
VisionGraph: Leveraging Large Multimodal Models for
Graph Theory Problems in Visual Context

Yunxin Li 1 Baotian Hu 1 Haoyuan Shi 1 Wei Wang 2 Longyue Wang Min Zhang 1

Abstract

Large Multimodal Models (LMMs) have achieved
impressive success in visual reasoning, particu-
larly in visual mathematics. However, problem-
solving capabilities in graph theory remain less
explored for LMMs, despite being a crucial as-
pect of mathematical reasoning that requires ac-
curate understanding of graphical structures and
multi-step reasoning on visual graphs. To step
forward in this direction, we are the first to de-
sign a benchmark named VisionGraph, used to
explore the capabilities of advanced LMMs in
solving multimodal graph theory problems. It en-
compasses eight complex graph problem tasks,
from connectivity to shortest path problems. Sub-
sequently, we present a Description-Program-
Reasoning (DPR) chain to enhance the logical
accuracy of reasoning processes through graphi-
cal structure description generation and algorithm-
aware multi-step reasoning. Our extensive study
shows that 1) GPT-4V outperforms Gemini Pro
in multi-step graph reasoning; 2) All LMMs ex-
hibit inferior perception accuracy for graphical
structures, whether in zero/few-shot settings or
with supervised fine-tuning (SFT), which further
affects problem-solving performance; 3) DPR sig-
nificantly improves the multi-step graph reason-
ing capabilities of LMMs and the GPT-4V (DPR)
agent achieves SOTA performance.

1. Introduction
Mathematical Reasoning is a core aspect for evaluating
the logical reasoning capability (Dai et al., 2023) of Large

1School of Computer Science and Technology, Harbin Insti-
tute of Technology, Shenzhen, China. 2School of Cyber Science
and Technology, Shenzhen campus of Sun Yat-sen University,
Shenzhen, China. Yunxin Li<liyunxin987@163.com >. Corre-
spondence to: Baotian Hu <hubaotian@hit.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1. Two cases of utilizing GPT-4V (Date: 2024.01.17) to
answer easy graph understanding and reasoning questions. We
highlight the incorrect responses using the red words.

Language Models (LLMs) and Large Multimodal Models
(LMMs). Recent works (Luo et al., 2023; Team et al., 2023;
Imani et al., 2023; Wang et al., 2023a; Li et al., 2023b)
present the rapid development of applying LLMs to help
solve arithmetic and graph reasoning tasks. Compared to
LLMs, the evaluation of mathematical reasoning capabilities
in LMMs is beginning. Lu et al. (2023) recently presented a
comprehensive visual math benchmark, open-ended answer
generation based on questions and visual context. It eval-
uates the basic mathematical capabilities of LMMs, such
as algebraic reasoning, geometry reasoning, and arithmetic
reasoning. However, the challenging graph theory problem-
solving capability has been less explored for LMMs, which
presents a significant aspect of mathematical reasoning capa-
bilities. The graph theory problems also feature prominently
in various research directions and practical scenarios pow-
ered by large models, e.g., multimodal graph learning (Ekte-
faie et al., 2022), AI for Mathematics (Zhang et al., 2023a),
visual-language navigation (Gu et al., 2022; Anderson et al.,

1

Multimodal Graph Theory Problems with Large Multimodal Models

2018; Chen et al., 2024), and robotics planning and con-
trol (Wang et al., 2023b; Wake et al., 2023). In these areas,
LMMs require the ability to understand structural graphs
and perform multi-step reasoning on them to achieve the
final goal, especially in robotics planning, which often cen-
tres around structured environments. Hence, exploring the
multi-step graph reasoning performance of LMMs has the
potential to improve their complex multimodal problem-
solving ability.

To step forward in this direction, we first introduce a novel
multimodal graph reasoning benchmark, named Vision-
Graph to assess the capabilities of advanced multimodal
LMMs in solving graph theory problems within a visual
context. It could be regarded as a new testing scenario for
LMMs-driven agents. This benchmark is an extension of
NLGraph (Wang et al., 2023a), a natural language-based
graph problem-solving benchmark. We employ the graph
generation tool NetworkX 1 to create graphs according to
predefined nodes and edges. The layout of a specific graph
is dynamically adjusted for clarity by humans, consider-
ing the number of nodes. First, we incorporate two types
of graph understanding questions to evaluate the structural
comprehension of LMMs. As shown in Figure 1, these
questions are as Node Recognition: how many nodes are
shown in the graph? and Edge Recognition: List all edges
as triples in the undirected and weighted graph. As illus-
trated in Figure 2, VisionGraph encompasses eight types of
graph theory problems across three difficulty levels: easy,
medium, and hard. Hence, it offers a comprehensive mul-
timodal graph reasoning benchmark, in which each visual
graph contains three questions to probe the LMMs’ under-
standing and multi-step reasoning abilities.

In this paper, we are particularly interested in how LMMs,
such as GPT-4V and Gemini, perform in solving multimodal
graph problems, encompassing structural graph understand-
ing and multi-step reasoning on visual graphs. We conduct
an empirical study from three in-depth perspectives:

• Graphical Structures Understanding Ability: Unlike
general images, visual graphs have strong spatial struc-
ture and are very suitable for examining the spatial under-
standing ability of LMMs. In this work, we explore the
graphical structures understanding performance of LMMs
in terms of nodes and edges recognition.

• Effects of Supervised Fine-tuning Approaches: LMMs
are usually fine-tuned with open-domain image-text data,
performing unsatisfactorily in handling images in vertical
fields (Li et al., 2023d) such as medical images (Li et al.,
2023c). Hence, we employ constructed Graph Instruction
fine-tuning data to tune LMMs further and analyze the
effects of training strategies. We compared and analyzed

1https://networkx.org/

the overall performance of LMMs after introducing graph
understanding and reasoning data.

• Analysis of Multi-step Graph Reasoning Capabil-
ity: While GPT-4V has demonstrated successful perfor-
mance on challenging vision-language reasoning scenar-
ios such as Autonomous Driving (Wen et al., 2023) and
Robotics (Wake et al., 2023), we also need to know how
well GPT-4V solve multimodal graph problems via multi-
step reasoning. To answer this question, we explore the
few-shot and chain-of-the-thought reasoning performance
and present a Description-Program-Reasoning (DPR) ap-
proach for this graph problem. It consists of graph struc-
ture description generation and algorithm-aware multi-
step reasoning in order, aimed to enhance the logicalness
of the reasoning process.

We conduct experiments on a variety of graph theory prob-
lems covering cycle, shortest path, connectivity, and others.
We evaluate LMMs with comparative training strategies and
reasoning approaches. The main contributions are:

• We present a multimodal graph theory problems bench-
mark VisionGraph, to assess the graphical structure under-
standing and multi-step reasoning capabilities of LMMs.
To facilitate future research in graph theory problems, we
will release the benchmark VisionGraph 2 and advanced
prompting technical for LMMs.

• Our empirical study shows the shortcomings of LMMs,
including GPT-4V and Gemini, in understanding graphi-
cal structure and multi-step multimodal reasoning. This
indicates their potential to enhance multi-step reasoning
and planning abilities in the context of visual graphs.

• We design a graph problem-solving approach named
Description-Program-Reasoning (DPR), which inter-
leaves natural language and programming to enhance
the multi-step reasoning performance of LMMs. The
designed GPT-4V (DPR) is a comprehensive multi-modal
Agent that integrates complex task decomposition, small
model perception enhancement, code generation, and tool
invocation.

2. VisionGraph Benchmark
We design a comprehensive multimodal graph theory prob-
lem benchmark, named VisionGraph, to examine the graph-
ical structure understanding and reasoning capabilities of
LMMs. Based on the released natural language graph (NL-
Graph) benchmark (Wang et al., 2023a), we introduce the
visual graph by using the graph generation tool NetworkX

2The benchmark and codes are available at https://
github.com/HITsz-TMG/VisionGraph

2

https://github.com/HITsz-TMG/VisionGraph
https://github.com/HITsz-TMG/VisionGraph

Multimodal Graph Theory Problems with Large Multimodal Models

Figure 2. An overview of various multimodal graph theory problems in the VisionGraph benchmark.

and remove the original node and edge descriptions from
the natural questions. Based on the original difficulty of
each problem within the eight tasks, the overall dataset is
divided into easy, medium, and hard subsets for each graph
reasoning task. In addition, we add the graph understanding
questions to check the spatial understanding capability of
LMMs.

We present the overview of the VisionGraph benchmark
via a specific sample for each task in Figure 2. The task
definition of each graph theory problem is as follows:

• Connectivity: Given an undirected graph G = {V, E}, it
infers whether two nodes u and v are connected according
to whether there exists a sequence of edges from node u
to node v in E .

• Cycle: In an undirected graph G = {V, E}, a cycle is
a non-empty trail (e1, e2, . . . , en) with a node sequence
(v1, v2, . . . , vn, v1). This task asks whether there exists a
cycle through true/false questions and retains a balanced
set of cyclic and noncyclic graphs in the dataset.

• Topological Sort: A topological sort of a directed graph
is a linear ordering of its nodes such that for every directed
edge (u, v) from node u to node v, u comes before v in
the ordering. The task is to find a valid topological sort
given a directed graph and there could be multiple valid
solutions. We employ an external program to examine the
correctness of the generated topological order.

• Shortest Path: The shortest path between two nodes u
and v is the path with the minimum sum of edge weights.
It requires the LMM to generate the shortest plan based
on the weights and nodes depicted in the graph.

• Maximum Flow: For two nodes: source u and sink v in
a network G = {V, E}, it asks LMMs to generate a plan
to route as much flow as possible from source to the sink.

• Bipartite Graph Matching: A bipartite graph is a graph
whose nodes can be divided into two disjoint sets U and
V, and in each set no nodes are adjacent to each other.
Given a bipartite graph, the task is to find the matching

3

Multimodal Graph Theory Problems with Large Multimodal Models

Table 1. Overview of the VisionGraph Benchmark. ’SPEC.’ represents the level of difficulty, indicated by the number of nodes in each
graph. Key metrics include the number of samples (S), images (I), questions (Q), and answers (A). Each visual graph is accompanied by
three questions: two focus on general graph comprehension, and one addresses specific graph theory problems.

Subset Connect. Cycle Topo. Sort Shortest Path Max. Flow Bipartite Graph Hamilton Path GNNs
EASY 352 150 180 180 150 300 150 100
SPEC. n : 5− 10 n : 5− 10 n : 5− 10 n : 5− 10 n : 5− 10 n : 6− 20 n : 5− 10 n : 5− 8

MEDIUM 1,200 600 150 - - - - -
SPEC. n : 11− 25 n : 11− 25 n : 11− 25 - - - - -
HARD 680 400 200 200 200 210 200 140
SPEC. n : 26− 35 n : 26− 35 n : 26− 35 n : 11− 20 n : 11− 20 n : 17− 33 n : 11− 20 n : 9− 15

Total S/I 2,232 1,150 530 380 350 510 350 240
#Q/A 6,696 3,450 1,590 1,140 1,050 1,530 1,050 720
#Len Q 45.0 39.0 52.0 60.0 61.0 54.0 62.0 76.0
#Len A 162.26 63.94 194.06 95.10 141.47 126.01 101.03 61.79

that maximizes the number of edges. Like Topological
Sort, we use an external program to evaluate the solution.

• Hamilton Path: In an undirected graph, a Hamilton path
is a path that visits every node exactly once. Hence, this
task asks the LMM to generate a Hamilton path given an
undirected graph.

• Graph Neural Networks: This setting of this task is
updating the node embedding of an undirected graph with
the sum of all the neighbors’ embeddings. Each node in
the graph has a two-dimension node embedding.

The detailed data statistics of VisionGraph are presented in
Table 1. VisionGraph consists of 5,902 problems in total,
where the easy Connectivity, Cycle, and Topological Sort
tasks include three difficulty levels, and others only contain
easy/hard levels.

3. Experimental Setup
3.1. Comparing Models

We test widely used powerful commercial LMMs (GPT-4V,
Gemini, and Qwen-Plus/Max) and open-sourced LMMs:
MiniGPT-4 (Zhu et al., 2023) extends the Q-Former archi-
tecture to enhance multimodal interactions. It leverages the
shallow transformer approach to align visual features from
a frozen visual encoder with the language model, thereby
enabling robust multimodal comprehension and generation.
InstructBLIP (Wang et al., 2022) introduces instruction-
aware visual features by incorporating instructions directly
into the Q-Former architecture (Li et al., 2023a). It allows
the model to dynamically adapt its multimodal understand-
ing based on explicit instructions provided alongside visual
inputs. LLaVA (Liu et al., 2023) takes a distinct approach
by utilizing a linear layer to map fine-grained visual fea-
tures from a frozen vision encoder into the embedding space
of the pre-trained LLM. Qwen-VL (Bai et al., 2023) is

a set of large-scale vision-language models (LVLMs) de-
signed to perceive and understand both texts and images.
SPHINX (Lin et al., 2023) is a versatile multi-modal large
language model (MLLM) with a joint mixing of model
weights, tuning tasks, and visual embeddings. InternLM-
XComposer (Zhang et al., 2023b) is a vision-language
large model that enables advanced image-text comprehen-
sion and composition. For closed-source LMMs, GPT-
4V(ision) (OpenAI, 2023) from OpenAI is recognized as
the most powerful MLLMs to date, surpassing a host of
Vicuna-based models, e.g., MiniGPT-4, InstructBLIP, and
LLaVA. Besides, Gemini (Team et al., 2023), released by
Google, has emerged as a formidable challenger to GPT-4V,
exhibiting significant multi-modal capabilities over different
benchmarks.

3.2. Evaluation Metric

The graph theory problem evaluation will be based on three
distinct sub-questions, each with its specific criteria. The
first (node recognition) assesses accuracy in counting graph
nodes by comparing the answer to a standard solution. The
second sub-question (edge recognition) involves represent-
ing graph edges for four types of graphs using tuples: two-
element tuples for undirected/ directed unweighted graphs;
and three-element tuples including edge weights for undi-
rected/directed weighted graphs. The evaluation of the an-
swer to this question encompasses two key metrics:

• Correct Rate: Quantifies the proportion of correctly iden-
tified tuples in the response against the standard solution.

• Error Rate: Quantifies the proportion of incorrectly iden-
tified tuples relative to the total tuples in the response.

In our study, the third question about multimodal graph
theory problems encompasses a range of graph problems
that necessitate binary (yes/no) or descriptive responses.

4

Multimodal Graph Theory Problems with Large Multimodal Models

Table 2. The prompts for GPT-4V and Gemini-pro under zero- or few-shots settings. Few-shot samples are randomly selected from the
easy/medium sub-sets of the training set. For each sub-question, we design various output demands to gain the corresponding answer
format, which is given in Table 5 of the Appendix.

Types Prompt
Zero-Shot Please use tuples to represent the edges in the graph. {specific answer format requirements}
Few-shot {Few-shot preffix} Please use tuples to represent the edges in the graph. {specific answer format requirements}
Zero-Shot Answer the following question: {the concrete problem} (Demand: {specific answer format requirements})

COT Answer the following question: {the concrete problem} Let’s think step by step. (Demand: {specific answer format
requirements})

Few-shot {Few shot preffix} Question: {the concrete problem} (Demand: {specific answer format requirements})

Specifically, for Connectivity and Cycle problems, we assess
responses using two tiers of accuracy metrics: a basic metric
for correct binary answers, and a more stringent metric
requiring verifiable paths for affirmative responses (yes),
as applied to powerful GPT-4V and Gemini models. In
Topological Sort tasks, the accuracy of each step in the
solution sequence is critical, where the solution is verified by
the procedure. For Shortest Path problems, our evaluation
criteria include verifying both the existence and the total
weight of the proposed shortest path via the Python tool.
In Maximum Flow problems, the focus is on accurately
calculating the maximal flow value. For Bipartite Graph
Matching, correct responses must identify the maximum
number of matches and provide an error-free assignment.
Hamilton Path challenges require each step of the proposed
path to be precise and consistent with the graph’s structure.
Lastly, GNN tasks demand correct post-convolution node
embeddings, in line with the specified graph convolution
operation. Overall, we set the corresponding evaluation
approach for different problems.

3.3. Implementation Details

Our model’s training was conducted in two distinct phases.
The initial phase covered 5 epochs, using a batch size of 16
and leveraging the AdamW (Kingma & Ba, 2014) optimizer
with a learning rate of 1e-4. Encountering a performance
bottleneck after 2 epochs, we adapted the dataset by intro-
ducing a VQA task focused on incorporating fine-grained
edge information. This adjustment marked the inception
of the second training phase, building upon the initial train-
ing phase. The subsequent training employed modified
hyperparameters, including a revised data path and an ad-
justed learning rate of 3e-5, with the total epochs set to 3.
Throughout both phases, batch sizes, optimizer settings, and
the utilization of gradient checkpoint and lazy preprocess-
ing remained consistent. During inference, the temperature
parameter is assigned a default value of 0.2, and the beam
size is configured to 1.

Figure 3. It illustrates two scenarios in augmented graph under-
standing data: 1) Overall Edge Recognition, focusing on identi-
fying and interpreting the connections between nodes; 2) Edge-
relevant VQA, which addresses questions specifically related to
the visual aspects and significance of the graph’s edges and nodes.

4. Comparative Analysis of LMMs
In this section, we compare various supervised finetuning
LMMs, Gemini, and GPT-4V on graphical structures under-
standing and multimodal graph theory problem-solving, es-
pecially for the effect of supervised fine-tuning approaches.

4.1. Graphical Structures Understanding Ability

Compared to powerful GPT-4V and Gemini, open-source
LMMs such as LLava and InstructBLIP, have also achieved
impressive visual understanding capability on open-world
images. By analyzing the performance of GPT-4V, Gemini,
and other LMMs, we can observe the overall performance
and exposed problems of current LMMs on graph theory
problems. Table 2 shows the prompting methods for LMMs.

Table 3 displays the results for node and edge recognition in

5

Multimodal Graph Theory Problems with Large Multimodal Models

Table 3. Overall results in the VisionGraph benchmark. ♣ refers to that the corresponding model is trained using the training set of
VisionGraph. The results in parentheses for Gemini and GPT-4V are the accuracy of the detailed path, yet other LMMs can not follow the
instructions to provide specific paths. Bold words refer to the best results.

Model↓ Task Types → Connect Cycle Topo. Sort Shortest Path Max. Flow Bipartite Graph Hamilton Path GNNs
Node Recognition ↑

MiniGPT-4 ♣(Vicuna-7b) 19.14 12.04 42.96 42.19 32.76 8.33 60.34 53.85
BLIP-2 ♣(FlanT5-xxl) 37.74 52.88 47.41 81.25 67.24 22.62 62.07 61.54
InstructBLIP♣ (FlanT5-xl) 36.12 47.64 46.67 75.00 56.90 36.90 53.45 74.36
InstructBLIP♣ (FlanT5-xxl) 35.31 52.88 61.48 85.94 77.59 17.86 65.52 61.54
Sphinx♣ 61.99 98.95 94.07 100.0 91.38 55.95 100.00 97.44
Internlm♣ 67.92 100.0 97.78 100.0 98.25 77.38 100.0 100.0
Llava-v1.5-7b♣ 64.15 96.86 92.59 100.00 93.10 13.10 100.00 94.87
Llava-v1.5-13b♣ 62.26 97.91 91.11 100.00 96.55 11.9 100.00 97.44
Qwen-Plus (0-shot) 2.96 0.00 0.00 0.00 5.17 0.00 0.00 56.41
Qwen-max (0-shot) 29.11 31.94 30.37 12.50 3.45 14.29 29.31 46.15
Gemini (0-shot) 40.97 42.93 47.41 67.19 72.41 10.71 65.52 35.90
GPT-4V (0-shot) 46.49 81.15 81.48 89.06 58.62 20.24 100.00 97.44

Edge Recognition (Correct ↑ / Error ↓)
MiniGPT-4 ♣(Vicuna-7b) 11.78/31.78 0.68/1.59 12.54/58.89 4.78/87.20 0.61/61.15 14.45/47.53 28.48/34.69 37.48/55.05
BLIP-2 ♣(FlanT5-xxl) 12.49/84.03 15.11/84.69 0.08/2.14 1.75/96.84 0.00/0.00 9.92/75.89 11.73/45.55 17.26/88.84
Sphinx ♣ 44.76/66.69 22.13/79.69 37.84/73.07 39.88/70.62 20.68/86.57 83.93/53.51 66.26/71.15 60.66/61.43
Internlm ♣ 53.08/35.01 40.78/60.05 55.70/50.85 57.82/45.02 23.45/80.27 71.21/42.34 73.98/36.00 83.00/19.69
InstructBLIP♣ (FlanT5-xl) 17.24/87.62 26.02/88.06 0.00/0.00 5.70/93.93 0.00/0.00 12.72/83.13 37.07/82.85 49.18/81.28
InstructBLIP♣ (FlanT5-xxl) 16.34/81.50 16.04/85.54 0.00/0.00 3.58/98.31 0.00/0.00 13.26/76.86 32.05/65.84 37.70/67.57
Llava-v1.5-7b♣ 46.81/58.13 23.23/77.63 36.56/72.97 38.76/66.47 9.80/91.56 63.10/54.70 80.14/48.06 69.85/32.92
w/ Graph Understanding Data 54.87/38.55 49.86/42.36 30.37/64.41 49.86/40.49 8.50/90.45 35.44/53.50 71.90/14.77 58.73/24.07
Llava-v1.5-13b♣ 51.18/53.41 22.60/76.91 38.80/70.26 41.93/63.50 9.89/91.72 67.88/54.21 76.26/45.21 67.40/33.59
w/ Graph Understanding Data 55.76/36.09 47.57/38.91 31.47/61.66 50.81/35.17 9.77/86.36 54.45/56.46 72.07/11.80 60.54/14.60
Qwen-Plus 30.46/64.78 27.42/82.37 10.59/68.46 6.16/81.60 1.32/64.62 75.93/58.65 48.63/50.41 33.71/60.56
Qwen-max 25.71/63.21 20.92/83.50 16.70/76.00 1.63/95.70 1.12/96.58 42.59/55.55 40.47/51.61 35.17/55.81
Gemini (0-shot) 23.26/52.35 21.65/80.09 19.11/66.94 16.18/83.09 4.79/94.78 66.01/53.90 39.40/37.80 40.83/52.60
GPT-4V (0-shot) 14.10/23.09 17.50/72.97 9.64/30.58 23.01/66.85 5.31/43.62 24.13/32.33 29.22/38.03 46.14/42.74
GPT-4V (4-shot) 20.63/34.52 26.25/69.95 13.19/51.75 23.40/61.90 6.12/84.94 46.33/51.69 58.49/49.79 48.06/35.01

Accuracy ↑ on Specific Graph Theory Problems
MiniGPT-4 ♣(Vicuna-7b) 50.67 48.69 0.00 0.00 0.00 5.95 0.00 0.00
BLIP-2 ♣(FlanT5-xxl) 46.63 61.26 0.00 0.00 13.79 0.00 0.00 0.00
InstructBLIP♣ (FlanT5-xl) 48.79 47.12 0.00 0.00 6.90 0.00 0.00 0.00
InstructBLIP♣ (FlanT5-xxl) 48.25 52.88 0.00 0.00 12.07 0.00 0.00 0.00
Llava-v1.5-7b♣ 53.37 47.12 0.00 3.12 1.72 0.00 0.00 0.00
w/ Graph Understanding Data 63.61 ↑ 56.02 ↑ 0.00 0.00 1.72 0.00 0.00 0.00
Llava-v1.5-13b♣ 52.83 47.12 0.00 4.69 3.45 0.00 0.00 0.00
w/ Graph Understanding Data 60.38 ↑ 53.93 ↑ 0.00 0.00 0.00 4.76 ↑ 3.45 ↑ 0.00
Gemini (0-shot) 55.52(14.01) 48.69(6.80) 0.00 0.00 3.45 1.72 0.00 0.00
GPT-4V (0-shot) 38.81(13.74) 49.21(0.52) - 3.12 - - 0.00 -
GPT-4V (2-shot) 54.98(19.13) 52.35(0.52) - 6.25 - - 0.00 -
GPT-4V (0-COT) 30.45(13.20) 50.26(0.00) - 7.69 - - 0.00 -
GPT-4V (2-COT) 54.71(19.40) 52.87(0.52) - 6.25 - - 0.00 -

VisionGraph. Open-source LMMs initially exhibited infe-
rior zero-shot performances, prompting us to fine-tune them
using the VisionGraph training set. This fine-tuning led
to improved results, particularly notable in the Llava-v1.5-
7b/13b models, which outperformed GPT-4V in both node
and edge recognition tasks. However, GPT-4V still excelled
over Gemini in node recognition and demonstrated a lower
error rate in edge recognition, suggesting superior spatial
understanding than Gemini. Additionally, GPT-4V showed
improved edge recognition performance when moving from
a zero-shot to a four-shot setting. Regarding edge recogni-
tion, all LMMs exhibit a notably high error rate, and the
error rate outperforms the right rate. These findings suggest
that while LMMs benefit from continued training on multi-
modal graph problems, enhancing their spatial perception,

there remains significant potential for further improvement.
This may be primarily due to an inferior spatial percep-
tion ability, which will significantly impact the accuracy of
next-step visual reasoning.

4.2. Effects of Supervised Fine-tuning Approaches

After evaluating the visual recognition ability, we further
analyze the graph reasoning accuracy of LMMs and the ef-
fects of supervised fine-tuning approaches. The experimen-
tal results are shown in Table 3. First, we introduce 200k
edge recognition and edge-relevant VQA data as shown
in Figure 3 to enhance the graph understanding capability.
They are constructed by generating the graph according to
random setting nodes, edges, and questions. We observe
that introducing more graph understanding will enhance the

6

Multimodal Graph Theory Problems with Large Multimodal Models

Figure 4. Overview of the prompting approach for GPT-4V (DPR).

edge recognition accuracy, especially in lowering the error
rate. While comparing accuracy on specific graph theory
problems, we find that the data augmentation method sig-
nificantly improves the performance of the model in terms
of Cycle (Llava-v1.5-13b: 60.38 vs. 52.83) and Connectiv-
ity (Llava-v1.5-13b: 53.93 vs. 47.12). Hence, to improve
the multimodal graph reasoning capability of LMMs, we
need to introduce more low-level perception data. In addi-
tion, from Table 3, we observe that the few-shot setting also
improves the graph perception and reasoning accuracy of
GPT-4V, which also indicates that introducing more data to
improve LMMs is effective. This may be attributed to the
long-tail distribution of training data in LMMs.

5. Improving Multi-step Reasoning Capability
of LMMs

This section mainly introduces and evaluates the Multimodal
Graph Agent approach: Description Program Reasoning
(DPR), designed for multimodal graph theory challenges.

5.1. Description Program Reasoning

To improve the performance of GPT-4V on multi-
modal graph theory problems, inspired by LLMs-powered
Agents (Wang et al., 2023b; Qin et al., 2024; Yao et al.,
2023), we devise a multimodal graph problem-solving ap-
proach: Description-Program-Reasoning (DPR), which is
a natural language and code interleaved reasoning chain.
Specifically, we first use the Llava-7b augmented by the

Figure 5. An Illustration of the designed GPT-4V (DPR) Agent.

graph understanding data to produce high-quality graph
explanations, which are fed into GPT-4V to enhance the
graphical structure understanding. As the process shown in
Figure 4, we prompt GPT-4V to answer the specific graph
problems based on the visual graph and its descriptions:

• Create the Adjacency Matrix of the graph according to
the visual graph and its description generated by small
models. We require the adjacency matrix to be given
in the form of triples, i.e., (node1, node2, weight) for
directed graphs and (node1, node2) for undirected graphs.

• Select the appropriate graph theory algorithm and gener-
ate the corresponding codes. This step aims to generate
codes used for performing multi-step reasoning on the
visual graph.

• Perform multi-step reasoning based on the Adjacency
Matrix and generated codes. We can also use an exter-
nal Python interpreter to perform multi-step reasoning,
enhancing the overall performance.

• Give the final answer in the demanding format.

Hence, GPT-4V with DPR is a comprehensive multi-modal
Agent that integrates complex task decomposition, small
model enhancement, code generation, and tool invocation.
We illustrate the proposed DPR in Figure 4 and 5. In the
following, we employ the DPR prompting and evaluate it
on three representative tasks in the VisionGraph benchmark
with varying difficulties.

5.2. Results and Analysis

Ablation Study. Table 4 shows all LMMs’ performances
on Connectivity, Cycle, and Shortest Path with varying com-
plexity. Since Llava can not follow instructions (shown in

7

Multimodal Graph Theory Problems with Large Multimodal Models

Table 4. Model performance on three common graph theory problems in VisionGraph. ♣ refers to that the corresponding model is trained
using the training set of VisionGraph. “w/ Python” shows using external Python interpretation to run algorithms and return final answers.

Task Types → Connectivity ↑ Cycle ↑ Shortest Path ↑
Model↓ Easy Medium Hard Avg. Easy Medium Hard Avg. Easy Hard Avg.
MiniGPT-4 ♣(Vicuna-7b) 60.71 53.57 52.94 54.45 36.00 51.40 59.32 51.83 0.00 0.00 0.00
BLIP-2 ♣(FlanT5-xxl) 37.50 43.37 56.30 46.63 88.00 63.55 45.76 61.26 0.00 0.00 0.00
InstructBLIP♣ (FlanT5-xl) 46.43 46.43 53.78 48.79 36.00 50.47 45.76 47.12 0.00 0.00 0.00
Sphinx 39.29 45.41 52.1 46.63 64.00 49.53 54.24 52.88 6.90 0.00 3.12
Sphinx♣ w/ DPR 67.86 59.69 52.94 58.76 64.00 49.53 54.24 52.88 13.78 0.00 6.25
Internlm♣ 78.57 66.33 52.10 52.94 52.00 55.14 59.32 56.02 0.00 0.00 0.00
Internlm♣ w/ DPR 89.29 72.96 56.30 70.08 44.00 57.01 64.41 57.59 0.00 0.00 0.00
Llava-v1.5-7b♣ 64.29 50.00 53.78 53.27 36.00 50.47 45.76 47.12 6.90 0.00 3.12
w/ Graph Understanding Data 89.29 64.80 49.58 63.61 68.00 53.27 55.93 56.02 0.00 0.00 0.00
w/ DPR 80.36 68.37 48.74 63.88 ↑ 68.00 51.40 55.93 54.97 0.00 0.00 0.00
Llava-v1.5-13b♣ 71.43 49.49 49.58 52.83 36.00 50.47 45.76 47.12 10.34 0.00 4.69
w/ Graph Understanding Data 78.57 62.76 47.90 60.38 64.00 51.40 54.24 53.93 0.00 0.00 0.00
w/ DPR 83.93 70.92 50.42 66.31 ↑ 60.00 64.49 55.93 61.26 ↑ 0.00 0.00 0.00
Gemini (0-shot) 69.64(39.29) 56.63(13.78) 47.06(2.52) 55.52(14.01) 60.00(0.00) 47.66(4.67) 45.76(13.56) 48.69(6.80) 0.00 0.00 0.00
Gemini (DPR) 66.07(57.14) 52.04(27.04) 36.97(5.88) 49.32(24.79) 76.00(16.00) 27.10(5.61) 22.03(0.00) 31.93(5.23) 0.00 0.00 0.00
Qwen-plus 62.50(19.64) 56.63(9.69) 47.06(3.36) 54.45(9.16) 64.00(0.00) 49.53(0.00) 54.24(0.00) 52.88(0.00) 0.00 0.00 0.00
Qwen-plus w/ DPR 57.14(1.79) 46.43(4.08) 35.29(5.88) 44.47(4.31) 64.00(16.00) 56.07(22.43) 52.54(20.34) 56.02(20.94) 6.90 0.00 3.12
Qwen-max 62.50(16.07) 56.63(3.06) 46.22(0.84) 54.18(4.31) 64.00(16.00) 49.53(0.00) 54.24(0.00) 52.88(0.00) 0.00 0.00 0.00
Qwen-max w/ DPR 60.71(12.50) 51.02(12.24) 27.73(6.72) 45.01(10.51) 64.00(16.00) 52.34(10.28) 50.85(1.69) 53.40(8.38) 20.69 2.86 10.93
GPT-4V (0-shot) 69.64(46.43) 42.86(12.76) 17.65(0.00) 38.81(13.74) 60.00(4.00) 48.60(0.00) 45.76(0.00) 49.21(0.52) 6.90 0.00 3.12
GPT-4V (2-shot) 67.86(42.86) 56.12(18.88) 47.06(8.40) 54.98(19.13) 64.00(4.00) 48.60(0.00) 54.24(0.00) 52.35(0.52) 13.79 0.00 6.25
GPT-4V (0-COT) 64.29(37.50) 34.69(13.78) 7.56(0.84) 30.45(13.20) 64.00(0.00) 47.66(0.00) 49.15(0.00) 50.26(0.00) 17.24 0.00 7.69
GPT-4V (2-COT) 67.86(44.64) 56.63(22.96) 45.38(1.68) 54.71(19.40) 64.00(4.00) 49.53(0.00) 54.24(0.00) 52.87(0.52) 13.79 0.00 6.25
GPT-4V (DPR) 92.86(89.29) 58.67(44.90) 36.97(16.81) 56.87(42.58) 76.00(52.00) 48.60(15.89) 45.76(1.69) 51.30(16.23) 24.14 2.86 12.50
w/ Python 92.86(91.07) 61.73(53.06) 51.26(35.29) 63.07(53.09) ↑ 88.00(72.00) 61.68(34.58) 55.93(20.34) 63.35(35.07) ↑ 31.03 11.43 20.31 ↑

Figure 4) to generate the detailed reasoning process, we
apply DPR to Llava by adding the results of edge recogni-
tion to the conversation history so that its graph description
can be attention when answering the graph theory ques-
tion. The whole process could be simplified as “Description-
Reasoning”. We observe that DPR significantly improves
the multi-step reasoning capabilities of LMMs and performs
better on more complex Shortest Paths. For GPT-4V, DPR
equipped with the Python tool exceeds its 2-shot perfor-
mance: gain by 8%, 10%, and 14% on Connectivity, Cycle,
and Shortest Path, respectively. It indicates DPR shows its
superiority in complex multi-step graph reasoning. How-
ever, we also observe that GPT-4V and Gemini gain a low
performance on hard graph theory problems (nodes > 20
or nodes > 11 on Shortest Path). Especially on the Short-
est Path, many LMMs are not capable of solving this task,
such as 0.0 for Llava-v1.5-7b/13b and Gemini. Overall,
we demonstrate that: 1) The natural language and code
interactive reasoning chain enhances complex multi-modal
reasoning capabilities of LMMs. 2) The limited graph per-
ception inherent in LMMs results in their poor performance
in multi-step reasoning on the visual graph; 3) GPT-4V
exhibits superior multi-step graph reasoning abilities com-
pared to Gemini.

Case Study. We report a representative case in Figure 6 to
analyze the performance of LMMs. Gemini Pro and GPT-
4V made the correct assessment “There is a path between
node 3 and node 1.” More various cases (Five cases shown

Figure 6. A case (Connectivity) illustrates results generated by
different models. Red and green words are incorrect and correct
contents, respectively.

8

Multimodal Graph Theory Problems with Large Multimodal Models

in Figures 7-11) are shown in Appendix. However, when
asked to specify the correct path, only GPT-4V (DPR) pro-
vided an accurate answer. The other samples erroneously
constructed paths using edges that do not exist in the graph.
This may be attributed to the fact that most LMMs have rel-
atively weaker graph recognition capabilities. We suggest
supplementing these models with highly accurate graphical
interpretation information (in this case, the edge information
provided had an accuracy rate of 81.81%) could compensate
for GPT-4V’s shortcomings of graph recognition. Addition-
ally, GPT-4V shows proficiency in accurately completing
tasks involving the selection of algorithms for specific graph
theory problems and utilizing the algorithm for reasoning
analysis. To conclude, the proposed DPR can assist GPT-4V
in maximizing its inherent strengths and effectively mitigat-
ing its weaknesses in graph theory problems.

6. Conclusion
In this study, we delved into the capabilities of large mul-
timodal models (LMMs) in addressing multimodal graph
theory challenges. Initially, we developed the VisionGraph
benchmark, tailored for evaluating LMMs. This bench-
mark not only encompasses node and edge identification
tasks to gauge the graphical comprehension of LMMs but
also incorporates eight distinct graph theory problems to
test their multi-step reasoning abilities. Subsequently, we
conducted a comprehensive analysis of various LMMs, in-
cluding GPT-4V and Gemini, using VisionGraph. This
analysis focused on two key aspects: the understanding of
graphical structures and the impact of supervised fine-tuning
methods. Furthermore, we introduced a multimodal graph
theory-oriented Agent, named Description Programming
Reasoning (DPR). DPR is uniquely designed to integrate
intricate task decomposition, perception enhancement at-
tuned to smaller models, advanced code generation, and
the utilization of external tools. Through experimental eval-
uations, it has been demonstrated that DPR significantly
enhances the performance of LMMs on multimodal graph
theory tasks.

7. Acknowledge
Thanks for the efforts from reviewers and action editors.
This work is supported by grants: Natural Science Founda-
tion of China (No. 62376067).

Impact Statement
Our paper mainly presents a multimodal graph theory prob-
lem benchmark named VisionGraph to check the multi-
modal planning performance of LMMs. We also introduce
a corresponding multimodal agent to handle such complex
visual maths. This research marks a significant contribution

to several fields: it advances the spatial perception capabili-
ties of Large Multimodal Models, propels the frontiers of
Visual Intelligence in areas such as visual math and robotics
planning, supports the application of AI in scientific endeav-
ors, particularly in Mathematics, and offers insights into
Strategy Optimization for industrial applications.

Ethical Considerations:

• Data Source and Tools. The foundational data for
our benchmark originates from publicly accessible text
datasets, explicitly designated for academic research
purposes. This ensures compliance with data usage
norms and ethical standards in academic contexts. Ad-
ditionally, the methodology employed for data con-
struction exclusively utilizes open-source graph con-
struction tools. Emphasizing transparency and commu-
nity engagement, we commit to making our benchmark
openly available, facilitating further research and vali-
dation by the academic community.

• Model Usage and Bias Acknowledgement. Our re-
search incorporates the use of two commercial LMMs:
GPT-4V and Gemini Pro. It’s crucial to acknowledge
that the content generated by these models may inher-
ently carry biases. This is a reflection of the models’
training datasets and algorithms, rather than a deliber-
ate design choice. Recognizing this, we approach our
findings with a critical perspective and urge users to
consider potential biases when interpreting the results.

References
Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M.,

Sünderhauf, N., Reid, I., Gould, S., and Van Den Hengel,
A. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3674–3683, 2018.

Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin, J.,
Zhou, C., and Zhou, J. Qwen-vl: A frontier large vision-
language model with versatile abilities. arXiv preprint
arXiv:2308.12966, 2023.

Chen, Q., Pitawela, D., Zhao, C., Zhou, G., Chen, H.-T.,
and Wu, Q. Webvln: Vision-and-language navigation
on websites. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pp. 1165–1173, 2024.

Dai, S.-C., Xiong, A., and Ku, L.-W. Llm-in-the-loop:
Leveraging large language model for thematic analysis.
arXiv preprint arXiv:2310.15100, 2023.

Ektefaie, Y., Dasoulas, G., Noori, A., Farhat, M., and Zitnik,
M. Geometric multimodal representation learning. arXiv
preprint arXiv:2209.03299, 2022.

9

Multimodal Graph Theory Problems with Large Multimodal Models

Gu, J., Stefani, E., Wu, Q., Thomason, J., and Wang,
X. E. Vision-and-language navigation: A survey of
tasks, methods, and future directions. arXiv preprint
arXiv:2203.12667, 2022.

Imani, S., Du, L., and Shrivastava, H. Mathprompter: Math-
ematical reasoning using large language models. arXiv
preprint arXiv:2303.05398, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders
and large language models. ICML, 2023a.

Li, Y., Hu, B., Chen, X., Ma, L., and Zhang, M. Lmeye: An
interactive perception network for large language models.
arXiv preprint arXiv:2305.03701, 2023b.

Li, Y., Liu, Y., Wang, Z., Liang, X., Liu, L., Wang, L., Cui,
L., Tu, Z., Wang, L., and Zhou, L. A comprehensive study
of gpt-4v’s multimodal capabilities in medical imaging.
medRxiv, pp. 2023–11, 2023c.

Li, Y., Wang, L., Hu, B., Chen, X., Zhong, W., Lyu, C.,
and Zhang, M. A comprehensive evaluation of gpt-4v on
knowledge-intensive visual question answering. arXiv
preprint arXiv:2311.07536, 2023d.

Lin, Z., Liu, C., Zhang, R., Gao, P., Qiu, L., Xiao, H., Qiu,
H., Lin, C., Shao, W., Chen, K., et al. Sphinx: The
joint mixing of weights, tasks, and visual embeddings
for multi-modal large language models. arXiv preprint
arXiv:2311.07575, 2023.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction
tuning. NeurIPS, 2023.

Lu, P., Bansal, H., Xia, T., Liu, J., Li, C., Hajishirzi,
H., Cheng, H., Chang, K.-W., Galley, M., and Gao,
J. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint
arXiv:2310.02255, 2023.

Luo, H., Sun, Q., Xu, C., Zhao, P., Lou, J., Tao, C.,
Geng, X., Lin, Q., Chen, S., and Zhang, D. Wizard-
math: Empowering mathematical reasoning for large lan-
guage models via reinforced evol-instruct. arXiv preprint
arXiv:2308.09583, 2023.

OpenAI. Gpt-4 technical report.
https://arxiv.org/abs/2303.08774, 2023.

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., Lin, Y.,
Cong, X., Tang, X., Qian, B., et al. Toolllm: Facilitating
large language models to master 16000+ real-world apis.
ICLR, 2024.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Wake, N., Kanehira, A., Sasabuchi, K., Takamatsu, J., and
Ikeuchi, K. Gpt-4v (ision) for robotics: Multimodal
task planning from human demonstration. arXiv preprint
arXiv:2311.12015, 2023.

Wang, H., Feng, S., He, T., Tan, Z., Han, X., and Tsvetkov,
Y. Can language models solve graph problems in natural
language? NeurIPS, 2023a.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J.,
Chen, Z., Tang, J., Chen, X., Lin, Y., et al. A survey on
large language model based autonomous agents. arXiv
preprint arXiv:2308.11432, 2023b.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language model with self generated instructions, 2022.

Wen, L., Yang, X., Fu, D., Wang, X., Cai, P., Li, X., Ma, T.,
Li, Y., Xu, L., Shang, D., et al. On the road with gpt-4v
(ision): Early explorations of visual-language model on
autonomous driving. arXiv preprint arXiv:2311.05332,
2023.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. ICLR, 2023.

Zhang, C. E., Collins, K. M., Weller, A., and Tenenbaum,
J. B. Ai for mathematics: A cognitive science perspective.
arXiv preprint arXiv:2310.13021, 2023a.

Zhang, P., Wang, X. D. B., Cao, Y., Xu, C., Ouyang, L.,
Zhao, Z., Ding, S., Zhang, S., Duan, H., Yan, H., et al.
Internlm-xcomposer: A vision-language large model for
advanced text-image comprehension and composition.
arXiv preprint arXiv:2309.15112, 2023b.

Zhu, D., Chen, J., Shen, X., Li, X., and Elhoseiny, M.
Minigpt-4: Enhancing vision-language understanding
with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

10

Multimodal Graph Theory Problems with Large Multimodal Models

A. Limitations
Our work also contains some main limitations:

• Data Distribution Imbalance of VisionGraph. In our benchmark, we have included eight distinct types of multimodal
graph theory problems. One of the primary challenges we encountered was the inherent difficulty in constructing diverse
instances for these different types of graph theory problems. This has resulted in an uneven distribution of training and
testing datasets across the various problem types. Despite this imbalance, concerted efforts were made to ensure the
dataset’s diversity and to cover four types of graphs, aiming for a comprehensive evaluation of LMMS’ capabilities in
solving graph theory problems. Moreover, our experiments indicated that augmenting the volume of training data can
substantially enhance the models’ spatial understanding of graphs. Future research could focus on developing more
balanced datasets to further validate and extend our conclusions.

• Visual Graph Construction. To maintain legibility, we’ve set a cap on the number of nodes in undirected graphs at 25
and directed graphs at 20 during data augmentation. This restriction means our dataset doesn’t encompass more complex
graph structures, potentially leading to a trained model that can not recognize intricate graphs. Additionally, all nodes and
edges in these graphs are randomly generated, which could result in a few duplicate graphs within the dataset, yet the
questions are different.

• Model Updates and Reproducibility. When the parameters of the GPT-4V and Gemini models change, current
evaluations might become outdated or imprecise. To address this, our paper focuses on ensuring the reproducibility of
findings: 1) We will provide all LMMs outputs under various prompt settings, allowing reliable replication and validation
of our results. 2) We will release the codes and benchmarks used for research in the community.

11

Multimodal Graph Theory Problems with Large Multimodal Models

B. More Cases and Detailed Prompting Technical

Figure 7. A case (Shortest Path) illustrates results generated by different models. Red and green words are incorrect and correct contents,
respectively.

12

Multimodal Graph Theory Problems with Large Multimodal Models

Types Specific Output Demands
Connect Q2:

{specific answer format requirements}: Please use tuples to represent the edges in the graph. Each tuple
should consist of two nodes that are connected by an undirected edge.
Q3:
{the concrete problem}: Is there a path between node a and node b in the graph?
{specific answer format requirements}: If there is a path between node a and node b, conclude your answer
with ’Yes, there is a path between node a and node b. The path is... ’, and provide the specific nodes involved
in the path in sequence. If no path exists, please conclude with ’No, there is no path between node a and
node b.’

Cycle Q2:
{specific answer format requirements}: Please use tuples to represent the edges in the graph. Each tuple
should consist of two nodes that are connected by an undirected edge.
Q3:
{the concrete problem}: Is there a cycle in the graph?
{specific answer format requirements}: If there is a cycle, conclude your answer with ’Yes, there is a cycle
in the graph. The cycle is... ’, and provide the specific nodes involved in the cycle in sequence. If no cycle
exists, please conclude with ’No, there is no cycle in the graph.’

Topo. Sort Q2:
{specific answer format requirements}: Please use tuples to represent the edges in the graph. Each tuple
should consist of two nodes representing a directed edge, with the first node being the source and the second
node being the destination.
Q3:
{the concrete problem}: Can all the nodes be visited? Give the solution.

Shortest Path Q2:
{specific answer format requirements}: Please use tuples to represent the edges in the graph. Each tuple
should consist of three elements: (node1, node2, weight), where ’node1’ and ’node2’ are the nodes connected
by an edge, and ’weight’ is the numerical value associated with the undirected edge.
Q3:
{the concrete problem}: Give the shortest path from node a to node b in the graph and the final answer
contains the path and total weights.
{specific answer format requirements}: Please conclude your answer with a clear statement summarizing
the path and its total weight, for example, ’In conclusion, the shortest path from node a to node b is... with a
total weight of...’.

Max. Flow Q2:
{specific answer format requirements}: Please use tuples to represent the edges in the graph. Each tuple
should consist of three elements: ¡source, destination, weight¿, where ’source’ is the source node, ’destination’
is the destination node, and ’weight’ is the numerical value associated with the directed edge.
Q3:
{the concrete problem}: What is the maximum flow from node a to node b?

Bipartite Graph Q2:
{specific answer format requirements}: Please use tuples to represent the edges in the graph. Each tuple
should consist of two nodes that are connected by an undirected edge.
Q3:
{the concrete problem}: Find an assignment of jobs to applicants in such that the maximum number of
applicants find the job they are interested in.

Hamilton Path Q2:
{specific answer format requirements}: Please use tuples to represent the edges in the graph. Each tuple
should consist of two nodes that are connected by an undirected edge.
Q3:
{the concrete problem}: Is there a path in this graph that visits every node exactly once?
{specific answer format requirements}: If there is a Hamilton path, conclude your answer with ”Yes, there is
a Hamilton path in the graph. The Hamilton path is” If no Hamilton path exits, please conclude with
”No, there is no Hamilton path in the graph.”

GNNs Q2:
{specific answer format requirements}: Please use tuples to represent the edges in the graph. Each tuple
should consist of two nodes that are connected by an undirected edge.
Q3:
{the concrete problem}: Each node is initially assigned an embedding vector in the graph, and the embedding
will be updated by the sum of its neighbors’ embeddings in a simple graph convolution layer. What’s the
embedding of each node after one layer of simple graph convolution layer?

ALL {Few-shot preffix}: The first URL refers to the first image and the second URL refers to the second image.
Following the N in-context examples shown in the first composite image, answer the following question for
the second image.

Table 5. The explanation of specific output demands used in our prompts. Note: Q2 is about edge identification, while Q3 is about specific
graph theory problems.

13

Multimodal Graph Theory Problems with Large Multimodal Models

Question: Is there a path between node 5 and node 3? If yes, give the path.
LLaVA-7B(0-shot): The answer is no.
LLaVA-7B(DPR): The answer is yes.
SPHINX-Tiny-1k(0-shot): The answer is no, there is no path between node 5 and node 3.
SPHINX-Tiny-1k(DPR): Yes, there is a path between node 5 and node 3. The path is: 0,18,19,16,3,14,3,1
1,15,8,13,6,17,4,7,10,2,12,1
InternLM-XComposer2-VL(0-shot): Yes, there is a path between node 5 and node 3. The path is
5,17,11,6,4,20,19,1,15,12,8,18,13,16,3.
InternLM-XComposer2-VL(DPR): Yes, there is a path between node 5 and node 3. The path is 5,11,3.
Qwen-plus(0-shot): Yes, there is a path between node 5 and node 3. The path is 5 -> 14 -> 20 -> 7 -> 3.
Qwen-max(0-shot): Yes, there is a path between node 5 and node 3. The path is 5-0-16-9-4-20-18-17-13-3.
Gemini (0-shot): Yes, there is a path between node 5 and node 3. The path is 5, 17, 0, 3.
GPT-4V (0-shot): I'm sorry, I cannot provide assistance with that request.
GPT-4V (2-shot+COT): Yes, there is a path between node 5 and node 3. The path is 5, 17, 0, 13, 3.
GPT-4V (DPR):
1.The edges of the graph are represented as tuples: (0, 17), (2, 7), (2, 16), (3, 11), (4, 11), (4, 18), (5, 17), (6, 11),
(6, 15), (7, 11), (7, 18), (8, 12), (8, 19), (11, 17), (12, 19), (13, 20), (16, 17), (19, 20).
2.The algorithm and corresponding codes are: One simple algorithm we can use for finding a path between two
nodes in an undirected graph is Depth-First Search (DFS). Here's the corresponding Python code to achieve this:
```python
def dfs(graph, start, end, path=[]):

path = path + [start]
if start == end:

return path
if start not in graph:

return None
for node in graph[start]:

if node not in path:
newpath = dfs(graph, node, end, path)
if newpath:

return newpath
return None

graph = {0: [17], 2: [7, 16], 3: [11], 4: [11, 18], 5: [17], 6: [11, 15], 7: [2, 11, 18], 8: [12, 19], 11: [3, 4, 6, 7, 17], 12:
[8, 19], 13: [20], 16: [2, 17], 17: [0, 5, 11, 16], 19: [8, 12, 20], 20: [13, 19]}
start_node = 5
end_node = 3
print(dfs(graph, start_node, end_node))
```
3.The process of multi-step reasoning is as follows:
The neighboring nodes to node 5 are node 17.
The neighboring nodes to node 17 are nodes 0, 11, and 16.
The neighboring nodes to node 11 are nodes 3, 4, 6, 7, and 17.
Node 3 is found as a neighboring node to node 11, thus a path exists.
4.Yes, there is a path between node 5 and node 3. The path is 5-17-11-3.

Figure 8. A case (Connectivity) illustrates results generated by different models. Red and green words are incorrect and correct contents,
respectively.

14

Multimodal Graph Theory Problems with Large Multimodal Models

Question: Is there a cycle in the graph?
LLaVA-7B(0-shot): No, there is no cycle in the graph.
LLaVA-7B(DPR): Yes, there is a cycle in the graph.
SPHINX-Tiny-1k(0-shot): Yes, there is a cycle in this graph. The cycle is 0,1,2,4,11,5,6,3,8,9,7,10,12,10,13
SPHINX-Tiny-1k(DPR): Yes, there is a cycle in this graph. The cycle is 0,12,8,10,9,5,6,5,11,3,4,2,1
InternLM-XComposer2-VL(0-shot): No, there is no cycle in the graph.
InternLM-XComposer2-VL(DPR): No, there is no cycle in the graph.
Qwen-plus(0-shot): Yes, there is a cycle in the graph. The cycle is 0-3-10-8-0.
Qwen-max(0-shot): Yes, there is a cycle in the graph. The cycle is 0-6-7-9-5-4-8-3-2-0.
Gemini (0-shot): Yes, there is a cycle in the graph. The cycle is 3, 10, 8, 4, 1, 6, 2, 0, 11, 3.
GPT-4V (0-shot): Yes, there is a cycle in the graph. The cycle is 1-4-5-8-10-3-1.
GPT-4V (2-shot+COT): Yes, there is a cycle in the graph. The cycle is 0,11,3,10,8,4,1,0.
GPT-4V (DPR):
1.Graph Edges Identification: The provided edges from the tuples are as follows: (0, 2), (0, 4), (0, 6), (0, 8), (1, 5),
(2, 6), (3, 5), (3, 11), (4, 6), (4, 10), (5, 9), (6, 12), (7, 9)
2.Algorithm Selection and Code Generation: To detect a cycle in the graph, we can use either Depth First Search
(DFS) or Breadth First Search (BFS). Here we'll choose DFS for its straightforward approach in cycle detection in
an undirected graph.
```python
graph = {0: [2, 4, 6, 8], 1: [5], 2: [0, 6], 3: [5, 11], 4: [0, 6, 10],
5: [1, 9], 6: [0, 2, 4, 12], 7: [9], 8: [0],
9: [5, 7], 10: [4], 11: [3], 12: [6]}
def dfs(node, visited, parent):

visited[node] = True
for neighbor in graph[node]:

if not visited[neighbor] and dfs(neighbor, visited, node)
or parent != neighbor:

return True
return False

def detect_cycle(graph):
visited = {i: False for i in graph}
return any(not visited[node] and dfs(node, visited, -1) for

node in graph)
cycle_exists = detect_cycle(graph)
```
3.Multi-Step Reasoning Process:
Initialize a `visited` dictionary to keep track of visited nodes.
Iterate over all the nodes in the graph.
If a node has not been visited, call the `dfs` function on it, marking it as visited.
In the `dfs` function, iterate over the neighbors of the current node.
If a neighbor has not been visited, recursively call `dfs` on it.
If a neighbor has been visited and it's not the parent of the current node, we have found a cycle.
If no cycle is found in any of the dfs traversals, then the graph does not contain a cycle.
4.Final Answer: Yes, there is a cycle in the graph. The cycle is 0-2-6-4-0.

Figure 9. A case (Cycle) illustrates results generated by different models. Red and green words are incorrect and correct contents,
respectively.

15

Multimodal Graph Theory Problems with Large Multimodal Models

Question: Is there a cycle in the graph?
LLaVA-7B(0-shot): No, there is no cycle in the graph.
LLaVA-7B(DPR): Yes, there is a cycle in the graph.
SPHINX-Tiny-1k(0-shot): Yes, there is a cycle in this graph. The cycle is 0,4,1,6,8,2,5,7,3,9,10
SPHINX-Tiny-1k(DPR): Yes, there is a cycle in this graph. The cycle is 0,1,3,10,5,9,6,2,7,4,8
InternLM-XComposer2-VL(0-shot): No, there is no cycle in the graph.
InternLM-XComposer2-VL(DPR): No, there is no cycle in the graph.
Qwen-plus(0-shot): Yes, there is a cycle in the graph. The cycle is 0-3-2-6-9-7-10-5-8-4-1-0.
Qwen-max(0-shot): Yes, there is a cycle in the graph. The cycle is 0 -> 3 -> 2 -> 1 -> 6 -> 4 -> 5 -> 8 -> 7 -> 9 -> 0.
Gemini (0-shot): Yes, there is a cycle in the graph. The cycle is 4->1->6->4.
GPT-4V (0-shot): Yes, there is a cycle in the graph. The cycle is 1-4-6-1.
GPT-4V (2-shot+COT): Yes, there is a cycle in the graph. The cycle is 0,2,3,0.
GPT-4V (DPR):
1.Graph Edges Identification: Based on the provided image of the graph, we can identify the edges as follows: (0,
1), (0, 2), (0, 3), (1, 8), (1, 10), (2, 4), (3, 2), (4, 7), (4, 8), (5, 6), (7, 10), (10, 8).
2.Algorithm Selection and Code Generation: To check for the presence of a cycle in a graph, we will use
Depth-First Search (DFS). DFS is an algorithm that starts at the root (selecting some node as the root in the graph)
and explores as far as possible along each branch before backtracking. Here is pseudocode for detecting a cycle
using DFS:
```
def DFS(node, visited, parent):

visited[node] = True
for neighbor in graph[node]:

if not visited[neighbor]:
if DFS(neighbor, visited, node):

return True
elif neighbor != parent:

return True
return False

def has_cycle(number_of_nodes):
visited = [False] * number_of_nodes
for node in range(number_of_nodes):

if not visited[node]:
if DFS(node, visited, -1):

return True
return False

```
3.Multi-Step Reasoning Process:
We initialize a `visited` array to keep track of the nodes that have been explored.
We start DFS from any unvisited node (let's say node 0). Each node we visit will be marked as `visited`.
DFS will recurse into unvisited neighbors.
If we encounter a visited node that is not the parent of the current node, it indicates a cycle.
We continue this process for all nodes.
Applying this logic to the graph and noting the edges identified in step 1, we can see that there are multiple
cycles, for example, (0-1-8-4-2-0) or (1-8-10-7-4-2-0-1).
4.Final Answer: Yes, there is a cycle in the graph. The cycle is 0-1-8-4-2-0.

Figure 10. A case (Cycle) illustrates results generated by different models. Red and green words are incorrect and correct contents,
respectively.

16

Multimodal Graph Theory Problems with Large Multimodal Models

Question: Give the shortest path from node 4 to node 0.
LLaVA-7B(0-shot): The shortest path from node 4 to node 0 is 4,5,0 with a total weight of 5.
LLaVA-7B(DPR): The shortest path from node 4 to node 0 is 4,5,0 with a total weight of 2.
SPHINX-Tiny-1k(0-shot): The shortest path from node 4 to node 0 is 4,1,0 with a total weight of 4,1,0
SPHINX-Tiny-1k(DPR): The shortest path from node 4 to node 0 is 4,5,0 with a total weight of 5
InternLM-XComposer2-VL(0-shot): The shortest path from node 4 to node 0 is 4,5,0 with a total weight of 6.
InternLM-XComposer2-VL(DPR): In conclusion, the shortest path from node 4 to node 0 is 4,2,5,0 with a total weight of 6.
Qwen-plus(0-shot): To find the shortest path from node 4 to node 0, we can use Dijkstra's algorithm or any other shortest path
algorithm. The shortest path from node 4 to node 0 is 4 -> 5 -> 6 -> 2 -> 3 -> 1 -> 0 with a total weight of 7. In conclusion, the
shortest path from node 4 to node 0 is 4 -> 5 -> 6 -> 2 -> 3 -> 1 -> 0 with a total weight of 7.
Qwen-max(0-shot): To find the shortest path from node 4 to node 0, we can use Dijkstra's algorithm or simply analyze the graph: 1.
From node 4, there's an edge to node 5 with weight 4. 2. From node 5, there's an edge to node 6 with weight 3. 3. From node 6,
there's an edge to node 0 with weight 1. So the shortest path from node 4 to node 0 is: 4 -> 5 -> 6 -> 0 The total weight of this path
is: 4 (from 4 to 5) + 3 (from 5 to 6) + 1 (from 6 to 0) = 8 In conclusion, the shortest path from node 4 to node 0 is 4 -> 5 -> 6 -> 0 with
a total weight of 8.
Gemini(0-shot): The shortest path from node 4 to node 0 is 4->5->1->0 with a total weight of 8.
GPT-4V(0-shot): To find the shortest path from node 4 to node 0, we will look for the path with the least total weight: Starting from
node 4, we can go to node 3 with a weight of 3. From node 3, we can go to node 2 with a weight of 3. From node 2, we can go to
node 1 with a weight of 3. Finally, from node 1, we can go to node 0 with a weight of 1. Adding the weights together: 3 (from 4 to 3)
+ 3 (from 3 to 2) + 3 (from 2 to 1) + 1 (from 1 to 0) equals 10. In conclusion, the shortest path from node 4 to node 0 is 4-3-2-1-0
with a total weight of 10.
GPT-4V(2-shot+COT): To find the shortest path from node 4 to node 0 in the second image, we analyze the graph and weigh the
options for the shortest route. Starting from node 4, we can move directly to various nodes connected to it, which are nodes 3, 5,
and 6. From node 4 to node 3, the weight is 3. From node 4 to node 5, the weight is 4. From node 4 to node 6, the weight is 1. The
least weight is towards node 6, so we choose that path first. From node 6, we have two direct paths to consider: From node 6 to
node 0, the weight is 1. From node 6 to node 1, the weight is 1. Since our goal is to reach node 0 with the shortest path, we take the
direct path from 6 to 0. Adding the weight from node 4 to node 6 (1) with the weight from node 6 to node 0 (1), we get a total
weight of 2. In conclusion, the shortest path from node 4 to node 0 is 4,6,0 with a total weight of 2.
GPT-4V(DPR):
1. Graph Edges Identification: Based on the image provided, the edges of the graph can be represented as tuples: (0, 1, 1), (0, 5, 1),
(1, 2, 3), (1, 5, 3), (1, 6, 4), (2, 4, 2), (2, 5, 2), (3, 5, 3), (4, 5, 4).
2. Algorithm Selection and Code Generation: For finding the shortest path in a graph like this, the Dijkstra algorithm is a good choice
because it's designed for graphs with non-negative edge weights and can handle both directed and undirected graphs. Here is the
Python code implementing Dijkstra's algorithm:
def dijkstra(edges, start, end):

graph = create_graph(edges)
queue, visited = [(0, start, ())], set()
while queue:

cost, node, path = heapq.heappop(queue)
if node not in visited:

visited.add(node)
path = (node, path)
if node == end: return (cost, path)
for neighbor, edge_cost in graph.get(node, ()):

if neighbor not in visited: heapq.heappush(queue, (cost +
edge_cost, neighbor, path))

return float("inf"), []
start, end = 4, 0
cost, path = dijkstra(edges, start, end)
path_list = []
while path: node, path = path; path_list.append(node)
print(f"The shortest path from node {start} to node {end} is {list(reversed(path_list))} with a total weight of {cost}.")
3. Multi-Step Reasoning Process: A graph representation is constructed from the tuple edges given. We use Dijkstra's algorithm
starting at node 4 and looking for the shortest path to node 0. The algorithm expands paths from the start node in the order of their
current total weights (cost), favoring paths with lower weight. It continues this process until it reaches the destination node (node
0), ensuring that the path is the shortest. The path and total cost are stored and returned once we reach the destination.
4. Final Answer: The shortest path from node 4 to node 0 is 4-5-0 with a total weight of 5.

Figure 11. A case (Shortest Path) illustrates results generated by different models. Red and green words are incorrect and correct contents,
respectively.

17

