Chain-of-Box Empowered Language Models for Logical Reasoning over Knowledge Graphs

Anonymous ACL submission

Abstract

Complex logical reasoning over large-scale knowledge graphs (KGs) is a fundamental yet challenging task. Current approaches mainly focus on embedding logical queries as well as KG entities into the same vector space and retrieving answers based on similarity matching. However, the incompleteness issue of KGs severely hinders the effectiveness of previous studies. To tackle the challenging knowledge deficiency problem, we propose to leverage language models as the additional knowledge reasoner and design a unified framework to integrate knowledge graph reasoning and natural language reasoning by harnessing box embeddings of reasoning trajectory as the chainof-box and fusing it into the language model to empower the capability of logical reasoning. Extensive experiments on two standard benchmark datasets demonstrate that our model **COB-LM** significantly improves over state-ofthe-art methods.

1 Introduction

001

007

010

017

018

021

024

Knowledge graphs (KGs) have emerged as the prevailing manner for organizing and managing knowledge, and have been extensively embraced as foundational components in practical applications, including search engines (Reinanda et al., 2020), professional networking platforms (Shinavier et al., 2019), and query answering (Saxena et al., 2020).

Apart from the conventional KG completion (Yang et al., 2014; Sun et al., 2018), in recent years, there has been a notable surge in the prominence of logical reasoning over KGs, which involves a diverse class of logical queries, particularly Existential Positive First-Order (EPFO) queries (Dalvi and Suciu, 2007) and entails answering logical queries based on a given KG. These queries consist of operators such as existential quantification (\exists), conjunction (\land), and disjunction (\lor). Taking a logical query " $V_{?}$. $\exists V$: $Invest(V_{?}, V) \land$ Founder(OpenAI, V)" as an example, as shown in Figure 1(a), this query involves multi-hop reasoning in a KG with logical operators (e.g., \land, \lor) and refers to the question "*What companies have* the OpenAI founders invested in?". 041

042

043

044

045

047

049

052

053

055

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

081

To answer logical queries, the embedding-based logical reasoning primarily focuses on query encoding by designing various geometric embedding structures (Ren et al., 2020; Choudhary et al., 2021b; Zhang et al., 2021) or resorting to probabilistic distributions (Ren and Leskovec, 2020; Yang et al., 2022). As illustrated in Figure 1(b), an embedding-based approach (Ren et al., 2020) encodes a 2-hop query via two projections, ultimately determining the closest neighboring entities of the latest projected region as the final answer. However, the logical query reasoning relies on the provided background knowledge, the encapsulated knowledge within KGs is usually significantly incomplete (West et al., 2014), thereby rendering the set of answers intrinsically inadequate and weakening the ability of logical reasoning over KGs.

Despite the extensive development of KG completion (Yang et al., 2014; Sun et al., 2018; Niu et al., 2020) aimed at addressing the issue of incompleteness, its ineffectiveness and inaccuracy in practice remain obstacles to achieving comprehensive KGs for precise logical query reasoning. Instead of embarking on the challenging task of augmenting KGs using external knowledge, in this paper, we explore the strategy for directly integrating an additional knowledge reasoner to enhance logical reasoning over KGs. Owing to the emergent abilities of large language models (LMs) (Bubeck et al., 2023; Webb et al., 2023), LMs can serve as the knowledge reasoner and the query reasoning can be conceptualized as a natural language reasoning task, where the frozen LM functions as the retrieval module to locate relevant answers, as shown in Figure 1(c). Yet, the challenge that LMs face in addressing intricate logical reasoning prob-

Figure 1: (a) A logical query with multi-hop logic and corresponding answers. The given KG has missing relations that prevent the logical query from being correctly answered. Solid lines represent discovered relations, and dotted lines denote missing relations. (b) The embedding-based method follows logical order to execute the query in the embedding space. (c) Reasoning in language models requires the design of prompts. (d) COB-LM incorporates the advantages of both reasoning strategies to enable the capability of logical reasoning.

lems (Liu et al., 2023) impedes the capability to answer logical queries. Moreover, the reliability of the knowledge reasoning within LMs is not assured, and the hallucination issue hinders the applicability of LMs (Ji et al., 2023).

083

100

101

102

104

106

110

111

112

113

114

115

116

The challenges posed by the incompleteness of KGs and the limitations of LMs motivate us to explore the integration of KG structure-based logical reasoning with LM-based knowledge reasoning for answering logical queries. However, the materialization is non-trivial. First, the conventional way to integrate an LM and KGs (Pan et al., 2023) is to fine-tune the LM using KGs, which converts KGs into sequences and inevitably loses the structural knowledge, and still suffers from the inability of logical reasoning. Second, structural knowledge in KGs facilitates explicit logical reasoning, in contrast to the implicit reasoning employed in LMs. There is no straightforward method to enable logical query reasoning by combining both reasoning paradigms. Third, beyond technical limitations, the emergent ability of LMs heavily depends on the extensive scale of these models (Magister et al., 2022). Nonetheless, the need for specialized computing resources (i.e., GPUs) restricts the practical deployment of logical reasoning over domainspecific KGs. The demand for handling frequent reasoning calls and generating quick responses on resource-constrained devices drives us to explore the utilization of small-scale LMs to enable effective logical query reasoning over KGs.

To leverage the capability of knowledge reasoning of LMs, in this paper, we propose a novel framework for logical query reasoning over KGs with <u>chain-of-box</u> empowered <u>language models</u>, named COB-LM, which integrates knowledge graph reasoning and natural language reasoning, aiming to take advantage of the two different knowledge reasoning strategies, as shown in Figure 1(d). Specifically, **COB-LM** consists of three modules, i.e., chain-of-box construction, LM prompting, and answer generation. First, to obtain the structural knowledge in KGs, we utilize a logical decomposition mechanism to decompose the logical query into a series of sub-queries and map the sub-queries into an embedding space through the box operators (Ren et al., 2020). A sequence of box embeddings in the logical order can be obtained in the reasoning process and serves as the chain-of-box. Second, to harness the capability of knowledge reasoning of LMs, we convert complex logical queries to natural language prompts and use them to obtain the hidden representation from the LM encoder. Third, to enable the language model for effective logical query answering, we propose to fuse the chain-ofbox into the hidden representation before passing it to the LM decoder to generate answers. The fusion enables LMs to be aware of the reasoning trajectory and combine the structural knowledge in KGs, empowering LMs with the ability to reason logically over KGs. After the fine-tuning of language models, **COB-LM** not only retains the semantic reasoning capability but also gains the capability of logical reasoning.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

Overall, our contributions in this work include: (1) We propose to leverage LMs as the additional knowledge reasoner and empower LMs with the capability of logical reasoning over KGs.

(2) We design a novel framework to integrate the structural knowledge in KGs with LMs by utilizing

the chain-of-box to describe reasoning trajectoryand injecting the representation of the chain-of-boxinto language models.

(3) We perform extensive experiments on two KG
datasets. The experimental results show the superior performance of COB-LM over the state-ofthe-art with significant improvement in complex
logical query reasoning over KGs.

2 Related Work

160

199

201

Logical Reasoning over Knowledge Graphs In recent years, there has been a rise in the num-162 163 ber of embedding-based methods for logical query answering in knowledge graphs. The basic idea 164 is to embed logical queries and entities into a 165 joint vector space and utilize the embedding sim-166 ilarity for answer prediction. Some models em-167 168 bed queries/entities into points in the vector space (Guu et al., 2015; Hamilton et al., 2018). Fur-169 thermore, some efforts extend the single-point embedding into region embedding, such as box 171 (Ren et al., 2020), hyperboloid (Choudhary et al., 172 2021b), cone (Zhang et al., 2021) and particles 173 (Bai et al., 2022a), while other methods represent 174 the query/entity in terms of probability distribu-175 tions in the vector space, such as Gaussian distri-176 bution (Choudhary et al., 2021a), Beta distribution 177 (Ren and Leskovec, 2020), and Gamma distribution (Yang et al., 2022). In addition, query decompo-179 sition methods have also achieved significant per-180 formance. CQD (Arakelyan et al., 2020) uses a 181 neural link predictor trained on 1-hop queries and 182 QTO (Bai et al., 2022b) proposes a neural search method based on query computation graphs. Further, GNN-QE (Zhu et al., 2022) designs a neural-185 symbolic method, LMPNN (Wang et al., 2023) 186 proposes a logical message passing network, and 187 SQE (Bai et al., 2023) proposes a simple and effi-188 cient method for sequential query encoding. While these methods demonstrate superior performance, their effectiveness is hampered by incomplete KGs. 191 This inherent limitation significantly undermines 192 their capacity for logical reasoning. The latest 193 work (Choudhary and Reddy, 2023) relies on the 194 direct utilization of a frozen large language model through a step-by-step questioning approach, yet 196 still suffers from the inherent issues of LMs and 197 severely depends on the scale of LMs. 198

> **Reasoning in Language Models** Recent research has shown that multi-step reasoning ability can be triggered in language models by chain-of

thought (CoT) prompting (Wei et al., 2022). The improved performance in zero-shot reasoning tasks demonstrates the effectiveness of prompt questions (Kojima et al., 2022; Yang et al., 2023). Furthermore, studies have shown that by explicitly decomposing the question into multiple sub-questions, the language models can be guided to pay more attention to and reason about these sub-problems (Zhou et al., 2022; Khot et al., 2022; Choudhary and Reddy, 2023). However, the success of the promptbased method significantly depends on carefully composed prompts and the size of the language model. While language models with over 100 billion parameters exhibit enhanced reasoning capabilities, those with fewer parameters not only struggle to leverage the CoT prompts for reasoning but may even compromise the accuracy of their original responses (Magister et al., 2022). In order to transfer reasoning ability to smaller language models, another research interest is to elicit CoT reasoning by fine-tuning language models. Datasets containing chains of thought processes are constructed by manual collection (Lu et al., 2022) or generation by LMs (Ho et al., 2022) for fine-tuning LMs. Unlike the existing works, our work focuses on logical reasoning over KGs and proposes to exploit the knowledge reasoning of LMs to facilitate logical query reasoning over KGs.

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239

240

241

242

243

245

246

247

248

3 Methodology

In this section, we propose the **COB-LM** framework. We will first describe the problem definition of logical reasoning over knowledge graphs, then overview the procedure of the framework, and finally detail the sub-modules and technical design.

3.1 Preliminaries

A knowledge graph consists of a set of entities E, a set of relations R, and a set of triples T in which each triple (e_i, r, e_j) includes two entities $e_i, e_j \in E$, and a relation $r \in R$, which denotes the type of relation between e_i and e_j . Each relation type is a binary function that indicates whether the relation exists between a pair of entities, i.e., $e_1 \xrightarrow{r} e_2 \iff r(e_1, e_2) = True$.

We consider the Existential Positive First-Order (EPFO) queries, including existential quantification (\exists) , conjunction (\land) and disjunction (\lor) . And we define valid EPFO queries as its disjunctive

Figure 2: Overview of COB-LM. (a) Knowledge graph reasoning decomposes the query and represents reasoning sub-queries by mapping them to box embeddings, forming the chain-of-box; (b) prompts are constructed by retrieving subgraphs as context and converting the logical query into a natural language prompt, then language model reasoning is triggered by prompts. (c) Integrating the language model encoding and the chain-of-box via cross-attention and gated fusion layer for answer generation.

(1)

normal form (DNF) (Davey and Priestley, 2002): $q[V_2] = V_2 \exists V_1, \dots, V_k : (c_1) \lor (c_2) \lor \dots \lor (c_n),$

249

253

255

260

261

265

266

267

270

271

272

273

274

275

277

where $V_{?}$ is the target of the query, and V_1, \ldots, V_k denote the existentially quantified bound variables. Each $c_i = (a_{i1} \land \ldots \land a_{in}), n < k$, and a_{ij} represents an atomic formula, i.e., r(e, V) or r(V', V), where $e \in E, r \in R, V \in \{V_1, \ldots, V_k, V_?\}, V' \in \{V_1, \ldots, V_k\}, V' \neq V$.

A complex query can be decomposed into a series of sub-queries by following basic rules:

$$A_{q_1 \wedge q_2} = A_{q_1} \cap A_{q_2},$$
 (2)

$$A_{q_1 \vee q_2} = A_{q_1} \cup A_{q_2}, \tag{3}$$

where A_{q_i} is the answer to the logical query q_i , defined as a set of entities $A_{q_i} = \{e | e \in E, q_i[e] \text{ holds true}\}, i = 1, 2.$

The logical reasoning process can further be modeled as a sequence of reasoning tasks, which is of executing logical operators along the order after the logical decomposition.

For example, a 2p query can be decomposed as follows:

$$e_1 \xrightarrow{r_1} \xrightarrow{r_2} A \implies e_1 \xrightarrow{r_1} A_1, A_1 \xrightarrow{r_2} A.$$

We follow the same decomposition mechanism as in previous work (Ren et al., 2020; Ren and Leskovec, 2020; Choudhary and Reddy, 2023) to decompose complex queries as a series of subqueries. In the example shown above, $e_1 \xrightarrow{r_1} A_1$ is a sub-query, and $A_1 \xrightarrow{r_2} A$ is another sub-query.

3.2 The Proposed Method: COB-LM

278

279

280

281

285

286

287

288

289

290

291

292

293

295

296

297

298

299

300

301

302

303

304

305

306

307

308

The overall architecture of the proposed model COB-LM is shown in Figure 2. COB-LM consists of three modules, i.e., chain-of-box construction, LM prompting, and answer generation. First, we utilize a geometric representation approach, i.e., box embeddings, to encode the KG and preserve the structural knowledge by the geometric embeddings of sub-queries in the logical order as the chain-of-box. In parallel, we convert the logical queries into prompts using logical decomposition and encode them through a language model encoder. Finally, we propose to employ crossattention and gated fusion mechanisms to fuse the chain of boxes into the language model encoding and pass them to the language model decoder to generate answers.

3.2.1 Chain-of-Box Construction

Due to the incompleteness issue of KGs, it is difficult to reason and answer complex multi-hop queries by directly traversing the KG. Instead, we propose to leverage the geometric representation learning methods, which transform queries and entities into geometric regions in the embedding space, and make logical operators as operations on geometric regions, i.e., relational projections and intersections. Updating the embedding regions according to the logical order promotes the final inclusion of answer entities in the mapping region of the logical query. To achieve effective logical reasoning and modeling, we define geometric re-

309gions as boxes (hyper-rectangles) (Ren et al., 2020).310In the embedding space, the box embedding of a311query q is defined as $\mathbf{q} = (\text{Cen}(\mathbf{q}), \text{Off}(\mathbf{q}))$, where312Cen(\mathbf{q}) denotes the center vector of the box and313Off(\mathbf{q}) denotes the offset vector of the box, then314the region in the box is defined as follows:

$$Box_{\mathbf{q}} \equiv \{ \mathbf{e} : Cen(\mathbf{q}) - Off(\mathbf{q}) \preceq \mathbf{e} \preceq Cen(\mathbf{q}) + Off(\mathbf{q}) \}.$$
(4)

For a relation $r \in R$, it is associated with relation embedding $\mathbf{r} = (\text{Cen}(\mathbf{r}), \text{Off}(\mathbf{r}))$. And for any entity $e \in E$ within the knowledge graph, its box embedding is defined as $\mathbf{e} = (\text{Cen}(\mathbf{e}), 0)$, namely a zero-sized box. If it satisfies $\mathbf{e} \in \text{Box}_{\mathbf{q}}$, it is considered as an answer entity to query q.

In the vector space, the initial box embedding of atomic q^1 and relation r are modeled as a new region $\mathbf{q} + \mathbf{r}$ after the projection operator. And for the intersection operator, an attention operation is performed on the box centers and a sigmoid function is applied to update the offset vectors to obtain $\mathbf{q}_{\cap} = (\text{Cen}(\mathbf{q}_{\cap}), \text{Off}(\mathbf{q}_{\cap})).$

$$\operatorname{Cen}(\mathbf{q}_{\cap}) = \sum_{i} a_{i} \odot \operatorname{Cen}(\mathbf{q}_{i}), \tag{5}$$

$$a_i = \frac{\exp(\mathrm{MLP}(\mathbf{q}_i))}{\sum_j \exp(\mathrm{MLP}(\mathbf{q}_j))},$$
(6)

$$\begin{array}{ll}
\operatorname{Off}(\mathbf{q}_{\cap}) = \operatorname{Min}(\operatorname{Off}(\mathbf{q}_{1}), \dots, \operatorname{Off}(\mathbf{q}_{n})) \\
\odot \sigma(\operatorname{DeepSets}(\mathbf{q}_{1}, \dots, \mathbf{q}_{n})),
\end{array} (7)$$

where a_i is the attention weight over the box center, \odot represent the element-wise multiplication, MLP(\cdot) is the Multi-Layer Perceptron, and DeepSets(\cdot) is the permutation-invariant function (Zaheer et al., 2017; Hamilton et al., 2018).

Given a query embedding $\mathbf{q} = (\text{Cen}(\mathbf{q}), \text{Off}(\mathbf{q}))$ and an entity embedding \mathbf{e} , their distance is defined as (Ren et al., 2020):

$$d(\mathbf{e}, \mathbf{q}) = d_{\text{out}}(\mathbf{e}, \mathbf{q}) + \alpha \ d_{\text{in}}(\mathbf{e}, \mathbf{q}), \qquad (8)$$

where $d_{out}(\mathbf{e}, \mathbf{q})$ denote the outer distance between the entity and the nearest box corner, while $d_{in}(\mathbf{e}, \mathbf{q})$ corresponds to the inner distance between the center of the box and its corner, and α is a fixed scalar coefficient and $d_{out}(\mathbf{e}, \mathbf{q})$ and $d_{in}(\mathbf{e}, \mathbf{q})$ are defined as follows:

$$d_{\text{out}}(\mathbf{e}, \mathbf{q}) = \max(\mathbf{e} - \mathbf{q}_{\max}, 0) + \max(\mathbf{q}_{\min} - \mathbf{e}, 0),$$
(9)

$$d_{\rm in}(\mathbf{e}, \mathbf{q}) = ||\min(\mathbf{q}_{\rm max} - \max(\mathbf{q}_{\rm min}, \mathbf{e}))|$$

$$Cor(\mathbf{q})|| \qquad (10)$$

$$\operatorname{Cen}(\mathbf{q})||,$$

354

355

357

358

359

360

362

363

364

365

366

367

368

369

370

371

372

374

375

376

377

378

379

380

381

382

383

384

385

386

388

390

391

$$\mathbf{q}_{\max} = \operatorname{Cen}(\mathbf{q}) + \operatorname{Off}(\mathbf{q}),$$
 (11) 3

$$\mathbf{q}_{\min} = \operatorname{Cen}(\mathbf{q}) - \operatorname{Off}(\mathbf{q}),$$
 (12) 35

In order to make the answer embedding as close as possible to the query embedding, the loss of logical reasoning over KGs is defined as follows (Sun et al., 2019):

$$\mathcal{L} = -\log\sigma(\gamma - d(\mathbf{e}, \mathbf{q})) - \sum_{k=1}^{K} \frac{1}{K} \log\sigma(d(\mathbf{e}'_{k}, \mathbf{q}) - \gamma),$$
(13)

where q is the query embedding, e is the positive answer embedding, and e' is the embedding of a negative answer, γ is a fixed margin.

By training the box embedding model, we characterize the reasoning process over knowledge graphs as a chain-of-box (COB). Specifically, for a EPFO query Q_{query} which can be decomposed as a set of sub-queries $\{q_1, ..., q_n\}$. We regard the projection area \mathbf{q}_i of each step as the representation of a sub-query q_i and construct a list of regions $\{\mathbf{q}_1, ..., \mathbf{q}_n\}$ in logical order to preserve the entire reasoning process, as shown in Figure 2(a). To be more specific, we concatenate the list of regions $\{\mathbf{q}_1, ..., \mathbf{q}_n\}$ in the logical order and obtain the representation of the chain-of-box as follows:

$$\mathbf{H}_C = \mathbf{q}_1 \oplus \dots \oplus \mathbf{q}_n, \tag{14}$$

where \oplus denotes the concatenation operation.

3.2.2 LM Prompting

In order to utilize the knowledge reasoning ability of LMs, we convert the logically decomposed query in Section 3.1 into a natural language question, and use it as the context part of the structural knowledge in knowledge graphs, consequently constructing the prompts for language models. Specifically, we perform neighborhood retrieval for logical queries (Choudhary and Reddy, 2023). Assuming that the original multi-hop query is decomposed into k sub-queries, let E_i represent the entities and R_i represent the relations in a sub-query q_i . The neighborhood retrieval process is defined as:

$$\mathcal{N}(q_i) = \{(e, r, e') | e \in E_i, r \in R_i, e' \in E_i\}, \quad (15)$$

$$E_i = \{e, e' | (e, r, e') \in \mathcal{N}(q_{i-1})\},$$
(16)

348

347

315

316

317

318

324

325

326

328

329

330

333

334

335

337

340

341

¹We use q to denote the query and decomposed sub-queries with a slight notation abuse.

1

4

426

427 428

429

430

433

434 435

436 437

438

$$R_{i} = \{r | (e, r, e') \in \mathcal{N}(q_{i-1})\},$$
(17)

$$\mathcal{N}(q_1) = \left\{ (e, r, e') | e \in E_1, r \in R_1, e' \in E_1 \right\}.$$
 (18)

Note that we substitute entities and relations with unique IDs and leverage solely the reasoning capabilities of language models, to avoid the issue of knowledge leakage that could emerge with the integration of LMs. As shown in Figure 2(b), we then concatenate the neighborhoods retrieved by each sub-query as the context. When the length of the context exceeds the input limit, i.e., the input token limit of the language model, we stop adding contexts. The logical decomposition mechanism used above and the decomposed sub-queries align with the order in Section 3.2.1.

Inspired by the chain of thought (Wei et al., 2022), we use templates that convert the subqueries obtained from the logical decomposition into step-by-step natural language questions in the logical order. The templates are provided in Appendix B.

Finally, as shown in Figure 2(b), we use the context and the question as the prompt \mathcal{P} for feeding into the language model encoder, the encoder works by:

$$\mathbf{H}_{LM} = \Phi_E(\mathcal{P}),\tag{19}$$

where $\Phi_E(\cdot)$ denotes the LM encoder, and \mathbf{H}_{LM} refers to the output of the encoder.

3.2.3 Answer Generation

With the encoding \mathbf{H}_{LM} obtained from a language model encoder and the representation of the chainof-box \mathbf{H}_C , the next step is to effectively integrate the chain-of-box into the language model decoder for answer generation. Specifically, we first propose to fuse the representation of the chain-of-box \mathbf{H}_{C} into \mathbf{H}_{LM} and leverage a single-head attention network which works by:

$$\mathbf{H}_{att} = \text{Softmax}\left(\frac{\mathbf{H}_{LM}\mathbf{W}_{C}\mathbf{H}_{C}^{\top}}{\sqrt{d}}\right)\mathbf{H}_{C}, \quad (20)$$

where d is the dimension of \mathbf{H}_{LM} and \mathbf{W}_{C} is a trainable projection matrix to project \mathbf{H}_C to the same dimension as \mathbf{H}_{LM} .

Then we apply a gated fusion mechanism (Zhang et al., 2023, 2019; Wu et al., 2021; Li et al., 2022) to fuse the attention output \mathbf{H}_{att} with LM encoding \mathbf{H}_{LM} . The final output \mathbf{H} is defined as:

$$\mathbf{H} = (1 - \lambda) \cdot \mathbf{H}_{LM} + \lambda \cdot \mathbf{H}_{att}, \qquad (21)$$

$$\lambda = \text{Sigmoid}(\mathbf{W}_{LM}\mathbf{H}_{LM} + \mathbf{W}_{att}\mathbf{H}_{att}), \quad (22)$$

where \mathbf{W}_{LM} and \mathbf{W}_{att} are trainable weights.

Finally, we input the fused representation H into the language model decoder to predict the answers. The decoder works by:

$$\mathcal{A} = \Phi_D(\mathbf{H}),\tag{23}$$

The loss function for fine-tuning language models is defined as:

$$\mathcal{L}(\theta) = -\sum_{i=1}^{N} \log p(\mathcal{A}_i | \mathbf{H}_i; \theta), \qquad (24)$$

where N is the number of training examples, A_i is the answer for the *i*-th example, \mathbf{H}_i is the fused representation for the *i*-th example and θ are the model parameters.

3.3 Optimization

We implement the above process as an end-to-end framework, as shown in Figure 2. By fine-tuning the language model, we empower the language model with the capability to reason over KGs with the representation of the chain-of-box. The algorithmic process is given in Appendix C.

4 **Experiments**

Datasets 4.1

We adopt two widely used knowledge graphs FB15k-237 (Toutanova and Chen, 2015) and NELL995 (Xiong et al., 2017) for evaluation. Both datasets are English language KGs covering domains such as movies, music, sports, etc. The query datasets are provided by BetaE (Ren and Leskovec, 2020). We exclude FB15k (Bordes et al., 2013) from consideration as the dataset suffers from test leakage issue (Chen et al., 2022; Toutanova and Chen, 2015). More details about datasets can be found in Appendix D.

4.2 **Baselines and Evaluation Metrics**

To validate the effectiveness of our method, we compared COB-LM with GQE (Hamilton et al., 2018), Query2Box (Ren et al., 2020), BetaE (Ren and Leskovec, 2020), CQD (Arakelyan et al., 2020), FuzzQE (Chen et al., 2022), Query2Particles (Bai et al., 2022a), GNN-QE (Zhu et al., 2022), GammaE (Yang et al., 2022) and LMPNN (Wang et al., 2023) on both datasets.

Following previous studies (Chen et al., 2022; Hamilton et al., 2018), we adopt the evaluation protocol and use Mean Reciprocal Rank (MRR) as the main evaluation metric for each answer corresponding to a logical query.

441 442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Table 1: MRR results (%) on answering EPFO queries. Performance comparisons are between ours and the baselines on FB15k-237 and NELL995. The best results are in bold.

Dataset	Models	Avg	1p	2p	3p	2i	3i	ip	pi	2u	up
FB15k-237	GQE Q2B BetaE CQD FuzzQE Q2P GNN-QE GammaE LMPNN COB-LM (Ours)	16.3 20.1 20.9 21.7 24.2 21.9 26.8 24.3 24.1 42.0	35.0 40.6 39.0 46.3 42.2 39.1 42.8 43.2 45.9 62.5	7.20 9.40 10.9 9.90 13.3 11.4 14.7 13.2 13.1 35.3	5.30 6.80 10.0 5.90 10.2 10.1 11.8 11.0 10.3 31.8	23.3 29.5 28.8 31.7 33.0 32.3 38.3 33.5 34.8 49.8	34.6 42.3 42.5 41.3 47.3 47.7 54.1 47.9 48.9 64.6	16.5 21.2 22.4 21.8 26.2 24.0 31.1 27.2 22.7 36.6	10.7 12.6 15.8 18.9 14.3 18.9 15.9 17.6 45.6	8.20 11.3 12.4 14.2 15.6 8.70 16.2 15.4 13.5 31.4	5.70 7.60 9.70 8.60 10.8 9.10 13.4 11.3 10.3 20.1
NELL995	GQE Q2B BetaE CQD FuzzQE Q2P GNN-QE GammaE LMPNN COB-LM (Ours)	18.66 22.9 24.6 28.4 29.3 25.5 28.9 28.2 30.7 52.3	32.8 42.2 53.0 60.0 58.1 56.5 53.3 55.1 60.6 73.4	11.9 14.0 13.0 16.5 19.3 15.2 18.9 17.3 22.1 52.0	9.6 11.2 11.4 10.4 15.7 12.5 14.9 14.2 17.5 49.1	27.5 33.3 37.6 40.4 39.8 35.8 42.4 41.9 40.1 57.1	35.2 44.5 47.5 49.6 50.8 48.7 52.5 51.1 50.3 63.5	18.4 22.4 24.1 27.6 28.1 22.6 30.8 26.9 28.4 48.1	14.4 16.8 14.3 20.8 21.8 16.1 18.9 18.3 24.9 51.9	8.50 11.3 12.2 16.8 17.3 11.1 15.9 16.5 17.2 46.9	8.80 10.3 8.50 12.6 13.7 10.4 12.6 12.5 15.7 28.7

4.3 Model Setup

487

488

489

490

491

492

493

494

496

497

498

499

To utilize a small-scale language model and empower it with the ability to perform logical reasoning, in this work, we employ the FLAN-T5-small model with an encoder-decoder architecture as our

model with an encoder-decoder architecture as our base language model (Wei et al., 2021), which has been primarily used for a variety of natural language processing tasks. The language model is publicly available in Huggingface library (Wolf et al., 2020), and allows for fine-tuning and deployment on consumer-grade GPUs. Implementation details can be found in Appendix D.

4.4 Main Results

The performance of all evaluated logical reasoning methods on two different KGs are shown in Table 501 1. We can see that COB-LM consistently outper-502 forms the previous state-of-the-art baselines for all 503 types of EPFO logical queries on both benchmark 504 datasets, with average performance gains of 15.2%and 21.6% on FB15k-237 and NELL995, respec-506 tively. We also observe that this improvement is broad and stable, and also shows promising generalization on more complex logical query types, e.g., 510 ip, pi, 2u, up. The results validate the effectiveness of **COB-LM**. Therefore, these results highlight the 511 advantages of our designed chain-of-box to fuse the 512 geometric representation of reasoning trajectory in 513 language model reasoning. 514

Table 2: Performance comparisons between language model reasoning and COB-LM using MRR scores, where LM refers to the unfine-tuned language model, LM-FT refers to the fine-tuned language model.

Models	1p	2p	3p	2i	3i	ip	pi	2u	up
FB15k-237									
LM	37.9	16.5	15.8	14.0	9.0	16.4	12.8	17.9	8.7
LM-FT	61.3	28.5	25.7	46.9	61.4	30.8	38.2	27.6	18.5
COB-LM	62.5	35.3	31.8	49.8	64.6	36.6	45.6	31.4	20.1
NELL995									
LM	26.3	21.6	19.8	12.7	8.7	20.6	16.4	21.9	10.1
LM-FT	51.7	38.1	36.9	54.9	60.4	36.8	43.4	39.1	25.2
COB-LM	73.4	52.0	49.1	57.1	63.5	48.1	51.9	46.9	28.7

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

4.5 Ablation Study

4.5.1 Impact of Chain-of-Box

In order to illustrate the impact of chain-of-box in our framework, we conduct comparative experiments on two datasets. Specifically, we compare **COB-LM** with two variants. For **LM**, we only leverage a language model and convert logical queries into natural language prompts. Using the constructed natural language prompts, we evaluate the language model **LM-FT** fine-tuned on them and the original language model **LM** separately. The evaluation results are shown in Table 2.

The language model **LM** without fine-tuning suffers from high-performance degradation. Observing the answers that **LM** incorrectly predicts, we find that it always outputs nonsensical texts. This observation illustrates its failure neither to demonstrate logical reasoning ability nor even to understand the prompts. The results of the finetuned language model LM-FT show a significant
improvement in performance. It proves that effective logical reasoning can be performed using the
reasoning ability of the language model, and shows
the importance of fine-tuning the language model
to understand the form of logical reasoning task.

540

541

542

543

544

545

546

550

553

554

555

556

557

560

562

566

567

569

571

574

576

578

582

Going further, after integrating the representation of chain-of-box, the reasoning performance obtains a remarkable improvement on all 9 types of logical queries. We argue that this is because the chain-of-box and language model reasoning essentially depict two forms of the same reasoning process. More specifically, the representations of the chain-of-box over knowledge graphs have the advantage of a structured and deterministic nature, qualities that are absent in language model reasoning and can therefore be used to empower the logical reasoning of language models. Overall, the comparative experiments highlight the benefit of using the chain-of-box to empower language models, and our results suggest that fusing structural knowledge could be a promising way to empower language models for complex reasoning tasks.

4.5.2 Impact of Language Model

To illustrate the impact of the language model in **COB-LM**, we remove the language model and perform a comparative analysis. When only the module in Section 3.2.1 is employed, the module is similar to the Query2Box (Ren et al., 2020). It is worth noting that Query2Box method uses only the structural knowledge from KGs to reason using iterative embedding of boxes, after obtaining the query projection in the last step, it regards the entities closest to the final box as the answer.

The comparison results between **COB-LM** and Query2Box can be found in Table 1. It is evident that with the introduction of the language model, the performance has improved remarkably, and the relative improvement is notably higher for complex multi-hop queries, e.g., the improvement is greater on logical query types 2p and 3p than on 1p. This illustrates the excellent ability of the language model with chain-of-box to handle complex logical queries and the effectiveness of using the language model in **COB-LM**. The incorporation of the reasoning ability of language models for complex logical reasoning is not only a novel solution but will continue to benefit from the development of pre-trained language models. Table 3: MRR scores of COB-LM using Flan-T5-small and UnifiedQA-small as the base language model.

Models	1p	2p	3p	2i	3i	ip	pi	2u	up
FB15k-237									
UnifiedQA	61.1	27.9	24.4	49.8	63.8	30.5	44.4	26.1	15.6
FLAN-T5	62.5	35.3	31.8	49.8	64.6	36.6	45.6	31.4	20.1
NELL995									
UnifiedQA	71.1	33.2	34.5	51.0	62.1	31.8	39.7	29.2	22.6
FLAN-T5	73.4	52.0	49.1	57.1	63.5	48.1	51.9	46.9	28.7

4.5.3 Impact of Base Models

To evaluate the adaptability of **COB-LM**, we changed the base language model from FLAN-T5small to UnifiedQA-small (Khashabi et al., 2020), which is another language model with fewer parameters than FLAN-T5-small. The results in Table 3 imply that when the number of parameters decreases, there is a slight decrease in the overall reasoning performance. However, the smaller UnifiedQA-small model still shows superior reasoning ability in the **COB-LM** framework, proving the adaptability of our approach to different base language models.

We hypothesize that integrating very large language models as the base language model for **COB-LM** could potentially result in performance enhancements. However, it is important to note that fine-tuning and using very large language models is not applicable for logical reasoning tasks on domain-specific KGs due to the high demand for high-performance GPU resources. Therefore, in our work, we focus on the adoption of only smallscale LMs that can be easily used for downstream development and deployment.

5 Conclusion

In this paper, we proposed a novel framework **COB-LM** for logical query reasoning over KGs. In order to overcome the knowledge deficiency in KGs, the proposed **COB-LM** makes use of the knowledge reasoning capability of language models and integrates reasoning over knowledge graphs and language model reasoning. Specifically, we proposed to obtain the chain-of-box to represent the trajectory of knowledge graph reasoning and fused it in the language models to enable the capability of logical reasoning. Extensive experimental results demonstrate the rationality and effectiveness of our proposed method on logical query answering.

618

619

621 Limitations

Training for COB-LM could have an increased impact on the environment. In addition, our work
focuses only on logical reasoning performance.
While fine-tuning leads to performance improvements on the current logical reasoning tasks, it may
also lead to performance degradation on other tasks
(Kotha et al., 2023).

References

629

631

632

633

634

635

638

641

643

645

648

654

664

668

672

- Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. 2020. Complex query answering with neural link predictors. *arXiv preprint arXiv:2011.03459*.
 - Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu Song. 2022a. Query2particles: Knowledge graph reasoning with particle embeddings. *arXiv preprint arXiv:2204.12847*.
- Jiaxin Bai, Tianshi Zheng, and Yangqiu Song. 2023. Sequential query encoding for complex query answering on knowledge graphs. *arXiv preprint arXiv:2302.13114*.
- Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. 2022b. Answering complex logical queries on knowledge graphs via query tree optimization. *arXiv preprint arXiv:2212.09567*.
- Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing with Python: analyzing text with the natural language toolkit. " O'Reilly Media, Inc.".
- Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating embeddings for modeling multirelational data. *Advances in neural information processing systems*, 26.
- Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. 2023. Sparks of artificial general intelligence: Early experiments with gpt-4. *arXiv preprint arXiv:2303.12712*.
- Xuelu Chen, Ziniu Hu, and Yizhou Sun. 2022. Fuzzy logic based logical query answering on knowledge graphs. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 3939–3948.
- Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan Reddy. 2021a. Probabilistic entity representation model for reasoning over knowledge graphs. *Advances in Neural Information Processing Systems*, 34:23440–23451.
- Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan K Reddy. 2021b. Selfsupervised hyperboloid representations from logical

queries over knowledge graphs. In *Proceedings of the Web Conference* 2021, pages 1373–1384.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

709

710

711

712

714

715

716

717

718

719

720

721

722

723

724

725

- Nurendra Choudhary and Chandan K Reddy. 2023. Complex logical reasoning over knowledge graphs using large language models. *arXiv preprint arXiv:2305.01157*.
- Nilesh Dalvi and Dan Suciu. 2007. Efficient query evaluation on probabilistic databases. *The VLDB Journal*, 16:523–544.
- Brian A Davey and Hilary A Priestley. 2002. *Introduction to lattices and order*. Cambridge university press.
- Kelvin Guu, John Miller, and Percy Liang. 2015. Traversing knowledge graphs in vector space. *arXiv* preprint arXiv:1506.01094.
- Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. 2018. Embedding logical queries on knowledge graphs. *Advances in neural information processing systems*, 31.
- Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. 2020. Array programming with numpy. *Nature*, 585(7825):357–362.
- Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022. Large language models are reasoning teachers. *arXiv* preprint arXiv:2212.10071.
- Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of hallucination in natural language generation. *ACM Computing Surveys*, 55(12):1–38.
- Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and Hannaneh Hajishirzi. 2020. Unifiedqa: Crossing format boundaries with a single qa system. *arXiv preprint arXiv:2005.00700*.
- Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish Sabharwal. 2022. Decomposed prompting: A modular approach for solving complex tasks. *arXiv preprint arXiv:2210.02406*.
- Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*.
- Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:22199– 22213.
- Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. 2023. Understanding catastrophic forgetting in language models via implicit inference. *arXiv preprint arXiv:2309.10105*.

835

836

Bei Li, Chuanhao Lv, Zefan Zhou, Tao Zhou, Tong Xiao, Anxiang Ma, and JingBo Zhu. 2022. On vision features in multimodal machine translation. *arXiv* preprint arXiv:2203.09173.

727

728

733

734

736

740

741

742

743

744

745

746

749

750

751

752

754

756

757

761

767

770

771

773

775

776

777

778

779

- Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yue Zhang. 2023. Evaluating the logical reasoning ability of chatgpt and gpt-4. *arXiv preprint arXiv:2304.03439*.
- Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. 2022. Learn to explain: Multimodal reasoning via thought chains for science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521.
- Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn. 2022. Teaching small language models to reason. *arXiv preprint arXiv:2212.08410*.
- Guanglin Niu, Yongfei Zhang, Bo Li, Peng Cui, Si Liu, Jingyang Li, and Xiaowei Zhang. 2020. Rule-guided compositional representation learning on knowledge graphs. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pages 2950–2958.
- Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. 2023. Unifying large language models and knowledge graphs: A roadmap. *arXiv preprint arXiv:2306.08302.*
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32.
- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. *The Journal of Machine Learning Research*, 21(1):5485–5551.
- Ridho Reinanda, Edgar Meij, Maarten de Rijke, et al. 2020. Knowledge graphs: An information retrieval perspective. *Foundations and Trends® in Information Retrieval*, 14(4):289–444.
- Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020. Query2box: Reasoning over knowledge graphs in vector space using box embeddings. *arXiv preprint arXiv:2002.05969*.
- Hongyu Ren and Jure Leskovec. 2020. Beta embeddings for multi-hop logical reasoning in knowledge graphs. *Advances in Neural Information Processing Systems*, 33:19716–19726.
- Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. 2020. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings.

In Proceedings of the 58th annual meeting of the association for computational linguistics, pages 4498–4507.

- Joshua Shinavier, Kim Branson, Wei Zhang, Shima Dastgheib, Yuqing Gao, Bogdan Arsintescu, Fatma Özcan, and Edgar Meij. 2019. Panel: Knowledge graph industry applications. In *Companion Proceedings of The 2019 World Wide Web Conference*, pages 676–676.
- Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2018. Rotate: Knowledge graph embedding by relational rotation in complex space. In *International Conference on Learning Representations*.
- Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowledge graph embedding by relational rotation in complex space. *arXiv preprint arXiv:1902.10197*.
- Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features for knowledge base and text inference. In *Proceedings of the 3rd workshop on continuous vector space models and their compositionality*, pages 57–66.
- Zihao Wang, Yangqiu Song, Ginny Y Wong, and Simon See. 2023. Logical message passing networks with one-hop inference on atomic formulas. *arXiv preprint arXiv:2301.08859*.
- Taylor Webb, Keith J Holyoak, and Hongjing Lu. 2023. Emergent analogical reasoning in large language models. *Nature Human Behaviour*, 7(9):1526–1541.
- Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2021. Finetuned language models are zero-shot learners. *arXiv preprint arXiv:2109.01652*.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. *Advances in Neural Information Processing Systems*, 35:24824–24837.
- Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and Dekang Lin. 2014. Knowledge base completion via search-based question answering. In *Proceedings of the 23rd international conference on World wide web*, pages 515–526.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. 2020. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations*, pages 38–45.
- Zhiyong Wu, Lingpeng Kong, Wei Bi, Xiang Li, and Ben Kao. 2021. Good for misconceived reasons: An empirical revisiting on the need for visual context in multimodal machine translation. *arXiv preprint arXiv:2105.14462*.

Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. Deeppath: A reinforcement learning method for knowledge graph reasoning. arXiv preprint arXiv:1707.06690.

837 838

840

841

843

845

846

850

852

855

856

861

863

871

877

886

- Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Embedding entities and relations for learning and inference in knowledge bases. *arXiv* preprint arXiv:1412.6575.
 - Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen. 2023. Large language models as optimizers. *arXiv preprint arXiv:2309.03409*.
- Dong Yang, Peijun Qing, Yang Li, Haonan Lu, and Xiaodong Lin. 2022. Gammae: Gamma embeddings for logical queries on knowledge graphs. arXiv preprint arXiv:2210.15578.
 - Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J Smola. 2017. Deep sets. *Advances in neural information processing systems*, 30.
- Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. 2021. Cone: Cone embeddings for multi-hop reasoning over knowledge graphs. *Advances in Neural Information Processing Systems*, 34:19172–19183.
- Zhuosheng Zhang, Kehai Chen, Rui Wang, Masao Utiyama, Eiichiro Sumita, Zuchao Li, and Hai Zhao. 2019. Neural machine translation with universal visual representation. In *International Conference on Learning Representations*.
- Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. 2023. Multimodal chain-of-thought reasoning in language models. *arXiv preprint arXiv:2302.00923*.
- Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022. Least-to-most prompting enables complex reasoning in large language models. *arXiv preprint arXiv:2205.10625*.
- Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. 2022. Neural-symbolic models for logical queries on knowledge graphs. In *International Conference on Machine Learning*, pages 27454–27478. PMLR.

A Additional Comparisons

Table 4 shows our approach and the LARK approach (Choudhary and Reddy, 2023) using much larger language models. We can see that COB-LM can achieve competitive performance with significant reduction in parameters In particular, COB-LM, with 80 million parameters, demonstrates consistent performance improvements compared to

Algorithm 1 Fine-tune COB-LM

Input: Text question prompt \mathcal{P} , the query query q**Output:** Generated reasoning answer \mathcal{A}

- 1: Encode the prompt input and embed the query to respectively obtain H_{LM} and H_{C}
- 2: Construct the interaction between the prompt and chain of box representations using cross attention to get H_{att}
- 3: Fuse H_{LM} with H_{att} using a gated fusion mechanism, resulting in H
- 4: Decode the fused representation H to obtain the target prediction A

890

891

892

893

894

895

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

5: return \mathcal{A}

LARK, which has 3 billion parameters, across various query types except for query type 1p and up, showing that our proposed strategy empowers LMs with the capability of logical reasoning over KGs. Since smaller language models are significantly better in terms of usage cost, inference speed, and required resources, our approach is more feasible in real-world practices and applications of knowledge graphs that require frequent calls, fast responses, and edge applications.

B Prompt Templates

The prompt templates for the language model are provided in Tables 5.

C Fine-tune Procedure

We adopt the encoder-decoder architecture of the T5 language model (Raffel et al., 2020), which provides flexibility for fine-tuning. The training procedure is shown in Algorithm 1.

D Implementation Details

D.1 Datasets

We use two standard KG benchmark datasets:

• FB15k-237 (Toutanova and Chen, 2015) : It is a challenging benchmark dataset based on the large-scale knowledge graph project Freebase, containing 14,505 entities, 237 relations, and 310,079 triples. The sizes of the training, validation, and test sets for FB15k-237 are 164657, 25101, and 27812, respectively

• NELL995 (Xiong et al., 2017): This is a dataset created using a machine learning system, namely Never-Ending Language Learning (NELL) system, which contains 63,631 entities, 200 relations, and

Table 4: MRR results (%) on FB15k-237 dataset, performance comparisons are between LARK and ours with LMs of different scales.

Models	Params	1p	2p	3p	2i	3i	ip	pi	2u	up
LARK (Flan-t5-Large)	780M	14.0	16.1	9.30	6.20	4.50	15.3	9.20	13.3	$17.1 \\ 26.2 \\ 40.6 \\ 20.1$
LARK (Flan-t5-XL)	3B	72.3	34.1	21.2	10.5	24.3	20.8	17.7	21.0	
LARK (Flan-t5-XXL)	11B	72.8	50.7	36.2	66.9	60.4	23.5	56.1	52.4	
COB-LM (Flan-t5-small)	80M	62.5	35.3	31.8	49.8	64.6	36.6	45.6	31.4	

142,804 triplets. The sizes of the training, validation, and test sets for NELL995 are 118780, 20927, and 21034, respectively

The datasets are provided by BetaE (Ren and Leskovec, 2020), which contain 9 types of EPFO queries. Compared to the earlier datasets provided by Query2Box, it improves the answer constraints of the queries and regenerate data of the 9 query types , making the data more realistic and challenging. In particular, training set involves 5 distinct query types: 1p, 2p, 3p, 2i, 3i. For evaluation, we use a total of nine query structures, including the original 5 query types and 4 new query types that are never seen during training: ip, pi, 2u, up, to assess the model's generalization ability (naming conventions: p for projection, i for intersection, u for union).

Both datasets are publicly available, licensed "asis". They do not contain any sensitive or personal information about individuals or entities.

D.2 Baselines

923

924

925

927

930

931

932

933

934

935

937

939

941

942

943

944

946

951

953

955

956

957

958

959

960

962

963

We study the performance of the COB-LM framework by evaluating against five baselines.

• GQE (Hamilton et al., 2018), which encodes the query as a single vector in a low-dimensional space.

• Query2Box (Ren et al., 2020), which extends the embedding to a box region of vector space for answering existential positive first-order logic queries.

• BetaE (Ren and Leskovec, 2020), which uses Beta distributions to capture uncertainty in query and answer set.

• CQD (Arakelyan et al., 2020), a method that decomposes the logical queries to multiple atomic queries, employs a pre-trained link predictor to solve, and independently evaluates atom predicates.

• FuzzQE (Chen et al., 2022), which proposes a logical query embedding framework that satisfies the laws of logic and uses learning-free logical operators.

• Query2Particles (Bai et al., 2022a), which en-

codes the logical query into several different regions in the embedding space.

• GNN-QE (Zhu et al., 2022), which propose a graph neural network query executor that enjoys the advantages of both neural methods and symbolic methods.

• GammaE (Yang et al., 2022), which uses Gamma distribution to capture more features of both entities and queries.

• LMPNN (Wang et al., 2023), which decomposes the KG embeddings and goes on to one-hop inferences for complex query answering.

For both BetaE and CQD, we benchmark against their respective model variants with enhanced general performance, namely $BetaE_{DNF}$ and CQD-BEAM.

D.3 Chain-of-Box Construction

We set the embedding dimension to d = 400 and configure the parameters $\gamma = 24$ and $\alpha = 0.2$ for the loss.

The batch size is 512 and the training epoch is 300. For each of these queries in the batch, we select one answer entity and 128 negative entities. We use the Adam optimizer (Kingma and Ba, 2014) to minimize the loss with a learning rate of 0.0001.

D.4 Language Model

FLAN-T5-small is a language model with 80 million parameters. We fine-tune the model up to 3 epochs. The learning rate is 0.00005 and the batch size is 16. We implemented COB-LM in Pytorch (Paszke et al., 2019). We also leveraged NLTK (Bird et al., 2009) and NumPy (Harris et al., 2020), and run on 4 NVIDIA GeForce RTX 3090 GPUs with 40 GB VRAM. The total GPU hours consumed for the fine-tuning process was about 30 hours. Results are reported from a single run. We will make the code publicly available upon acceptance to facilitate reproduction and further research.

999

1001

Туре	Logical Query	Templates
Context	$\mathcal{N}_k(q_{ au}[Q_{ au}])$	Known $(h_1, r_1, t_1), (h_2, r_2, t_2), (h_3, r_3, t_3),$
		$(h_4, r_4, t_4), (h_5, r_5, t_5), (h_6, r_6, t_6)$
1p	$\exists X.r_1(X,e_1)$	Which entities are connected to e_1 by relation r_1 ?
2p	$\exists X.r_1(X,\exists Y.r_2(Y,e_1))$	Assume that the set of entities E is connected to entity e_1 by relation
		r_1 . Then, what are the entities connected to E by relation r_2 ?
3р	$\exists X.r_1(X,\exists Y.r_2(Y,\exists Z.r_3(Z,e_1)$	Assume that the set of entities E is connected to entity e_1 by relation
		r_1 and the set of entities F is connected to entities in E by relation r_2 .
		Then, what are the entities connected to F by relation r_3 ?
2i	$\exists X. [r_1(X, e_1) \land r_2(X, e_2)]$	Assume that the set of entities E is connected to entity e_1 by relation
		r_1 and the set of entities F is connected to entity e_2 by relation r_2 .
		Then, what are the entities in the intersection of set E and F, i.e.,
		entities present in both F and G?
3i	$\exists X.[r_1(X,e_1) \land r_2(X,e_2) \land r_3(X,e_3)]$	Assume that the set of entities E is connected to entity e_1 by relation
		r_1 , the set of entities F is connected to entity e_2 by relation r_2 and
		the set of entities G is connected to entity e_3 by relation r_3 . Then,
		what are the entities in the intersection of set E, F and G, i.e., entities
		present in all E, F and G?
ір	$\exists X.r_3(X,\exists Y.[r_1(Y,e_1) \land r_2(Y,e_2)]$	Assume that the set of entities E is connected to entity e_1 by relation
		r_1 , F is the set of entities connected to entity e_2 by relation r_2 , and G
		is the set of entities in the intersection of E and F. Then, what are the
		entities connected to entities in set G by relation r_3 ?
pi	$\exists X.[r_1(X,\exists Y.r_2(Y,e_2)) \land r_3(X,e_3)]$	Assume that the set of entities E is connected to entity e_1 by relation
		r_1 , F is the set of entities connected to entities in E by relation r_2 ,
		and G is the set of entities connected to entity e_2 by relation r_3 . Then,
		what are the entities in the intersection of set F and G, i.e., entities
		present in both F and G?
2u	$\exists X.[r_1(X,e_1) \lor r_2(X,e_2)]$	Assume that the set of entities E is connected to entity e_1 by relation
		r_1 and F is the set of entities connected to entity e_2 by relation r_2 .
		Then, what are the entities in the union of set F and G, i.e., entities
		present in either F or G?
up	$\exists X.r_3(X,\exists Y.[r_1(Y,e_1)\lor r_2(Y,e_2)]$	Assume that the set of entities E is connected to entity e_1 by relation
		r_1 and F is the set of entities connected to entity e_2 by relation r_2 .
		G is the set of entities in the union of E and F. Then, what are the
		entities connected to entities in G by relation r_3 ?