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Abstract

Complex logical reasoning over large-scale001
knowledge graphs (KGs) is a fundamental yet002
challenging task. Current approaches mainly003
focus on embedding logical queries as well004
as KG entities into the same vector space and005
retrieving answers based on similarity match-006
ing. However, the incompleteness issue of KGs007
severely hinders the effectiveness of previous008
studies. To tackle the challenging knowledge009
deficiency problem, we propose to leverage010
language models as the additional knowledge011
reasoner and design a unified framework to012
integrate knowledge graph reasoning and natu-013
ral language reasoning by harnessing box em-014
beddings of reasoning trajectory as the chain-015
of-box and fusing it into the language model016
to empower the capability of logical reason-017
ing. Extensive experiments on two standard018
benchmark datasets demonstrate that our model019
COB-LM significantly improves over state-of-020
the-art methods.021

1 Introduction022

Knowledge graphs (KGs) have emerged as the023

prevailing manner for organizing and managing024

knowledge, and have been extensively embraced as025

foundational components in practical applications,026

including search engines (Reinanda et al., 2020),027

professional networking platforms (Shinavier et al.,028

2019), and query answering (Saxena et al., 2020).029

Apart from the conventional KG completion030

(Yang et al., 2014; Sun et al., 2018), in recent years,031

there has been a notable surge in the prominence032

of logical reasoning over KGs, which involves a033

diverse class of logical queries, particularly Exis-034

tential Positive First-Order (EPFO) queries (Dalvi035

and Suciu, 2007) and entails answering logical036

queries based on a given KG. These queries con-037

sist of operators such as existential quantification038

(∃), conjunction (∧), and disjunction (∨). Tak-039

ing a logical query "V?.∃V : Invest(V?, V ) ∧040

Founder(OpenAI, V )" as an example, as shown 041

in Figure 1(a), this query involves multi-hop rea- 042

soning in a KG with logical operators (e.g., ∧, ∨) 043

and refers to the question "What companies have 044

the OpenAI founders invested in?". 045

To answer logical queries, the embedding-based 046

logical reasoning primarily focuses on query en- 047

coding by designing various geometric embed- 048

ding structures (Ren et al., 2020; Choudhary et al., 049

2021b; Zhang et al., 2021) or resorting to prob- 050

abilistic distributions (Ren and Leskovec, 2020; 051

Yang et al., 2022). As illustrated in Figure 1(b), 052

an embedding-based approach (Ren et al., 2020) 053

encodes a 2-hop query via two projections, ulti- 054

mately determining the closest neighboring entities 055

of the latest projected region as the final answer. 056

However, the logical query reasoning relies on the 057

provided background knowledge, the encapsulated 058

knowledge within KGs is usually significantly in- 059

complete (West et al., 2014), thereby rendering the 060

set of answers intrinsically inadequate and weaken- 061

ing the ability of logical reasoning over KGs. 062

Despite the extensive development of KG com- 063

pletion (Yang et al., 2014; Sun et al., 2018; Niu 064

et al., 2020) aimed at addressing the issue of in- 065

completeness, its ineffectiveness and inaccuracy 066

in practice remain obstacles to achieving compre- 067

hensive KGs for precise logical query reasoning. 068

Instead of embarking on the challenging task of 069

augmenting KGs using external knowledge, in this 070

paper, we explore the strategy for directly integrat- 071

ing an additional knowledge reasoner to enhance 072

logical reasoning over KGs. Owing to the emergent 073

abilities of large language models (LMs) (Bubeck 074

et al., 2023; Webb et al., 2023), LMs can serve 075

as the knowledge reasoner and the query reason- 076

ing can be conceptualized as a natural language 077

reasoning task, where the frozen LM functions as 078

the retrieval module to locate relevant answers, as 079

shown in Figure 1(c). Yet, the challenge that LMs 080

face in addressing intricate logical reasoning prob- 081
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Figure 1: (a) A logical query with multi-hop logic and corresponding answers. The given KG has missing relations
that prevent the logical query from being correctly answered. Solid lines represent discovered relations, and dotted
lines denote missing relations. (b) The embedding-based method follows logical order to execute the query in the
embedding space. (c) Reasoning in language models requires the design of prompts. (d) COB-LM incorporates the
advantages of both reasoning strategies to enable the capability of logical reasoning.

lems (Liu et al., 2023) impedes the capability to082

answer logical queries. Moreover, the reliability of083

the knowledge reasoning within LMs is not assured,084

and the hallucination issue hinders the applicability085

of LMs (Ji et al., 2023).086

The challenges posed by the incompleteness of087

KGs and the limitations of LMs motivate us to ex-088

plore the integration of KG structure-based logical089

reasoning with LM-based knowledge reasoning for090

answering logical queries. However, the material-091

ization is non-trivial. First, the conventional way092

to integrate an LM and KGs (Pan et al., 2023) is to093

fine-tune the LM using KGs, which converts KGs094

into sequences and inevitably loses the structural095

knowledge, and still suffers from the inability of096

logical reasoning. Second, structural knowledge in097

KGs facilitates explicit logical reasoning, in con-098

trast to the implicit reasoning employed in LMs.099

There is no straightforward method to enable logi-100

cal query reasoning by combining both reasoning101

paradigms. Third, beyond technical limitations, the102

emergent ability of LMs heavily depends on the103

extensive scale of these models (Magister et al.,104

2022). Nonetheless, the need for specialized com-105

puting resources (i.e., GPUs) restricts the practi-106

cal deployment of logical reasoning over domain-107

specific KGs. The demand for handling frequent108

reasoning calls and generating quick responses on109

resource-constrained devices drives us to explore110

the utilization of small-scale LMs to enable effec-111

tive logical query reasoning over KGs.112

To leverage the capability of knowledge reason-113

ing of LMs, in this paper, we propose a novel frame-114

work for logical query reasoning over KGs with115

chain-of-box empowered language models, named116

COB-LM, which integrates knowledge graph rea- 117

soning and natural language reasoning, aiming to 118

take advantage of the two different knowledge rea- 119

soning strategies, as shown in Figure 1(d). Specif- 120

ically, COB-LM consists of three modules, i.e., 121

chain-of-box construction, LM prompting, and an- 122

swer generation. First, to obtain the structural 123

knowledge in KGs, we utilize a logical decompo- 124

sition mechanism to decompose the logical query 125

into a series of sub-queries and map the sub-queries 126

into an embedding space through the box operators 127

(Ren et al., 2020). A sequence of box embeddings 128

in the logical order can be obtained in the reasoning 129

process and serves as the chain-of-box. Second, to 130

harness the capability of knowledge reasoning of 131

LMs, we convert complex logical queries to natu- 132

ral language prompts and use them to obtain the 133

hidden representation from the LM encoder. Third, 134

to enable the language model for effective logical 135

query answering, we propose to fuse the chain-of- 136

box into the hidden representation before passing it 137

to the LM decoder to generate answers. The fusion 138

enables LMs to be aware of the reasoning trajec- 139

tory and combine the structural knowledge in KGs, 140

empowering LMs with the ability to reason logi- 141

cally over KGs. After the fine-tuning of language 142

models, COB-LM not only retains the semantic 143

reasoning capability but also gains the capability 144

of logical reasoning. 145

Overall, our contributions in this work include: 146

(1) We propose to leverage LMs as the additional 147

knowledge reasoner and empower LMs with the 148

capability of logical reasoning over KGs. 149

(2) We design a novel framework to integrate the 150

structural knowledge in KGs with LMs by utilizing 151
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the chain-of-box to describe reasoning trajectory152

and injecting the representation of the chain-of-box153

into language models.154

(3) We perform extensive experiments on two KG155

datasets. The experimental results show the supe-156

rior performance of COB-LM over the state-of-157

the-art with significant improvement in complex158

logical query reasoning over KGs.159

2 Related Work160

Logical Reasoning over Knowledge Graphs In161

recent years, there has been a rise in the num-162

ber of embedding-based methods for logical query163

answering in knowledge graphs. The basic idea164

is to embed logical queries and entities into a165

joint vector space and utilize the embedding sim-166

ilarity for answer prediction. Some models em-167

bed queries/entities into points in the vector space168

(Guu et al., 2015; Hamilton et al., 2018). Fur-169

thermore, some efforts extend the single-point170

embedding into region embedding, such as box171

(Ren et al., 2020), hyperboloid (Choudhary et al.,172

2021b), cone (Zhang et al., 2021) and particles173

(Bai et al., 2022a) , while other methods represent174

the query/entity in terms of probability distribu-175

tions in the vector space, such as Gaussian distri-176

bution (Choudhary et al., 2021a), Beta distribution177

(Ren and Leskovec, 2020), and Gamma distribution178

(Yang et al., 2022). In addition, query decompo-179

sition methods have also achieved significant per-180

formance. CQD (Arakelyan et al., 2020) uses a181

neural link predictor trained on 1-hop queries and182

QTO (Bai et al., 2022b) proposes a neural search183

method based on query computation graphs. Fur-184

ther, GNN-QE (Zhu et al., 2022) designs a neural-185

symbolic method, LMPNN (Wang et al., 2023)186

proposes a logical message passing network, and187

SQE (Bai et al., 2023) proposes a simple and effi-188

cient method for sequential query encoding. While189

these methods demonstrate superior performance,190

their effectiveness is hampered by incomplete KGs.191

This inherent limitation significantly undermines192

their capacity for logical reasoning. The latest193

work (Choudhary and Reddy, 2023) relies on the194

direct utilization of a frozen large language model195

through a step-by-step questioning approach, yet196

still suffers from the inherent issues of LMs and197

severely depends on the scale of LMs.198

Reasoning in Language Models Recent re-199

search has shown that multi-step reasoning ability200

can be triggered in language models by chain-of-201

thought (CoT) prompting (Wei et al., 2022). The 202

improved performance in zero-shot reasoning tasks 203

demonstrates the effectiveness of prompt questions 204

(Kojima et al., 2022; Yang et al., 2023). Further- 205

more, studies have shown that by explicitly decom- 206

posing the question into multiple sub-questions, the 207

language models can be guided to pay more atten- 208

tion to and reason about these sub-problems (Zhou 209

et al., 2022; Khot et al., 2022; Choudhary and 210

Reddy, 2023). However, the success of the prompt- 211

based method significantly depends on carefully 212

composed prompts and the size of the language 213

model. While language models with over 100 bil- 214

lion parameters exhibit enhanced reasoning capabil- 215

ities, those with fewer parameters not only struggle 216

to leverage the CoT prompts for reasoning but may 217

even compromise the accuracy of their original re- 218

sponses (Magister et al., 2022). In order to transfer 219

reasoning ability to smaller language models, an- 220

other research interest is to elicit CoT reasoning 221

by fine-tuning language models. Datasets contain- 222

ing chains of thought processes are constructed by 223

manual collection (Lu et al., 2022) or generation by 224

LMs (Ho et al., 2022) for fine-tuning LMs. Unlike 225

the existing works, our work focuses on logical 226

reasoning over KGs and proposes to exploit the 227

knowledge reasoning of LMs to facilitate logical 228

query reasoning over KGs. 229

3 Methodology 230

In this section, we propose the COB-LM frame- 231

work. We will first describe the problem definition 232

of logical reasoning over knowledge graphs, then 233

overview the procedure of the framework, and fi- 234

nally detail the sub-modules and technical design. 235

3.1 Preliminaries 236

A knowledge graph consists of a set of entities 237

E, a set of relations R, and a set of triples T in 238

which each triple (ei, r, ej) includes two entities 239

ei, ej ∈ E, and a relation r ∈ R, which denotes the 240

type of relation between ei and ej . Each relation 241

type is a binary function that indicates whether 242

the relation exists between a pair of entities, i.e., 243

e1
r−→ e2 ⇐⇒ r(e1, e2) = True. 244

We consider the Existential Positive First-Order 245

(EPFO) queries, including existential quantifica- 246

tion (∃), conjunction (∧) and disjunction (∨). And 247

we define valid EPFO queries as its disjunctive 248
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Figure 2: Overview of COB-LM. (a) Knowledge graph reasoning decomposes the query and represents reasoning
sub-queries by mapping them to box embeddings, forming the chain-of-box; (b) prompts are constructed by
retrieving subgraphs as context and converting the logical query into a natural language prompt, then language
model reasoning is triggered by prompts. (c) Integrating the language model encoding and the chain-of-box via
cross-attention and gated fusion layer for answer generation.

normal form (DNF) (Davey and Priestley, 2002):249

q[V?] = V?.∃V1, . . . , Vk : (c1) ∨ (c2) ∨ . . . ∨ (cn),
(1)250

where V? is the target of the query, and V1, . . . , Vk251

denote the existentially quantified bound variables.252

Each ci = (ai1 ∧ . . . ∧ ain), n < k, and aij repre-253

sents an atomic formula, i.e., r(e, V ) or r(V ′, V ),254

where e ∈ E, r ∈ R, V ∈ {V1, . . . , Vk, V?}, V ′ ∈255

{V1, . . . , Vk}, V ′ ̸= V .256

A complex query can be decomposed into a se-257

ries of sub-queries by following basic rules:258

Aq1∧q2 = Aq1 ∩Aq2 , (2)259

260
Aq1∨q2 = Aq1 ∪Aq2 , (3)261

where Aqi is the answer to the logical query262

qi, defined as a set of entities Aqi = {e|e ∈263

E, qi[e] holds true}, i = 1, 2.264

The logical reasoning process can further be265

modeled as a sequence of reasoning tasks, which is266

of executing logical operators along the order after267

the logical decomposition.268

For example, a 2p query can be decomposed as269

follows:270

e1
r1−→ r2−→ A ⇒ e1

r1−→ A1, A1
r2−→ A.271

We follow the same decomposition mechanism272

as in previous work (Ren et al., 2020; Ren and273

Leskovec, 2020; Choudhary and Reddy, 2023) to274

decompose complex queries as a series of sub-275

queries. In the example shown above, e1
r1−→ A1 is276

a sub-query, and A1
r2−→ A is another sub-query.277

3.2 The Proposed Method: COB-LM 278

The overall architecture of the proposed model 279

COB-LM is shown in Figure 2. COB-LM consists 280

of three modules, i.e., chain-of-box construction, 281

LM prompting, and answer generation. First, we 282

utilize a geometric representation approach, i.e., 283

box embeddings, to encode the KG and preserve 284

the structural knowledge by the geometric embed- 285

dings of sub-queries in the logical order as the 286

chain-of-box. In parallel, we convert the logi- 287

cal queries into prompts using logical decompo- 288

sition and encode them through a language model 289

encoder. Finally, we propose to employ cross- 290

attention and gated fusion mechanisms to fuse the 291

chain of boxes into the language model encoding 292

and pass them to the language model decoder to 293

generate answers. 294

3.2.1 Chain-of-Box Construction 295

Due to the incompleteness issue of KGs, it is dif- 296

ficult to reason and answer complex multi-hop 297

queries by directly traversing the KG. Instead, we 298

propose to leverage the geometric representation 299

learning methods, which transform queries and 300

entities into geometric regions in the embedding 301

space, and make logical operators as operations 302

on geometric regions, i.e., relational projections 303

and intersections. Updating the embedding regions 304

according to the logical order promotes the final 305

inclusion of answer entities in the mapping region 306

of the logical query. To achieve effective logical 307

reasoning and modeling, we define geometric re- 308
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gions as boxes (hyper-rectangles) (Ren et al., 2020).309

In the embedding space, the box embedding of a310

query q is defined as q = (Cen(q),Off(q)), where311

Cen(q) denotes the center vector of the box and312

Off(q) denotes the offset vector of the box, then313

the region in the box is defined as follows:314

Boxq ≡ {e : Cen(q)− Off(q) ⪯ e ⪯ Cen(q) + Off(q)}.
(4)315

For a relation r ∈ R, it is associated with relation316

embedding r = (Cen(r),Off(r)). And for any317

entity e ∈ E within the knowledge graph, its box318

embedding is defined as e = (Cen(e), 0), namely319

a zero-sized box. If it satisfies e ∈ Boxq, it is320

considered as an answer entity to query q.321

In the vector space, the initial box embedding322

of atomic q1 and relation r are modeled as a new323

region q + r after the projection operator. And324

for the intersection operator, an attention operation325

is performed on the box centers and a sigmoid326

function is applied to update the offset vectors to327

obtain q∩ = (Cen(q∩),Off(q∩)).328

Cen(q∩) =
∑
i

ai ⊙ Cen(qi), (5)329

ai =
exp(MLP(qi))∑
j exp(MLP(qj))

, (6)330

331
Off(q∩) =Min(Off(q1), . . . ,Off(qn))

⊙ σ(DeepSets(q1, . . . ,qn)),
(7)332

where ai is the attention weight over the box333

center, ⊙ represent the element-wise multiplica-334

tion, MLP(·) is the Multi-Layer Perceptron, and335

DeepSets(·) is the permutation-invariant function336

(Zaheer et al., 2017; Hamilton et al., 2018).337

Given a query embedding q = (Cen(q),Off(q))338

and an entity embedding e, their distance is defined339

as (Ren et al., 2020):340

d(e,q) = dout(e,q) + α din(e,q), (8)341

where dout(e,q) denote the outer distance be-342

tween the entity and the nearest box corner, while343

din(e,q) corresponds to the inner distance between344

the center of the box and its corner, and α is a fixed345

scalar coefficient and dout(e,q) and din(e,q) are346

defined as follows:347

dout(e,q) =max(e− qmax, 0)

+ max(qmin − e, 0),
(9)348

1We use q to denote the query and decomposed sub-queries
with a slight notation abuse.

349
din(e,q) =||min(qmax −max(qmin, e))

− Cen(q)||,
(10) 350

351

qmax = Cen(q) + Off(q), (11) 352

qmin = Cen(q)− Off(q), (12) 353

In order to make the answer embedding as close 354

as possible to the query embedding, the loss of 355

logical reasoning over KGs is defined as follows 356

(Sun et al., 2019): 357

L =− logσ(γ − d(e,q))

−
K∑
k=1

1

K
logσ(d(e

′
k,q)− γ),

(13) 358

where q is the query embedding, e is the positive 359

answer embedding, and e′ is the embedding of a 360

negative answer, γ is a fixed margin. 361

By training the box embedding model, we char- 362

acterize the reasoning process over knowledge 363

graphs as a chain-of-box (COB). Specifically, for 364

a EPFO query Qquery which can be decomposed 365

as a set of sub-queries {q1, ..., qn}. We regard the 366

projection area qi of each step as the representa- 367

tion of a sub-query qi and construct a list of regions 368

{q1, ...,qn} in logical order to preserve the entire 369

reasoning process, as shown in Figure 2(a). To be 370

more specific, we concatenate the list of regions 371

{q1, ...,qn} in the logical order and obtain the rep- 372

resentation of the chain-of-box as follows: 373

HC = q1 ⊕ ...⊕ qn, (14) 374

where ⊕ denotes the concatenation operation. 375

3.2.2 LM Prompting 376

In order to utilize the knowledge reasoning abil- 377

ity of LMs, we convert the logically decomposed 378

query in Section 3.1 into a natural language ques- 379

tion, and use it as the context part of the structural 380

knowledge in knowledge graphs, consequently con- 381

structing the prompts for language models. Specifi- 382

cally, we perform neighborhood retrieval for logi- 383

cal queries (Choudhary and Reddy, 2023). Assum- 384

ing that the original multi-hop query is decomposed 385

into k sub-queries, let Ei represent the entities and 386

Ri represent the relations in a sub-query qi. The 387

neighborhood retrieval process is defined as: 388

N (qi) =
{
(e, r, e′)|e ∈ Ei, r ∈ Ri, e

′ ∈ Ei

}
, (15) 389

390
Ei = {e, e′|(e, r, e′) ∈ N (qi−1)}, (16) 391
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392
Ri = {r|(e, r, e′) ∈ N (qi−1)}, (17)393

394
N (q1) =

{
(e, r, e′)|e ∈ E1, r ∈ R1, e

′ ∈ E1

}
. (18)395

Note that we substitute entities and relations with396

unique IDs and leverage solely the reasoning ca-397

pabilities of language models, to avoid the issue398

of knowledge leakage that could emerge with the399

integration of LMs. As shown in Figure 2(b), we400

then concatenate the neighborhoods retrieved by401

each sub-query as the context. When the length of402

the context exceeds the input limit, i.e., the input403

token limit of the language model, we stop adding404

contexts. The logical decomposition mechanism405

used above and the decomposed sub-queries align406

with the order in Section 3.2.1.407

Inspired by the chain of thought (Wei et al.,408

2022), we use templates that convert the sub-409

queries obtained from the logical decomposition410

into step-by-step natural language questions in the411

logical order. The templates are provided in Ap-412

pendix B.413

Finally, as shown in Figure 2(b), we use the414

context and the question as the prompt P for feed-415

ing into the language model encoder, the encoder416

works by:417

HLM = ΦE(P), (19)418

where ΦE(·) denotes the LM encoder, and HLM419

refers to the output of the encoder.420

3.2.3 Answer Generation421

With the encoding HLM obtained from a language422

model encoder and the representation of the chain-423

of-box HC , the next step is to effectively integrate424

the chain-of-box into the language model decoder425

for answer generation. Specifically, we first pro-426

pose to fuse the representation of the chain-of-box427

HC into HLM and leverage a single-head attention428

network which works by:429

Hatt = Softmax
(
HLMWCH

⊤
C√

d

)
HC , (20)430

where d is the dimension of HLM and WC is a431

trainable projection matrix to project HC to the432

same dimension as HLM .433

Then we apply a gated fusion mechanism (Zhang434

et al., 2023, 2019; Wu et al., 2021; Li et al., 2022)435

to fuse the attention output Hatt with LM encoding436

HLM . The final output H is defined as:437

H = (1− λ) ·HLM + λ ·Hatt, (21)438
439

λ = Sigmoid(WLMHLM +WattHatt), (22)440

where WLM and Watt are trainable weights. 441

Finally, we input the fused representation H into 442

the language model decoder to predict the answers. 443

The decoder works by: 444

A = ΦD(H), (23) 445

The loss function for fine-tuning language mod- 446

els is defined as: 447

L(θ) = −
N∑
i=1

log p(Ai|Hi; θ), (24) 448

where N is the number of training examples, Ai 449

is the answer for the i-th example, Hi is the fused 450

representation for the i-th example and θ are the 451

model parameters. 452

3.3 Optimization 453

We implement the above process as an end-to-end 454

framework, as shown in Figure 2. By fine-tuning 455

the language model, we empower the language 456

model with the capability to reason over KGs with 457

the representation of the chain-of-box. The algo- 458

rithmic process is given in Appendix C. 459

4 Experiments 460

4.1 Datasets 461

We adopt two widely used knowledge graphs 462

FB15k-237 (Toutanova and Chen, 2015) and 463

NELL995 (Xiong et al., 2017) for evaluation. Both 464

datasets are English language KGs covering do- 465

mains such as movies, music, sports, etc. The query 466

datasets are provided by BetaE (Ren and Leskovec, 467

2020). We exclude FB15k (Bordes et al., 2013) 468

from consideration as the dataset suffers from test 469

leakage issue (Chen et al., 2022; Toutanova and 470

Chen, 2015). More details about datasets can be 471

found in Appendix D. 472

4.2 Baselines and Evaluation Metrics 473

To validate the effectiveness of our method, we 474

compared COB-LM with GQE (Hamilton et al., 475

2018), Query2Box (Ren et al., 2020), BetaE 476

(Ren and Leskovec, 2020), CQD (Arakelyan 477

et al., 2020), FuzzQE (Chen et al., 2022), 478

Query2Particles (Bai et al., 2022a), GNN-QE (Zhu 479

et al., 2022), GammaE (Yang et al., 2022) and 480

LMPNN (Wang et al., 2023) on both datasets. 481

Following previous studies (Chen et al., 2022; 482

Hamilton et al., 2018), we adopt the evaluation pro- 483

tocol and use Mean Reciprocal Rank (MRR) as the 484

main evaluation metric for each answer correspond- 485

ing to a logical query. 486
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Table 1: MRR results (%) on answering EPFO queries. Performance comparisons are between ours and the baselines
on FB15k-237 and NELL995. The best results are in bold.

Dataset Models Avg 1p 2p 3p 2i 3i ip pi 2u up
FB15k-237 GQE 16.3 35.0 7.20 5.30 23.3 34.6 16.5 10.7 8.20 5.70

Q2B 20.1 40.6 9.40 6.80 29.5 42.3 21.2 12.6 11.3 7.60
BetaE 20.9 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.70
CQD 21.7 46.3 9.90 5.90 31.7 41.3 21.8 15.8 14.2 8.60

FuzzQE 24.2 42.2 13.3 10.2 33.0 47.3 26.2 18.9 15.6 10.8
Q2P 21.9 39.1 11.4 10.1 32.3 47.7 24.0 14.3 8.70 9.10

GNN-QE 26.8 42.8 14.7 11.8 38.3 54.1 31.1 18.9 16.2 13.4
GammaE 24.3 43.2 13.2 11.0 33.5 47.9 27.2 15.9 15.4 11.3
LMPNN 24.1 45.9 13.1 10.3 34.8 48.9 22.7 17.6 13.5 10.3

COB-LM (Ours) 42.0 62.5 35.3 31.8 49.8 64.6 36.6 45.6 31.4 20.1
NELL995 GQE 18.66 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.50 8.80

Q2B 22.9 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3
BetaE 24.6 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.50
CQD 28.4 60.0 16.5 10.4 40.4 49.6 27.6 20.8 16.8 12.6

FuzzQE 29.3 58.1 19.3 15.7 39.8 50.8 28.1 21.8 17.3 13.7
Q2P 25.5 56.5 15.2 12.5 35.8 48.7 22.6 16.1 11.1 10.4

GNN-QE 28.9 53.3 18.9 14.9 42.4 52.5 30.8 18.9 15.9 12.6
GammaE 28.2 55.1 17.3 14.2 41.9 51.1 26.9 18.3 16.5 12.5
LMPNN 30.7 60.6 22.1 17.5 40.1 50.3 28.4 24.9 17.2 15.7

COB-LM (Ours) 52.3 73.4 52.0 49.1 57.1 63.5 48.1 51.9 46.9 28.7

4.3 Model Setup487

To utilize a small-scale language model and em-488

power it with the ability to perform logical reason-489

ing, in this work, we employ the FLAN-T5-small490

model with an encoder-decoder architecture as our491

base language model (Wei et al., 2021), which has492

been primarily used for a variety of natural lan-493

guage processing tasks. The language model is494

publicly available in Huggingface library (Wolf495

et al., 2020), and allows for fine-tuning and deploy-496

ment on consumer-grade GPUs. Implementation497

details can be found in Appendix D.498

4.4 Main Results499

The performance of all evaluated logical reasoning500

methods on two different KGs are shown in Table501

1. We can see that COB-LM consistently outper-502

forms the previous state-of-the-art baselines for all503

types of EPFO logical queries on both benchmark504

datasets, with average performance gains of 15.2%505

and 21.6% on FB15k-237 and NELL995, respec-506

tively. We also observe that this improvement is507

broad and stable, and also shows promising gener-508

alization on more complex logical query types, e.g.,509

ip, pi, 2u, up. The results validate the effectiveness510

of COB-LM. Therefore, these results highlight the511

advantages of our designed chain-of-box to fuse the512

geometric representation of reasoning trajectory in513

language model reasoning.514

Table 2: Performance comparisons between language
model reasoning and COB-LM using MRR scores,
where LM refers to the unfine-tuned language model,
LM-FT refers to the fine-tuned language model.

Models 1p 2p 3p 2i 3i ip pi 2u up
FB15k-237

LM 37.9 16.5 15.8 14.0 9.0 16.4 12.8 17.9 8.7
LM-FT 61.3 28.5 25.7 46.9 61.4 30.8 38.2 27.6 18.5

COB-LM 62.5 35.3 31.8 49.8 64.6 36.6 45.6 31.4 20.1
NELL995

LM 26.3 21.6 19.8 12.7 8.7 20.6 16.4 21.9 10.1
LM-FT 51.7 38.1 36.9 54.9 60.4 36.8 43.4 39.1 25.2

COB-LM 73.4 52.0 49.1 57.1 63.5 48.1 51.9 46.9 28.7

4.5 Ablation Study 515

4.5.1 Impact of Chain-of-Box 516

In order to illustrate the impact of chain-of-box 517

in our framework, we conduct comparative ex- 518

periments on two datasets. Specifically, we com- 519

pare COB-LM with two variants. For LM, we 520

only leverage a language model and convert logical 521

queries into natural language prompts. Using the 522

constructed natural language prompts, we evaluate 523

the language model LM-FT fine-tuned on them 524

and the original language model LM separately. 525

The evaluation results are shown in Table 2. 526

The language model LM without fine-tuning 527

suffers from high-performance degradation. Ob- 528

serving the answers that LM incorrectly predicts, 529

we find that it always outputs nonsensical texts. 530

This observation illustrates its failure neither to 531

demonstrate logical reasoning ability nor even to 532

7



understand the prompts. The results of the fine-533

tuned language model LM-FT show a significant534

improvement in performance. It proves that effec-535

tive logical reasoning can be performed using the536

reasoning ability of the language model, and shows537

the importance of fine-tuning the language model538

to understand the form of logical reasoning task.539

Going further, after integrating the representa-540

tion of chain-of-box, the reasoning performance541

obtains a remarkable improvement on all 9 types542

of logical queries. We argue that this is because543

the chain-of-box and language model reasoning es-544

sentially depict two forms of the same reasoning545

process. More specifically, the representations of546

the chain-of-box over knowledge graphs have the547

advantage of a structured and deterministic nature,548

qualities that are absent in language model rea-549

soning and can therefore be used to empower the550

logical reasoning of language models. Overall, the551

comparative experiments highlight the benefit of552

using the chain-of-box to empower language mod-553

els, and our results suggest that fusing structural554

knowledge could be a promising way to empower555

language models for complex reasoning tasks.556

4.5.2 Impact of Language Model557

To illustrate the impact of the language model in558

COB-LM, we remove the language model and559

perform a comparative analysis. When only the560

module in Section 3.2.1 is employed, the module561

is similar to the Query2Box (Ren et al., 2020). It562

is worth noting that Query2Box method uses only563

the structural knowledge from KGs to reason us-564

ing iterative embedding of boxes, after obtaining565

the query projection in the last step, it regards the566

entities closest to the final box as the answer.567

The comparison results between COB-LM and568

Query2Box can be found in Table 1. It is evident569

that with the introduction of the language model,570

the performance has improved remarkably, and the571

relative improvement is notably higher for com-572

plex multi-hop queries, e.g., the improvement is573

greater on logical query types 2p and 3p than on574

1p. This illustrates the excellent ability of the lan-575

guage model with chain-of-box to handle complex576

logical queries and the effectiveness of using the577

language model in COB-LM. The incorporation of578

the reasoning ability of language models for com-579

plex logical reasoning is not only a novel solution580

but will continue to benefit from the development581

of pre-trained language models.582

Table 3: MRR scores of COB-LM using Flan-T5-small
and UnifiedQA-small as the base language model.

Models 1p 2p 3p 2i 3i ip pi 2u up

FB15k-237

UnifiedQA 61.1 27.9 24.4 49.8 63.8 30.5 44.4 26.1 15.6
FLAN-T5 62.5 35.3 31.8 49.8 64.6 36.6 45.6 31.4 20.1

NELL995

UnifiedQA 71.1 33.2 34.5 51.0 62.1 31.8 39.7 29.2 22.6
FLAN-T5 73.4 52.0 49.1 57.1 63.5 48.1 51.9 46.9 28.7

4.5.3 Impact of Base Models 583

To evaluate the adaptability of COB-LM, we 584

changed the base language model from FLAN-T5- 585

small to UnifiedQA-small (Khashabi et al., 2020), 586

which is another language model with fewer pa- 587

rameters than FLAN-T5-small. The results in Ta- 588

ble 3 imply that when the number of parameters 589

decreases, there is a slight decrease in the over- 590

all reasoning performance. However, the smaller 591

UnifiedQA-small model still shows superior rea- 592

soning ability in the COB-LM framework, proving 593

the adaptability of our approach to different base 594

language models. 595

We hypothesize that integrating very large lan- 596

guage models as the base language model for COB- 597

LM could potentially result in performance en- 598

hancements. However, it is important to note that 599

fine-tuning and using very large language mod- 600

els is not applicable for logical reasoning tasks on 601

domain-specific KGs due to the high demand for 602

high-performance GPU resources. Therefore, in 603

our work, we focus on the adoption of only small- 604

scale LMs that can be easily used for downstream 605

development and deployment. 606

5 Conclusion 607

In this paper, we proposed a novel framework 608

COB-LM for logical query reasoning over KGs. 609

In order to overcome the knowledge deficiency in 610

KGs, the proposed COB-LM makes use of the 611

knowledge reasoning capability of language mod- 612

els and integrates reasoning over knowledge graphs 613

and language model reasoning. Specifically, we 614

proposed to obtain the chain-of-box to represent the 615

trajectory of knowledge graph reasoning and fused 616

it in the language models to enable the capability of 617

logical reasoning. Extensive experimental results 618

demonstrate the rationality and effectiveness of our 619

proposed method on logical query answering. 620
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Limitations621

Training for COB-LM could have an increased im-622

pact on the environment. In addition, our work623

focuses only on logical reasoning performance.624

While fine-tuning leads to performance improve-625

ments on the current logical reasoning tasks, it may626

also lead to performance degradation on other tasks627

(Kotha et al., 2023).628
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A Additional Comparisons882

Table 4 shows our approach and the LARK ap-883

proach (Choudhary and Reddy, 2023) using much884

larger language models. We can see that COB-LM885

can achieve competitive performance with signif-886

icant reduction in parameters In particular, COB-887

LM, with 80 million parameters, demonstrates con-888

sistent performance improvements compared to889

Algorithm 1 Fine-tune COB-LM
Input: Text question prompt P , the query query q
Output: Generated reasoning answer A

1: Encode the prompt input and embed the query
to respectively obtain HLM and HC

2: Construct the interaction between the prompt
and chain of box representations using cross
attention to get Hatt

3: Fuse HLM with Hatt using a gated fusion mech-
anism, resulting in H

4: Decode the fused representation H to obtain
the target prediction A

5: return A

LARK, which has 3 billion parameters, across var- 890

ious query types except for query type 1p and up, 891

showing that our proposed strategy empowers LMs 892

with the capability of logical reasoning over KGs. 893

Since smaller language models are significantly 894

better in terms of usage cost, inference speed, and 895

required resources, our approach is more feasible in 896

real-world practices and applications of knowledge 897

graphs that require frequent calls, fast responses, 898

and edge applications. 899

B Prompt Templates 900

The prompt templates for the language model are 901

provided in Tables 5. 902

C Fine-tune Procedure 903

We adopt the encoder-decoder architecture of the 904

T5 language model (Raffel et al., 2020), which 905

provides flexibility for fine-tuning. The training 906

procedure is shown in Algorithm 1. 907

D Implementation Details 908

D.1 Datasets 909

We use two standard KG benchmark datasets: 910

• FB15k-237 (Toutanova and Chen, 2015) : It 911

is a challenging benchmark dataset based on the 912

large-scale knowledge graph project Freebase, con- 913

taining 14,505 entities, 237 relations, and 310,079 914

triples. The sizes of the training, validation, and 915

test sets for FB15k-237 are 164657, 25101, and 916

27812, respectively 917

• NELL995 (Xiong et al., 2017): This is a dataset 918

created using a machine learning system, namely 919

Never-Ending Language Learning (NELL) system, 920

which contains 63,631 entities, 200 relations, and 921

11



Table 4: MRR results (%) on FB15k-237 dataset, performance comparisons are between LARK and ours with LMs
of different scales.

Models Params 1p 2p 3p 2i 3i ip pi 2u up
LARK (Flan-t5-Large) 780M 14.0 16.1 9.30 6.20 4.50 15.3 9.20 13.3 17.1
LARK (Flan-t5-XL) 3B 72.3 34.1 21.2 10.5 24.3 20.8 17.7 21.0 26.2

LARK (Flan-t5-XXL) 11B 72.8 50.7 36.2 66.9 60.4 23.5 56.1 52.4 40.6
COB-LM (Flan-t5-small) 80M 62.5 35.3 31.8 49.8 64.6 36.6 45.6 31.4 20.1

142,804 triplets. The sizes of the training, valida-922

tion, and test sets for NELL995 are 118780, 20927,923

and 21034, respectively924

The datasets are provided by BetaE (Ren and925

Leskovec, 2020), which contain 9 types of EPFO926

queries. Compared to the earlier datasets provided927

by Query2Box, it improves the answer constraints928

of the queries and regenerate data of the 9 query929

types , making the data more realistic and challeng-930

ing. In particular, training set involves 5 distinct931

query types: 1p, 2p, 3p, 2i, 3i. For evaluation, we932

use a total of nine query structures, including the933

original 5 query types and 4 new query types that934

are never seen during training: ip, pi, 2u, up, to935

assess the model’s generalization ability (naming936

conventions: p for projection, i for intersection, u937

for union).938

Both datasets are publicly available, licensed "as-939

is". They do not contain any sensitive or personal940

information about individuals or entities.941

D.2 Baselines942

We study the performance of the COB-LM frame-943

work by evaluating against five baselines.944

• GQE (Hamilton et al., 2018), which encodes945

the query as a single vector in a low-dimensional946

space.947

• Query2Box (Ren et al., 2020), which extends948

the embedding to a box region of vector space949

for answering existential positive first-order logic950

queries.951

• BetaE (Ren and Leskovec, 2020), which uses952

Beta distributions to capture uncertainty in query953

and answer set.954

• CQD (Arakelyan et al., 2020), a method that955

decomposes the logical queries to multiple atomic956

queries, employs a pre-trained link predictor to957

solve, and independently evaluates atom predicates.958

• FuzzQE (Chen et al., 2022), which proposes a959

logical query embedding framework that satisfies960

the laws of logic and uses learning-free logical961

operators.962

• Query2Particles (Bai et al., 2022a), which en-963

codes the logical query into several different re- 964

gions in the embedding space. 965

• GNN-QE (Zhu et al., 2022), which propose a 966

graph neural network query executor that enjoys the 967

advantages of both neural methods and symbolic 968

methods. 969

• GammaE (Yang et al., 2022), which uses 970

Gamma distribution to capture more features of 971

both entities and queries. 972

• LMPNN (Wang et al., 2023), which decom- 973

poses the KG embeddings and goes on to one-hop 974

inferences for complex query answering. 975

For both BetaE and CQD, we benchmark 976

against their respective model variants with en- 977

hanced general performance, namely BetaEDNF 978

and CQD-BEAM. 979

D.3 Chain-of-Box Construction 980

We set the embedding dimension to d = 400 and 981

configure the parameters γ = 24 and α = 0.2 for 982

the loss. 983

The batch size is 512 and the training epoch is 984

300. For each of these queries in the batch, we 985

select one answer entity and 128 negative entities. 986

We use the Adam optimizer (Kingma and Ba, 2014) 987

to minimize the loss with a learning rate of 0.0001. 988

D.4 Language Model 989

FLAN-T5-small is a language model with 80 mil- 990

lion parameters. We fine-tune the model up to 991

3 epochs. The learning rate is 0.00005 and the 992

batch size is 16. We implemented COB-LM in 993

Pytorch (Paszke et al., 2019). We also leveraged 994

NLTK (Bird et al., 2009) and NumPy (Harris et al., 995

2020), and run on 4 NVIDIA GeForce RTX 3090 996

GPUs with 40 GB VRAM. The total GPU hours 997

consumed for the fine-tuning process was about 998

30 hours. Results are reported from a single run. 999

We will make the code publicly available upon 1000

acceptance to facilitate reproduction and further 1001

research. 1002
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Table 5: Prompt Templates.

Type Logical Query Templates
Context Nk(qτ [Qτ ]) Known (h1, r1, t1), (h2, r2, t2), (h3, r3, t3),

(h4, r4, t4), (h5, r5, t5), (h6, r6, t6)

1p ∃X.r1(X, e1) Which entities are connected to e1 by relation r1?
2p ∃X.r1(X,∃Y.r2(Y, e1) Assume that the set of entities E is connected to entity e1 by relation

r1. Then, what are the entities connected to E by relation r2?
3p ∃X.r1(X,∃Y.r2(Y,∃Z.r3(Z, e1) Assume that the set of entities E is connected to entity e1 by relation

r1 and the set of entities F is connected to entities in E by relation r2.
Then, what are the entities connected to F by relation r3?

2i ∃X.[r1(X, e1) ∧ r2(X, e2)] Assume that the set of entities E is connected to entity e1 by relation
r1 and the set of entities F is connected to entity e2 by relation r2.
Then, what are the entities in the intersection of set E and F, i.e.,
entities present in both F and G?

3i ∃X.[r1(X, e1) ∧ r2(X, e2) ∧ r3(X, e3)] Assume that the set of entities E is connected to entity e1 by relation
r1, the set of entities F is connected to entity e2 by relation r2 and
the set of entities G is connected to entity e3 by relation r3. Then,
what are the entities in the intersection of set E, F and G, i.e., entities
present in all E, F and G?

ip ∃X.r3(X,∃Y.[r1(Y, e1) ∧ r2(Y, e2)] Assume that the set of entities E is connected to entity e1 by relation
r1, F is the set of entities connected to entity e2 by relation r2, and G
is the set of entities in the intersection of E and F. Then, what are the
entities connected to entities in set G by relation r3?

pi ∃X.[r1(X,∃Y.r2(Y, e2)) ∧ r3(X, e3)] Assume that the set of entities E is connected to entity e1 by relation
r1, F is the set of entities connected to entities in E by relation r2,
and G is the set of entities connected to entity e2 by relation r3. Then,
what are the entities in the intersection of set F and G, i.e., entities
present in both F and G?

2u ∃X.[r1(X, e1) ∨ r2(X, e2)] Assume that the set of entities E is connected to entity e1 by relation
r1 and F is the set of entities connected to entity e2 by relation r2.
Then, what are the entities in the union of set F and G, i.e., entities
present in either F or G?

up ∃X.r3(X,∃Y.[r1(Y, e1) ∨ r2(Y, e2)] Assume that the set of entities E is connected to entity e1 by relation
r1 and F is the set of entities connected to entity e2 by relation r2.
G is the set of entities in the union of E and F. Then, what are the
entities connected to entities in G by relation r3?
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