUC (Area Under the Receiver Operating Characteristic curve) score and F1 to

https://github.com/yzhao062/pyod
Phttps://github.com/changdaeoh/FarconVAE
Bhttps://github.com/Shubhranshu-Shekhar/fairOD
"*https://github.com/hanxiac0607/CFAD
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evaluate the detection accuracy of all compared methods. We use the proposed ADPD (threshold-free)
and fairness ratio (threshold-dependent) [Zhang and Davidson, [2021]] to evaluate the fairness of
unsupervised anomaly detection. Note that the threshold is determined by percentile (p) of anomaly
score on the training data and we set p = {0.9,0.95} for all baselines.

ALL experiments were conducted on 20 Cores Intel(R) Xeon(R) Gold 6248 CPU with one NVIDIA
Tesla V100 GPU, CUDA 12.0. We run each experiment five times and report the average results with
standard variance.

B.3 Threshold-Free Fairness Metrics

When evaluating the fairness of anomaly detection, existing work such as [Zhang and Davidson)
2021}, |Shekhar et al.l 2021]] usually uses a fairness ratio

ri= min (FEERRI Hmsx)s5=20 ) @n
where Score(-) denotes the anomaly score, ¢ is a threshold and S denotes a protected variable. The
metric has two limitations. First, is sensitive to the selection of threshold ¢. Second, will
not work (undefined cases) when P(Score(x) > t|S = s;) = 0 or P(Score(x) > t|S = s;) = 0,
where r is always zero. To overcome the two limitations, in this paper, we propose a new fairness
metric called Average Demographic Parity Difference (ADPD):

1 n
ADPD := - 5 )P(Soore(}() > 1S = ;) — P(Score(X) > t,|S = s;) 22)
n
k=1

where ¢, € Score(X) denotes the anomaly score of single sample. In our proposed methods,
ty = ||he+ (xx)||. ADPD is a threshold-free metric (such as AUC) for measuring demographic parity.
The range of ADPD is [0, 1) and a smaller ADPD means a higher fairness. Overall, due to threshold-
independent, ADPD provides a holistic view of the model’s fairness by evaluating the performance
of an AD method across all possible thresholds. Although we introduce a novel threshold-free metric
for fairness measure, this is not to imply that the threshold-dependent metrics are useless.

The ADPD evaluates the performance of a model across all possible thresholds, providing a holistic
view of the model’s fairness. In contrast, the fairness ratio is calculated based on a specific threshold
and exhibits high sensitivity to threshold selection (See Table[§|and Table[7). When prior knowledge
(e.g., anomaly prevalence, operational constraints) is unavailable, ADPD is preferable as it mitigates
bias introduced by arbitrary threshold choices, ensuring equitable performance comparisons. On the
other hand, if domain-specific priors (e.g., training set contamination rate) are available, threshold-
dependent metrics like the fairness ratio may align better with real requirements.

C Extension of Proposed Method

The original optimization objective of Im-FairAD is as follows:

. . B e, )12
min Slnkhorn(h¢(Xs:S),Z)—&-EZHXZ gu (he(x:))]1%, (23)

@yt ses =

where only single protected attribute is considered. When protecting multiple sensitive attributes
(e.g., race & gender), the optimization objective of Im-FairAD can be naturally reformulated to the
following form (There is the same reforming process on Ex-FairAD).

S|

min » > Sinkhorn(hy(Xs—.), Z) +
T SeQses

D lxi = gy (ho(x)) 1%, (24)
i=1

where ) = {§race) Gleenden) ... 1 denotes the set of sensitive attributes. Meanwhile, the proposed
fairness metric, ADPD, becomes
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1 n

ADPD := T E E ‘]P’(Score(/\,’) > tg|S = s;) — P(Score(X) > ti|S = s;)|. (25)
n .

SeQ k=1

When the number of values of the protected attribute (e.g., race) exceeds two, i.e., |S| > 2, the ADPD
becomes

1 n 508
ADPD = e 5~ > max ({[B(s0) ~ Bls)] 1) =, (26)

SeQ k=1

where P(s;) = P(Score(X) > t;|S = s;) and the range of ADPD still is [0, 1).

D Numerical Results and More Visualization

D.1 Results of ADPD and AUC on all datasets

Table 5: Results of ADPD and AUC on COMPAS, Adult, Credit and CelebA. Note that the baselines, FairOD
and CFAD are tailored to tabular data. In the official code of FarconVAE, there is no support for image data.

Balanced Splitting Skewed Splitting
Methods ADPD(%) | ADPD(%) |
AUC(%) 1t normal | all AUC(%) © normal | all
COMPAS
LOF 59.23(0.00) | 12.27(0.00) | 10.59(0.00) | 57.25(0.00) | 9.33(0.00) 9.53(0.00)
Deep SVDD 57.58(2.30) | 24.33(7.87) | 21.07(8.72) | 60.24(3.08) | 31.72(7.39) | 30.18(5.32)
FarconVAE+LOF 48.72(0.00) | 4.56(0.00) 6.56(0.00) | 50.10(0.00) | 7.25(0.00) 4.12(0.00)
FarconVAE+Deep SVDD | 50.48(1.67) | 3.99(1.51) 4.77(0.72) | 48.83(0.75) | 8.50(1.25) 7.03(1.10)
FairOD 61.05(1.05) | 5.39(2.11) 5.53(1.50) | 58.86(4.75) | 5.43(0.60) 5.32(3.24)
Deep Fair SVDD 62.71(0.76) | 10.25(2.40) | 8.25(1.46) | 61.05(1.07) | 10.58(3.23) | 11.04(3.13)
CFAD 62.27(0.68) | 12.21(4.57) | 10.94(4.40) | 60.87(1.99) | 23.81(3.71) | 17.39(2.20)
Ex-FairAD (Ours) 63.11(2.67) | 4.38(0.43) | 4.54(1.38) | 66.44(3.62) | 5.44(1.05) | 7.39(1.18)
Im-FairAD (Ours) 63.89(3.45) | 4.16(2.55) | 4.76(2.37) | 66.58(2.91) | 4.90(1.00) | 5.43(0.49)
Adult
LOF 58.09(0.00) | 26.46(0.00) | 25.58(0.00) | 59.14(0.00) | 25.19(0.00) | 25.34(0.00)
Deep SVDD 60.47(3.59) | 7.09(1.92) 7.35(1.62) | 61.04(3.07) | 19.43(5.40) | 17.32(2.90)
FarconVAE+LOF 53.92(0.00) | 5.00(0.00) 5.73(0.00) | 50.56(0.00) | 2.16(0.00) 3.36(0.00)
FarconVAE+Deep SVDD | 55.05(2.81) | 4.65(3.01) 5.76(3.24) | 51.21(2.61) | 5.65(5.84) 5.81(7.09)
FairOD 70.63(0.36) | 11.80(4.62) | 9.26(1.45) | 58.30(4.18) | 6.34(0.53) | 14.35(5.97)
Deep Fair SVDD 62.45(0.65) | 2.18(0.84) 3.01(2.27) | 60.22(0.14) | 6.86(1.85) 4.14(3.74)
CFAD 66.89(1.12) | 6.07(2.95) | 14.69(3.58) | 60.28(1.09) | 23.42(5.43) | 30.41(3.64)
Ex-FairAD (Ours) 73.49(4.41) | 2.92(0.81) | 2.86(1.09) | 69.56(3.45) | 1.52(0.44) | 1.79(0.76)
Im-FairAD (Ours) 72.05(1.81) | 1.61(0.61) | 2.13(1.17) | 69.34(1.82) | 1.92(1.05) | 1.70(0.86)
Credit
LOF 50.09(0.00) | 6.28(0.00) 3.19(0.00) | 48.98(0.00) | 2.14(0.00) 3.17(0.00)
Deep SVDD 52.34(1.98) | 9.84(4.56) 8.64(3.26) | 54.82(1.97) | 7.49(1.33) 6.95(2.55)
FarconVAE+LOF 49.86(0.00) | 2.21(0.00) 2.24(0.00) | 52.93(0.00) | 2.65(0.00) 0.80(0.00)
FarconVAE+Deep SVDD | 51.07(0.58) | 1.03(0.45) 1.01(0.32) | 50.96(0.25) | 1.49(0.70) 0.88(0.66)
FairOD 53.93(1.09) | 7.00(1.33) 7.21(1.42) | 60.39(0.55) | 8.79(0.73) 7.36(0.50)
Deep Fair SVDD 56.01(0.69) | 4.62(1.11) 4.54(1.22) | 56.67(0.42) | 6.24(1.88) 5.84(2.00)
CFAD 56.96(0.55) | 5.89(0.75) 4.48(0.66) | 57.21(0.47) | 6.30(2.25) 5.76(1.94)
Ex-FairAD (Ours) 64.96(1.63) | 2.95(0.83) | 1.92(0.39) | 63.85(1.95) | 2.71(0.85) | 1.57(0.87)
Im-FairAD (Ours) 63.70(1.59) | 2.20(0.86) | 1.97(0.66) | 65.13(1.79) | 2.34(0.59) | 1.33(0.24)
CelebA

Deep SVDD 62.77(0.35) | 10.44(1.66) | 10.47(1.55) | 60.80(0.68) | 9.82(0.44) 8.24(0.93)
Deep Fair SVDD 57.97(0.72) | 7.73(0.99) 4.79(0.35) | 59.95(0.80) | 1.52(1.21) 3.24(1.81)
Ex-FairAD (Ours) 60.68(0.72) | 1.06(0.47) | 3.80(0.83) | 63.07(0.71) | 1.91(0.38) | 4.87(0.60)
Im-FairAD (Ours) 58.07(0.87) | 2.37(0.98) | 2.46(0.45) | 61.72(0.62) | 2.73(0.86) | 2.93(0.54)
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The results of ADPD and AUC on all datasets are provided in Table [5]and Table [} where the best
two results in each case are marked in bold, ‘normal’ means the score is computed only on normal
samples of the test set, and ‘all’ means the score is computed on all samples from test set. From these
two tables, we have the following observations:

¢ Im-FairAD and Ex-FairAD both achieve better detection accuracy (AUC) compared with all
baselines not only on normal data but also on entire test set in most cases, while maintaining
comparable or even better fairness (ADPD) [Q1].
¢ In the transition from a balanced splitting to a skewed splitting, group fairness, as measured by
ADPD, exhibits significantly larger values in most cases, which indicates the fairness of existing
fairness-aware AD methods is easily affected by sample proportion from different sensitive
groups and skewed data for different demographic groups poses a more intractable fairness
problem than balanced data. In contrast, the fluctuation of ADPD is slight on our proposed

methods [Q2].

Table 6: Results of ADPD and AUC on Titanic and SP with gender as the sensitive attribute. Note that there is
no balanced splitting for Titanic and SP due to the limitations of extremely uneven samples size across different
demographic groups for Titanic and insufficient sample size for SP.

Titanic SP
Methods ADPD(%) | ADPD(%) |
AUC(%) 1 normal | all AUC(%) T normal | all

LOF 53.88(0.00) | 23.16(0.00) 19.81(0.00) | 63.55(0.00) | 9.82(0.00) 6.03(0.00)
Deep SVDD 53.21(1.98) | 26.02(11.29) | 26.07(11.95) | 68.37(1.11) | 12.97(4.03) | 12.52(2.44)
FarconVAE+LOF 48.52(0.00) 7.97(0.00) 6.58(0.00) 57.30(0.00) | 4.54(0.00) 8.94(0.00)
FarconVAE+Deep SVDD | 50.04(2.97) 7.60(1.89) 3.99(0.85) 55.003.17) | 9.53(3.44) 5.98(1.13)
FairOD 46.04(0.20) 14.67(0.30) 6.38(0.16) 42.04(0.44) | 9.70(0.51) 10.90(0.31)
Deep Fair SVDD 51.94(0.99) | 20.67(3.08) 21.24(6.35) | 61.90(1.20) | 10.57(3.04) | 7.24(2.12)
CFAD 55.63(0.59) | 26.77(7.00) | 23.02(2.10) | 69.23(1.34) | 9.26(1.24) | 4.53(0.28)
Ex-FairAD (Ours) 64.87(148) | 6.35(2.12) | 5.75(1.00) | 74.16(3.09) | 6.00(132) | 5.84(1.67)
Im-FairAD (Ours) 64.02(3.62) 7.14(2.61) 3.82(1.77) 75.97(4.32) | 5.84(1.29) 5.62(1.95)

The visualization between detection accuracy (AUC) and fairness (ADPD) on skewed splitting is
shown in Figure [} The ADPD of abnormal data on Titanic and SP is shown in Figure 5]
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Figure 5: Fairness of all baselines on abnormal data from test set.

D.2 Results of fairness ratio and F1 on all datasets
Furthermore, the results of Fl-score and fairness ratio on all datasets are provided in Table|§| and

Table where fairness ratio is highly sensitive to different thresholds p = {0.90,0.95}.

Table 7: Results of Fl-score and fairness ratio on Titanic and SP. Note that ‘0"’ means that undefined case
occurs when calculating fairness ratio.

Threshold=0.90 Threshold=0.95

Methods Fairness ratio T Fairness ratio 1

Fl1(%) 1 normal | all F1(%) 1 normal | all

Titanic
LOF 35.55(0.00) | 0.40(0.00) | 0.57(0.00) | 26.82(0.00) | 0.22(0.00) | 0.46(0.00)
Deep SVDD 31.90(10.57) | 0.44(0.32) | 0.44(0.30) | 16.66(6.47) | 0.68(0.36) | 0.56(0.33)
FarconVAE+LOF 8.82(0.00) 0.66(0.00) | 0.6(0.00) 6.15(0.00) | 0.50(0.00) | 0.25(0.00)
FarconVAE+Deep SVDD | 17.06(5.66) | 0.57(0.21) | 0.69(0.19) | 9.03(4.70) | 0.16(0.21) | 0.28(0.16)
FairOD 15.55(2.77) | 0.57(0.09) | 0.57(0.04) | 11.42(0.00) | 0.50(0.00) | 1.00(0.00)
Deep Fair SVDD 14.31(2.26) | 0.68(0.30) | 0.66(0.23) | 12.83(1.46) | 0.80(0.24) | 0.40(0.15)
CFAD 44.54(5.47) | 0.37(0.13) | 0.57(0.24) | 27.73(1.02) | 0.53(0.06) | 0.48(0.05)
Ex-FairAD (Ours) 66.66(0.00) | 1.00(0.00) | 1.00(0.00) | 66.82(0.00) | 1.00(0.00) | 1.00(0.00)
Im-FairAD (Ours) 66.66(0.00) | 1.00(0.00) | 1.00(0.00) | 66.66(0.00) | 1.00(0.00) | 1.00(0.00)
SP

LOF 44.44(0.00) | 0.14(0.00) | 0.57(0.00) | 27.02(0.00) | 0.12(0.00) | 0.24(0.00)
Deep SVDD 22.45(6.56) | 0.38(0.30) | 0.47(0.19) | 20.42(8.47) | 0.59(0.35) | 0.46(0.32)
FarconVAE+LOF 19.04(0.00) 0* 0.65(0.00) | 6.89(0.00) 0* 0*
FarconVAE+Deep SVDD | 14.41(2.98) | 0.40(0.36) | 0.59(0.26) | 12.90(3.70) 0* 0*
FairOD 11.72(0.13) | 0.88(0.02) | 0.68(0.06) | 13.65(1.41) | 0.86(0.00) | 0.26(0.01)
Deep Fair SVDD 19.76(4.81) | 0.59(0.15) | 0.58(0.22) | 24.65(6.76) | 0.42(0.12) | 0.71(0.10)
CFAD 40.46(2.22) | 0.74(0.11) | 0.78(0.07) | 32.14(6.57) | 0.38(0.00) | 0.80(0.10)
Ex-FairAD (Ours) 41.77(6.28) | 0.54(0.15) | 0.77(0.19) | 34.10(5.08) | 0.62(0.20) | 0.65(0.10)
Im-FairAD (Ours) 43.64(9.16) | 0.56(0.11) | 0.55(0.26) | 35.51(4.11) | 0.86(0.00) | 0.62(0.16)

E Ablation Study

In this section, we delve into the influence of different loss terms for our proposed method. More
specifically, we investigate the reconstruction error term within the optimization objective of Im-
FairAD and the fairness term within the optimization objective of Ex-FairAD.
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Table 8: Results of Fl-score and fairness ratio on COMPAS, Adult, Credit and CelebA. Note that the baselines,
FairOD and CFAD are tailored to tabular data. In the official code of FarconVAE, there is no support for image
data.

Threshold=0.90 Threshold=0.95
Methods Fairness ratio T Fairness ratio T
F1(%) 1 normal | all F1(%) 1 normal | all
COMPAS
LOF 29.85(0.00) | 0.27(0.00) | 0.35(0.00) | 19.16(0.00) | 0.34(0.00) | 0.36(0.00)
Deep SVDD 31.30(5.17) | 0.49(0.18) | 0.58(0.18) | 20.67(5.09) | 0.39(0.18) | 0.53(0.30)
FarconVAE+LOF 14.28(0.00) | 0.69(0.00) | 0.77(0.00) 8.11(0.00) 0.64(0.00) | 0.55(0.00)
FarconVAE+Deep SVDD | 19.50(0.89) | 0.74(0.07) | 0.70(0.14) 8.58(0.65) 0.68(0.22) | 0.75(0.23)
FairOD 17.81(0.11) | 0.70(0.04) | 0.79(0.01) | 14.54(0.66) | 0.87(0.01) | 0.88(0.06)
Deep Fair SVDD 42.23(0.81) | 0.46(0.04) | 0.58(0.04) | 31.54(0.63) | 0.53(0.09) | 0.56(0.03)
CFAD 40.67(3.67) | 0.39(0.13) | 0.49(0.08) | 26.95(1.49) | 0.37(0.06) | 0.37(0.03)
Ex-FairAD (Ours) 42.30(5.88) | 0.71(0.18) | 0.74(0.15) | 28.07(5.06) | 0.58(0.21) | 0.51(0.07)
Im-FairAD (Ours) 47.49(4.32) | 0.65(0.28) | 0.68(0.09) | 33.88(2.75) | 0.57(0.21) | 0.68(0.13)
Adult
LOF 27.45(0.00) | 0.34(0.00) | 0.42(0.00) | 24.58(0.00) | 0.30(0.00) | 0.34(0.00)
Deep SVDD 44.73(4.72) | 0.54(0.24) | 0.63(0.11) | 26.01(13.02) | 0.48(0.13) | 0.54(0.07)
FarconVAE+LOF 22.87(0.00) | 0.63(0.00) | 0.62(0.00) | 13.33(0.00) | 0.73(0.00) | 0.58(0.00)
FarconVAE+Deep SVDD | 22.08(8.87) | 0.59(0.10) | 0.73(0.18) | 10.33(4.14) | 0.46(0.27) | 0.48(0.22)
FairOD 36.87(3.99) | 0.70(0.06) | 0.32(0.04) | 24.82(1.61) | 0.67(0.04) | 0.81(0.05)
Deep Fair SVDD 45.03(1.56) | 0.86(0.01) | 0.83(0.05) | 39.43(1.35) | 0.83(0.08) | 0.86(0.06)
CFAD 48.01(5.51) | 0.76(0.08) | 0.55(0.14) | 35.76(1.60) | 0.77(0.06) | 0.63(0.10)
Ex-FairAD (Ours) 52.75(2.19) | 0.87(0.11) | 0.92(0.03) | 48.46(4.87) | 0.80(0.12) | 0.83(0.07)
Im-FairAD (Ours) 56.04(4.70) | 0.72(0.06) | 0.84(0.07) | 47.79(1.84) | 0.90(0.06) | 0.92(0.04)
Credit
LOF 20.11(0.00) | 0.45(0.00) | 0.55(0.00) | 11.78(0.00) | 0.24(0.00) | 0.33(0.00)
Deep SVDD 23.31(7.75) | 0.76(0.12) | 0.74(0.20) | 16.26(8.71) | 0.72(0.11) | 0.63(0.21)
FarconVAE+LOF 15.06(0.00) | 0.88(0.00) | 0.88(0.00) 8.06(0.00) 0.79(0.00) | 0.83(0.00)
FarconVAE+Deep SVDD | 16.96(1.80) | 0.94(0.02) | 0.95(0.02) 8.70(1.64) 0.85(0.12) | 0.87(0.10)
FairOD 41.00(0.81) | 0.70(0.04) | 0.74(0.02) | 35.18(1.02) | 0.66(0.04) | 0.70(0.07)
Deep Fair SVDD 13.54(1.79) | 0.81(0.06) | 0.73(0.09) | 15.47(0.76) | 0.71(0.03) | 0.70(0.05)
CFAD 20.43(0.75) | 0.69(0.05) | 0.69(0.04) | 10.53(0.22) | 0.59(0.05) | 0.58(0.02)
Ex-FairAD (Ours) 53.70(2.53) | 0.79(0.03) | 0.90(0.04) | 41.06(3.79) | 0.77(0.06) | 0.82(0.10)
Im-FairAD (Ours) 54.32(3.43) | 0.81(0.08) | 0.90(0.04) | 44.30(1.94) | 0.72(0.05) | 0.86(0.05)
CelebA

Deep SVDD 30.86(1.38) | 0.91(0.06) | 0.81(0.05) | 23.08(1.24) | 0.82(0.09) | 0.76(0.03)
Deep Fair SVDD 14.40(2.8) | 0.58(0.18) | 0.65(0.11) | 16.95(1.32) | 0.63(0.22) | 0.69(0.12)
Ex-FairAD (Ours) 50.29(9.04) | 0.86(0.10) | 0.84(0.11) | 55.40(10.57) | 0.83(0.08) | 0.88(0.08)
Im-FairAD (Ours) 30.89(2.34) | 0.89(0.08) | 0.88(0.07) | 19.83(2.88) | 0.87(0.04) | 0.84(0.07)

E.1 Reconstruction Error Term in Im-FairAD

For the optimization objective of Im-FairAD, we adjust the hyperparameter S across the range
{0.001,0.01,0.1,1,10, 100, 1000} to observe the changing of performance, including detection
accuracy and fairness. The experimental results are shown in Figure[6] where (a) and (b) depict the
fluctuation of AUC with varied 5 on balanced and skewed data, respectively. And (c) and (d) depict
the fluctuation of ADPD (all test set) with varied 3 on balanced and skewed data, respectively. From
Figure @ we observe that as 3 increases, the fluctuation of AUC on both balanced and skewed data
gradually diminishes. Conversely, the fluctuation of ADPD becomes more pronounced and tends to
increase. This observation aligns with expectations, as the dominance of the reconstruction term in
the optimization objective makes it challenging to map different protected groups into the same target
distribution.
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Figure 6: Average AUC and ADPD (all test set) with /3 varies in the range of {0.001,0.01, 0.1, 1, 10, 100, 1000}.

E.2 Fairness Term in Ex-FairAD

For the optimization objective of Ex-FairAD, we remove the fairness regularization term and conduct
experiments on all datasets. The results are reported in Table[9] Observing Table[9] the AUC (detection
accuracy) of Ex-FairAD improved but fairness measured by ADPD suffers from adverse effects when
without fairness term in optimization objective. Moreover, we adjust the hyperparameter A across the
range {0.001,0.01,0.1, 1, 10, 100, 1000} to observe the changes of performance, including detection
accuracy and fairness. The experimental results are visualized in Figure[7]

Table 9: Comparison between the objective with fairness regularization and the objective without fairness

regularization in optimization problem of Ex-FairAD.

Balanced Split Skewed Split
Datasets ADPD ADPD
Methods AUC(%) 1 normal | all AUC(%) 1 normal all

Ex-FairAD 63.11 438 | 4.54 66.44 544 | 7.36
COMPAS | \/0 Fairness term | 6722 | 13.02 | 12.90 | 6891 1440 | 12.05
Adult Ex-FairAD 73.49 292 | 2.86 69.56 152 | 1.79
u ‘W/O Fairness term 75.32 5.56 5.39 74.94 9.29 8.07
CelebA Ex-FairAD 60.68 1.06 | 3.80 63.07 191 | 4.87
cle W/O Fairness term |  62.56 344 | 530 64.29 329 | 3.55
Credit Ex-FairAD 64.96 295 | 1.92 63.85 271 | 1.57
Tt | W/O Fairness term | 65.40 721 | 587 66.63 733 | 4.64
Titanic Ex-FairAD NA NA NA 64.87 635 | 575
1 ‘W/O Fairness term NA NA NA 68.00 10.27 9.79
Sp Ex-FairAD NA NA NA 74.16 6.00 | 5.84
‘W/O Fairness term NA NA NA 76.49 8.59 8.89

F Selection of Distance Metric M between Distributions

Based on the analysis on Module Formulation, we obtain the following optimization problem

However, the problem

min > M(Dp,,(xs_.): Dz) + BM(Dy, (h,(x))> Px)-

o ses

27)

is intractable as data distribution Dy is unknown and Dy, , (xs_.)s Dy, (hy(x))

cannot be computed analytically, which leads to that we cannot use f-divergence [Rényil |1961]], such
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Figure 7: Average AUC and ADPD (all test set) with X varies in the range of {0.001, 0.01, 0.1, 1, 10, 100, 1000}
on datasets Adult, COMPAS and CelebA.

as KL-divergence, Hellinger distance, to measure the difference between Dy, 5(Xs—2) and D,. Thus,
we need to measure the divergence between Dy, (xs_,) and D, by using the known samples. In such
situation, Wasserstein distance, Maximum Mean Discrepancy (MMD) [Gretton et al., 2012]] and
Sinkhorn distance [Cuturi, 2013]] are all possible choices.

However, the computation cost of Wasserstein distance can quickly become prohibitive when the
data dimension increases. Therefore, the options left are Sinkhorn distance and Maximum Mean
Discrepancy.

Based on [Gretton et al., [2012]], MMD is defined as

MMD|F,p, q] = Hfs”up<1 Eplf(x)] = Eg[f(¥)]), (28)

where p, g are probability distributions, F is a class of functions f : R — R and H denotes a
reproducing kernel Hilbert space.

Its empirical estimate is

1 m m
MMD?[F, X, Y] = ——— i X
[‘Fa ) ] m(m—l);;k(x’xj)

1 2
+ nin—1) sz(}’i,)’j) T ZZH’%YJ’%
i=1 j£i i=1 j=1
where X = {x1,...,xp}andY = {y1,...,yn} are samples consisting of i.i.d observations drawn

from p and ¢, respectively. k(-, -) denotes a kernel function.

We use Sinkhorn distance and MMD to replace the first term of the optimization problem
respectively, and use reconstruction error to replace the second term of the problem[27] The related
experimental results are provided in Table[10] where we use Gaussian kernel exp(—y[x — y||?) as
kernel function of MMD.

Based on the empirical results in COMPAS, we select Sinkhorn distance as distribution distance
metric of the optimization problem 27}
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Table 10: The comparison between Sinkhorn distance and MMD on COMPAS.

Methods AUC(%) 1 |_ADPD(%) |
normal all
Im-FairAD (MMD) 60.78 6.75 6.81
Im-FairAD (Sinkhorn) 63.89 4.16 4.76
Ex-FairAD (MMD) 57.09 2.60 4.43
Ex-FairAD (Sinkhorn) 63.11 4.38 4.54

G Time Complexity and Implementation Cost Analysis

G.1 Time Complexity Analysis

As most baselines are based on deep learning techniques, the main time cost is from the training of
neural networks. Thus, based on our proposed method, we analyze the time complexity of neural
networks and other methods have the similar analysis process.

For convenience, the hg is specified as follows
he(x) = W, (o(--- (W5 (o(Wix)---)), (30)

where ¢ = {W} , Wh ... W} } W} e R i1 and L, is the number of layers of the network.
The definition of the layer width indicates that d} = d and d%h = m. o denotes the activation
function such as ReLU, LeakyReLU, Sigmoid, or Tanh. The activation functions in different layers
are not necessarily the same but here we use the same o for convenience. Similarly, the g, is specified
as follows

gu(2) := Wi _(o(--- (W5 (c(Wiz)---)), 31

where 1p = {W{, W3, ... WI } W/ ¢ R *di_y d{ = m, and dJ = d. Note that we have
g g
omitted the bias terms of h and gy, for simplicity.

In the training stage, suppose the batch size of optimization is data size n, then the time complexity of
training neural network is O(T'(n ZZL:hl drdl | +n ZzL:g1 djd; _,)), where T is the total number of
iterations of h and gy If we further assume max(max; dJ', max; dj) < d, and Lj, + L, < L, the
time complexity of neural network is at most O(Tnd?L). In addition, for the proposed Im-FairAD
and Ex-FairAD, we utilize the Sinkhorn distance to compute the loss. Therefore, the overall time
complexity is O(T(nd? L + tn?)) where the time complexity of Sinkhorn algorithm is O(n?) and ¢
is the maximum iterations of Sinkhorn algorithm.

In the inference phase, for m new samples, the time complexity of computing the anomaly score
is O(md?L + m) where O(md?L) is from neural networks and O(m) is from the calculation of
anomaly score. The detailed comparison of time complexity is provided in Table[TT] where all the
methods including ours have the same time complexity in inference phase.

Table 11: The time complexity of training and inference.

Methods | Time Complexity (Training) | Time Complexity (Inference)
Deep SVDD O(Tue + Toe)(nd?L +n)) O(md2L +m)
FairOD O(T(nd?*L +n)) O(md*L + m)
Deep Fair SVDD O((Tue + Ty + Ty)(nd*L + n)) O(md?L +m)
CFAD O((Tyae + Ty + Tye + To) (nd*L + n)) O(md2L +m)
Ex-FairAD O(T(nd*L + tn?)) O(md?L +m)
Im-FairAD O(T(nd%L + tn?)) O(md2L +m)

G.2 Implementation Cost Analysis

In Table @ we report the training time and the time occupied by Sinkhorn distance in single epoch.
We keep € = le™ (stop threshold on error) on the three tabular datasets (COMPAS, Adult and
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Credit) and € = 1e~3 for CelebA. The « (coefficient of entropic regularization term) is consistently
set to 0.1 across all experiments.

Table 12: The training time (seconds) on the datasets with balanced splitting.

Dataset \ Settings | Time
7" | #samples | dimension | Ex-FairAD (all) | Ex-FairAD (Sinkhorn) | Im-FairAD (all) | Im-FairAD (Sinkhorn)
Compas 2000 4 0.3842 0.1888 0.6028 0.3414
Adult 12000 4 2.932 1.645 4.645 2.900
Credit 10000 8 2.922 1.710 4.770 3.063
CelebA 16000 512 243.51 150.18 264.12 159.58

H The Effectiveness of Equal Opportunity

According to the definition () of equal opportunity, we define EO as a fairness metric that can
measure equal opportunity:
EO =[Pl =1|S=sny=1-Plj=1]5=s;y=1]

=P[T*(x) > t|x € Xs=s,,y = 1] (32)

—P[T"(x) >t|x € Xs—s,,y = 1]|
In this section, we explore the effectiveness of equal opportunity in unsupervised anomaly detection.
According to definition 2] of equal opportunity, we need to measure the fairness on abnormal data.
Therefore, we calculate the ADPD and EO only on abnormal data. To determine threshold for
calculating EO, we sort the anomaly scores of the training set in ascending order. The threshold ¢ is
then set to the p/N-th smallest anomaly score, with p fixed at 0.95 for all methods, and N denoting

the size of the training set. we report the experimental results in Table[T3]and Table[T4] From the
Table[13]and Table [I4] we have the following observations:

Table 13: Detection accuracy (AUC) and fairness (ADPD and EO) on COMPAS. Note that ADPD is measured
only on abnormal data, which makes it comparable with EO.

Balanced Split skewed Split

Methods Fairness | Fairness |

AUCT -appD@) [ B0y | AVCT ["ADPD@) [ EO%)
LOF 59.23 12.99 14.82 | 57.25 12.91 12.47
Deep SVDD 57.58 18.97 8.99 60.24 23.82 12.54
FarconVAE+LOF 48.72 6.13 3.37 50.10 4.84 2.41
FarconVAE+Deep SVDD | 50.48 6.69 1.54 48.83 6.02 3.23
FairOD 61.05 6.51 1.49 58.86 10.87 5.82
Deep Fair SVDD 62.71 7.46 8.99 61.05 11.61 11.74
CFAD 62.27 10.55 14.63 60.87 16.50 6.69
Ex-FairAD (Ours) 63.11 5.56 4.35 66.44 4.88 5.34
Im-FairAD (Ours) 63.89 4.70 4.13 66.58 8.95 5.09

* In the transition from a balanced split to a skewed split, it can be observed that equal opportunity,
as measured by ADPD and EO, exhibits significantly larger values in most cases which means a
skewed split tends to introduce more unfairness compared to a balanced split, which is consistent
with the observation from results on normal and overall test set. This indicates that a skewed
split poses a more intractable problem for fairness than a balanced split.

» FairOD demonstrate superior equal opportunity on the COMPAS dataset compared to Deep
SVDD, a fairness-unaware AD method. This observation suggests that unsupervised anomaly
detection methods have the potential to ensure equal opportunity to some extents, especially
when guided by reasonable assumptions (e.g., Assumption 2 proposed in this paper). However,
on the Adult dataset, FairOD and CFAD exhibit poorer equal opportunity than Deep SVDD in
both balanced and skewed splits, which indicates that existing fairness-aware unsupervised AD
methods are unable to maintain equal opportunity effectively across different data domain.

* Compared to all baselines, our methods (Ex-FairAD and Im-FairAD) achieve better detection
accuracy (AUC) while maintaining comparable or even better equal opportunity (ADPD and
EO) in most cases. This observation supports the reasonability and practicality of Assumption 2
for our methods.

31



Table 14: Detection accuracy (AUC) and fairness metrics (ADPD and EO) on Adult. Note that ADPD is
measured only on abnormal data, which makes it comparable with EO.

Balanced Split skewed Split

Methods Fairness | Fairness |

AUCT ADPD(%) | EO(%) AUCT ADPD(%) | EO(%)
LOF 58.09 26.38 2.89 59.14 28.50 27.05
Deep SVDD 60.47 10.95 6.85 61.04 21.81 5.92
FarconVAE+LOF 53.92 7.89 2.20 50.56 8.09 4.85
FarconVAE+Deep SVDD | 55.05 8.28 6.68 51.21 7.26 9.64
FairOD 70.63 13.57 15.29 58.30 27.13 31.29
Deep Fair SVDD 62.45 7.24 8.63 60.22 9.35 3.89
CFAD 66.89 22.38 42.29 60.28 36.41 59.89
Ex-FairAD (Ours) 73.49 3.78 6.33 69.56 4.97 8.74
Im-FairAD (Ours) 72.05 5.85 2.73 69.34 3.60 4.38

I Experiments on Contaminated Training Set

In our main experiments, all methods including the baselines and ours focus on the standard setting
of unsupervised anomaly detection [Ruff et al.| 2018, |Cai and Fan, 2022, |[Fu et al., [2024], that is
the training set consists of only normal samples. However, in real scenarios, a small number of
unknown abnormal samples may be mixed in the training set. Based on this consideration, we
added 1% (abnormal /normal) anomalous samples to the balanced training set and keep the test set
unchanged. The related results are provided in Table where the detection accuracy of almost all
methods has a slight decrease and our proposed methods still achieve better or comparable detection
accuracy and fairness in comparison to all baselines.

Table 15: The results on contaminated training set of COMPAS and Adult.

| COMPAS | Adult
Methods

| auC(y 1 | APPPUO L | Ay 1 | APDP%) L

| | normal | all | | normal | all
LOF 54.70 5.28 5.79 49.83 1.07 2.01
Deep SVDD 62.41 26.91 18.23 62.70 5.69 7.53
FarconVAE+LOF 46.15 4.53 1.78 51.58 3.43 2.28
FarconVAE+Deep SVDD 52.82 2.73 1.83 51.36 2.16 2.54
FairOD 54.43 2.20 3.07 69.76 9.28 8.85
Deep Fair SVDD 60.09 9.50 8.65 62.02 2.07 3.74
CFAD 60.81 11.43 9.05 67.98 6.80 15.44
Ex-FairAD (Ours) 61.67 2.82 5.66 73.10 4.77 1.76
Im-FairAD (Ours) 61.10 2.38 4.95 71.80 5.20 1.31

Table 16: The performance changes on COMPAS with the increasing of contamination rate.

Ex-FairAD Im-FairAD
er AUC (%) \ normal (ADPD %) \ all (ADPD %) | AUC (%) \ normal (ADPD %) \ all (ADPD %)
0.00 63.11 4.38 4.54 63.89 4.16 4.76
0.05 58.84 4.33 4.55 58.88 4.11 4.72
0.10 55.89 3.98 345 55.80 3.70 4.16
0.15 54.48 4.19 3.11 55.01 3.89 3.51
0.20 54.41 4.53 2.49 55.04 4.20 2.95

In addition, we conduct experiments on COMPAS (balanced splitting) to explore how fairness changes
as the contamination rate ¢r € {0.05,0.10,0.15,0.20} increases. The related results are reported in
Table In terms of fairness, we observe that the fairness (ADPD) of normal data exhibits minor
fluctuations within a small range. However, the fairness across the entire test set (including normal
and abnormal samples) shows the declining trends (better fairness) as cr increases. This phenomenon
aligns with our optimization objective: as the number of abnormal samples in the training set grows,
the model would achieve improved group fairness among the groups of abnormal data.

32



J Experiments on Text dataset

To explore the effectiveness of the proposed method on other data types, We conduct experiments
on text data SST_sentiment_fairness_data (from HuggingFaceE]) with gender as protected attribute.
In this experiment, we use BERT(bert-large-uncased) |[Devlin et al.| [2019] to extract embeddings
(dim=1024) and adopt balanced splitting for two groups. The related results are reported in Table

Table 17: The results on SST with gender as protected attribute.

AUC(%) | normal | all
FairOD 42.28 8.10 5.57
Deep Fair SVDD 62.23 12.57 | 9.48

Ex-FairAD (Ours) 62.79 6.99 | 5.17
Im-FairAD (Ours) 63.64 6.68 | 5.03

Existing studies on fairness-aware anomaly detection in graph data, such as FairGAD |Neo et al.
[2024]] and DEFEND |Chang et al.|[2024], adopt a transductive learning paradigm where the training
set and test set are identical. This setting differs from the learning paradigm (inductive learning)
followed by the proposed method. We expect to extend the proposed framework to more data types
in the future work.

K Limitations

In this work, we propose a compact distributional transformation for anomaly detection, where
Sinkhorn distance [|Cuturi, 2013] is used for measuring the distance between distributions by their
finite samples. The time complexity of Sinkhorn distance O(n?) causes a relative high computational
cost for large-scale data in training stage. The calculation of Sinkhorn distance is not involved in the
inference stage.

https://huggingface.co/datasets/fatmaElsafoury2022/SST_sentiment_fairness_data
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