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Abstract

Sample efficiency and exploration remain critical challenges in Deep Reinforcement Learn-
ing (DRL), particularly in complex domains. Offline RL, which enables agents to learn
optimal policies from static, pre-collected datasets, has emerged as a promising alternative.
However, offline RL is constrained by issues such as out-of-distribution (OOD) actions that
limit policy performance and generalization. To overcome these limitations, we propose
Meta Offline-Online Reinforcement Learning (MOORL), a hybrid framework that unifies
offline and online RL for efficient and scalable learning. While previous hybrid methods
rely on extensive design choices and added complexity to utilize offline data effectively,
MOORL introduces a meta-policy that seamlessly adapts across offline and online trajecto-
ries. This enables the agent to leverage offline data for robust initialization while utilizing
online interactions to drive efficient exploration. Importantly, MOORL addresses the key
challenges of hybrid RL in terms of being design-free. Our theoretical analysis demonstrates
that the hybrid approach enhances exploration by effectively combining the complementary
strengths of offline and online data. Furthermore, we demonstrate that MOORL learns a
stable Q-function without relying on extensive design choices. Extensive experiments on
28 tasks from the D4RL and V-D4RL benchmarks validate its effectiveness, showing con-
sistent improvements over state-of-the-art offline and hybrid RL baselines. With minimal
computational overhead, MOORL achieves strong performance, underscoring its potential
for practical applications in real-world scenarios.

1 Introduction

Deep reinforcement learning (DRL) has been tremendously successful in solving a variety of complex prob-
lems, including robotics (Tang et al., 2024), autonomous driving (Kiran et al., 2021), healthcare (Yu et al.,
2021), game-playing (Silver et al., 2017; Vinyals et al., 2019), intelligent perception system (Chaudhary et al.,
2023), and finance (Charpentier et al., 2021). However, one of the primary drawbacks of DRL algorithms is
their sample inefficiency, i.e., the number of state-action-state transition samples they require to train a pol-
icy. Typically, these algorithms require millions of such interactions, making them impractical in real-world
scenarios, particularly in safety-critical domains like robotics and autonomous driving (Kiran et al., 2021).
Learning policies in controlled simulation environments can offer a partial remedy, as these policies often
fail to generalize to real-world situations due to the well-known simulation-to-reality (sim2real) gap (Tobin
et al., 2017).

An effective strategy to mitigate these problems is Offline Reinforcement Learning (RL) (Levine et al.,
2020), which enables policy learning from historical datasets without requiring online exploration. Offline RL
can train policies safely and cost-effectively using pre-collected human demonstrations or previously logged
interactions. Although it alleviates some concerns related to sample complexity, the reliance on static offline
data introduces new challenges, such as extrapolation errors and out-of-distribution (OOD) actions (Bai et al.,
2022), which can result in sub-optimal behaviors when policies are tested in real environments or unfamiliar
states (Kim et al., 2024). Offline-to-Online (O2O) RL (Lee et al., 2022; Wagenmaker & Pacchiano, 2023)
dilute the limitations of purely offline RL to some extent. O2O RL setups typically pre-train the agent using
offline data, followed by fine-tuning via limited online interactions. However, this approach often experiences
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performance drops due to compounded Bellman errors (Sun et al., 2023)due to changes in reward distributions
and distributional shifts between offline data and online interaction (Farahmand et al., 2010; Munos, 2005).

In this article, we aim to tackle inherent challenges faced by offline RL and online RL algorithms. We
believe directly integrating offline data into online RL training can lead to more stable learning and mitigate
issues such as out-of-distribution (OOD) actions and inefficient exploration. While recent efforts, such as
RLPD (Ball et al., 2023) and Hy-Q (Song et al., 2022), have attempted to address offline-online integration,
each comes with its own challenges. RLPD, which combines offline and online data, requires tailored design
parameters and careful task-specific tuning. RLPD employs a large Q-ensemble and a high Update-to-Data
(UTD) ratio to stabilize learning and optimize performance. These dependencies add complexity to the
algorithm, making it more challenging and compute-intensive, limiting its scalability.

On the other hand, Hy-Q offers a more streamlined approach by integrating offline data into online train-
ing without necessitating extensive task-specific design choices. However, Hy-Q has its own limitations; it
requires maintaining separate Q-value functions for each timestep within a fixed horizon, significantly in-
creasing computational and memory overhead, especially in environments with longer or variable horizons.
Additionally, Hy-Q’s reliance on a predefined horizon makes it less adaptable to tasks with dynamic episode
lengths, limiting its scalability and flexibility across diverse RL scenarios. While Hy-Q reduces the need for
task-specific tuning compared to RLPD, it still struggles with computational efficiency and adaptability in
more complex or heterogeneous environments.

Further, as highlighted by (Furuta et al., 2021; Engstrom et al., 2019; Henderson et al., 2018), the RL
algorithms are difficult to optimize and tune where minor hyperparameter changes can have a non-trivial
impact on performance we believe it is important to limit RL algorithm design choices. These limitations
underscore the necessity for a hybrid approach that effectively integrates offline and online data and main-
tains computational efficiency and adaptability across various tasks. With this motivation in this work, we
propose a framework called Meta Offline-Online RL (MOORL) that addresses the stated issues by utilizing
a unified set of design choices without the need for a large Q-ensemble, high UTD, and separate a Q-function
per horizon step, offering a more robust and generalizable solution for hybrid reinforcement learning. In
particular, our contributions can be summarized as follows.

• We provide theoretical insights showing that mixing offline and online data acts as a regularizer,
improving stability and policy learning efficiency.

• We leverage the off-policy RL framework, Soft-Actor-Critic (SAC) (Haarnoja et al., 2018), to
seamlessly integrate offline and online data via meta-learning for efficient design-free policy learning
without introducing any new hyperparameters.

• Our proposed framework, MOORL, uses meta-learning principles (Finn et al., 2017; Nichol & Schul-
man, 2018) to train policies under a single meta-objective, enabling the dynamic balancing of offline
and online data. The learned meta-policy adapts across varying distributions, minimizing the impact
of distributional shifts and extrapolation errors.

• We validate our methodology through 28 comprehensive experiments on benchmark D4RL (Fu et al.,
2020) and V-D4RL (Lu et al., 2022) environments, demonstrating that MOORL outperforms state-
of-the-art methods in reward accumulation while being stable across diverse tasks, including dense
and sparse reward scenario.

2 Preliminaries

2.1 Markov Decision Process

We consider a Markov Decision Process (MDP)M = ⟨S,A, T, H, R, γ, ρ⟩, where S indicates the state space,
A denotes the action space, T : S ×A → ∆(S) represents the state transition dynamics (where ∆(S) defines
the collection of all probability distributions over S), R : S×A×S → R is the reward function, γ ∈ (0, 1) is the
discount factor, H is the length of the horizon of the episodes, and ρ ∈ ∆(S) is the initial state distribution.
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At each time instant t, the agent observes the state st, executes an action at, and as a result, transitions
to the next state st+1 ∼ T (·|st, at), and receives a reward rt = R(st, at, st+1). The goal in reinforcement
learning is to learn a (stochastic stationary) policy π : S → ∆(A) that maximizes the expected cumulative
reward Jπ = E

[∑H−1
t=0 γtrt | π, ρ

]
where the expectation is obtained over π-induced trajectories of length H

that start from the initial state distribution, ρ. The state-value and state-action value functions are defined,
respectively as Vπ(s) = E

[∑H−1
t=0 γtrt | s0 = s, π

]
and Qπ(s, a) = E

[∑H−1
t=0 γtrt | s0 = s, a0 = a, π

]
, where

the expectations are obtained over π-induced trajectories of length H. Note that Jπ = Es∼ρ [Vπ(s)]. In this
paper, we obtain the optimal policy that maximizes Jπ by combining offline and online data using ideas from
meta-reinforcement learning, which is described below.

2.2 Meta-Reinforcement Learning

Meta-RL aims to solve a distribution of tasks given by PT (·), rather than a single fixed task, where each
task is characterized by an MDP Mi = ⟨Si,Ai, Ti, Hi, Ri, γi, ρi⟩. In our setting, the meta-learning process
is used to combine offline and online data. Following the meta-RL paradigm, we maintain separate replay
buffers for each type of data, denoted as Doffline and Donline respectively, which store transition tuples in the
form (si, ai, ri, s′

i). The training process alternates between sampling from these replay buffers to update the
policy while adapting to the changing data as the agent gathers more online experiences. A meta-episode
consists of sampling data from either of these replay buffers and forming the associated trajectories to update
the meta policy. A significant challenge arises from the distributional shift between offline and online data,
which can lead to instability in the training process. To mitigate this issue, our meta-RL approach employs
gradient-based meta-learning to effectively balance updates between the offline and online data sources,
enhancing the robustness of the policy against distribution mismatches.

3 Why Meta Learning?

Meta-learning, or "learning to learn," is a powerful paradigm that performs well across diverse task distri-
butions (Finn et al., 2017; Nichol & Schulman, 2018). By leveraging meta-learning to integrate offline and
online data, Meta Offline Reinforcement Learning (MOORL) can achieve the following benefits:

• Reduced Extrapolation Error and Improved Distribution Generalization: MOORL adapts
the policy to changing data distributions by training a meta-policy over online and offline data.
This approach minimizes extrapolation errors by optimizing the meta-policy to generalize across
distributions rather than being confined to a single dataset.

• Balanced Integration of Expert and Agent Behaviors: Rather than forcing the agent to
mimic the expert purely, MOORL learns a meta-policy that harmonizes both expert (offline) and
agent (online) behaviors. This flexibility reduces over-reliance on expert data, enabling effective
exploration while leveraging expert guidance.

• Improved Credit Assignment: MOORL utilizes a meta-objective that optimizes task perfor-
mance across various data sources, helping isolate beneficial behaviors. By employing gradient-
based meta-learning techniques, the meta-policy can assign credit more accurately, focusing on the
trajectory aspects that generalize well between online and offline data.

• Simplified Algorithmic Complexity: MOORL streamlines the learning process by employing a
single meta-objective that integrates agent and expert data without extensive design choices. This
meta-objective is robust across varying distributions, reducing the need for task-specific hyperpa-
rameter tuning and automating many design decisions that would require manual adjustments.

4 Integrating Online RL with Offline Data

This work aims to bridge the gap between online and offline reinforcement learning by presenting a unified
approach that integrates both paradigms without requiring additional hyperparameter tuning or introducing
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new design elements. Our method utilizes an off-policy reinforcement learning algorithm (Haarnoja et al.,
2018) to leverage data from various distributions effectively. The proposed framework, MOORL, is designed
to handle variations in offline data quality, making it adaptable to a wide range of scenarios. Additionally,
MOORL demonstrates consistent performance across different problem settings, including environments
with state-based or pixel-based observations, as well as those with dense, sparse, or even binary rewards. To
support this, we first offer theoretical insights into why combining offline expert data with online agent data
may be a more effective strategy than relying solely on online learning. We then introduce the MOORL
framework and highlight its independence from specific design constraints (refer to Appendix C).

4.1 Impact of Mixing Offline and Online Data

Consider an RL setup where the agent is exposed to online and offline data. Below, we analyze a performance
bound of the expected reward when the replay buffer is composed of a mixture of offline and online data.

4.1.1 Problem Setup

Let π be the current (online) policy of the agent, µ be an offline policy that generated the offline data, and
D be a dataset of trajectories, λ fraction of those being generated by the offline policy, µ, and the rest being
generated via π. Let dπ(·, ·), dµ(·, ·) denote the state-action distributions generated by π, µ respectively. Also,
let dD(·, ·) be the state-action distribution generated by a randomly chosen trajectory taken from D. Clearly,

dD(s, a) = λ · dµ(s, a) + (1− λ) · dπ(s, a). (1)

4.1.2 Expected Reward and its Performance Bound

The expected reward over trajectories τ sampled from the mixed dataset D is defined as:

Eτ∼D[R(τ)] =
∑
(s,a)

dD(s, a) · r(s, a). (2)

where R(τ) =
∑H−1

t=0 r(st, at) is the cumulative reward over a trajectory τ = (s0, a0, . . . , sH−1, aH−1), and
r(s, a) is the immediate reward at state-action pair (s, a). We can express the expected reward using linearity
of expectation and definition of dD:∑

(s,a)

dD(s, a)Qπ(s, a) = λ
∑
(s,a)

dµ(s, a)Qπ(s, a) + (1− λ)
∑
(s,a)

dπ(s, a)Qπ(s, a). (3)

where Qπ(s, a) is the action-value function under the online policy π.

The KL divergence (Kullback & Leibler, 1951) between online policy π and offline policy µ state-action
visitation distribution can be defined as:

DKL(dπ ∥ dµ) =
∑
(s,a)

dπ(s, a) log dπ(s, a)
dµ(s, a) . (4)

Rearranging Equation 4, we use the property of logarithms, log dπ(s,a)
dµ(s,a) = log dπ(s, a)− log dµ(s, a), to write:

DKL(dπ ∥ dµ) =
∑
(s,a)

dπ(s, a) log dπ(s, a)−
∑
(s,a)

dπ(s, a) log dµ(s, a). (5)

Rearranging to isolate
∑

(s,a) dπ(s, a) log dπ(s, a) gives:∑
(s,a)

dπ(s, a) log dπ(s, a) =
∑
(s,a)

dπ(s, a) log dµ(s, a) + DKL(dπ ∥ dµ). (6)
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Since DKL(dπ ∥ dµ) ≥ 0 (non-negativity of KL divergence). Dropping this non-negative term leads to:∑
(s,a)

dπ(s, a) log dπ(s, a) ≥
∑
(s,a)

dπ(s, a) log dµ(s, a)− DKL(dπ ∥ dµ). (7)

To relate dµ(s, a) and dπ(s, a), note that dµ(s, a) = dπ(s, a) · exp(− log dπ(s,a)
dµ(s,a) ). Using this relationship for

dµ(s, a): ∑
(s,a)

dµ(s, a)Qπ(s, a) =
∑
(s,a)

[
dπ(s, a) · exp

(
− log dπ(s, a)

dµ(s, a)

)]
Qπ(s, a). (8)

The term exp
(
− log dπ(s,a)

dµ(s,a)

)
penalizes the contribution of Qπ(s, a) for state-action pairs where dπ(s, a)

diverges significantly from dµ(s, a).

Since the distribution will consist of two subsets of state-action space:

S1 = {(s, a)|dπ(s, a) ≥ dµ(s, a)},

S2 = {(s, a)|dπ(s, a) < dµ(s, a)},

These subsets partition the state-action space, i.e., S = S1 ∪ S2, and are disjoint, S1 ∩ S2 = ∅ with both
subsets S1 ̸= ∅ and S2 ̸= ∅.

In S1, where dπ(s, a) ≥ dµ(s, a) :

log dπ(s, a)
dµ(s, a) ≥ 0 and exp

(
− log dπ(s, a)

dµ(s, a)

)
≤ 1. (9)

Thus: ∑
(s,a)∈S1

dµ(s, a)Qπ(s, a) ≤
∑

(s,a)∈S1

dπ(s, a)Qπ(s, a). (10)

For an entropy-regularized policy, from equation 7 and the above relationship, a tighter bound can be defined
as: ∑

(s,a)∈S1

dµ(s, a)Qπ(s, a) ≤
∑

(s,a)∈S1

dπ(s, a)Qπ(s, a)− DS1
KL(dπ ∥ dµ). (11)

Here, the KL-divergence is computed after normalization, and the given KL-divergence term implicitly
accounts for the subset’s normalization process. From equation 3 and equation 11:∑

(s,a)∈S1

dDQπ(s, a) ≤
∑

(s,a)∈S1

dπ(s, a)Qπ(s, a)− λ · DS1
KL(dπ||dµ). (12)

In S2, where dπ(s, a) < dµ(s, a) :

log dπ(s, a)
dµ(s, a) < 0 and exp

(
− log dπ(s, a)

dµ(s, a)

)
> 1. (13)

Thus: ∑
(s,a)∈S2

dµ(s, a)Qπ(s, a) >
∑

(s,a)∈S2

dπ(s, a)Qπ(s, a). (14)

For an entropy-regularized policy, from Equation equation 7 and the above relationship, a tighter bound can
be defined as: ∑

(s,a)∈S2

dµ(s, a)Qπ(s, a) >
∑

(s,a)∈S2

dπ(s, a)Qπ(s, a) + DS2
KL(dπ ∥ dµ). (15)
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Here, the KL-divergence is computed after normalization and the given KL-divergence term implicitly ac-
counts for the subset’s normalization process. From equation 3 and equation 15:

∑
(s,a)∈S2

dDQπ(s, a) >
∑

(s,a)∈S2

dπ(s, a)Qπ(s, a) + λ · DS2
KL(dπ||dµ). (16)

Now, to understand the effect of mixing of the data, let ∆R denote the performance gain when utilizing
mixed trajectories from offline data and the agent’s self-generated experiences:

∆R = Eτ∼D[R(τ)]− Eτ∼π[R(τ)], (17)

To analyze the performance gain, we decompose the reward difference using insights from equation 12 and
equation 16 in equation 3. These insights reveal that the performance gain ∆R is influenced by the KL
divergence term, which balances exploration and exploitation while acting as a regularizer for the policy.

Based on the above insights, we can summarize that state action pairs for which the online policy’s visitation
frequency dominates the offline data, the KL divergence term acts as a penalty, encouraging the policy to
focus on high-reward regions within its known state-action space. This improves exploitation and ensures
the policy prioritizes reliable, high-reward trajectories. otherwise, the KL term acts as a bonus, encouraging
exploration of these underrepresented areas. This helps mitigate the risk of converging to sub-optimal
solutions by leveraging the diversity of offline trajectories.

Thus, the mixed distribution strategy inherently balances exploration and exploitation. By leveraging of-
fline trajectories alongside self-generated experiences, the agent improves sample efficiency and robustness,
achieving better exploration and reducing the likelihood of converging to local optima. However, care must
be taken to address potential distributional mismatch issues (Ball et al., 2023), which can destabilize training.

4.2 MOORL: Meta Offline-Online RL

This section introduces the Meta Offline-Online Reinforcement Learning (MOORL) framework, which ad-
dresses the challenges of integrating offline and online data in off-policy reinforcement learning. MOORL
combines the strengths of off-policy learning (Haarnoja et al., 2018) and meta-learning (Finn et al., 2017),
leveraging offline data for efficient learning while enabling online exploration, all while ensuring stable Q-
learning updates. By employing a meta-learning strategy to dynamically adapt Q-function updates, MOORL
mitigates issues such as distributional mismatch, overestimation bias, and instability in Q-learning.

4.2.1 Problem Definition

The task is to learn a policy using two distinct data distributions:

• Offline Data (Doffline): This data consists of trajectories previously collected from one or more
policies. While offline data may include high-reward sequences, it is often derived from sub-optimal
or outdated policies, leading to potential biases. Direct incorporation of this data into training
may cause overestimation bias in learned Q-values due to limited diversity and representativeness
of experiences.

• Online Data (Donline): This data is collected through interactions with the environment based on
the current policy. Initially, online data may yield low rewards due to early-stage exploration but
typically improves as the policy refines.

The primary challenge comes from the distributional mismatch between offline and online data. Directly
mixing these two distributions in off-policy RL algorithms can lead to instability in Q-learning, as the value
estimates can become biased towards the high-reward offline data, resulting in overestimated Q-values. The
proposed MOORL framework addresses this by learning a meta Q-function Qmeta(s, a; θmeta), parameterized
by θmeta, that aims to generalize across both offline and online data distributions. The meta Q-function
is optimized using a meta-Q objective using Reptile (Nichol & Schulman, 2018) meta-learning algorithm,
balancing contributions from offline and online data.
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Algorithm 1 MOORL: Meta Offline-Online Reinforcement Learning
1: Initialize: Meta-policy parameters actor ϕmeta, critic θmeta, and temperature α.
2: Offline dataset Doffline and empty online buffer Donline.
3: Meta-learning rate ηmeta, inner-loop learning rate η, number of iterations N .
4: for n = 1 to N do
5: Select Buffer: Choose Doffline or Donline as the data buffer.
6: Inner-loop Adaptation:
7: Collect trajectories in online environment and store in Donline.
8: Sample mini-batch from the selected data buffer.
9: Perform K inner actor ϕ̃ and critic θ̃ updates using data from Di.

10: Meta-update:
11: Update meta-policy parameters of both actor and critic using ϕmeta ← ϕmeta− ηmeta∇ϕmeta [L(ϕ̃)] and

θmeta ← θmeta − ηmeta∇θmeta [L(θ̃)], respectively.
12: end for

4.2.2 Meta Q-Function Learning

MOORL learns robust meta Q-values that generalize across offline and online data distributions to mitigate
overestimation bias. The MOORL framework aims to learn a meta Q-function Q(s, a; θmeta), parameterized
by θmeta, that generalizes across both offline and online distributions. The parameter θmeta can be interpreted
as a solution to the Bellman error minimization problem stated below.

min
θmeta

E(s,a,r,s′)∼D

[(
Q(s, a; θmeta)−

(
r + γEs′∼T (s′|s,a)

[
max

a′
Q(s′, a′; θmeta)

]))2
]

, (18)

where D is a dataset containing both offline and online data.

The combined loss ensures that Q(·, ·; θmeta) provides consistent value estimates across both offline and online
data. However, this objective is similar to mixing offline and online data distribution as done by RLPD (Ball
et al., 2023), which simply mixes data from different distributions and learns a Q-function that can generalize
across data distribution which requires different design choices to stabilize learning. In this work, we apply
a meta-learning perspective. Specifically, our algorithm progresses in multiple epochs, performing one meta-
policy update at each epoch. At the start of an epoch, we randomly choose either the offline or the online
replay buffer and perform K inner updates for distribution adaptation followed by meta-update.

Specifically, for a given data distribution, i ∈ {offline, online}, we take a mini-batch Bi ⊂ Di of length B,
and define the following loss functions for inner loop adaptation of the sampled distribution.

Lcritic
i (θ) = E(s,a,r,s′)∼Bi

[
(Q(s, a; θ)− (r + γQ(s′, a′; θ′)))2

]
(19)

where θ′ is the parameter of a target function that is used for stabilizing the learning. Following Q-learning
paradigm, θ and θ′ are synced periodically. The above loss is used to update the critic parameter, θ, via a
gradient-descent approach. The weights of the critic in the inner update loop are initialized with meta-critic
weights followed by K inner loop gradient steps for distribution adaptation. where η denotes a learning
parameter. Mathematically, each gradient descent step is defined as follows.

θ ← θ − η∇θLcritic
i (θ) (20)

Let the final critic parameter (after K inner loop steps) be θ̃. We similarly define an actor loss function as
follows, where ϕ denotes the parameter of the actor (policy approximator), and α is a tunable parameter.

Lactor
i (ϕ, θ) = Es∼Bi,a∼π(·|s,ϕ) [α log π(a|s; ϕ)−Q(s, a; θ)] (21)

Starting from meta-policy weights, the parameter ϕ is also updated K number of times as follows.

ϕ← ϕ− η∇ϕLactor
i (ϕ, θ) (22)
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Here, we use the principle of Soft Actor Critic (Haarnoja et al., 2018) that maximizes the expected reward
(Q-value) while ensuring sufficient exploration through entropy regularization controlled by temperature
parameter α. The entropy term encourages the policy to remain stochastic, promoting diverse actions and
balancing exploration and exploitation. Let the final value of the actor parameter be ϕ̃. After inner loop
distribution adaptation, in the outer loop, we update the meta actor and critic parameters θmeta, ϕmeta using
the updated inner loop parameters as follows, where ηmeta is a tunable learning parameter.

θmeta ← θmeta − ηmeta∇θmeta [L(θ̃)] (23)
ϕmeta ← ϕmeta − ηmeta∇ϕmeta [L(ϕ̃, θ̃)] (24)

For computing meta-updates ϕmeta and θmeta in the last step in the direction of ϕmeta−ϕ̃meta and θmeta−θ̃meta,
we treat ϕmeta − ϕ̃meta and θmeta − θ̃meta as a gradient similar to (Nichol & Schulman, 2018) and plunge it
into an adaptive algorithm such as Adam (Kinga et al., 2015). In summary, the learning process consists
of two steps: first, adapting the distribution through K inner updates, followed by a meta-update aimed at
generalizing across distributions

Hence, by leveraging meta-learning capabilities of task adaptation (Finn et al., 2017), we enable adaptation
across diverse data distributions generated by different policies. This distribution adaptation strategy allows
the learned Q-function to approximate a combined Bellman Q-function. Further, Figure 1 illustrates that
the Q-values learned via MOORL and RLPD exhibit similar convergence trends. This demonstrates that
learning a combined Bellman function, as done by RLPD or exploring a meta Q-function, yields comparable
Q-values. However, MOORL offers the advantage of not relying on specific design choices for stability,
highlighting its robustness and simplicity.

5 Experiments

We evaluate the proposed MOORL approach on the D4RL benchmark (Fu et al., 2020) and V-D4RL (Lu
et al., 2022), comparing its performance against state-of-the-art methods, including hybrid RL approach
RLPD (Ball et al., 2023), Hy-Q (Song et al., 2022) and offline RL method ReBRAC (Tarasov et al., 2024),
for completeness. Each baseline has distinct design choices and operational paradigms that provide valuable
context for evaluating MOORL’s strengths in hybrid offline-online RL settings. Through our chosen baselines
and benchmark tasks, we aim to address the following questions:

• Can MOORL effectively integrate offline data into an online RL setting without extensive design-
specific configurations?

• Does MOORL ensure stable learning across diverse data distributions, minimizing the need for
task-specific tuning?

• Can MOORL be extended to high-dimensional image-based observation data?

• Does MOORL maintain consistent performance across varying offline data qualities by learning a
stable Q-function?

5.1 Evaluation on Offline D4RL Tasks

To evaluate MOORL’s performance, we select a range of D4RL tasks to assess robustness across diverse data
distributions:

• D4RL Locomotion(Fu et al., 2020): This set includes 15 dense-reward locomotion tasks, with
offline data covering varying levels of optimality, from expert to random trajectories.

• D4RL Maze-Navigation(Fu et al., 2020): We utilize 6 AntMaze navigation tasks with sparse
binary reward structures, each with different complexities.

• D4RL Adroit (Fu et al., 2020): The tasks in this set (Pen, Door, Hammer) involve complex
manipulation and sparse rewards, with offline data consisting of expert-level trajectories.

8



Under review as submission to TMLR

Table 1: Performance comparison across Locomotion tasks. The score represents the average normalized
score across 10 different unseen seeds. The symbol ± represents the standard deviation across the seeds.

Task Name TD3+BC ReBRAC Hy-Q RLPD (UTD=20) MOORL, our
half-cheetah-expert 93.4 ± 0.4 105.9 ± 1.7 84.0 111.1 ± 0.1 105.9 ± 0.8
half-cheetah-medium-expert 89.1 ± 5.6 101.1 ± 5.2 86.0 105.8 ± 0.2 103.4 ± 2.9
half-cheetah-medium-replay 45.0 ± 1.1 51.0 ± 0.8 89.0 72.2 ± 0.4 96.9 ± 2.0
half-cheetah-medium 54.7 ± 0.9 65.6 ± 1.0 88.0 85.4 ± 0.1 99.2 ± 1.9
half-cheetah-random 30.9 ± 0.4 29.5 ± 1.5 80.0 85.1 ± 9.9 99.0 ± 4.8
hopper-expert 109.6 ± 3.7 100.1 ± 8.3 54.0 101.7 ± 16.4 111.6 ± 4.1
hopper-medium-expert 87.8 ± 10.5 107.0 ± 6.4 100.0 97.1 ± 12.7 101.5 ± 5.9
hopper-medium-replay 55.1 ± 31.7 98.1 ± 5.3 77.0 81.3 ± 24.8 99.6 ± 4.3
hopper-medium 60.9 ± 7.6 102.0 ± 1.0 106.0 90.8 ± 20.1 107.9 ± 2.4
hopper-random 8.5 ± 0.7 8.1 ± 2.4 80.0 92.9 ± 25.8 101.9 ± 3.3
walker2d-expert 110.0 ± 0.6 112.3 ± 0.2 112.0 127.5 ± 5.6 123.6 ± 3.7
walker2d-medium-expert 110.4 ± 0.6 111.6 ± 0.3 95.0 128.0 ± 5.4 117.2 ± 7.5
walker2d-medium-replay 68.0 ± 19.2 77.3 ± 7.9 103.0 105.7 ± 7.1 111.2 ± 3.5
walker2d-medium 77.7 ± 2.9 82.5 ± 3.6 86.0 115.1 ± 6.4 114.1 ± 1.7
walker2d-random 2.0 ± 3.6 18.4 ± 4.5 90.0 73.7 ± 31.7 93.8 ± 1.1
Average 66.9 ± 8.8 78.0 ± 2.8 88.7 98.2 ± 11.1 105.8 ± 3.3

Table 2: Performance comparison across AntMaze tasks. The score represents the average normalized score
across 10 different unseen seeds. The symbol ± represents the standard deviation across the seeds.

Task Name TD3+BC ReBRAC Hy-Q RLPD (UTD=20) RLPD (UTD=1) MOORL, our
antmaze-umaze 66.3 ± 6.2 97.8 ± 1.0 - 99.0 ± 0.5 88.2 ± 28.0 99.2 ± 0.7
antmaze-umaze-diverse 53.8 ± 8.5 88.3 ± 13.0 - 97.8 ± 1.0 93.4 ± 3.5 99.0 ± 1.0
antmaze-medium-play 26.5 ± 18.4 84.0 ± 4.2 25.0 98.5 ± 0.5 94.4 ± 3.6 98.2 ± 0.9
antmaze-medium-diverse 25.9 ± 15.3 76.3 ± 13.5 02.0 98.0 ± 1.0 93.6 ± 4.3 98.5± 1.2
antmaze-large-play 0.0 ± 0.0 60.4 ± 26.1 00.0 88.0 ± 2.5 57.8 ± 16.3 82.3 ± 10.1
antmaze-large-diverse 0.0 ± 0.0 54.4 ± 25.1 00.0 87.5 ± 3.7 50.2 ± 20.7 85.6± 6.4
Average 28.7±8.0 76.8±13.8 6.8 94.8 ±1.3 79.6 ± 10.5 93.8±3.4

5.1.1 Choice of Baselines

Hybrid RL: We evaluate the performance of MOORL against current state-of-the-art hybrid RL ap-
proaches including RLPD (Ball et al., 2023) and Hy-Q (Song et al., 2022). These approaches aim to inte-
grate offline and online learning. To ensure stable learning, they introduce many design elements, resulting
in computational overhead and limiting their broader impact on real-world scenarios.

Offline RL: For the offline RL method, we use ReBRAC (Tarasov et al., 2024), which builds on offline
RL and investigates the effect of many design elements on the performance highlighting how different design
elements can enhance the performance of offline RL agents. ReBRAC is primarily designed for offline RL,
while less relevant to MOORL’s hybrid offline-online framework, is included for completeness.

RL+BC: These approaches use a minimalistic approach for learning from offline data. To demonstrate the
effectiveness of MOORL against the Behavior Cloning (BC) regularized (Bain & Sammut, 1995) RL method,
we use TD3+BC (Fujimoto & Gu, 2021) and DrQ+BC (Yarats et al., 2021) for state and pixel-based tasks.

5.1.2 Empirical Results

The baselines TD3+BC and ReBRAC results are taken from (Tarasov et al., 2024) while Hy-Q and DrQ+BC
results are taken from (Nakamoto et al., 2024). Our results demonstrate that MOORL achieves competitive
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Table 3: Performance comparison across Adroit tasks. The score represents the average normalized score
across 10 different unseen seeds. The symbol ± represents the standard deviation across the seeds.

Task Name BC TD3+BC ReBRAC RLPD (UTD=20) MOORL, our
pen 85.1 146.3 ± 7.3 154.1 ± 5.4 137.8 ±7.2 150.0 ± 2.4
door 34.9 84.6 ± 44.5 104.6 ± 2.4 105.5±6.2 107.1 ± 2.0
hammer 125.6 117.0 ± 30.9 133.8 ± 0.7 140.3 ±8.5 137.2 ± 3.3
Average 81.9 115.97 ± 27.6 130.8 ± 2.8 127.9±7.3 131.4±2.6

performance with RLPD, Hy-Q, and ReBRAC across the D4RL and V-D4RL tasks while requiring minimal
hyperparameter adjustments. MOORL exhibits stable learning in a hybrid RL setting, i.e., offline-online
learning, and achieves robust cumulative rewards with fewer design-specific configurations.

On D4RL locomotion benchmarks, MOORL achieves the highest average performance. For the tasks with
suboptimal data, hybrid approaches such as MOORL, Hy-Q, and RLPD highlight the advantage of using a
hybrid learning approach. It is evident from Table 1 that MOORL performs most optimally across tasks,
specifically where offline data is suboptimal. MOORL achieves 8 − 10% performance improvement over
RLPD without using large critic ensembles, high UTD, and layer normalization.

The performance of RLPD is competitive to MOORL on the Antmaze navigation task, but as highlighted in
Table 2, the performance of RLPD drops significantly with a lower UTD ratio, whereas MOORL performs
significantly superior with a similar number of gradient steps performed on meta policy. For the D4RL
AntMaze navigation tasks, MOORL avoids incorporating design choices such as Clipped Double Q-learning
(CDQ) (Fujimoto et al., 2018) and Entropy Backup similar to RLPD, which are used in other tasks. These
design choices tend to perform poorly in the sparse reward structure of AntMaze tasks, leading to overly
conservative learning and suboptimal policy performance. While RLPD demonstrates the best performance
under standard configurations, achieving a modest 3%−4% improvement over MOORL, its reliance on a high
Update-to-Data (UTD) ratio makes it sensitive to this hyperparameter. When evaluated with a low UTD
ratio, RLPD experiences a significant performance drop. MOORL achieves a 13%− 17% improvement over
RLPD with UTD=1. This result highlights MOORL’s ability to maintain effective learning without reliance
on aggressive update schedules, making it particularly advantageous in scenarios with limited computational
budgets or where low UTD ratios are preferred.

Adroit tasks pose significant challenges due to their high-dimensional action spaces and sparse reward struc-
tures. To evaluate the performance of various approaches, we conducted experiments on Adroit tasks using
high-quality offline expert data. As shown in Table 3, the performance of all methods, including MOORL,
remains consistent across tasks, with no single approach demonstrating a definitive advantage. Depending
on the specific task, RLPD, ReBRAC, and MOORL occasionally outperform one another. However, the
differences in performance are not statistically significant. This lack of clear improvement can likely be
attributed to the inherent complexity of the Adroit tasks, which makes it challenging for any single method
to achieve a distinct edge over others in this domain.

5.2 MOORL’s Adaptability to Pixel-Based Observation Spaces

This section investigates MOORL’s ability to operate effectively with high-dimensional image-based observa-
tions. Unlike methods that require extensive hyperparameter tuning or specialized architectural adjustments,
MOORL seamlessly extends to this challenging domain by utilizing a shared feature extraction encoder within
its actor-critic framework. This encoder processes raw pixel input into meaningful feature representations,
enabling efficient learning even in visually complex environments. We evaluate MOORL’s performance on
high-dimensional DeepMind Control Suite (DMC) (Tassa et al., 2018) tasks, leveraging datasets with pixel-
based observations that test robustness and adaptability. As shown in Table 4, MOORL outperforms RLPD
on 3 out of 4 DMC tasks, while RLPD achieves slightly better average cumulative performance. Though
RLPD remains competitive, its reliance on large Q-ensembles makes it computationally expensive, particu-
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Table 4: Performance comparison across V-D4RL Locomotion tasks. The score represents the normalized
score across 10 different unseen seeds. The symbol ± represents the standard deviation across the seeds.

Task Name BC DrQ+BC ReBRAC RLPD MOORL, our
walker-walk-expert 91.5± 3.9 68.4 ± 7.5 81.4 ± 10.0 91.5 ±3.3 94.6 ± 0.6
walker-walk-medium 40.9 ± 3.9 46.8 ± 2.3 52.5 ± 3.2 84.9±2.1 87.9 ± 5.5
cheetah-run-expert 67.4 ± 6.8 34.5 ± 8.3 35.6 ± 5.3 68.3 ± 2.9 53.2 ± 7.5
cheetah-run-medium 51.6 ± 1.4 53.0 ± 3.0 59.0 ± 0.7 49.0 ± 4.0 49.9 ± 4.8
Average 62.9 ± 4.0 50.7 ± 5.3 57.1 ± 4.8 73.4±3.0 71.4±2.6

larly for image-based tasks. MOORL, on the other hand, achieves comparable results without using large
critic-ensembles, emphasizing its practicality for resource-constrained scenarios.

These findings highlight MOORL’s capacity for generalization and computational efficiency in high-
dimensional reinforcement learning tasks. By maintaining strong performance without complex design alter-
ations or fine-tuning, MOORL demonstrates its suitability for visually demanding environments, reaffirming
its flexibility and reliability across diverse settings.

5.3 Does MOORL learn Stable Q-Values
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Figure 1: Learning curves show-
ing the mean Q-values for the
AntMaze-Medium task on Di-
verse and Play datasets. Fig-
ures 1a and 1b depict the
performance of the MOORL
and RLPD frameworks, demon-
strating their learning stabil-
ity and effectiveness across both
datasets.

To this end, we demonstrate that MOORL enables stable learning with-
out relying on extensive design choices. Specifically, we present the mean
Q-values in Figure 1 to showcase the stability of MOORL’s learning ar-
chitecture. Despite the data quality, MOORL consistently learns a stable
meta Q-function, translating into a stable meta-policy.

In Figure 1, we evaluate MOORL stability in the challenging and sparsely
rewarded AntMaze navigation task. The diverse dataset is created by
assigning random goal locations in the maze and directing the agent to
navigate to them. In contrast, the play dataset consists of trajectories
from specific, hand-picked initial positions to hand-picked goal locations.
Remarkably, MOORL achieves similar Q-value trajectories across these
datasets, emphasizing its robustness to variations in data quality.

For comparison, we conducted a similar analysis on RLPD to further
substantiate the stability of Q-value learning across different frameworks.
This analysis highlights MOORL’s capability to maintain stable learn-
ing dynamics even under diverse and challenging data conditions without
requiring specific design choices.

6 Related Work

6.1 Offline Reinforcement Learning

Offline reinforcement learning (RL) has gained significant attention for
its ability to learn policies from pre-collected datasets without additional
environmental interaction. However, distributional shift remains a funda-
mental challenge, as highlighted by Levine et al. (2020), making it crucial
to design algorithms that generalize effectively from limited data. Several approaches address this challenge
by incorporating regularization techniques. TD3+BC (Fujimoto & Gu, 2021) integrates behavioral cloning
into the actor loss to constrain policy learning, while CQL (Kumar et al., 2020) enforces conservatism by
penalizing the critic for assigning high values to out-of-distribution (OOD) actions. IQL (Kostrikov et al.,
2021) takes a different approach by leveraging advantage-weighted regression to avoid sampling OOD actions
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altogether. More recent methods further improve policy learning by incorporating representation learning,
such as pre-training action encoders (Akimov et al., 2022; Chen et al., 2022) or estimating dataset uncer-
tainty using VAEs (Wu et al., 2022) and RND (Nikulin et al., 2023). Another line of work improves policy
robustness by leveraging ensemble-based uncertainty estimation. SAC-N (An et al., 2021) achieves strong
results using large Q-function ensembles, though some tasks require ensembles of up to 500 members, making
it computationally expensive. MSG (Ghasemipour et al., 2022) mitigates this by introducing independent
target updates, reducing the ensemble size to four in MuJoCo tasks but still requiring 64 members for
AntMaze.

Further, Fujimoto & Gu (2021) shows that performance is significantly influenced by non-algorithmic factors,
and ReBRAC (Tarasov et al., 2024) performs a detailed analysis to understand the effect of design choice on
the performance of offline RL. Offline RL also struggles when datasets lack full coverage, making pessimism
computationally challenging (Jin et al., 2021; Zhang et al., 2022) and often requiring strong representation
conditions (Xie et al., 2021). To overcome these limitations, hybrid approaches incorporating limited online
interaction have been proposed as a promising alternative.

6.2 Bridging Online and Offline RL

Integrating online and offline reinforcement learning (RL) is a critical research area. Empirical studies have
examined how online learners can leverage logged data to improve performance (Rajeswaran et al., 2017; Nair
et al., 2017; Hester et al., 2017; Ball et al., 2023; Nakamoto et al., 2024; Zheng et al., 2023). While practical
benefits are evident, formal guarantees in this setting remain limited. (Ross & Bagnell, 2012) proposed a
framework where a learner can choose between executing a logging policy µ or an alternative online policy,
effectively bridging the gap between online and offline data exploitation. (Xie et al., 2021) demonstrated
that no approach could achieve strictly better sample complexity than purely online or offline methods
when using data collected from a logging policy. This result highlights the challenges of balancing online
exploration with offline data utilization. In contrast, our research assumes access to a pre-collected offline
dataset and the ability to interact online, enabling the refinement of a near-optimal policy while minimizing
online interactions. (Song et al., 2022) proposed "Hybrid RL" using the Hybrid Q-learning algorithm (Hy-
Q) for low bilinear rank Markov Decision Processes (MDPs) (Du et al., 2021). Under certain conditions,
Hy-Q can achieve optimal policies efficiently. However, the method’s performance may degrade when offline
data coverage of the optimal policy is insufficient, illustrating the importance of comprehensive offline data.
Further, a study by (Xie et al., 2022) delves into purely online contexts or frameworks involving offline
datasets, offering insights into the concealability coefficient—a parameter critical in establishing guarantees
for offline RL. This approach bridges the analytical methods used in online and offline settings. Recent work
by (O’Donoghue et al., 2018; Wagenmaker & Pacchiano, 2022), and others explore synergies between these
methodologies, revealing strategies for effectively integrating offline data with online exploration.

Our approach builds on these foundations by addressing sample complexity when merging offline datasets
with online learning. We aim to enhance the unified integration of offline data into online reinforcement
learning without extensive design choices and added computational complexity (Ball et al., 2023; Song et al.,
2022), which limits the border applicability of such hybrid-RL approaches.

7 Conclusion

In this work, we demonstrated that off-policy RL approaches can effectively combine offline data with online
data distributions. We also showed that learning a meta-policy over these two distributions enables a
design-free learning paradigm capable of learning stable Q-values independent of the quality of the data.
Our method’s efficacy was validated through extensive experiments on 28 diverse tasks spanning state and
pixel observations. Concretely, we showed that learning a hybrid RL policy enhances sample efficiency and
ensures robust performance across varying data qualities. By avoiding task-specific design parameters, our
approach generalizes well to different environments, making it a scalable and practical solution for real-world
applications. These findings underscore the potential of integrating offline and online learning to address
long-standing challenges in reinforcement learning.
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A Hyperparameters

Table 5: RLPD Hyperparameters

Parameter Value
Batch size 256
Discount (γ) 0.99
Optimizer Adam
Learning rate 3× 10−4

Critic EMA Weight (ρ) 0.005
Inner Gradient Steps (K) 4
Network Width 256 Units
Number of Layers 2
Initial Entropy Temperature (α) 1.0
Target Entropy −dim(A)

2

B Detailed Task Definition

B.1 D4RL: Locomotion

In these tasks, the reward is dense and based on the agent’s forward velocity, penalizing large control inputs
to encourage stable movement. The goal is to maximize the cumulative reward over the episode by learning
an efficient and stable gait. The standard evaluation metric is the normalized score, which is computed by
normalizing the agent’s return relative to expert and random policies, as defined by (Fujimoto et al., 2019).
The datasets are generated from policies of varying expertise, including random, medium, medium-replay,
medium-expert, and expert trajectories. Episodes typically last for 1,000 timesteps without early termination.

B.2 D4RL: AntMaze

In these tasks, the reward is sparse and binary, indicating whether the agent has reached the goal. Upon
reaching the goal, the episode terminates. The normalized return is measured as the proportion of successful
trials out of evaluation trials following prior work. The dataset consists of play-based and diverse demon-
strations, where the former includes goal-directed trajectories, and the latter contains broader movement
data. The challenge in this domain arises from long-horizon credit assignment and the need for effective
exploration in a sparse reward setting.

B.3 D4RL: Adroit

The Adroit suite consists of dexterous hand manipulation tasks that require controlling a 24-DoF simulated
Shadow Hand robot to perform complex actions such as hammering a nail, opening a door, or twirling a
pen. This domain is specifically designed to assess the impact of narrowly distributed expert demonstrations
on learning in a high-dimensional robotic manipulation setting with sparse rewards. Unlike standard Gym
MuJoCo tasks, Adroit exhibits several distinct characteristics. First, the dataset is sourced from human
demonstrations. Second, due to the sparse reward structure and inherent exploration difficulties, solving
these tasks with online RL alone proves challenging. Lastly, the high-dimensional nature of these tasks
introduces additional complexity in representation learning.

B.4 V-D4RL: DeepMind Control Suite (DMC)

The DMC tasks involve controlling physics-based agents with dense rewards that encourage smooth, efficient
movement. The standard evaluation metric is the normalized score, computed using the return of the agent
normalized against the performance of a well-trained SAC policy. The datasets include expert and medium
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policies, allowing evaluation of an agent’s ability to learn from varying data quality. Episodes typically run
for 1,000 timesteps without early termination.

C MOORL: Embracing Design Independence

Recent works have suggested that significant performance improvement can be achieved through offline data
in reinforcement learning. Current state-of-the-art in hybrid RL (RLPD (Ball et al., 2023)) and offline RL
(ReBRAC (Tarasov et al., 2024)) have demonstrated that challenges associated with offline data can be
reduced through the incorporation of different design elements. MOORL framework aims to answer the key
questions: Can a similar performance be achieved without introducing new design elements?

ReBRAC, a state-of-the-art method for offline reinforcement learning, focuses on fine-tuning various design
parameters—such as deeper networks, larger batch sizes, and layer normalization—to optimize policy per-
formance. While effective, this dependence on specific configurations can reduce adaptability across diverse
learning environments. On the other hand, RLPD integrates offline data into online learning and aligns
closely with the goals of MOORL. However, RLPD introduces many design elements and depends heavily
on large Q-ensembles and a high UTD ratio for its performance, as shown in Table 2.

In contrast, MOORL’s design independence enables it to adapt seamlessly to various tasks without intro-
ducing design components. This freedom from rigid design constraints allows MOORL to effectively address
distribution shifts and limited exploration challenges. By removing these fixed design choices, MOORL
enhances its adaptability and robustness in dynamic environments, providing a more versatile approach to
integrating offline and online data.

The tables 6 and 7 illustrate how MOORL’s approach differs from ReBRAC and RLPD in terms of the need
for specific design components. Unlike ReBRAC and RLPD, which require fine-tuning various parameters
for optimal performance, MOORL operates effectively without these additional design dependencies.

Table 6: Comparison of Design Choices with ReBRAC (Tarasov et al., 2024)

Component ReBRAC (Design Required) MOORL (Design-Free)
Deeper Networks ✓ ✗
Larger Batches ✓ ✗
Layer Normalization ✓ ✗
Decoupled Penalization ✓ ✗
Adjusted Discount Factor ✓ ✗

Table 7: Comparison of Design Choices with RLPD (Ball et al., 2023)

Component RLPD (Design Required) MOORL (Design-Free)
Sampling Strategy ✓ ✗
Layer Normalization ✓ ✗
Random Ensemble Distillation ✓ ✗
Clipped Double Q-Learning ✓ ✓
Network Architectures ✓ ✗
Update to Data Ratio ✓ ✗
Entropy Backup ✓ ✓

In summary, MOORL’s lack of reliance on specific design components simplifies the learning process and
allows for a more flexible and adaptable approach to reinforcement learning. This contrasts ReBRAC
and RLPD, which require detailed configuration to achieve optimal results. MOORL provides a more
generalizable and robust solution across various tasks by embracing design independence.
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