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Abstract

Complex logical reasoning over large-scale
knowledge graphs (KGs) is a fundamental yet
challenging task. Current approaches mainly
focus on embedding logical queries as well
as KG entities into the same vector space and
retrieving answers based on similarity match-
ing. However, the incompleteness issue of KGs
severely hinders the effectiveness of previous
studies. To tackle the challenging knowledge
deficiency problem, we propose to leverage
language models as the additional knowledge
reasoner and design a unified framework to
integrate knowledge graph reasoning and natu-
ral language reasoning by harnessing box em-
beddings of reasoning trajectory as the chain-
of-box and fusing it into the language model
to empower the capability of logical reason-
ing. Extensive experiments on two standard
benchmark datasets demonstrate that our model
COB-LM significantly improves over state-of-
the-art methods.

1 Introduction

Knowledge graphs (KGs) have emerged as the
prevailing manner for organizing and managing
knowledge, and have been extensively embraced as
foundational components in practical applications,
including search engines (Reinanda et al., 2020),
professional networking platforms (Shinavier et al.,
2019), and query answering (Saxena et al., 2020).

Apart from the conventional KG completion
(Yang et al., 2014; Sun et al., 2018), in recent years,
there has been a notable surge in the prominence
of logical reasoning over KGs, which involves a
diverse class of logical queries, particularly Exis-
tential Positive First-Order (EPFO) queries (Dalvi
and Suciu, 2007) and entails answering logical
queries based on a given KG. These queries con-
sist of operators such as existential quantification
(3), conjunction (A), and disjunction (V). Tak-
ing a logical query "V7.3V : Invest(V7,V) A

Founder(OpenAI, V)" as an example, as shown
in Figure 1(a), this query involves multi-hop rea-
soning in a KG with logical operators (e.g., A, V)
and refers to the question "What companies have
the OpenAl founders invested in?".

To answer logical queries, the embedding-based
logical reasoning primarily focuses on query en-
coding by designing various geometric embed-
ding structures (Ren et al., 2020; Choudhary et al.,
2021b; Zhang et al., 2021) or resorting to prob-
abilistic distributions (Ren and Leskovec, 2020;
Yang et al., 2022). As illustrated in Figure 1(b),
an embedding-based approach (Ren et al., 2020)
encodes a 2-hop query via two projections, ulti-
mately determining the closest neighboring entities
of the latest projected region as the final answer.
However, the logical query reasoning relies on the
provided background knowledge, the encapsulated
knowledge within KGs is usually significantly in-
complete (West et al., 2014), thereby rendering the
set of answers intrinsically inadequate and weaken-
ing the ability of logical reasoning over KGs.

Despite the extensive development of KG com-
pletion (Yang et al., 2014; Sun et al., 2018; Niu
et al., 2020) aimed at addressing the issue of in-
completeness, its ineffectiveness and inaccuracy
in practice remain obstacles to achieving compre-
hensive KGs for precise logical query reasoning.
Instead of embarking on the challenging task of
augmenting KGs using external knowledge, in this
paper, we explore the strategy for directly integrat-
ing an additional knowledge reasoner to enhance
logical reasoning over KGs. Owing to the emergent
abilities of large language models (LMs) (Bubeck
et al., 2023; Webb et al., 2023), LMs can serve
as the knowledge reasoner and the query reason-
ing can be conceptualized as a natural language
reasoning task, where the frozen LM functions as
the retrieval module to locate relevant answers, as
shown in Figure 1(c). Yet, the challenge that LMs
face in addressing intricate logical reasoning prob-
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Figure 1: (a) A logical query with multi-hop logic and corresponding answers. The given KG has missing relations
that prevent the logical query from being correctly answered. Solid lines represent discovered relations, and dotted
lines denote missing relations. (b) The embedding-based method follows logical order to execute the query in the
embedding space. (c) Reasoning in language models requires the design of prompts. (d) COB-LM incorporates the
advantages of both reasoning strategies to enable the capability of logical reasoning.

lems (Liu et al., 2023) impedes the capability to
answer logical queries. Moreover, the reliability of
the knowledge reasoning within LMs is not assured,
and the hallucination issue hinders the applicability
of LMs (Ji et al., 2023).

The challenges posed by the incompleteness of
KGs and the limitations of LMs motivate us to ex-
plore the integration of KG structure-based logical
reasoning with LM-based knowledge reasoning for
answering logical queries. However, the material-
ization is non-trivial. First, the conventional way
to integrate an LM and KGs (Pan et al., 2023) is to
fine-tune the LM using KGs, which converts KGs
into sequences and inevitably loses the structural
knowledge, and still suffers from the inability of
logical reasoning. Second, structural knowledge in
KGs facilitates explicit logical reasoning, in con-
trast to the implicit reasoning employed in LMs.
There is no straightforward method to enable logi-
cal query reasoning by combining both reasoning
paradigms. Third, beyond technical limitations, the
emergent ability of LMs heavily depends on the
extensive scale of these models (Magister et al.,
2022). Nonetheless, the need for specialized com-
puting resources (i.e., GPUs) restricts the practi-
cal deployment of logical reasoning over domain-
specific KGs. The demand for handling frequent
reasoning calls and generating quick responses on
resource-constrained devices drives us to explore
the utilization of small-scale LMs to enable effec-
tive logical query reasoning over KGs.

To leverage the capability of knowledge reason-
ing of LMs, in this paper, we propose a novel frame-
work for logical query reasoning over KGs with
chain-of-box empowered language models, named

COB-LM, which integrates knowledge graph rea-
soning and natural language reasoning, aiming to
take advantage of the two different knowledge rea-
soning strategies, as shown in Figure 1(d). Specif-
ically, COB-LM consists of three modules, i.e.,
chain-of-box construction, LM prompting, and an-
swer generation. First, to obtain the structural
knowledge in KGs, we utilize a logical decompo-
sition mechanism to decompose the logical query
into a series of sub-queries and map the sub-queries
into an embedding space through the box operators
(Ren et al., 2020). A sequence of box embeddings
in the logical order can be obtained in the reasoning
process and serves as the chain-of-box. Second, to
harness the capability of knowledge reasoning of
LMs, we convert complex logical queries to natu-
ral language prompts and use them to obtain the
hidden representation from the LM encoder. Third,
to enable the language model for effective logical
query answering, we propose to fuse the chain-of-
box into the hidden representation before passing it
to the LM decoder to generate answers. The fusion
enables LMs to be aware of the reasoning trajec-
tory and combine the structural knowledge in KGs,
empowering LMs with the ability to reason logi-
cally over KGs. After the fine-tuning of language
models, COB-LM not only retains the semantic
reasoning capability but also gains the capability
of logical reasoning.

Overall, our contributions in this work include:

(1) We propose to leverage LMs as the additional
knowledge reasoner and empower LMs with the
capability of logical reasoning over KGs.

(2) We design a novel framework to integrate the
structural knowledge in KGs with LMs by utilizing



the chain-of-box to describe reasoning trajectory
and injecting the representation of the chain-of-box
into language models.

(3) We perform extensive experiments on two KG
datasets. The experimental results show the supe-
rior performance of COB-LM over the state-of-
the-art with significant improvement in complex
logical query reasoning over KGs.

2 Related Work

Logical Reasoning over Knowledge Graphs In
recent years, there has been a rise in the num-
ber of embedding-based methods for logical query
answering in knowledge graphs. The basic idea
is to embed logical queries and entities into a
joint vector space and utilize the embedding sim-
ilarity for answer prediction. Some models em-
bed queries/entities into points in the vector space
(Guu et al., 2015; Hamilton et al., 2018). Fur-
thermore, some efforts extend the single-point
embedding into region embedding, such as box
(Ren et al., 2020), hyperboloid (Choudhary et al.,
2021b), cone (Zhang et al., 2021) and particles
(Bai et al., 2022a) , while other methods represent
the query/entity in terms of probability distribu-
tions in the vector space, such as Gaussian distri-
bution (Choudhary et al., 2021a), Beta distribution
(Ren and Leskovec, 2020), and Gamma distribution
(Yang et al., 2022). In addition, query decompo-
sition methods have also achieved significant per-
formance. CQD (Arakelyan et al., 2020) uses a
neural link predictor trained on 1-hop queries and
QTO (Bai et al., 2022b) proposes a neural search
method based on query computation graphs. Fur-
ther, GNN-QE (Zhu et al., 2022) designs a neural-
symbolic method, LMPNN (Wang et al., 2023)
proposes a logical message passing network, and
SQE (Bai et al., 2023) proposes a simple and effi-
cient method for sequential query encoding. While
these methods demonstrate superior performance,
their effectiveness is hampered by incomplete KGs.
This inherent limitation significantly undermines
their capacity for logical reasoning. The latest
work (Choudhary and Reddy, 2023) relies on the
direct utilization of a frozen large language model
through a step-by-step questioning approach, yet
still suffers from the inherent issues of LMs and
severely depends on the scale of LMs.

Reasoning in Language Models Recent re-
search has shown that multi-step reasoning ability
can be triggered in language models by chain-of-

thought (CoT) prompting (Wei et al., 2022). The
improved performance in zero-shot reasoning tasks
demonstrates the effectiveness of prompt questions
(Kojima et al., 2022; Yang et al., 2023). Further-
more, studies have shown that by explicitly decom-
posing the question into multiple sub-questions, the
language models can be guided to pay more atten-
tion to and reason about these sub-problems (Zhou
et al., 2022; Khot et al., 2022; Choudhary and
Reddy, 2023). However, the success of the prompt-
based method significantly depends on carefully
composed prompts and the size of the language
model. While language models with over 100 bil-
lion parameters exhibit enhanced reasoning capabil-
ities, those with fewer parameters not only struggle
to leverage the CoT prompts for reasoning but may
even compromise the accuracy of their original re-
sponses (Magister et al., 2022). In order to transfer
reasoning ability to smaller language models, an-
other research interest is to elicit CoT reasoning
by fine-tuning language models. Datasets contain-
ing chains of thought processes are constructed by
manual collection (Lu et al., 2022) or generation by
LMs (Ho et al., 2022) for fine-tuning LMs. Unlike
the existing works, our work focuses on logical
reasoning over KGs and proposes to exploit the
knowledge reasoning of LMs to facilitate logical
query reasoning over KGs.

3 Methodology

In this section, we propose the COB-LM frame-
work. We will first describe the problem definition
of logical reasoning over knowledge graphs, then
overview the procedure of the framework, and fi-
nally detail the sub-modules and technical design.

3.1 Preliminaries

A knowledge graph consists of a set of entities
FE, a set of relations R, and a set of triples 7" in
which each triple (e;, 7, e;) includes two entities
e;,e; € E, and arelation r € R, which denotes the
type of relation between e; and e;. Each relation
type is a binary function that indicates whether
the relation exists between a pair of entities, i.e.,
€1 = g —> r(e1,e2) = True.

We consider the Existential Positive First-Order
(EPFO) queries, including existential quantifica-
tion (3), conjunction (A) and disjunction (V). And
we define valid EPFO queries as its disjunctive
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Figure 2: Overview of COB-LM. (a) Knowledge graph reasoning decomposes the query and represents reasoning
sub-queries by mapping them to box embeddings, forming the chain-of-box; (b) prompts are constructed by
retrieving subgraphs as context and converting the logical query into a natural language prompt, then language
model reasoning is triggered by prompts. (c) Integrating the language model encoding and the chain-of-box via
cross-attention and gated fusion layer for answer generation.

normal form (DNF) (Davey and Priestley, 2002):

Q[V?] = V?.E'Vl, SRR Vk : (Cl) v (CQ> V...V (Cn)a
(1
where V5 is the target of the query, and V7,..., Vj
denote the existentially quantified bound variables.
Each ¢; = (a1 A ... Aain),n < k, and a;; repre-
sents an atomic formula, i.e., 7(e, V) or r(V', V),
wheree € E;r € R,V € {Vq,...,V;,,Vo}, V' €
{Vi,...,Vi}, VI £ V.
A complex query can be decomposed into a se-
ries of sub-queries by following basic rules:

AQ1/\q2 = Aq1 N qua ()
AQ1VQQ = Ath U qu’ 3)

where A, is the answer to the logical query
gi, defined as a set of entities A, = {ele €
E, g;[e] holds true}, i = 1,2.

The logical reasoning process can further be
modeled as a sequence of reasoning tasks, which is
of executing logical operators along the order after
the logical decomposition.

For example, a 2p query can be decomposed as
follows:

el 5B A = e 5 ALA DA

We follow the same decomposition mechanism
as in previous work (Ren et al., 2020; Ren and
Leskovec, 2020; Choudhary and Reddy, 2023) to
decompose complex queries as a series of sub-
queries. In the example shown above, e; — A; is
a sub-query, and A; —» A is another sub-query.

3.2 The Proposed Method: COB-LM

The overall architecture of the proposed model
COB-LM is shown in Figure 2. COB-LM consists
of three modules, i.e., chain-of-box construction,
LM prompting, and answer generation. First, we
utilize a geometric representation approach, i.e.,
box embeddings, to encode the KG and preserve
the structural knowledge by the geometric embed-
dings of sub-queries in the logical order as the
chain-of-box. In parallel, we convert the logi-
cal queries into prompts using logical decompo-
sition and encode them through a language model
encoder. Finally, we propose to employ cross-
attention and gated fusion mechanisms to fuse the
chain of boxes into the language model encoding
and pass them to the language model decoder to
generate answers.

3.2.1 Chain-of-Box Construction

Due to the incompleteness issue of KGs, it is dif-
ficult to reason and answer complex multi-hop
queries by directly traversing the KG. Instead, we
propose to leverage the geometric representation
learning methods, which transform queries and
entities into geometric regions in the embedding
space, and make logical operators as operations
on geometric regions, i.e., relational projections
and intersections. Updating the embedding regions
according to the logical order promotes the final
inclusion of answer entities in the mapping region
of the logical query. To achieve effective logical
reasoning and modeling, we define geometric re-



gions as boxes (hyper-rectangles) (Ren et al., 2020).
In the embedding space, the box embedding of a
query q is defined as q = (Cen(q), Off(q)), where
Cen(q) denotes the center vector of the box and
Off(q) denotes the offset vector of the box, then
the region in the box is defined as follows:

Boxq = {e : Cen(q) — Off(q) < e < Cen(q) + Off(q)}.
(C))

For arelation r € R, it is associated with relation
embedding r = (Cen(r), Off(r)). And for any
entity e € I within the knowledge graph, its box
embedding is defined as e = (Cen(e), 0), namely
a zero-sized box. If it satisfies e € Boxq, it is
considered as an answer entity to query q.

In the vector space, the initial box embedding
of atomic ¢' and relation 7 are modeled as a new
region q + r after the projection operator. And
for the intersection operator, an attention operation
is performed on the box centers and a sigmoid
function is applied to update the offset vectors to

obtain qn = (Cen(qn), Off(qn)).

Cen(qn) = Z a; ® Cen(q;), (5)

(2

v — exp(MLP(q;))
‘T 5, exp(MLP(qy))’

(6)

Off(qn) =Min(Off(q1), . .., Off(qn))
©® o(DeepSets(qi, - - -,4qn)),

where a; is the attention weight over the box
center, ® represent the element-wise multiplica-
tion, MLP(-) is the Multi-Layer Perceptron, and
DeepSets(+) is the permutation-invariant function
(Zaheer et al., 2017; Hamilton et al., 2018).

Given a query embedding q = (Cen(q), Off(q))
and an entity embedding e, their distance is defined
as (Ren et al., 2020):

(7N

d(e, q) = dout(ea CI) + (0% din(e7 q)7 (8)

where doy(e,q) denote the outer distance be-
tween the entity and the nearest box corner, while
din (e, q) corresponds to the inner distance between
the center of the box and its corner, and « is a fixed
scalar coefficient and doy (e, q) and diy(e, q) are
defined as follows:

dout(ea 01) = max(e — Umax; 0)

9
+ max(qmin — €, 0)> ( )

'We use ¢ to denote the query and decomposed sub-queries
with a slight notation abuse.

din (97 q) :H min(qmax - max(chninu e))

10

~ Cen(q)|]; (10
dmax = Cen(q) + Off(q), (1)
Qmin = Cen(Q) - Off(Q% (12)

In order to make the answer embedding as close
as possible to the query embedding, the loss of
logical reasoning over KGs is defined as follows
(Sun et al., 2019):

L =—logo(y —d(e,q))

K
1 , (13)
— ; elogo(d(ey, ) =),

where q is the query embedding, e is the positive
answer embedding, and €’ is the embedding of a
negative answer, -y is a fixed margin.

By training the box embedding model, we char-
acterize the reasoning process over knowledge
graphs as a chain-of-box (COB). Specifically, for
a EPFO query ()query Which can be decomposed
as a set of sub-queries {q1, ..., gn }. We regard the
projection area q; of each step as the representa-
tion of a sub-query ¢; and construct a list of regions
{qa1,...,q,} in logical order to preserve the entire
reasoning process, as shown in Figure 2(a). To be
more specific, we concatenate the list of regions
{ai, ..., gy} in the logical order and obtain the rep-
resentation of the chain-of-box as follows:

He=q1 ©...®qy, (14)

where & denotes the concatenation operation.

3.2.2 LM Prompting

In order to utilize the knowledge reasoning abil-
ity of LMs, we convert the logically decomposed
query in Section 3.1 into a natural language ques-
tion, and use it as the context part of the structural
knowledge in knowledge graphs, consequently con-
structing the prompts for language models. Specifi-
cally, we perform neighborhood retrieval for logi-
cal queries (Choudhary and Reddy, 2023). Assum-
ing that the original multi-hop query is decomposed
into k sub-queries, let I; represent the entities and
R; represent the relations in a sub-query g;. The
neighborhood retrieval process is defined as:

N(q:) ={(e,r,€')|e € Ei,r € Ri,e’ € B}, (15)

E; ={e,e'|(e,r,€') € N(gi-1)}, (16)



Ri ={rl|(e,r,e’) € N(gi-1)}, (17)
N(q) ={(e,r,¢')le € Er,r € Ri,¢’ € Er}.  (18)

Note that we substitute entities and relations with
unique IDs and leverage solely the reasoning ca-
pabilities of language models, to avoid the issue
of knowledge leakage that could emerge with the
integration of LMs. As shown in Figure 2(b), we
then concatenate the neighborhoods retrieved by
each sub-query as the context. When the length of
the context exceeds the input limit, i.e., the input
token limit of the language model, we stop adding
contexts. The logical decomposition mechanism
used above and the decomposed sub-queries align
with the order in Section 3.2.1.

Inspired by the chain of thought (Wei et al.,
2022), we use templates that convert the sub-
queries obtained from the logical decomposition
into step-by-step natural language questions in the
logical order. The templates are provided in Ap-
pendix B.

Finally, as shown in Figure 2(b), we use the
context and the question as the prompt P for feed-
ing into the language model encoder, the encoder
works by:

Hpy = ®e(P),

where @ (-) denotes the LM encoder, and Hy 5,
refers to the output of the encoder.

19)

3.2.3 Answer Generation

With the encoding Hy js obtained from a language
model encoder and the representation of the chain-
of-box H¢, the next step is to effectively integrate
the chain-of-box into the language model decoder
for answer generation. Specifically, we first pro-
pose to fuse the representation of the chain-of-box
H¢ into Hp js and leverage a single-head attention
network which works by:

H,yWcH/,
Vid

where d is the dimension of Hy; and W is a
trainable projection matrix to project Hg to the
same dimension as Hy, ;.

Then we apply a gated fusion mechanism (Zhang
et al., 2023, 2019; Wu et al., 2021; Li et al., 2022)
to fuse the attention output H,;; with LM encoding
Hy s. The final output H is defined as:

H,: = Softmax < ) He, (20

H=(1-X) -Hpy + X Ha, (1)

A = Sigmoid( Wy Hpar + W Hay), (22)

where W, and W, are trainable weights.

Finally, we input the fused representation H into
the language model decoder to predict the answers.
The decoder works by:

A=p(H), (23)

The loss function for fine-tuning language mod-
els is defined as:
N
L£(0) =~ logp(Ai[Hi:6),  (24)
i=1
where N is the number of training examples, A;
is the answer for the i-th example, H; is the fused
representation for the ¢-th example and 6 are the
model parameters.

3.3 Optimization

We implement the above process as an end-to-end
framework, as shown in Figure 2. By fine-tuning
the language model, we empower the language
model with the capability to reason over KGs with
the representation of the chain-of-box. The algo-
rithmic process is given in Appendix C.

4 Experiments

4.1 Datasets

We adopt two widely used knowledge graphs
FB15k-237 (Toutanova and Chen, 2015) and
NELL995 (Xiong et al., 2017) for evaluation. Both
datasets are English language KGs covering do-
mains such as movies, music, sports, etc. The query
datasets are provided by BetaE (Ren and Leskovec,
2020). We exclude FB15k (Bordes et al., 2013)
from consideration as the dataset suffers from test
leakage issue (Chen et al., 2022; Toutanova and
Chen, 2015). More details about datasets can be
found in Appendix D.

4.2 Baselines and Evaluation Metrics

To validate the effectiveness of our method, we
compared COB-LM with GQE (Hamilton et al.,
2018), Query2Box (Ren et al., 2020), BetaE
(Ren and Leskovec, 2020), CQD (Arakelyan
et al.,, 2020), FuzzQE (Chen et al., 2022),
Query2Particles (Bai et al., 2022a), GNN-QE (Zhu
et al., 2022), GammaE (Yang et al., 2022) and
LMPNN (Wang et al., 2023) on both datasets.

Following previous studies (Chen et al., 2022;
Hamilton et al., 2018), we adopt the evaluation pro-
tocol and use Mean Reciprocal Rank (MRR) as the
main evaluation metric for each answer correspond-
ing to a logical query.



Table 1: MRR results (%) on answering EPFO queries. Performance comparisons are between ours and the baselines

on FB15k-237 and NELL995. The best results are in bold.

Dataset Models Avg 1p 2p 3p 2i 3i ip pi 2u up
FB15k-237 GQIIBE 163 350 7.20 530 233 346 165 10.7 820 5.70
Q2 20.1 40.6 940 6.80 295 423 212 126 11.3 7.60

BetaE 209 39.0 109 10.0 288 425 224 126 124 9.70

CQD 21.7 463 990 590 31.7 413 21.8 158 142 8.60

FuzzQE 242 422 133 102 33.0 473 262 189 156 10.8

Q2P 219 391 114 101 323 477 240 143 8.70 9.10

GNN-QE 268 428 147 11.8 383 54.1 31.1 189 162 134

GammaE 243 432 132 11.0 335 479 272 159 154 113

LMPNN 24.1 459 13.1 103 348 489 227 17.6 135 10.3

COB-LM (Ours) 42.0 62.5 353 31.8 498 646 36.6 456 314 20.1

NELL995 GQE 18.66 328 119 9.6 275 352 184 144 850 8.80
Q2B 229 422 140 11.2 333 445 224 168 11.3 10.3

BetaE 246 53.0 13.0 114 376 475 241 143 122 8.50

CQD 284 60.0 16,5 104 404 49.6 27.6 208 168 12.6

FuzzQE 293 58.1 193 157 39.8 50.8 28.1 21.8 17.3 13.7

%P 25,5 56.5 152 125 358 487 226 16.1 11.1 104

GNN-QE 289 533 189 149 424 525 308 189 159 126

Gamma 282 551 17.3 142 419 51.1 269 183 165 125

LMPNN 30.7 60.6 22.1 17.5 40.1 503 284 249 172 157

COB-LM (Ours) 523 734 52.0 49.1 57.1 635 48.1 519 469 28.7

4.3 Model Setup

To utilize a small-scale language model and em-
power it with the ability to perform logical reason-
ing, in this work, we employ the FLAN-TS5-small
model with an encoder-decoder architecture as our
base language model (Wei et al., 2021), which has
been primarily used for a variety of natural lan-
guage processing tasks. The language model is
publicly available in Huggingface library (Wolf
et al., 2020), and allows for fine-tuning and deploy-
ment on consumer-grade GPUs. Implementation
details can be found in Appendix D.

4.4 Main Results

The performance of all evaluated logical reasoning
methods on two different KGs are shown in Table
1. We can see that COB-LM consistently outper-
forms the previous state-of-the-art baselines for all
types of EPFO logical queries on both benchmark
datasets, with average performance gains of 15.2%
and 21.6% on FB15k-237 and NELL995, respec-
tively. We also observe that this improvement is
broad and stable, and also shows promising gener-
alization on more complex logical query types, e.g.,
ip, pt, 2u, up. The results validate the effectiveness
of COB-LM. Therefore, these results highlight the
advantages of our designed chain-of-box to fuse the
geometric representation of reasoning trajectory in
language model reasoning.

Table 2: Performance comparisons between language
model reasoning and COB-LM using MRR scores,
where LM refers to the unfine-tuned language model,
LM-FT refers to the fine-tuned language model.

Models 1p 2p 3p 2 3i ip pi 2u up
FB15k-237

LM 379165158 14.0 9.0 164 12.8 17.9 8.7

LM-FT 61.3 28.5 25.7 46.9 61.4 30.8 38.2 27.6 18.5

COB-LM 62.5 35.3 31.8 49.8 64.6 36.6 45.6 31.4 20.1
NELL995

LM  26321.619.812.7 8.7 20.6 16.4 21.9 10.1

LM-FT 51.7 38.1 36.9 54.9 60.4 36.8 43.4 39.1 25.2

COB-LM 73.4 52.0 49.1 57.1 63.5 48.1 51.9 46.9 28.7

4.5 Ablation Study
4.5.1 Impact of Chain-of-Box

In order to illustrate the impact of chain-of-box
in our framework, we conduct comparative ex-
periments on two datasets. Specifically, we com-
pare COB-LM with two variants. For LM, we
only leverage a language model and convert logical
queries into natural language prompts. Using the
constructed natural language prompts, we evaluate
the language model LM-FT fine-tuned on them
and the original language model LM separately.
The evaluation results are shown in Table 2.

The language model LM without fine-tuning
suffers from high-performance degradation. Ob-
serving the answers that LM incorrectly predicts,
we find that it always outputs nonsensical texts.
This observation illustrates its failure neither to
demonstrate logical reasoning ability nor even to



understand the prompts. The results of the fine-
tuned language model LM-FT show a significant
improvement in performance. It proves that effec-
tive logical reasoning can be performed using the
reasoning ability of the language model, and shows
the importance of fine-tuning the language model
to understand the form of logical reasoning task.

Going further, after integrating the representa-
tion of chain-of-box, the reasoning performance
obtains a remarkable improvement on all 9 types
of logical queries. We argue that this is because
the chain-of-box and language model reasoning es-
sentially depict two forms of the same reasoning
process. More specifically, the representations of
the chain-of-box over knowledge graphs have the
advantage of a structured and deterministic nature,
qualities that are absent in language model rea-
soning and can therefore be used to empower the
logical reasoning of language models. Overall, the
comparative experiments highlight the benefit of
using the chain-of-box to empower language mod-
els, and our results suggest that fusing structural
knowledge could be a promising way to empower
language models for complex reasoning tasks.

4.5.2 Impact of Language Model

To illustrate the impact of the language model in
COB-LM, we remove the language model and
perform a comparative analysis. When only the
module in Section 3.2.1 is employed, the module
is similar to the Query2Box (Ren et al., 2020). It
is worth noting that Query2Box method uses only
the structural knowledge from KGs to reason us-
ing iterative embedding of boxes, after obtaining
the query projection in the last step, it regards the
entities closest to the final box as the answer.

The comparison results between COB-LM and
Query2Box can be found in Table 1. It is evident
that with the introduction of the language model,
the performance has improved remarkably, and the
relative improvement is notably higher for com-
plex multi-hop queries, e.g., the improvement is
greater on logical query types 2p and 3p than on
1p. This illustrates the excellent ability of the lan-
guage model with chain-of-box to handle complex
logical queries and the effectiveness of using the
language model in COB-LM. The incorporation of
the reasoning ability of language models for com-
plex logical reasoning is not only a novel solution
but will continue to benefit from the development
of pre-trained language models.

Table 3: MRR scores of COB-LM using Flan-T5-small
and UnifiedQA-small as the base language model.

Models 1p 2p 3p 2i 3i
FB15k-237

UnifiedQA 61.1 27.9 24.4 49.8 63.8 30.5 44.4 26.1 15.6
FLAN-T5 62.5 35.3 31.8 49.8 64.6 36.6 45.6 31.4 20.1

NELL995

UnifiedQA 71.1 33.2 34.5 51.0 62.1 31.8 39.7 29.2 22.6
FLAN-T5 73.4 52.0 49.1 57.1 63.5 48.1 51.9 46.9 28.7

ip pi 2u up

4.5.3 Impact of Base Models

To evaluate the adaptability of COB-LM, we
changed the base language model from FLAN-TS5-
small to UnifiedQA-small (Khashabi et al., 2020),
which is another language model with fewer pa-
rameters than FLAN-TS5-small. The results in Ta-
ble 3 imply that when the number of parameters
decreases, there is a slight decrease in the over-
all reasoning performance. However, the smaller
UnifiedQA-small model still shows superior rea-
soning ability in the COB-LM framework, proving
the adaptability of our approach to different base
language models.

We hypothesize that integrating very large lan-
guage models as the base language model for COB-
LM could potentially result in performance en-
hancements. However, it is important to note that
fine-tuning and using very large language mod-
els is not applicable for logical reasoning tasks on
domain-specific KGs due to the high demand for
high-performance GPU resources. Therefore, in
our work, we focus on the adoption of only small-
scale LMs that can be easily used for downstream
development and deployment.

5 Conclusion

In this paper, we proposed a novel framework
COB-LM for logical query reasoning over KGs.
In order to overcome the knowledge deficiency in
KGs, the proposed COB-LM makes use of the
knowledge reasoning capability of language mod-
els and integrates reasoning over knowledge graphs
and language model reasoning. Specifically, we
proposed to obtain the chain-of-box to represent the
trajectory of knowledge graph reasoning and fused
it in the language models to enable the capability of
logical reasoning. Extensive experimental results
demonstrate the rationality and effectiveness of our
proposed method on logical query answering.



Limitations

Training for COB-LM could have an increased im-
pact on the environment. In addition, our work
focuses only on logical reasoning performance.
While fine-tuning leads to performance improve-
ments on the current logical reasoning tasks, it may
also lead to performance degradation on other tasks
(Kotha et al., 2023).
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A Additional Comparisons

Table 4 shows our approach and the LARK ap-
proach (Choudhary and Reddy, 2023) using much
larger language models. We can see that COB-LM
can achieve competitive performance with signif-
icant reduction in parameters In particular, COB-
LM, with 80 million parameters, demonstrates con-
sistent performance improvements compared to
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Algorithm 1 Fine-tune COB-LM

Input: Text question prompt P, the query query ¢
Output: Generated reasoning answer .4

1: Encode the prompt input and embed the query
to respectively obtain Hy y and Hc
Construct the interaction between the prompt
and chain of box representations using cross
attention to get Hyy
Fuse Hy\ with Hyy; using a gated fusion mech-
anism, resulting in H
Decode the fused representation H to obtain
the target prediction A
: return A

LARK, which has 3 billion parameters, across var-
ious query types except for query type 1p and up,
showing that our proposed strategy empowers LMs
with the capability of logical reasoning over KGs.
Since smaller language models are significantly
better in terms of usage cost, inference speed, and
required resources, our approach is more feasible in
real-world practices and applications of knowledge
graphs that require frequent calls, fast responses,
and edge applications.

B Prompt Templates

The prompt templates for the language model are
provided in Tables 5.

C Fine-tune Procedure

We adopt the encoder-decoder architecture of the
TS5 language model (Raffel et al., 2020), which
provides flexibility for fine-tuning. The training
procedure is shown in Algorithm 1.

D Implementation Details

D.1 Datasets

We use two standard KG benchmark datasets:

* FB15k-237 (Toutanova and Chen, 2015) : It
is a challenging benchmark dataset based on the
large-scale knowledge graph project Freebase, con-
taining 14,505 entities, 237 relations, and 310,079
triples. The sizes of the training, validation, and
test sets for FB15k-237 are 164657, 25101, and
27812, respectively

* NELL995 (Xiong et al., 2017): This is a dataset
created using a machine learning system, namely
Never-Ending Language Learning (NELL) system,
which contains 63,631 entities, 200 relations, and



Table 4: MRR results (%) on FB15k-237 dataset, performance comparisons are between LARK and ours with LMs

of different scales.

Models Params  1p 2p 3p 2i 3i ip pi 2u up

LARK (Flan-t5-Large) 780M 14.0 16.1 9.30 6.20 4.50 153 920 133 17.1
LARK (Flan-t5-XL) 3B 723 341 212 105 243 20.8 17.7 210 26.2
LARK (Flan-t5-XXL) 11B 728 50.7 362 669 604 235 56.1 524 40.6
COB-LM (Flan-t5-small) 80M  62.5 353 31.8 49.8 646 366 456 314 20.1

142,804 triplets. The sizes of the training, valida-
tion, and test sets for NELL995 are 118780, 20927,
and 21034, respectively

The datasets are provided by BetaE (Ren and
Leskovec, 2020), which contain 9 types of EPFO
queries. Compared to the earlier datasets provided
by Query2Box, it improves the answer constraints
of the queries and regenerate data of the 9 query
types , making the data more realistic and challeng-
ing. In particular, training set involves 5 distinct
query types: 1p, 2p, 3p, 21, 3:. For evaluation, we
use a total of nine query structures, including the
original 5 query types and 4 new query types that
are never seen during training: ip, pi, 2u, up, to
assess the model’s generalization ability (naming
conventions: p for projection, ¢ for intersection, u
for union).

Both datasets are publicly available, licensed "as-
is". They do not contain any sensitive or personal
information about individuals or entities.

D.2 Baselines

We study the performance of the COB-LM frame-
work by evaluating against five baselines.

* GQE (Hamilton et al., 2018), which encodes
the query as a single vector in a low-dimensional
space.

* Query2Box (Ren et al., 2020), which extends
the embedding to a box region of vector space
for answering existential positive first-order logic
queries.

* BetaE (Ren and Leskovec, 2020), which uses
Beta distributions to capture uncertainty in query
and answer set.

* CQD (Arakelyan et al., 2020), a method that
decomposes the logical queries to multiple atomic
queries, employs a pre-trained link predictor to
solve, and independently evaluates atom predicates.

* FuzzQE (Chen et al., 2022), which proposes a
logical query embedding framework that satisfies
the laws of logic and uses learning-free logical
operators.

* Query2Particles (Bai et al., 2022a), which en-
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codes the logical query into several different re-
gions in the embedding space.

* GNN-QE (Zhu et al., 2022), which propose a
graph neural network query executor that enjoys the
advantages of both neural methods and symbolic
methods.

* GammaE (Yang et al., 2022), which uses
Gamma distribution to capture more features of
both entities and queries.

* LMPNN (Wang et al., 2023), which decom-
poses the KG embeddings and goes on to one-hop
inferences for complex query answering.

For both BetaE and CQD, we benchmark
against their respective model variants with en-
hanced general performance, namely BetaEpnr
and CQD-BEAM.

D.3 Chain-of-Box Construction

We set the embedding dimension to d = 400 and
configure the parameters v = 24 and o = 0.2 for
the loss.

The batch size is 512 and the training epoch is
300. For each of these queries in the batch, we
select one answer entity and 128 negative entities.
We use the Adam optimizer (Kingma and Ba, 2014)
to minimize the loss with a learning rate of 0.0001.

D.4 Language Model

FLAN-TS5-small is a language model with 80 mil-
lion parameters. We fine-tune the model up to
3 epochs. The learning rate is 0.00005 and the
batch size is 16. We implemented COB-LM in
Pytorch (Paszke et al., 2019). We also leveraged
NLTK (Bird et al., 2009) and NumPy (Harris et al.,
2020), and run on 4 NVIDIA GeForce RTX 3090
GPUs with 40 GB VRAM. The total GPU hours
consumed for the fine-tuning process was about
30 hours. Results are reported from a single run.
We will make the code publicly available upon
acceptance to facilitate reproduction and further
research.



Table 5: Prompt Templates.

Type

Logical Query

Templates

Context

Ni (QT[QTD

Known (hy,71,t1), (ho,72,t2), (h3,73,t3),
(ha,74,t4), (hs,75,t5), (he, 76, t6)

1p

3)(.’[“1()(7 61)

Which entities are connected to e; by relation r1?

2p

IX (X, V(Y e1)

Assume that the set of entities E is connected to entity e; by relation
r1. Then, what are the entities connected to E by relation ry?

3p

E|X.7’1(X7 HY,’I’Q(Y, ;|Z,’r'3(Z7 61)

Assume that the set of entities E is connected to entity e; by relation
r1 and the set of entities F is connected to entities in E by relation r3.
Then, what are the entities connected to F by relation r3?

2i

IX[r1(X, e1) Ara(X, e2)]

Assume that the set of entities E is connected to entity e; by relation
r1 and the set of entities F is connected to entity e by relation 7a.
Then, what are the entities in the intersection of set E and F, i.e.,
entities present in both F and G?

3i

IX.[ri(X,e1) Ara(X, ea) Ars(X,es)]

Assume that the set of entities E is connected to entity e; by relation
r1, the set of entities F is connected to entity es by relation 72 and
the set of entities G is connected to entity es by relation r3. Then,
what are the entities in the intersection of set E, F and G, i.e., entities
present in all E, F and G?

ip

3X.7‘3(X, Y. [Tl (Y', 61) N T‘Q(Y, 62)}

Assume that the set of entities E is connected to entity e; by relation
r1, F is the set of entities connected to entity ez by relation 79, and G
is the set of entities in the intersection of E and F. Then, what are the
entities connected to entities in set G by relation r3?

pi

3X.[7“1 ()(7 HY’I“Q(Y, 62)) N 7‘3(X, 63)]

Assume that the set of entities E is connected to entity e; by relation
r1, F is the set of entities connected to entities in E by relation 73,
and G is the set of entities connected to entity e by relation 3. Then,
what are the entities in the intersection of set F and G, i.e., entities
present in both F and G?

2u

X [r1(X, e1) V r2(X, e2)]

Assume that the set of entities E is connected to entity e; by relation
r1 and F is the set of entities connected to entity e by relation 2.
Then, what are the entities in the union of set F and G, i.e., entities
present in either F or G?

up

HX.Tg(X, 3Y. [7‘1 (Y, 61) V TQ(Y, 62)}

Assume that the set of entities E is connected to entity e; by relation
r1 and F is the set of entities connected to entity ey by relation ry.
G is the set of entities in the union of E and F. Then, what are the
entities connected to entities in G by relation r3?
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