
Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Mohamed Amine Ketata * 1 Nicholas Gao * 1 Johanna Sommer * 1 Tom Wollschläger 1 Stephan Günnemann 1

Abstract
We introduce a new framework for molecular
graph generation using 3D molecular generative
models. Our Synthetic Coordinate Embedding
(SYCO) framework maps molecular graphs to
Euclidean point clouds via synthetic conformer
coordinates and learns the inverse map using an
E(n)-Equivariant Graph Neural Network (EGNN).
The induced point cloud-structured latent space is
well-suited to apply existing 3D molecular gener-
ative models. This approach simplifies the graph
generation problem – without relying on molecu-
lar fragments nor autoregressive decoding – into
a point cloud generation problem followed by
node and edge classification tasks. As a concrete
implementation of our framework, we develop
EDM-SYCO based on the E(3) Equivariant Dif-
fusion Model (EDM). It achieves state-of-the-art
performance in distribution learning of molecular
graphs, outperforming the best non-autoregressive
methods by more than 30% on ZINC250K and
16% on GuacaMol while improving conditional
generation by up to 3.9 times.

1. Introduction
Machine learning-based drug discovery has recently shown
great potential to accelerate the drug development pro-
cess while reducing the costs associated with clinical trials
(Jiménez-Luna et al., 2020; Kim et al., 2020). Among the
steps of this process, generating novel molecules with rele-
vant properties such as drug-likeness and synthesizability, or
optimizing existing ones are of crucial importance. Molecu-
lar graph generation is an active area of research that aims
to solve these tasks (Gómez-Bombarelli et al., 2018; Stokes
et al., 2020; Bilodeau et al., 2022).

*Equal contribution 1Department of Computer Science &
Munich Data Science Institute, Technical University of Mu-
nich, Germany. Correspondence to: Mohamed Amine Ketata
<m.ketata@tum.de>.

Accepted as an extended abstract for the Geometry-grounded Rep-
resentation Learning and Generative Modeling Workshop at the
41 st International Conference on Machine Learning, ICML 2024,
Vienna, Austria. Copyright 2024 by the author(s).

Molecular graph generation is challenging due to the dis-
crete, sparse and symmetric nature of graphs. Many meth-
ods have been proposed to tackle this problem, offering
different tradeoffs (Jin et al., 2018; Shi et al., 2020). A com-
mon approach within these methods is to train a Variational
Autoencoder (VAE) to encode the graph into a continuous
fixed-size latent space, then decode it back – oftentimes au-
toregressively – node-by-node (Liu et al., 2018) or fragment-
by-fragment (Jin et al., 2018; 2020; Maziarz et al., 2021;
Kong et al., 2022). While such methods achieve good gen-
eration and optimization performance, they have inherent
limitations. First, using a fixed-size latent space does not
account for the variable size of molecular graphs ranging
from a few atoms for small molecules to thousands for
macromolecules. Second, autoregressive decoding requires
a concrete generation order (Schneider et al., 2015), which
prevents learning permutation-invariant graph distributions.
Fueled by recent developments in diffusion models (Ho
et al., 2020; Austin et al., 2021), new approaches to graph
generation have emerged that overcome these limitations
(Jo et al., 2022). Notably, DiGress (Vignac et al., 2022)
defines a discrete diffusion process directly on the node and
edge attributes and learns to reverse this process to generate
graphs all at once, i.e., not autoregressively. However, it
fails to accurately estimate the joint distribution of nodes
and edges, and discrete optimization remains a challenge.

In this work, we develop SYCO1, a new framework that
combines the benefits of all-at-once generation with the
benefits of a continuous latent space for optimization tasks
while avoiding the information bottleneck of fixed-size la-
tent spaces. Inspired by the adjacent field of 3D molecule
generation, we propose to embed molecular graphs as la-
tent 3D point clouds, implicitly encoding the discrete graph
structure in synthetic coordinates, and use point cloud gen-
erative models to learn their distribution. We leverage this
framework to propose EDM-SYCO, an atom-based, all-
at-once, and permutation-invariant generative model for
molecular graphs based on EDM (Hoogeboom et al., 2022),
depicted in Figure 1. Compared to DiGress on ZINC250K,
EDM-SYCO improves upon its distribution learning perfor-
mance by 30% and its conditional generation performance
by up to 15.6 times, highlighting the benefit of our continu-
ous latent space on generation and optimization.

1Our code is available at https://github.com/ketatam/SyCo.

1

https://github.com/ketatam/SyCo

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Graph Space Latent Point Cloud Space

Forward Diffusion

Reverse Diffusion 𝜖!

Encoder
ℰ"

Decoder
𝔇#

𝑧!𝑧"

𝒩(0, 𝐼)𝑞$%&%

Training

Sampling

ℎ, 𝐴

Figure 1. Overview of EDM-SYCO. (Training) First, the autoencoder is trained to map between molecular graphs and latent Euclidean
point clouds. Then, the diffusion model is trained on the fixed latent space. (Sampling) Starting with a Gaussian sample, the diffusion
model denoises it for T steps to predict the clean point cloud, which is mapped to a molecular graph using the decoder.

2. Related Work
Molecular Graph Generation Early work on molecule
generation (Gómez-Bombarelli et al., 2018; Segler et al.,
2018) used language models to generate SMILES
(Weininger, 1988), a text-based representation of molecules.
However, this type of representation cannot capture the
inherent structure of molecules well, which are more accu-
rately depicted as graphs. For instance, small changes in the
graph structure may correspond to large differences in the
SMILES string (Jin et al., 2018). Therefore, recent methods
have focused on graph-based approaches that can be broadly
classified into two categories. All-at-once generation meth-
ods generate nodes and edges in parallel, though possibly
in a multi-step process such as diffusion models (Niu et al.,
2020; Jo et al., 2022; Vignac et al., 2022). Autoregressive
methods specify a generation order and generate molecules
either atom-by-atom (Li et al., 2018; Shi et al., 2020) or
fragment-by-fragment based on a pre-computed fragment
vocabulary (Jin et al., 2018; 2020; Maziarz et al., 2021;
Kong et al., 2022; Geng et al., 2023). EDM-SYCO is an
all-at-once molecular graph generative model that operates
on the atom level.

Molecule Generation in 3D Another line of work aims
to generate molecules in 3D Euclidean space and solve a
point cloud generation problem (Gebauer et al., 2019; Luo
& Ji, 2022; Garcia Satorras et al., 2021). For instance, EDM
(Hoogeboom et al., 2022) and GeoLDM (Xu et al., 2023)
are diffusion-based approaches for 3D molecule generation
that jointly generate atomic features and coordinates. While
tangentially related, these methods solve a different prob-
lem from molecular graph generation and require molecules
with 3D information for training. Our proposed SYCO
framework is an attempt to connect these two lines of work
by enabling the training of 3D generative models on graph
datasets through synthetic coordinates, formally introducing
new graph generation methods. While we are the first to ex-
plore synthetic coordinates for generative models, Gasteiger
et al. (2021) demonstrated that synthetic coordinates im-
prove molecular property prediction tasks.

Latent Generative Models The idea of defining the gen-
erative model on a space different from the original data
space is reminiscent of latent generative models (Dai &
Wipf, 2019; Vahdat et al., 2021). Recently, this approach
has become increasingly popular with latent diffusion mod-
els. Stable Diffusion models (Rombach et al., 2022) achieve
impressive results on text-guided image generation, and
GeoLDM (Xu et al., 2023) extends this to molecular point
cloud generative models. While EDM-SYCO operates on
a similar latent space to GeoLDM, their fundamental dif-
ference lies in the original data space. Our model maps
discrete molecular graphs to continuous point clouds and
can be seen as a cross-modality latent generative model. In
contrast, GeoLDM embeds point clouds as new point clouds
with a reduced feature dimension. Further, as explained in
the previous paragraph, GeoLDM is a 3D molecule gen-
erative model and is not directly applicable to generating
graphs.

3. Synthetic Coordinate Embedding (SYCO)
Framework

The main idea behind SYCO is to model molecular graph
distributions through distributions of Euclidean point clouds
that implicitly encode the graph structure into their coordi-
nates. For this, we propose a novel autoencoder architecture
that maps between molecular graphs and 3D point cloud
representations. By training it using a reconstruction objec-
tive, we can reformulate the problem of generating discrete
molecular graphs to an equivalent problem of generating 3D
point clouds defined on the induced latent space. We can
then use any 3D generative model on this latent space.

Notation We introduce helpful notation for the two
molecule representations used in this work. Let N denote
the number of atoms of a given molecule. On the one hand,
the molecular graph G = (h,A) ∈ G consists of atoms as
nodes and chemical bonds as edges. Each atom has one of a
atom types and one of c formal charges, while each bond has
one of b bond types. We represent atoms as stacked one-hot
encodings h ∈ {0, 1}N×(a+c) and bonds as one-hot vectors

2

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Conformer
Generation EGNN

𝑀𝐿𝑃!"#$
+

𝑀𝐿𝑃$#%$
ℎ, 𝐴 𝑧('), 𝑧()) ℎ(, 𝐴)

Encoder ℰ* Decoder 𝒟+

ℎ, 𝑥 CE loss

Figure 2. Autoencoder architecture. The encoder maps a molecular
graph to a point cloud, and the decoder learns the inverse. Both
are trained jointly to minimize the reconstruction loss.

in an adjacency matrix A ∈ {0, 1}N×N×b. Note that the
molecular graph is sometimes called a ”2D molecule” as
it can be typically drawn as a planar graph. On the other
hand, the molecular point cloud P = (h,x) ∈ P is a 3D
point cloud, where x ∈ RN×3 represents the coordinates
of atoms’ nuclei in Euclidean space. Note that the point
cloud encodes the bond information implicitly in the atomic
coordinates. We now present our autoencoder model, whose
overview is shown in Figure 2.

Encoding The encoder Eϕ : G→ RN×(d+3) with param-
eters ϕ maps a molecule’s graph representation G = (h,A)
to its point cloud representation P = (h,x), then further
compresses it into a node-structured latent representation
z = (z(h), z(x)), where z(h) ∈ RN×d and z(x) ∈ RN×3

are continuous embeddings for h and x with d < a+ c and
z ∈ RN×(d+3) is their concatenation.

In the first encoding step, the coordinates x are computed
using the ETKDG algorithm (Riniker & Landrum, 2015)
available in RDKit (Landrum et al., 2006), which uses dis-
tance geometry and torsion angle preferences to generate
3D conformations of a molecule. These coordinates encode
the bond information of the molecular graph and ideally
define an injective mapping from G to P. Note that this step
is not learned and, thus, not required to be differentiable. In
practice, we generate conformers for the whole training set
in a preprocessing step and reuse them throughout training.

Then, we apply an EGNN (see Appendix A.2) that maps
the intermediate representation P = (h,x) to the latent
representation z = (z(h), z(x)), defining the space of the
generative model. The main benefit of this is to incorporate
the neighborhood information into each atom’s embeddings
and coordinates while mapping the discrete features h into
a continuous and lower-dimensional embedding z(h).

Decoding The decoder Dξ : RN×(d+3) → G with pa-
rameters ξ aims to approximate the inverse function E−1

ϕ

and maps the latent point cloud z of a molecule back to its
graph representation G. It consists of an atom and a bond
classifier. For each node i, the decoder applies a 2-layer
Multi-Layer Perceptron (MLP) on its latent embedding to
predict the logits for the atom type and the formal charge
as ĥi = MLPnode(z

(h)
i). For each pair of nodes i and j, the

bond type is inferred by running a different 2-layer MLP on

Table 1. Graph reconstruction accuracy on ZINC250K.

METHOD ACCURACY

EGNN + MLP 99.93%
MLP 11.77%
RULE-BASED 11.78%

their edge features to obtain the corresponding logits

Âij =
1

2

MLPedge


z(h)i

z
(h)
j

d2ij


+ MLPedge


z(h)j

z
(h)
i

d2ij



 ,

where dij = ∥z(x)i −z
(x)
j ∥2 and we use the simple averaging

trick to ensure that Â is symmetric.

Autoencoder Training The encoder and decoder are
jointly optimized in a variational autoencoder (VAE) frame-
work. We define probabilistic encoding and decoding
processes as qϕ(z|G) = N (Eϕ(G), σ2

0I) and pξ(G|z) =∏N
i=1 pξ(hi|z)

∏N
j=1 pξ(Aij |z), respectively, where σ0 ∈

R controls the variance in the latent space. The VAE is
trained by minimizing the loss function

LV AE = −Eq(G)qϕ(z|G) [pξ(G|z)] , (1)

which, in practice, is computed as the cross-entropy loss.
The decoder performs three classification tasks to recon-
struct a molecular graph from its point cloud representation:
atom types, formal charges, and bond types. The total loss
is the sum of the corresponding three cross-entropy terms.
Algorithm 1 (First Stage) gives the training details of the
autoencoder.

We show an ablation study on the autoencoder architecture.
We replace the encoder’s EGNN and the decoder with (i)
only the decoder and (ii) a rule-based system akin to Hooge-
boom et al. (2022). We report the molecule reconstruction
accuracy on the validation set, where a molecule is consid-
ered correctly reconstructed from its latent representation if
all of its atom features (atom types and formal charges) and
bond types are correctly classified. Results on ZINC250K
are shown in Table 1, and similar results are observed for
GuacaMol. Our autoencoder model achieves an almost per-
fect reconstruction accuracy, highlighting the importance
of the EGNN in our architecture. This experiment supports
our assumptions (i) that the used mapping from G to P is in-
jective and (ii) that the decoder can accurately approximate
its inverse.

4. EDM-SYCO

Our SYCO framework lifts the graph generation problem
to a point cloud generation problem in 3D. Concretely, we
are interested in learning the distribution of latent point

3

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

clouds z ∼ qϕ(z|G)q(G) defined by the underlying molecu-
lar graph distribution and the trained encoder by approximat-
ing it with a parametric distribution pθ. While this problem
can, in principle, be approached by any 3D molecular gen-
erative method, this work adapts EDM under the SYCO
framework due to its simplicity and empirical performance
in 3D molecule generation tasks (Hoogeboom et al., 2022).

Training of EDM-SYCO After training the autoencoder,
we train EDM in a second stage on the latent point cloud
representations of the molecular graphs from the training set.
We give an overview of diffusion models on point clouds in
Appendix B.1 and outline the training procedure in Algo-
rithm 1. Consistent with previous work on latent diffusion
models (Rombach et al., 2022; Xu et al., 2023), we found
this two-stage training procedure to perform better than
jointly training the autoencoder and the diffusion model.

Sampling from EDM-SYCO For sampling, we need ac-
cess to the trained EDM and the decoder but not the encoder.
First, we sample the number of atoms N from a categori-
cal distribution fitted on the training set (Hoogeboom et al.,
2022). Then, starting with a Gaussian sample zT ∼ N (0, I)
of size N , we iteratively denoise it with the diffusion model:

zt−1 = µθ(zt, t) + σtϵt, (2)

where µθ : RN×(d+3) → RN×(d+3) is the denoising net-
work, σt depends on the variance schedule, and ϵt ∼
N (0, I). Finally, we apply the decoder on the clean sam-
ple z0 to get the corresponding molecular graph h,A =
Dξ(z0). Algorithm 2 formally describes this procedure, and
Figure 1 further illustrates it. This sampling procedure de-
fines a permutation-invariant molecular graph distribution
(see Appendix A.1). The following proposition, which we
prove in Appendix D.2, formalizes this:

Proposition 4.1. The marginal distribution of molecu-
lar graphs pθ,ξ(G) = Epθ(z0) [pξ(G|z0)] defined by the
EDM and the decoder, is an SN -invariant distribution,
i.e. for any molecular graph G = (h,A), pθ,ξ(h,A) =
pθ,ξ(Ph, PAP) for any permutation matrix P ∈ SN .

Conditional Generation with EDM-SYCO To sample
from EDM-SYCO in a conditional generation setting, we
take advantage of our continuous latent space and adapt the
classifier guidance algorithm (Dhariwal & Nichol, 2021)
to condition on continuous molecular properties using a
property regressor and the same generative model described
in the previous sections (Bao et al., 2022). The modified
sampling procedure reads:

zt−1 = µθ(zt, t) −s(t)∇zt
(gη(zt)− c)2 + σtϵt, (3)

where gη : RN×(d+3) → R is the regressor, c is the target
property, and s(t) is a time-dependent scaling function. This

Table 2. FCD and KL scores on ZINC250K. We split the methods
into autoregressive and all-at-once. The best scores within each
category are in bold, and the best overall are underlined. All
models are trained from scratch, and we report mean and standard
deviation using 3 random seeds.

METHOD FCD (↑) KL (↑)

A
U

T
O

R
E

G
.

GRAPHAF (2020) 0.05 ± 0.00 0.67 ± 0.01
PS-VAE (2022) 0.28 ± 0.01 0.84 ± 0.00
HIERVAE (2020) 0.50 ± 0.14 0.92 ± 0.00
MICAM (2023) 0.63 ± 0.02 0.94 ± 0.00
JT-VAE (2018) 0.75 ± 0.01 0.93 ± 0.00
MAGNET (2023) 0.76 ± 0.00 0.95 ± 0.00
MOLER (2021) 0.83 ± 0.00 0.97 ± 0.00

A
A

O DIGRESS (2022) 0.65 ± 0.00 0.91 ± 0.00
EDM-SYCO (OURS) 0.85 ± 0.01 0.96 ± 0.00

algorithm, along with a novel procedure for constrained
optimization, is described in detail in Appendix B.3.

Limitations
EDM-SYCO can be seen as an extension to EDM, which
carries the limitations of diffusion models like high infer-
ence cost. To mitigate this issue in future work, we can
incorporate more efficient sampling strategies (Karras et al.,
2022; 2023), or use more efficient models such as recent
conditional flow matching approaches (Tong et al., 2023;
Song et al., 2023). In addition, our sampling approach re-
quires specifying a priori the number of nodes. While that
works well empirically, we leave tackling the fundamental
issue of generating variable-sized graphs or point clouds to
future work.

5. Experiments
In our experiments, we compare the performance of EDM-
SYCO to several autoregressive baselines and to all-at-once
diffusion-based model DiGress (Vignac et al., 2022) on de
novo and conditional generation tasks. Specifically, compar-
ing the two diffusion-based models, EDM-SYCO and Di-
Gress, highlights the effect of our SYCO framework on gen-
eration and optimization performance. We use two datasets
of different sizes and complexities: ZINC250K (Irwin et al.,
2012) containing 250K molecules with up to 40 atoms, and
GuacaMol (Brown et al., 2019) containing≈1.5M drug-like
molecules with up to 88 atoms. We train EDM-SYCO as de-
scribed in Sections 3 and 4 on these two datasets. Training
details and hyperparameters are given in Appendix E.

De novo Generation We leverage the GuacaMol bench-
mark (Brown et al., 2019), an evaluation framework for de
novo molecular graph generation. We consider two metrics
that measure the similarity between the generated molecules
and the training set. The Fréchet ChemNet Distance (FCD)

4

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Table 3. FCD and KL scores on GuacaMol. * means numbers are
from (Maziarz et al., 2021), and DiGress is from Vignac et al.
(2022). For our model, we additionally report standard deviation
across 3 validations of the same model.

FCD (↑) KL (↑)

A
U

T
O

R
E

G
. CGVAE* (2018) 0.26 -

HIERVAE* (2020) 0.62 -
JT-VAE* (2018) 0.73 -
MOLER* (2021) 0.81 -

A
A

O DIGRESS (2022) 0.68 0.93
EDM-SYCO (OURS) 0.79 ± 0.002 0.93 ± 0.006

compares the hidden representations of ChemNet, a neu-
ral network capturing chemical and biological features of
molecules (Preuer et al., 2018), and the KL divergence (KL)
compares the probability distributions of a variety of phys-
iochemical descriptors.

Tables 2 and 3 show the FCD and KL scores of EDM-
SYCO and the baselines on the ZINC250K and GuacaMol
datasets, respectively. Notably, EDM-SYCO outperforms
DiGress on the FCD metric by 30% on ZINC250K and
16% on GuacaMol. This shows the capacity of our model
to more accurately capture the joint distribution of nodes
and edges encoded in the latent features and coordinates.
EDM-SYCO sets the new state-of-the-art FCD score on
ZINC250K, outperforming all autoregressive and fragment-
based baselines, which incorporate more domain knowledge.
Note that we use the same hyperparameters from ZINC250K
to train our model on GuacaMol, while DiGress and MoLeR
have been tuned for both datasets. We do not report novelty
and uniqueness scores because all methods achieve near-
perfect results on these metrics. Regarding validity, all
autoregressive baselines achieve 100% validity scores due
to valency checks after each intermediate step. DiGress
achieves 85%, and EDM-SYCO achieves 88%. We show
some sample molecules generated by our model in Figures
3 and 4 for the two datasets.

Property-Conditioned Generation To evaluate the con-
ditional generation performance of our approach, we follow
Ninniri et al. (2023) and condition the generation of 1000
molecules on LogP and molecular weight (MW) values sam-
pled from ZINC250K. We report the mean absolute error
(MAE) between the target and estimated values for the gen-
erated molecules (using RDKit) and the validity rate. We
run the regressor guidance algorithm, discussed in Section
B.3, by using EDM-SYCO from the previous experiment
and a single regressor trained to predict LogP and MW val-
ues. As baselines, we compare to DiGress, which uses a
discrete guidance scheme, and FreeGress (Ninniri et al.,
2023), which proposes a regressor-free guidane mechanism.
Table 4 shows the results. While EDM-SYCO achieves a
comparable score to FreeGress on LogP (within standard de-

Table 4. Conditional generation results.

METHOD
LOGP MW

MAE (↓) VALID (↑) MAE (↓) VALID (↑)
DIGRESS 0.49 ± 0.05 65% 60.30 ± 6.10 73%
FREEGRESS 0.15 ± 0.02 85% 15.18 ± 2.71 75%
EDM-SYCO 0.18 ± 0.01 76% 3.86 ± 0.08 88%

viation), it outperforms FreeGress by a factor of 3.9 on MW.
Compared to DiGress, it improves on LogP and MW by fac-
tors 2.7 and 15.6, respectively. This experiment highlights
the benefit of our continuous latent space on conditional
generation compared to operating directly on the discrete
graph space. It also shows that graph-level properties are
represented sufficiently well in this space.

6. Conclusion
Despite the common practice of using fragment-based au-
toregressive models for molecular graph generation, we
demonstrated with SYCO that a mapping between molecu-
lar graphs and latent Euclidean point clouds enables atom-
based all-at-once approaches to be competitive with special-
purpose graph generators. Based on this framework, we
developed EDM-SYCO, which sets a new state-of-the-art
FCD score on ZINC250K. In our conditional generation
experiments, we found our guidance-based approach to ac-
curately guide the generation process, outperforming all
baselines. With these results, we conclude that latent Eu-
clidean generative models hold significant promise for ad-
vancing molecular graph generation and accelerating drug
discovery.

Broader Impact
This paper advances the field of computational drug dis-
covery by proposing new efficient methods for generative
models. While there may be unintended consequences, such
as the misuse of chemical weapons, we firmly believe that
their benefits significantly outweigh the minuscule chance
of misuse.

Acknowledgements
This project is supported by the DAAD programme Konrad
Zuse Schools of Excellence in Artificial Intelligence, spon-
sored by the Federal Ministry of Education and Research.
Further, it is funded by the Federal Ministry of Education
and Research (BMBF) and the Free State of Bavaria un-
der the Excellence Strategy of the Federal Government and
the Länder. This project is also supported by the Bavarian
Ministry of Economic Affairs, Regional Development and
Energy with funds from the Hightech Agenda Bayern

5

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

References
Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van

Den Berg, R. Structured denoising diffusion models in
discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

Bao, F., Zhao, M., Hao, Z., Li, P., Li, C., and Zhu, J. Equiv-
ariant energy-guided sde for inverse molecular design.
arXiv preprint arXiv:2209.15408, 2022.

Bilodeau, C., Jin, W., Jaakkola, T., Barzilay, R., and Jensen,
K. F. Generative models for molecular discovery: Recent
advances and challenges. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 12(5):e1608, 2022.

Brown, N., Fiscato, M., Segler, M. H., and Vaucher, A. C.
Guacamol: benchmarking models for de novo molecular
design. Journal of chemical information and modeling,
59(3):1096–1108, 2019.

Dai, B. and Wipf, D. Diagnosing and enhancing vae models.
arXiv preprint arXiv:1903.05789, 2019.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. Advances in neural information
processing systems, 34:8780–8794, 2021.

Garcia Satorras, V., Hoogeboom, E., Fuchs, F., Posner, I.,
and Welling, M. E (n) equivariant normalizing flows.
Advances in Neural Information Processing Systems, 34:
4181–4192, 2021.

Gasteiger, J., Yeshwanth, C., and Günnemann, S. Direc-
tional message passing on molecular graphs via synthetic
coordinates. Advances in Neural Information Processing
Systems, 34:15421–15433, 2021.

Gebauer, N., Gastegger, M., and Schütt, K. Symmetry-
adapted generation of 3d point sets for the targeted dis-
covery of molecules. Advances in neural information
processing systems, 32, 2019.

Geng, Z., Xie, S., Xia, Y., Wu, L., Qin, T., Wang, J., Zhang,
Y., Wu, F., and Liu, T.-Y. De novo molecular genera-
tion via connection-aware motif mining. arXiv preprint
arXiv:2302.01129, 2023.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Hetzel, L., Sommer, J., Rieck, B., Theis, F., and Günnemann,
S. Magnet: Motif-agnostic generation of molecules from
shapes. arXiv preprint arXiv:2305.19303, 2023.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling, M.
Equivariant diffusion for molecule generation in 3d. In
International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and
Coleman, R. G. Zinc: a free tool to discover chemistry for
biology. Journal of chemical information and modeling,
52(7):1757–1768, 2012.

Jiménez-Luna, J., Grisoni, F., and Schneider, G. Drug
discovery with explainable artificial intelligence. Nature
Machine Intelligence, 2(10):573–584, 2020.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree vari-
ational autoencoder for molecular graph generation. In
International conference on machine learning, pp. 2323–
2332. PMLR, 2018.

Jin, W., Barzilay, R., and Jaakkola, T. Hierarchical gen-
eration of molecular graphs using structural motifs. In
International conference on machine learning, pp. 4839–
4848. PMLR, 2020.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations. In International Conference on Machine
Learning, pp. 10362–10383. PMLR, 2022.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Advances in Neural Information Processing Systems, 35:
26565–26577, 2022.

Karras, T., Aittala, M., Lehtinen, J., Hellsten, J., Aila,
T., and Laine, S. Analyzing and improving the train-
ing dynamics of diffusion models. arXiv preprint
arXiv:2312.02696, 2023.

Kim, H., Kim, E., Lee, I., Bae, B., Park, M., and Nam, H.
Artificial intelligence in drug discovery: a comprehensive
review of data-driven and machine learning approaches.
Biotechnology and Bioprocess Engineering, 25:895–930,
2020.

King, G. and Zeng, L. Logistic regression in rare events
data. Political analysis, 9(2):137–163, 2001.

Kong, X., Huang, W., Tan, Z., and Liu, Y. Molecule gen-
eration by principal subgraph mining and assembling.
Advances in Neural Information Processing Systems, 35:
2550–2563, 2022.

Landrum, G. et al. Rdkit: Open-source cheminformatics,
2006.

6

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324, 2018.

Liu, Q., Allamanis, M., Brockschmidt, M., and Gaunt, A.
Constrained graph variational autoencoders for molecule
design. Advances in neural information processing sys-
tems, 31, 2018.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
R., and Van Gool, L. Repaint: Inpainting using denoising
diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11461–11471, 2022.

Luo, Y. and Ji, S. An autoregressive flow model for 3d
molecular geometry generation from scratch. In Interna-
tional Conference on Learning Representations (ICLR),
2022.

Maziarz, K., Jackson-Flux, H., Cameron, P., Sirockin, F.,
Schneider, N., Stiefl, N., Segler, M., and Brockschmidt,
M. Learning to extend molecular scaffolds with structural
motifs. arXiv preprint arXiv:2103.03864, 2021.

Mishchenko, K. and Defazio, A. Prodigy: An expedi-
tiously adaptive parameter-free learner. arXiv preprint
arXiv:2306.06101, 2023.

Ninniri, M., Podda, M., and Bacciu, D. Classifier-free graph
diffusion for molecular property targeting. arXiv preprint
arXiv:2312.17397, 2023.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4474–4484. PMLR,
2020.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and
Klambauer, G. Fréchet chemnet distance: a metric for
generative models for molecules in drug discovery. Jour-
nal of chemical information and modeling, 58(9):1736–
1741, 2018.

Riniker, S. and Landrum, G. A. Better informed distance
geometry: using what we know to improve conforma-
tion generation. Journal of chemical information and
modeling, 55(12):2562–2574, 2015.

Rogers, D. and Hahn, M. Extended-connectivity finger-
prints. Journal of chemical information and modeling, 50
(5):742–754, 2010.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n)
equivariant graph neural networks. In International con-
ference on machine learning, pp. 9323–9332. PMLR,
2021.

Schneider, N., Sayle, R. A., and Landrum, G. A. Get your
atoms in order an open-source implementation of a novel
and robust molecular canonicalization algorithm. Jour-
nal of chemical information and modeling, 55(10):2111–
2120, 2015.

Schneuing, A., Du, Y., Harris, C., Jamasb, A., Igashov, I.,
Du, W., Blundell, T., Lió, P., Gomes, C., Welling, M., et al.
Structure-based drug design with equivariant diffusion
models. arXiv preprint arXiv:2210.13695, 2022.

Schuffenhauer, A., Ertl, P., Roggo, S., Wetzel, S., Koch,
M. A., and Waldmann, H. The scaffold tree- visualization
of the scaffold universe by hierarchical scaffold classifi-
cation. Journal of chemical information and modeling,
47(1):47–58, 2007.

Segler, M. H., Kogej, T., Tyrchan, C., and Waller, M. P.
Generating focused molecule libraries for drug discovery
with recurrent neural networks. ACS central science, 4
(1):120–131, 2018.

Serre, J.-P. et al. Linear representations of finite groups,
volume 42. Springer, 1977.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang,
J. Graphaf: a flow-based autoregressive model for molec-
ular graph generation. arXiv preprint arXiv:2001.09382,
2020.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference on
machine learning, pp. 2256–2265. PMLR, 2015.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in neural
information processing systems, 32, 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Song, Y., Gong, J., Xu, M., Cao, Z., Lan, Y., Ermon, S.,
Zhou, H., and Ma, W.-Y. Equivariant flow matching with
hybrid probability transport for 3d molecule generation.
In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-
Ruiz, A., Donghia, N. M., MacNair, C. R., French, S.,
Carfrae, L. A., Bloom-Ackermann, Z., et al. A deep

7

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

learning approach to antibiotic discovery. Cell, 180(4):
688–702, 2020.

Tong, A., Malkin, N., Huguet, G., Zhang, Y., Rector-Brooks,
J., Fatras, K., Wolf, G., and Bengio, Y. Conditional flow
matching: Simulation-free dynamic optimal transport.
arXiv preprint arXiv:2302.00482, 2023.

Vahdat, A., Kreis, K., and Kautz, J. Score-based generative
modeling in latent space. arxiv, 2021.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Weininger, D. Smiles, a chemical language and information
system. 1. introduction to methodology and encoding
rules. Journal of chemical information and computer
sciences, 28(1):31–36, 1988.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
international conference on machine learning (ICML-11),
pp. 681–688, 2011.

Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., and Tang, J.
Geodiff: A geometric diffusion model for molecular con-
formation generation. arXiv preprint arXiv:2203.02923,
2022.

Xu, M., Powers, A. S., Dror, R. O., Ermon, S., and Leskovec,
J. Geometric latent diffusion models for 3d molecule gen-
eration. In International Conference on Machine Learn-
ing, pp. 38592–38610. PMLR, 2023.

8

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Figure 3. Sample molecules generated by EDM-SYCO trained on ZINC250K.

9

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Figure 4. Sample molecules generated by EDM-SYCO trained on GuacaMol.

10

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

A. Background
A.1. Equivariance and Invariance

When dealing with physical objects like molecules, it is important to consider equivariance. Formally, a function f : A→ B
is equivariant to the action of a group G iff f(TA

g (z)) = TB
g (f(z)) for all g ∈ G, where TA

g and TB
g are the representations

of the group element g in A and B respectively (Serre et al., 1977). As a special case, it is invariant iff f(TA
g (z)) = f(z)

with TB
g being the identity map. In the context of generative modeling, we aim to learn distributions invariant to the data’s

symmetries, namely graph permutations in our case. In practice, this has the benefit of not relying on any generation order
and enabling efficient likelihood estimation since an invariant likelihood is identical for all permutations of the same graph.
We leverage equivariant architectures, namely EGNNs, to learn such distributions, removing the need for data augmentation
during training, thus further increasing efficiency. EGNNs are defined in the next section.

A.2. E(n) Equivariant Graph Neural Networks (EGNNs)

To perform equivariant updates in our latent space, we use the E(n) Equivariant Graph Neural Network (EGNN) architecture
(Satorras et al., 2021). EGNNs (Satorras et al., 2021) are a special type of graph neural networks that learn functions
equivariant to rotations, translations, reflections, and permutations of their input point cloud.

An EGNN operates on a point cloud of size N , where each point has features hi ∈ Rd and coordinates xi ∈ R3 associated
with it. Let h ∈ RN×d and x ∈ RN×3 be the stacked features and coordinates, respectively, of all points. An EGNN is
composed of Equivariant Graph Convolutional Layers (EGCLs) hl+1,xl+1 = EGCL(hl,xl). A single EGCL layer is
defined as

mij = ϕe(h
l
i, h

l
j , d

2
ij , aij) (4)

hl+1
i = ϕh(h

l
i,
∑
j ̸=i

ẽijmij) (5)

xl+1
i = xl

i +
∑
j ̸=i

xl
i − xl

j

dij + 1
ϕx(h

l
i, h

l
j , d

2
ij , aij), (6)

where l denotes the layer index, dij = ∥xl
i − xl

j∥2 is the Euclidean distance between points i and j, and aij are optional
edge attributes which we set to ∥x0

i − x0
j∥22. ẽij serves as an attention mechanism that infers a soft estimation of the

edges ẽij = ϕinf (mij). Note that to update each point’s features and coordinates, the EGCL layers consider all the
other nodes, effectively treating the point cloud as a fully connected graph. All learnable components (ϕe, ϕh, ϕx, and
ϕinf) are fully connected neural networks. An EGNN architecture is then composed of L EGCL layers, denoted as
hL,xL = EGNN(h0,x0) with h0 = h and x0 = x. The main hyperparameters of the EGNN architectures are the number
of layers L and a feature dimension nf used to control the width of the fully connected neural networks.

B. Method Details
B.1. Equivariant Diffusion on Latent Point Clouds

A diffusion model generates samples by reversing a diffusion process, the process of adding noise to data (Sohl-Dickstein
et al., 2015; Ho et al., 2020). For ease of notation, we flatten the latent representation of the point clouds z, namely their
latent coordinates and features, into a one-dimensional vector denoted as z0 ∈ Rd′

with d′ = N(d+ 3). The diffusion or
forward process is a fixed Markov chain of Gaussian updates that transform z0 into latent variables z1, . . . ,zT of the same
dimension as z0, defined as

q(z1:T |z0) :=
T∏

t=1

q(zt|zt−1), with q(zt|zt−1) := N (zt;
√

1− βtzt−1, βtI), (7)

where βt is typically chosen such that q(zT) converges to N (zT ;0, I). By defining αt := 1− βt and ᾱt :=
∏t

i=1 αi, we
can also map z0 directly to zt through

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I). (8)

11

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

To reverse the above process, we start from a Gaussian noise sample zT and iteratively sample from the posterior distributions
q(zt−1|zt), which is also Gaussian if βt is small (Sohl-Dickstein et al., 2015). However, estimating them requires
using the entire dataset. Therefore, diffusion models learn a reverse process pθ(z0:T) := p(zT)

∏T
t=1 pθ(zt−1|zt), with

p(zT) = N (zT ;0, I) and
pθ(zt−1|zt) := N (zt−1;µθ(zt, t), σ

2
t I), (9)

where the mean µθ(zt, t) ∈ Rd′
is parametrized by a neural network.

We follow Ho et al. (2020) and, instead of directly predicting the mean, predict the Gaussian noise added to the latent
point cloud representation during the diffusion process. The mean then becomes µθ(zt, t) =

1√
αt

(
zt − 1−αt√

1−ᾱt
ϵθ(zt, t)

)
,

where ϵθ(zt, t) ∈ Rd′
is the output of the neural network. Following Hoogeboom et al. (2022), we parametrize ϵθ via an

EGNN (Satorras et al., 2021). Additionally, the reverse process ensures equivariance to translations by defining the learned
distribution pθ(z0) on the zero center of gravity subspace.

This network can then be trained by optimizing the L2 loss between the sampled Gaussian noise at each step and the
network’s output,

LDM = Ez0,ϵ,t

[
∥ϵ− ϵθ(zt, t)∥22

]
. (10)

During sampling, we start from a Gaussian sample zT ∼ p(zT) and iteratively denoise it by sampling ϵt ∼ N (0, I) and
transforming zt to zt−1:

zt−1 =
1
√
αt

(zt −
1− αt√
1− ᾱt

ϵθ(zt, t))︸ ︷︷ ︸
µθ(zt,t)

+

√
1− ᾱt−1√
1− ᾱt

√
βt︸ ︷︷ ︸

σt

ϵt. (11)

B.2. Training and Sampling from EDM-SYCO

Here, we describe in more detail the training and sampling algorithms for EDM-SYCO in Algorithms 1 and 2.

Algorithm 1 Training Algorithm

Input: a dataset of molecular graphs G = (h,A)
Initial: Encoder network Eϕ, Decoder network Dξ, denoising network ϵθ
First Stage: Autoencoder Training
repeat
µz ←− Eϕ(h,A) {Encoder}
ϵz ∼ N (0, I) and subtract center of mass from ϵ

(x)
z

z ←− µz + σ0ϵz
ĥ, Â←− Dξ(z)

LV AE(ϕ, ξ)←− cross-entropy
([

ĥ

Â

]
,

[
h
A

])
Take an optimizer step on LAE(ϕ, ξ)

until ϕ and ξ have converged
Second Stage: Diffusion Model Training
Fix Autoencoder parameters ϕ and ξ
repeat
z0 ∼ qϕ(z|h,A)

ϵz ∼ N (0, I) and subtract center of mass from ϵ
(x)
z

t ∼ U(0, 1, . . . , T)
zt ←−

√
ᾱtz0 +

√
1− ᾱtϵz

LDM (θ)←− ∥ϵz − ϵθ(zt, t)∥2
Take an optimizer step on LDM (θ)

until θ has converged
return Eϕ, Dξ, ϵθ

12

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Algorithm 2 Sampling Algorithm

Input: Decoder network Dξ, denoising network ϵθ

zT ∼ N (0, I) and subtract center of mass from z
(x)
T

for t = T downto 1 do
ϵz ∼ N (0, I) and subtract center of mass from ϵ

(x)
z

zt−1 ←− 1√
αt

(
zt − 1−αt√

1−ᾱt
ϵθ(zt, t)

)
+ σtϵz

end for
h,A←− Dξ(z0)
return 2D molecule G = (h,A)

B.3. Controllable Generation and Similarity-constrained Optimization

In the main text, we have introduced our approach to distribution learning on molecular graphs. However, many tasks in
drug discovery require generating molecules with specific conditions such as chemical properties, similarity constraints,
or the presence of certain desirable substructures. In this section, we describe how we can adapt the sampling procedure
of EDM-SYCO (or other models combined with SYCO) – trained in an unconditional setting – to different conditioning
modalities. While previous works on 3D molecule generative models approached conditional generation (Hoogeboom et al.,
2022; Bao et al., 2022) and scaffolding (Schneuing et al., 2022), the common graph generation task of similarity-constrained
optimization (Jin et al., 2020) was absent. We fill this gap by introducing a novel sampling algorithm for diffusion models to
perform similarity-constrained optimization.

Property-Conditional Generation via Diffusion Guidance In a conditional generation setting, we want to generate
a molecule with a specific property c by sampling from the conditional distribution q(z|c). To achieve this, we adapt
the classifier guidance algorithm (Dhariwal & Nichol, 2021), initially proposed to guide the generation of an image
diffusion model using a classifier. Instead, we use a property regressor to guide the generation towards molecules with
specific continuous properties similar to Bao et al. (2022). One can show that the denoising network’s output relates
to the score function of the data distribution via ∇zt

log q(zt) ≈ − 1√
1−ᾱt

ϵθ(zt, t) (Dhariwal & Nichol, 2021) and the
sampling procedure of diffusion models (Equation 11) is equivalent to running Langevin dynamics using the score function
∇zt log q(zt) (Welling & Teh, 2011; Song & Ermon, 2019). This provides a way to sample from the distribution q only
through its score function. For the case of q(zt|c), its score function can be written using Bayes’ rule and approximated as:

∇zt log q(zt|c) = ∇zt log q(zt) +∇zt log q(c|zt)

≈ − 1√
1− ᾱt

(ϵθ(zt, t)−
√
1− ᾱt∇zt

log pη(c|zt)),

where pη(c|zt) ∼ exp(−s(gη(zt)− c)2) is a Gaussian distribution approximating the probability of molecule zt having
property c, gη is a property regressor trained to predict the property c given a noisy molecule zt, and s is a scale factor that
controls the skewness of the distribution. With this, we can rewrite the conditional score function as ∇zt log q(zt|c) ≈
− 1√

1−ᾱt
(ϵθ(zt, t) +

√
1− ᾱts∇zt(gη(zt)− c)2). To sample from this distribution, we use the same sampling algorithm

defined by Equation 11 and replace ϵθ(zt, t) by

ϵθ(zt, t) +
√
1− ᾱts∇zt

(gη(zt)− c)2. (12)

Intuitively, this can be seen as minimizing the loss (gη(zt)− c)2.

Unconstrained Property Optimization via Diffusion Guidance With the formulation introduced above, we can sample
molecules with high property values by simply using the denoising step

ϵθ(zt, t)−
√
1− ᾱts∇zt

gη(zt). (13)

Notice that we replaced the loss with the negative gradient of the regressor.

Scaffold-Constrained Generation via Inpainting It is often desirable to generate molecules that contain a specific
substructure, usually called a scaffold (Schuffenhauer et al., 2007; Maziarz et al., 2021), for tasks such as structure-based

13

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Encoder
ℰ!

Decoder
𝔇"

add noise +
sample new nodesadd noise

denoise with
guidance

denoise with
inpainting

𝑧!′ 𝑧"′
𝑧#

ℎ′, 𝐴’

𝑧! 𝑧"ℎ, 𝐴

Figure 5. Overview of our constrained optimization procedure. Based on a noising/denoising approach, we run the first steps of the reverse
diffusion process using the inpainting algorithm to add new atoms and the remaining steps using the guidance algorithm to increase the
target property. The depicted molecules have QED values of 0.79 (initial) and 0.91 (optimized), with a 53% similarity.

drug design. This problem can be viewed as a completion task and is reminiscent of inpainting, which aims to complete
missing parts of an image (Song et al., 2020; Lugmayr et al., 2022). Lugmayr et al., 2022 propose RePaint, a simple
modification to the sampling procedure of denoising diffusion models, enabling them to perform inpainting. This approach
has already been successfully applied to molecule generation in 3D (Schneuing et al., 2022).

The core idea of RePaint is to start the sampling procedure from a random sample zT and, at each step, enforce the part
that we want to be present in the final sample. To illustrate this for the case of molecules, let z̃0 denote the point cloud of a
molecule containing the desired scaffold. Let m be a binary mask that indicates which nodes from z̃0 belong to the scaffold
such that m⊙ z̃0 denotes the scaffold point cloud and (1−m)⊙ z̃0 the unknown part. We aim to sample a new point cloud
z containing this scaffold while extending it to get a harmonized point cloud. Formally, we require that m⊙ z0 = m⊙ z̃0.
To achieve this, we iteratively apply the following modified sampling step starting from t = T :

zscaffold
t−1 ∼ N (

√
ᾱt−1z̃0, (1− ᾱt−1)I) (14)

zunknown
t−1 ∼ N (µθ(zt, t), σ

2
t I) (as in Equation 11) (15)

zt−1 = m⊙ zscaffold
t−1 + (1−m)⊙ zunknown

t−1 (16)

Similarity-Constrained Optimization In this task, we aim to improve the target properties of a given molecule while
satisfying a similarity constraint. We propose a novel approach to this task by combining the regressor guidance algorithm
and the inpainting algorithm discussed above. The key idea is to add noise to the initial molecule and then denoise it with
the regressor guidance algorithm to improve the target property. Formally, starting from the initial point cloud z0 with N
atoms, we sample a noised zt following Equation 8 for t ∈ (0, T). t is a hyperparameter that controls the optimization
quality. On the one hand, increasing t results in more reverse diffusion steps with the guidance algorithm, thus increasing
the chance of improving the target property. On the other hand, it also results in losing information about the initial molecule
due to noise. Intuitively, the best t yields the highest property improvement while satisfying the similarity constraints.

However, since the diffusion model operates on N points, the denoised molecule has N atoms. This limits the optimization
of a molecule’s property as it prevents adding new atoms. To overcome this limitation, we sample a Gaussian point cloud
zT with N ′ atoms, where N ′ > N , and run the inpainting algorithm from T to t with zt as the scaffold, meaning that zt
will replace m⊙ z̃0 in the inpainting algorithm described above. This results in a new intermediate representation z′

t whose
first N points correspond to zt, and the rest are the newly added atoms, as desired. Finally, z′

t is denoised from t to 0 using
the guidance algorithm with maximization objective (Equation 13) to get the point cloud z′

0 of the optimized molecule,
which is then decoded to the graph using the decoder Dξ. An overview of this procedure and an example test molecule are
shown in Figure 5.

Experiments We follow Jin et al. (2020) and evaluate our optimization procedure from Section B.3 with EDM-SYCO on
their constrained optimization tasks: LogP, QED, and DRD2 on ZINC250K. These tasks consist of improving the properties
of a set of 800 test molecules under the constraint that the Tanimoto similarity with Morgan fingerprints (Rogers & Hahn,
2010) between the optimized and initial molecule is above a given threshold. We report the average improvement for the

14

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Table 5. Similarity-constrained optimization results from (Jin et al., 2020). We split all learning-based baslines into translation and
optimization approaches.

METHOD
LOGP (SIM ≥ 0.4) LOGP (SIM ≥ 0.6) QED (SIM ≥ 0.4) DRD2 (SIM ≥ 0.4)

IMPROV. DIV. IMPROV. DIV. SUCC. DIV. SUCC. DIV.

T
R

A
N

S
L

. SEQ2SEQ 3.37 ± 1.75 0.471 2.33 ± 1.17 0.331 58.5% 0.331 75.9% 0.176
JTNN 3.55 ± 1.67 0.480 2.33 ± 1.24 0.333 59.9% 0.373 77.8% 0.156
ATOMG2G 3.98 ± 1.54 0.563 2.41 ± 1.19 0.379 73.6% 0.421 75.8% 0.128
HIERG2G 3.98 ± 1.46 0.564 2.49 ± 1.09 0.381 76.9% 0.477 85.9% 0.192

O
P

T
IM

. JT-VAE 1.03 ± 1.39 - 0.28 ± 0.79 - 8.8% - 3.4% -
CG-VAE 0.61 ± 1.09 - 0.25 ± 0.74 - 4.8% - 2.3% -
GCPN 2.49 ± 1.30 - 0.79 ± 0.63 - 9.4% 0.216 4.4% 0.152
EDM-SYCO 3.11 ± 1.27 0.555 1.51 ± 1.10 0.360 46.4% 0.163 27.3% 0.083

LogP tasks and success rates for the binary tasks of QED and DRD2 consisting of translating molecules from a low range
into a higher range. Additionally, we report the average diversity among the optimized molecules.

We split the learning-based baselines from (Jin et al., 2020) into optimization and translation approaches. Translation
approaches are specifically designed for such tasks and are trained on pairs of molecules exhibiting the improvement
and similarity constraints, giving them an advantage over optimization methods. Since we leverage the same generative
model and regressor from previous experiments without further training on this task, optimization approaches are the main
point of comparison. Table 5 shows that EDM-SYCO outperforms all optimization baselines by an average factor of 3.5
across all tasks while achieving comparable performance to the translation approaches. These results further support the
effectiveness of our SYCO framework and our novel constrained optimization algorithm. The relatively low diversity scores
indicate that EDM-SYCO tends to find more similar molecules for a given starting molecule, which might be an artifact of
our noising/denoising procedure. Figures 6 and 7 illustrate some of EDM-SYCO’s optimized molecules. Thanks to our
atom-based approach, the optimized molecules frequently only change in a few atoms from the starting molecule, which
would be harder to achieve for fragment-based models.

C. Effect of Conformer Generation Method on Generation Performance
To analyze the effect of different conformer generation algorithms on the performance of our model, we perform an ablation
study using 2 different algorithms/packages from RDKit to compute the synthetic coordinates: the ETKDG algorithm and
the Pharm3D package. We perform two training runs using the same setup except for the conformer generation method. For
these two runs, we use smaller models (we halve the number of layers) than those reported in the main text and train for 500
epochs, so they are not directly comparable to the model in the main text. Results are shown in Table 6.

Table 6. Model performance on ZINC250K using different conformer generation methods from RDKit.

ETKDG PHARM3D

VAE RECONSTRUCTION ACCURACY 99.92% 99.90%
KL 0.94 0.93
FCD 0.75 0.70

D. Invariance and Equivariance Properties of EDM-SYCO

In this work, we are dealing with two types of symmetries arising from how we represent the data and/or physical symmetries.
Specifically, graphs are invariant to permuting their nodes, meaning that a single graph of N nodes can be represented by N !
different representations corresponding to N ! different orderings of its nodes. We refer to this transformation as the elements
of the symmetric group SN . Similarly, a point cloud representing a molecule in 3D can be arbitrarily rotated, reflected,
and/or translated and still refer to the same molecule. This corresponds to an infinite number of different representations for

15

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

the same object. We refer to this transformation as the action of the Euclidean group E(3).

D.1. SN - and E(3)-Invariant Training Process

To efficiently learn from such data, we need to develop training methods invariant to these symmetries without needing
data augmentation techniques. Concretely, we must ensure that the gradient updates used to train our model do not change
if the molecular graph is permuted and/or the latent point cloud representation is rotated/reflected/translated. We require
two ingredients to achieve this: an equivariant architecture and an invariant loss (Vignac et al., 2022). Based on the model
architecture and the loss function described in the main text, we can show that EDM-SYCO satisfies both requirements and
that its training process is, thus, invariant to the action of the permutation group SN and the Euclidean group E(3).

As our ultimate goal is to generate molecular graphs, we provide more details on the permutation invariance properties of
the distribution of molecular graphs learned by EDM-SYCO in the next section.

D.2. Proof of Proposition 4.1 (SN -Invariant Marginal Distribution)

In this section, we provide a formal proof for the statement from the main text that the molecular graph distribution defined
by EDM-SYCO is invariant to permutations. For convenience, we provide the proposition again:

Proposition D.1. The marginal distribution of molecular graphs pθ,ξ(G) = Epθ(z0) [pξ(G|z0)] defined by the EDM and the
decoder, is an SN -invariant distribution, i.e. for any molecular graph G = (h,A), pθ,ξ(h,A) = pθ,ξ(Ph, PAP) for any
permutation matrix P ∈ SN .

Note: This invariance property is required for efficient likelihood computation, as the likelihood of a graph is the sum of the
likelihoods of its N ! permutations, which is intractable to compute. However, when ensuring that all these permutations are
assigned equal likelihood, it suffices to compute the likelihood of an arbitrary permutation.

Proof. The idea of the proof is when the initial distribution of the diffusion model pθ(zT) is invariant and the transition
distributions pθ(zt−1|zt) are equivariant, then all marginal distributions at all diffusion time steps pθ(zt) are invariant,
including pθ(z0) (Xu et al., 2022; 2023; Hoogeboom et al., 2022). With the same logic and with the equivariant decoder
taking the place of the transition distribution, the graph distribution pθ,ξ(G) will be invariant.

We prove this result by induction:

Base case: pθ(zT) = N (zT ;0, I) is permutation-invariant, i.e. pθ(zT) = pθ(PzT) for all permutation matrices P ∈
{0, 1}N×N acting on zT ∈ RN×(d+3) by permuting its rows. This holds because all rows are i.i.d., as pθ(zT) has a diagonal
covariance matrix.

Induction step: Assume pθ(zt) is permutation-invariant. We show that if pθ(zt−1|zt) is permutation-equivariant, i.e.
pθ(zt−1|zt) = pθ(Pzt−1|Pzt) (which holds when using a permutation-equivariant architecture ϵθ), then pθ(zt−1) will be
permutation-invariant.

pθ(Pzt−1) =

∫
zt

pθ(Pzt−1|zt)pθ(zt) (Chain rule of probability)

=

∫
zt

pθ(Pzt−1|PP−1zt)pθ(PP−1zt) (PP−1 = I)

=

∫
zt

pθ(zt−1|P−1zt)pθ(P
−1zt) (Equivariance and invariance)

=

∫
u

pθ(zt−1|u)pθ(u) |detP |︸ ︷︷ ︸
=1

(Change of variables u = P−1zt and P is orhtogonal, sodetP = ±1)

= pθ(zt−1)

By induction, pθ(zT), . . . , pθ(z0) are all permutation-invariant.

Finally, since the decoder pξ(G|z0) is permutation-equivariant (as it applies the same operation on each node and each pair
of nodes, thus not depending on the nodes ordering), with the same derivation, we also conclude that the final induced
distribution pθ,ξ(G) is permutation-invariant.

16

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Note: A similar derivation can also be applied to show the invariance of pθ(z0) to rotations and reflections of the coordinates,
as the only requirement on P for the derivation to hold is to be orthogonal, which is the case for rotation and reflection
matrices R.

E. Implementation Details
E.1. Architecture Details

We train two sets of models with the same architectures on the two used datasets, ZINC250K and GuacaMol. The EDM,
together with the autoencoder, has 9.2M total parameters, while the regressor has 4.2M parameters.

Encoder. The first part of the encoder E , introduced in Section 3, is the conformer generation method, while the second
part is an EGNN with 1 layer and 128 hidden features (See Appendix A.2). We found that having at least 1 EGNN layer is
crucial to achieve high reconstruction accuracy for the autoencoder, and as this allows us to reach more than 99% accuracy,
we did not use more layers. This EGNN takes as input a point cloud with the one-hot encodings of the atom types and
formal charges as features h and the synthetic coordinates computed by the conformer generation part as coordinates x. The
output is a processed point cloud with continuous node embeddings of dimension d = 2 and updated coordinates.

Decoder. The decoder D, also introduced in Section 3, consists of 2 fully connected networks MLPnode and MLPedge, both
having 256 hidden dimensions.

EDM. The denoising network of EDM is parametrized with an EGNN with 9 layers and 256 hidden features. The EDM has
T = 1000 diffusion steps.

Regressor. The regressor used for the conditional generation and optimization experiments (see Section 5) is also an EGNN
with 4 layers and 256 hidden features, followed by a sum pooling operation over the node features and then a fully connected
network with 2 layers and a hidden dimension of 256 that maps the pooled graph embedding to the target values of the
properties.

E.2. Training Details

We use the original train/validation/test splits of the used datasets (Irwin et al., 2012; Brown et al., 2019). The autoencoder is
trained in the first stage to minimize the cross-entropy loss between the ground truth and predicted graphs for a maximum of
100 epochs, with early stopping if the validation accuracy does not improve for 10 epochs. To deal with the class imbalance
problem caused by the sparsity of the graph adjacency matrices and the dominance of some atom types and formal charge
values, we scale each term of the cross-entropy loss with a class-specific value based on the statistics of the training set (King
& Zeng, 2001). In the second training stage, the EDM model is trained for 1000 epochs on ZINC250 and approximately 300
epochs on GuacaMol.

The regressor is trained with the L1 loss to predict the molecular properties on the noisy latent point cloud representations of
the molecules by applying the same noise schedule of the EDM. The regressor is trained for 500 epochs, with early stopping
if the MAE on the validation set does not improve after 50 epochs.

All models are trained with a batch size of 64 and using the recent Prodigy optimizer (Mishchenko & Defazio, 2023) with
dcoef = 0.1, which we found to be a very important hyperparameter for the stability of training.

We train all models on ZINC250K on a single Nvidia A100 GPU, and on GuacaMol, we use multi-GPU training on 4 Nvidia
A100 GPUs.

E.3. Dataset Details

We use two datasets in our experiments: ZINC250K (Irwin et al., 2012) and GuacaMol (Brown et al., 2019). For both
datasets, we represent a molecule as a graph. The nodes are atoms with the one-hot encoding of their atom type and their
formal charge as features. In addition to modeling all heavy atoms, we also model explicit H atoms, which we found to
increase the validity of the generated molecules as it reduces some kekulization errors produced by rdkit 2. The edges are
chemical bonds with the one-hot encoding of the bond type as features. We model the following bond types: no-bond,
single, double, triple, and aromatic. We model the absence of a bond as a separate bond type to allow the autoencoder to

2https://github.com/rdkit/rdkit/wiki/FrequentlyAskedQuestionscant-kekulize-mol

17

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

reconstruct the full bond information. These graphs present very unbalanced scales for the atom types, formal charges, and
bond types. We use class-specific weights to train the autoencoder, as outlined in Section 3.

ZINC250K has a total of 250K molecules and 220,011 training molecules. It has 10 atom types (including H) and 3 formal
charge values (-1, 0, 1), and the largest molecule has 40 atoms.

GuacaMol has a total of ≈1.5M molecules, of which we use 1,273,104 for training. It has 13 atom types (including H) and 5
formal charge values (-1, 0, 1, 2, 3), and the largest molecule has 88 atoms.

We compute the synthetic coordinates needed for our model in a preprocessing step for both datasets and use the computed
coordinates throughout the training.

18

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Figure 6. Molecules with the highest improvement in the LogP-constrained optimization task. Each row corresponds to one test molecule
and 4 successful optimization results. We show the LogP value of the initial molecules, and for the optimized molecules, the achieved
improvement (imp.) and the Tanimoto similarity to the initial molecule (sim.).

19

Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space

Figure 7. Molecules with highest improvement in the QED constrained optimization task. Each row corresponds to one test molecule
and 4 successful optimization results. We show the QED value of the initial molecules, and for the optimized molecules, the achieved
improvement (imp.) and the Tanimoto similarity to the initial molecule (sim.).

20

