
ToolTree: Deliberate Tool Selection
for LLM Agents via Monte Carlo Tree Search

Anonymous ACL submission

Abstract001

Large Language Model (LLM) agents are in-002
creasingly applied to complex, multi-step tasks003
that require interaction with diverse external004
tools across domains such as mathematics, vi-005
sion, and knowledge retrieval. However, cur-006
rent frameworks typically rely on greedy, reac-007
tive tool selection strategies that lack foresight008
and fail to account for inter-tool dependencies.009
In this paper, we present ToolTree, a general-010
izable agent framework that integrates a plug-011
and-play Monte Carlo Tree Search (MCTS)012
module for deliberate tool selection. ToolTree013
explores possible tool usage trajectories using014
a dual-stage LLM evaluation mechanism that015
enables the agent to make informed, adaptive016
decisions over extended tool-use sequences.017
To ensure broad applicability, we introduce018
standardized “tool library” that encapsulate019
domain-specific models, enabling seamless or-020
chestration across multiple domains. Empirical021
evaluations across 15 tasks demonstrate that022
ToolTree consistently improves downstream023
performance, achieving an average gain of over024
5% compared to state-of-the-art agent systems.025

1 Introduction026

Recent advancements in Large Language Models027

(LLMs) (Brown et al., 2020; Ouyang et al., 2022;028

Touvron et al., 2023) have propelled the emergence029

of autonomous LLM agents capable of tackling030

complex tasks across domains such as software031

engineering (Yang et al., 2024), web interaction032

(Zhou et al., 2023), computer use (Xie et al., 2024)033

and multimodal understanding (Wu et al., 2023).034

These agents leverage LLMs’ capabilities in plan-035

ning (Hao et al., 2023), reasoning (Wei et al., 2022),036

and knowledge representation (Gu et al., 2024), and037

have shown impressive performance in open-ended,038

multi-step problem-solving scenarios. As these039

agents become more sophisticated, the integration040

of external tools has become a crucial mechanism041

Figure 1: Comparison of ToolTree with greedy search
and linear heuristic search. A greedy search with cap-
tion, calculator pipeline hallucinates default counts and
answers 10, while a linear heuristic search with caption,
detector, web lookup and calculator chain still fails with
answer 18. ToolTree chooses the optimal tool trajectory
and answer correctly with 20.

for extending their functional capabilities beyond 042

the limits of their pre-trained knowledge. 043

A core requirement for effective LLM agents 044

lies in their ability to interact with external tools to 045

retrieve up-to-date information, executing computa- 046

tions, or invoking specialized models (Schick et al., 047

2023; Qin et al., 2023). However, simply enabling 048

tool use is not enough. Effective orchestration that 049

determines which tools to use, in what order, and 050

how their outputs influence subsequent decisions 051

is critical. This orchestration becomes especially 052

challenging when tools exhibit inter dependencies 053

or when task success relies on the cumulative out- 054

come of a tool sequence. As illustrated in Figure 055

1, even a seemingly simple counting-wheel ques- 056

tion requiring multi-tool interaction can lead to 057

incorrect outcomes when agents adopt reactive or 058

insufficiently planned strategies. Thus, developing 059

agents that can robustly reason over such sequential 060

1



Feature Ours General LLM Agent Framework Tool Augmented LLM System LLM Agent Tree Search

GPT-Functions OctoTools HuggingGPT ToolChain* ToolPlanner REACT Reflexion LATS
(OpenAI, 2024) (Lu et al., 2025) (Shen et al., 2023) (Zhuang et al., 2024) (Liu et al., 2025) (Yao et al., 2023b) (Shinn et al., 2023) (Zhou et al., 2024)

Tool Calling ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Planning ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Deliberate Tool Selection ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓
Tool Verification ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓
Tool Refinement ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗
Tool Pruning ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Skill Dimension

Math ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓
External Knowledge ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Medical ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
General Vision ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Document ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Table 1: A comparison of ToolTree with notable LLM agent frameworks, tool-augmented LLM systems and LLM
agent tree search. Our method shows significant advantages in tool integration with diverse coverage of skills.

dependencies remains a key open problem.061

Existing research on enhancing LLM agents with062

tool-use capabilities can be broadly categorized063

into three main streams. 1) General-purpose064

agent frameworks, such as GPT-Functions (Ope-065

nAI, 2024), Langchain (LangChain, 2024) and Oc-066

toTools (Lu et al., 2025), provide foundational ca-067

pabilities by allowing LLMs to invoke external068

APIs or tools. However, these systems largely rely069

on greedy tool selection that choose a tool appear-070

ing locally optimal at each step without strategic071

planning. This lack of foresight often results in072

brittle performance when early decisions prove073

suboptimal or when later tool choices depend on074

earlier outcomes. 2) Tool augmented LLMs, includ-075

ing HuggingGPT (Shen et al., 2023), ToolChain*076

(Zhuang et al., 2024) and ToolPlanner (Liu et al.,077

2025), has made strides in more structured planning078

and deliberate tool selection. Nevertheless, these079

systems often do not explicitly integrate robust080

mechanisms for ongoing verification of intermedi-081

ate tool outputs or iterative refinement of these out-082

puts once found to be imprecise or incomplete, car-083

rying forward unexamined results into subsequent084

steps. 3) LLM Agent Tree Search approaches, ex-085

emplified by Tree-of-Thought (Yao et al., 2023a),086

Reflexion (Shinn et al., 2023), and LATS (Zhou087

et al., 2024), have introduced search paradigms to088

explore sequences of actions or thoughts. However,089

the “tools” in these tree-search agents are usually090

limited to one or two generic primitives such as091

web retriever or calculator, limiting the evaluations092

to stay within text-centric domains. Scaling search093

to a multi-modal, multi-domain tool ecosystem,094

therefore, remains an open challenge, one that our095

framework tackles head-on.096

To overcome these challenges, we introduce097

ToolTree, a general-purpose agent framework 098

that integrates a plug-and-play Monte Carlo Tree 099

Search (MCTS) module for deliberate tool selec- 100

tion. Unlike conventional greedy methods, our 101

MCTS module explores multiple tool trajectories to 102

identify effective multi-step execution plans. Cen- 103

tral to this is a novel dual-stage LLM-guided evalu- 104

ation: a pre-execution model predicts the utility of 105

a tool before it is invoked, while a post-execution 106

model assesses its actual contribution based on ob- 107

served outcomes. This feedback loop enables the 108

agent to refine its strategy iteratively, incorporating 109

foresight and hindsight into tool selection. Ad- 110

ditionally, we standardize tool interfaces through 111

a domain-specific "tool library", allowing seam- 112

less orchestration across diverse tools and domains. 113

Empirical evaluations across 15 downstream tasks 114

demonstrate consistent improvements over strong 115

baselines, with average gains exceeding 5%. 116

The main contributions of this paper can be sum- 117

marized as follows: 118

• We propose ToolTree, a generalizable LLM 119

agent framework featuring deliberate tool or- 120

chestration and standardized "tool library" 121

that encapsulates domain-specific models for 122

diverse tasks. 123

• ToolTree implement a novel plug-and-play 124

MCTS-based tool selection module, which 125

leverages both pre-evaluation and post- 126

evaluation from the environment to guide 127

strategic multi-step tool planning, moving be- 128

yond traditional greedy selection approaches. 129

• Extensive evaluation across 15 datasets 130

demonstrate consistent downstream task im- 131

provements exceeding 5% on average com- 132

pared to state-of-the-art agent frameworks. 133

2



2 Related Work134

LLM-based Autonomous Agent Recent advance-135

ments in LLM-based autonomous agents have fo-136

cused on augmenting LLMs with external modules137

to enhance planning (Hao et al., 2023; Liu et al.,138

2023), reasoning (Wei et al., 2022; Wang et al.,139

2022), memory (Zhong et al., 2024) and tool-use140

(Schick et al., 2023; Shen et al., 2023). These141

agents generally fall into two categories: General142

and Domain-Specific frameworks. General frame-143

works, like AutoGPT (AutoGPT, 2024), Langchain144

(LangChain, 2024), MetaGPT (Hong et al., 2023),145

while offering broad applicability with versatile,146

domain-agnostic foundational architecture, tend to147

lack depth for complex, multi-step tasks and spe-148

cialize in tool pruning per task domain. Domain-149

specific frameworks for fields such as math (Poesia150

et al., 2024; Xiong et al., 2024), vision (Wu et al.,151

2023), research (OpenAI, 2025; Google, 2025),152

medical (Li et al., 2024; Tang et al., 2024). At153

the same time, achieving significant progress for a154

single field tends to over-optimized in one domain155

with narrow tool coverage without generalizabil-156

ity. Our framework distinguishes by incorporating157

a domain-specialized Tool-Card Library, enabling158

both wide-ranging multi-disciplinary task support159

and fine-grained tool specialization, alongside an160

explicit planner and executor that interacts with the161

environment for robust multi-step reasoning.162

Tool Selection for LLM Agents Dynamic tool163

selection is crucial for complex tasks that require164

the use of sequential tools (Qu et al., 2025). In165

order to mitigate such a problem, prompt-based166

methods leverage LLMs with their strong world167

knowledge priors (Hao et al., 2023; Gu et al.,168

2024) as a planner to select tools using in-content169

learning techniques, such as chain-of-thought (Wei170

et al., 2022) or ReAct (Yao et al., 2023b) schema171

(Shen et al., 2023; Paranjape et al., 2023; Lu et al.,172

2025). Even though flexible, these approaches173

often make greedy, single-step choices without174

adequate looking-ahead or backtracking, poten-175

tially leading to hallucinated or incorrect actions176

(Qin et al., 2023; Liu et al., 2024). Alternatively,177

training-based methods fine-tune models or add178

specific heads for tool invocation (Schick et al.,179

2023; Yang et al., 2023), incurring significant com-180

putational and data annotation costs. In contrast,181

our method employs a training-free, tree-based182

module for hierarchical exploration and ranking of183

multi-step tool sequences, featuring both forward-184

looking evaluation and backwards verification. 185

Augmenting LLM Agent with Tree Search To 186

address the limitations of reactive LLM agents 187

in complex tasks requiring lookahead (Gu et al., 188

2024), augmenting them with tree search provides 189

a deliberate planning layer. Various search algo- 190

rithms, such as greedy search (Yao et al., 2023b), 191

A* Search (Zhuang et al., 2024), Beam Search 192

(Xie et al., 2023), MCTS (Zhou et al., 2024; Hao 193

et al., 2023), BFS/DFS (Yao et al., 2023a), Best- 194

first search (Koh et al., 2024) have been integrated 195

at inference time. However, this method often lacks 196

sufficient tool invocation diversity for broad do- 197

main generalization. Our approach addresses this 198

with explicit tree search for tool selection, con- 199

trasting with LLM-internal reasoning prevalent in 200

prior methods, and further incorporates dual envi- 201

ronmental feedback for robust verification and plan 202

refinement. 203

3 Methodology 204

In this paper, we introduce ToolTree, a training- 205

free LLM-agent framework that performs delib- 206

erate multi-tool orchestration for diverse domain- 207

specific tasks as visualized in Figure 2. Unlike 208

previous frameworks that suffer from greedy or 209

shallow planning of tool selection within a limited 210

domain, ToolTree systematically addresses these 211

issues through a four-component architecture: 1) 212

a Domain-Specialized Tool Library for versatile 213

access to a broad spectrum of external tools; 2) a 214

lightweight Planner that sketches a coarse-grained 215

route by filtering tools relevant to the user query; 216

3) MCTS-based Tool Selector that iteratively re- 217

fines this route into a concrete, step-by-step tool 218

implementation plan steered by dual feedback from 219

LLM scores; 4) Answer Generator that assembles 220

the optimal tool trajectory with their output into a 221

final, fluent response. 222

3.1 Domain-Specialized Tool library 223

ToolTree interacts with a diverse set of external 224

tools through its extensible Domain-Specialized 225

Tool library, denoted as Tlib. Each tool t ∈ Tlib 226

is represented by a structured tool card Ct with 227

explanatory metadata using JSON format to pro- 228

vide standardized information for further utiliza- 229

tion. A card begins with a "name" plus a brief 230

"description" so human operators and error logs 231

remain readable. It also has a categorical "domain 232

tag" drawn from vision, math, medical, external- 233

3



Figure 2: Architecture of ToolTree. An input query is processed sequentially by: (1) the Domain-Specialized Tool
Library; (2) a lightweight Planner for coarse-grained tool filtering; (3) an MCTS-based Tool Selector that refines
tool sequences via iterative, dual LLM-guided search, including selection, pre-evaluation, expansion, execution,
post-evaluation, and backward-prorogation; and (4) an Answer Generator/Predictor to produce the final output.

knowledge, or text/document so that the planner234

discards whole groups that are clearly irrelevant235

to the user query. The card also carries a "for-236

mal signature", listing every callable parameter237

together with admissible value ranges, and paired238

"input schema" and "output schema" so the LLM239

can reason about type compatibility when chaining240

tools. Finally, each card stores three short "exam-241

ples" that serve as in-context demonstrations for242

the planner. The current library comprises thirty243

tool cards: five for vision, four for math, seven for244

external knowledge, six for medical reasoning, and245

eight for text-centric document tasks. Full details246

can be found in Appendix B.3.247

This unified schema ensures that heterogeneous248

services ranging from a symbolic-algebra solver to249

a radiology image classifier can be ranked, com-250

pared, and invoked through exactly the same plan-251

ning interface. Adding a new capability is therefore252

as simple as registering another card in Tlib.253

3.2 Planner254

Given a user query q and the full tool library Tlib,255

the Planner produces a coarse, low-cost sketch that256

seeds the Monte-Carlo Tree Search (MCTS) loop.257

We first utilize Planner as a classifier to assign one258

or more domain labels to query q. Any card whose259

"domain tag" is not among these labels is removed.260

For survivors, we verify that their declared "input261

schema" is satisfiable in the current context and262

that their "output schema" can be consumed by at263

least one other remaining tool. The check is imple-264

mented with a deterministic regex over the schema265

strings. For the surviving set, the planner runs a 266

lightweight ranking pass that returns a scalar utility 267

estimate pt ∈ [0, 1] for each tool. We then retain 268

only those tools whose score meets or exceeds the 269

threshold τ , giving the set of filtered candidates 270

T ∗
cand = {t | pt ≥ τ}. All tools in T ∗

cand are passed 271

into the MCTS loop, forming the immediate action 272

space for its subsequent fine-grained exploration. 273

3.3 MCTS-based Tool Selector 274

The Tool Selector is the primary engine for intelli- 275

gent decision-making within the ToolTree frame- 276

work. Starting from the coarse candidate set T ∗
cand 277

and context C0 produced by the Planner, it per- 278

forms an MCTS to construct an explicit, ordered se- 279

quence of tool invocations that maximizes a learned 280

utility signal. Unlike greedy schemes that decide 281

one step at a time, our search explores multiple 282

future branches, evaluates each prospective call 283

with lightweight pre-execution scoring, and then re- 284

fines these estimates with post-execution feedback 285

once a tool is actually run. This look-ahead/look- 286

back loop allows the agent to recover from early 287

mischoices, avoid dead-end tool combinations, and 288

allocate its limited call budget to the most promis- 289

ing trajectories. 290

Problem Definition. We model the search process 291

as exploring a finite tree. A node at depth t is a 292

pair st = ⟨Ct, A1:t⟩, where Ct is the accumulated 293

context that represents the user query plus all in- 294

termediate tool outputs and A1:t = (a1, . . . , at) is 295

the sequence of tool calls executed so far. From 296

st the legal actions are the tools in T ∗
cand whose 297

4



"input schema" is compatible with Ct; we denote298

this set A(st). Invoking a tool a ∈ A(st) pro-299

duces a successor state st+1 and an immediate300

post-execution reward rpost
(
st, a

)
∈ [0, 1] scored301

by an LLM judge. The objective is to find a tra-302

jectory A1:T that maximizes the cumulative reward303

R =
∑T−1

t=0 rpost
(
st, at+1

)
within a rollout budget304

of at most Rmax.305

Within the search tree for every node (s, a), we306

update two statistics after each rollout: the visit307

count N(s, a), which records how many times ac-308

tion a has been selected from state s, and the mean309

value estimate Q(s, a), which stores the running310

average of the post-execution rewards observed at311

that node. Both are initialized to 0 when the node312

is first created.313

Selection. Given the current search state s, the se-314

lector repeatedly traverses the tree until it reaches315

a leaf by choosing the child action that follows316

a prior-augmented UCT score to balance the ex-317

ploitation and exploration:318

UCT (s, a) = Q(s, a) + λrpre(s, a)

√
lnN(s)

N(s, a)
(1)319

The first term Q(s, a) in UCT(s, a) drives exploita-320

tion as it accumulates the post evaluation rewards321

obtained so far. The second term modulates explo-322

ration with multiplier rpre(s, a) with pre evaluation323

score as a fast prediction obtained before any tool324

call is made, acting as a Bayesian before steering325

early roll-outs toward likely fruitful paths.326

Pre-Evaluation. When a state, action pair (s, a)327

is visited for the first time, we query an LLM to328

predict the prospective utility of calling a next, re-329

turning rpre(s, a)∈ [0, 1]. If rpre(s, a) < τpre, the330

branch is discarded. Otherwise, the value is cached331

for use in Eq. (1).332

Expansion. At a leaf state st, we first compute the333

set of actions that are still unused as Arem(st) =334

A(st) \ {a1, . . . , at}. For every candidate a ∈335

Arem(st) whose pre-evaluation score reaches the336

threshold rpre(st, a) ≥ τpre, we create a child node337

(st, a), caching the corresponding rpre value.338

Execution. The selected child action is executed339

against the real tool API, producing an output ot+1340

that is appended to the context to form Ct+1. We341

cache output that is identical so that calls are not342

repeated inside a rollout budget.343

Post-Evaluation. After the tool has been exe-344

cuted, we request a second LLM to assess the triple345

⟨Ct, a, ot+1⟩ and return a post-execution score 346

rpost(st, a) ∈ [0, 1] that reflects the utility of the 347

new output. If rpost(st, a) < τpost, we discard the 348

responding node. Otherwise, the node remains ex- 349

pandable in later roll-outs. 350

Backward Propagation. The obtained post- 351

evaluation score rpost(st, a) is propagated along 352

the path from the new child back to the root. 353

For every edge (s, a) on that path, we update 354

N(s, a)← N(s, a) + 1 and Q(s, a)← Q(s, a) + 355
rpost(st,a)−Q(s,a)

N(s,a) , thereby refining the exploitation 356

term in Eq. (1) with the latest empirical evidence. 357

Tree Pruning. The two thresholds τpre and 358

τpost work together via pre-evaluation and post- 359

evaluation to limit search overhead: the former 360

filters out obviously irrelevant actions before any 361

real call is made, while the latter cuts off branches 362

that deliver disappointing results after execution. 363

Termination. Search stops when either (i) the al- 364

lotted number of rollouts Rmax is reached, or (ii) 365

the best cumulative Q value has not improved by 366

more than ϵ over the past k rollouts. Upon termina- 367

tion, the action sequence attached to the root child 368

with the highest Q value is returned to the Answer 369

Generator as the final ordered tool-execution plan. 370

3.4 Answer Generator/Predictor 371

Given the optimal trajectory A1:T returned by the 372

tool selector, the Answer Generator converts the ac- 373

cumulated context CT that contains the user query, 374

intermediate reasoning, and the outputs of all exe- 375

cuted tools into a natural-language form reply. 376

4 Experiment 377

Datasets. We evaluate our ToolTree framework 378

using a diverse collection of 15 datasets spanning 379

five distinct specialized domains: general, external 380

knowledge, medical, math, and text/document. The 381

general visual understanding domain includes main 382

datasets such as VQAv2 (Goyal et al., 2017), GQA 383

(Hudson and Manning, 2019), and ScienceQA (Lu 384

et al., 2022). For the knowledge-based question 385

answering domain, we utilize OK-VQA (Marino 386

et al., 2019), A-OKVQA (Schwenk et al., 2022), 387

and WebQ (Berant et al., 2013). The medical ques- 388

tion answering domain is represented by MedQA 389

(Jin et al., 2021), VQA-Rad (Lau et al., 2018), and 390

PathVQA (He et al., 2020). In the mathematical 391

reasoning domain, we include MATH (Hendrycks 392

et al., 2021), Game of 24 (nlile, 2025), and Math- 393

vista (Lu et al., 2024). Finally, text/document 394

5



Domain Dataset GPT4o-mini GPT4o

Few-Shot HuggingGPT OctoTools ToolTree (Ours) Few-Shot HuggingGPT OctoTools ToolTree (Ours)

General Visual
VQAv2 68.82 60.17 69.28 74.47 73.22 67.77 74.18 76.43
GQA 63.80 65.13 66.14 71.54 66.84 60.33 68.58 74.44
SQA 76.50 70.82 78.29 84.28 82.15 78.45 84.13 87.33

Medical
MedQA 79.14 84.33 86.18 91.13 83.20 86.73 92.17 93.88
VQA-Rad 48.10 55.14 60.10 63.27 54.47 58.88 66.42 74.12
PathVQA 24.90 40.72 43.13 47.12 26.20 37.82 46.17 50.86

External Knowledge
OK-VQA 48.46 44.19 50.17 55.38 53.62 50.12 53.42 59.27
A-OKVQA 60.28 55.81 62.15 70.54 65.91 60.33 68.33 73.48
WebQ 50.20 56.24 61.12 64.28 56.41 58.18 63.44 67.94

Math
MATH 53.26 45.14 58.43 69.42 61.45 53.51 68.57 78.19
Game-24 26.50 22.66 34.18 43.33 33.15 25.43 40.18 47.85
MathVista 52.53 55.62 57.97 63.14 59.10 58.44 61.70 65.58

Text / Doc.
TextVQA 72.42 68.24 74.69 82.26 76.28 70.14 77.17 85.43
Doc-VQA 83.28 83.10 84.23 89.43 87.11 82.13 89.39 92.33
HotpotQA 37.29 46.48 48.11 54.15 43.77 51.82 53.14 56.33

Average 56.37 56.92 62.94 68.65 61.53 60.01 67.80 72.70

Table 2: Comparison across 15 datasets in five domains. ToolTree consistently outperforms standard few-shot
prompting, HuggingGPT, and OctoTools on both GPT-4o-mini and GPT-4o, achieving highest overall score.

recognition and domain understanding comprises395

TextVQA (Singh et al., 2019), Doc-VQA (Mathew396

et al., 2021), and HotpotQA (Yang et al., 2018).397

Details of each dataset are shown in Appendix B.1.398

Baselines and Metric. We compare our proposed399

framework, ToolTree, against several established400

baselines to demonstrate its efficacy: (1) stan-401

dard few-shot inference without specialized frame-402

works; (2) OctoTools (Lu et al., 2025), a represen-403

tative LLM agent framework employing an itera-404

tive planner-executor-verifier paradigm for struc-405

tured tool use; and (3) HuggingGPT (Shen et al.,406

2023), a pioneering tool-augmented LLM system407

that coordinates tasks across Hugging Face mod-408

els under an LLM controller. To specifically as-409

sess the tool selection and reasoning capabilities of410

ToolTree as a plug-and-play module against other411

decision-making strategies, we further compare it412

with Chain-of-Thought with self-consistency (CoT-413

SC) (Wang et al., 2022), Tree of Thoughts (ToT)414

(Yao et al., 2023a), and ReAct (Yao et al., 2023b).415

To ensure a fair comparison across all ap-416

proaches, experiments are conducted using either417

GPT-4o-mini or GPT-4o as the backbone model,418

with all frameworks provided an identical set of419

tools and the same number of examples for prompt-420

ing. Performance is reported using the primary421

evaluation metric native to each dataset: accuracy,422

exact match (EM), F1 score, or success rate.423

Hyperparameter Setting. All ToolTree com-424

ponents, including Planner, Tool Selector, pre-425

evaluation LLM, and Answer Generator, run the426

same backbone LLM with either GPT-4o-mini 427

GPT-4o, while post-evaluation scores are produced 428

by Gemini 2.0. More details on the influence of 429

different post evaluation LLMs can be found in 430

Appendix 8. The Planner retains tools whose rel- 431

evance exceeds τ = 0.3. Evoked by (Zhou et al., 432

2024), during MCTS we set the exploration con- 433

stant to λ = 1.4, allow at most Rmax = 60 roll- 434

outs, and prune branches whenever rpre < 0.3 or 435

rpost < 0.4; search stops early if the best Q value 436

increases by < 10−3 over 10 consecutive roll-outs. 437

5 Result 438

5.1 Main Results 439

We evaluate ToolTree against three distinct multi- 440

tool orchestration baselines: Few-Shot prompting, 441

HuggingGPT, and OctoTools with two backbone 442

models, GPT4o-mini and GPT4o. As covered in 443

Table 2, our evaluation spans 15 datasets in five 444

diverse domains, including general visual, medical, 445

external knowledge, math, and text/document. 446

Our framework consistently achieves superior 447

performance across five domains. Under GPT4o- 448

mini, it attains an average of 68.65%, outperform- 449

ing Few-Shot and HuggingGPT by over 11.7 points 450

and OctoTools by 5.71 points on average. A simi- 451

lar trend is observed with the more capable GPT4o 452

backbone, where ToolTree outperforms Few-Shot 453

and HuggingGPT by more than 11.1 points and 454

OctoTools by 4.9 points on average. Notably, 455

ToolTree demonstrates substantial gains on tradi- 456

tionally challenging, domain-specific datasets such 457

6



Configuration VQA-Rad OK-VQA MathVista SQA HotpotQA AVG

Langchain 62.18 49.18 54.24 76.59 39.82 56.40

w/o COT-SC 65.14 54.37 56.88 82.17 44.90 60.69

w/o REACT 66.28 52.33 59.25 80.95 45.18 60.80

w/o ToT 63.04 48.12 65.33 78.33 52.28 61.42

w/o ToolTree 67.72 54.27 65.74 81.33 51.94 64.20

MetaGPT 64.13 53.84 54.88 78.16 37.72 57.75

w/o COT-SC 68.74 54.88 60.30 79.44 46.90 62.05

w/o REACT 66.32 55.11 58.94 80.54 49.56 62.09

w/o ToT 65.42 50.52 60.14 80.47 56.21 62.55

w/o ToolTree 69.24 55.83 62.28 82.57 54.77 64.94

Table 3: Comparison of ToolTree as a plug-and-
play module with REACT, COT-SC and ToT modules.
ToolTree achieves highest score on average.

as PathVQA and Game-of-24, with 22.22% and458

16.83% performance gain compared with few-shot459

baselines under GPT4o-mini. These significant460

improvements underscore the superiority of our461

framework that integrates a domain specialized tool462

library and MCTS-based tool selector. Domain-463

grouped break down results can be found in Ap-464

pendix A.1. Comparison with domain-specific465

agent frameworks can be found in Appendix A.3.466

5.2 Plug-and-Play Module Comparision467

We evaluated our plug-and-play modules ToolTree-468

Module on one representative dataset from each469

of the five domains under two off-the-shelf LLM-470

agent frameworks, Langchain and MetaGPT. For471

each framework, we start from the vanilla agent472

with no extra tool use module and then insert ex-473

actly one of four modules—Chain-of-Thought Self-474

Consistency (COT-SC), REACT, Tree-of-Thought475

(ToT), or our proposed ToolTree-Module—while476

holding all other settings like prompt format, tool477

APIs, number of iterations/trajectories, and random478

seeds identical.479

As Table 3 shows, our ToolTree-Module consis-480

tently yields the highest accuracy on overall aver-481

age and four of the five benchmarks across both482

frameworks, outperforming COT-SC, REACT, and483

ToT by 3–8 points on each dataset and 7 points on484

average against the unaugmented agent. The only485

exception is HotpotQA, where tree-of-thought’s486

structured reasoning over LLM’s hidden state ex-487

cels at systematically decomposing the multi-hop488

problem and exploring diverse evidence-linking489

pathways crucial for this dataset. Nevertheless, this490

internal state search nature also makes it far worse491

Figure 3: Relationship of performance and number of
iterations. ToolTree consistently beats other modules.

than our module in domain-specialized tasks that 492

require external tools such as vision, medical and 493

knowledge, where our module’s versatile integra- 494

tion and adaptive orchestration of these tools yields 495

significantly better performance. 496

5.3 Number of Iteration Influence 497

To understand the relationship between computa- 498

tional budget and performance for different plug- 499

and-play modules, we analyze their accuracy as a 500

function of "iterations" as illustrated in Figure 3. 501

Here, an iteration denotes one complete reasoning 502

pass: for CoT-SC, it is one self-consistent sample, 503

for ReAct, it is one chain-of-thought + tool-call 504

cycle, for ToT, it is one branch expansion, and for 505

our method, it is one MCTS rollout. 506

We observe a general trend where performance 507

gains diminish as iterations increase, with all mod- 508

ules potentially introducing noise and underper- 509

forming the baseline framework at very low itera- 510

tion counts (e.g., 0-2 iterations) before their struc- 511

tured reasoning takes effect. Notably, ToolTree- 512

Module and ToT exhibit a more pronounced step- 513

wise improvement curve, indicating their deeper 514

search or structured exploration mechanisms pro- 515

gressively uncover better solutions with increased 516

iterations. In contrast, COT-SC and REACT show 517

flatter trajectories, suggesting they reach their per- 518

formance plateaus more quickly with fewer iter- 519

ations, possibly due to their less extensive explo- 520

ration of the solution space. Crucially, across the 521

board, our approach achieves the highest accuracy 522

at every budget, confirming that dual evaluation 523

and value-based pruning make each additional roll- 524

out more informative. 525

7



Figure 4: Impact of Pruning Strategies on Search Ef-
ficiency. Combined pruning yields the fewest median
rollouts and nodes with the tightest variance.

5.4 Influence of Dual Evaluation on Efficiency526

To evaluate the effectiveness of our dual-evaluation527

pruning strategy on search efficiency, we conducted528

experiments on 100 sampled examples from each529

dataset, setting a maximum rollout budget of 60.530

We compared four configurations: 1) "No Prun-531

ing", where LLM evaluation scores solely inform532

the MCTS value function without active discard-533

ing of trajectories; 2) "Pre Pruning", where pre-534

evaluation scores are used for pruning; 3) "Post535

Pruning," where post-evaluation scores are used536

to prune trajectories after tree expansion; and 4)537

"Both Pruning," combining both mechanisms as538

mentioned in Section 3.3.539

As shown in Figure 4, pre-evaluation pruning540

substantially reduces the median number of nodes541

expanded to approximately 78 from 98 by directly542

curtailing unpromising branch explorations for a543

narrower search tree while it has less influence on544

the number of rollouts as it basically serves as a545

prior for reward function without dominance. Con-546

versely, post-evaluation pruning more substantially547

reduces median rollouts to approximately 45 from548

50, as its accurate rewards provide clearer solu-549

tion quality signals for potentially earlier confident550

convergence. Crucially, employing "Both Prun-551

ing" mechanisms yields the most significant effi-552

ciency gains, achieving the lowest median nodes553

and rollouts, alongside more stable performance554

indicated by reduced variance. These findings555

demonstrate that the dual-evaluation pruning strat-556

egy effectively enhances search efficiency by re-557

ducing unnecessary exploration and converging on558

solutions rapidly.559

Figure 5: A Sample Case of ToolTree on TextVQA.

6 Qualitative Analysis 560

Figure 5 showcases how ToolTree progressively 561

corrects itself on a TextVQA task. With the num- 562

ber of rollouts grows in the MCTS loop, ToolTree 563

finds better tool trajectories guided by both the pre- 564

evaluation score as the prior and the post-evaluation 565

score as the dominant reward. The query asks, “Ac- 566

cording to the sign, how many miles is it from Lon- 567

don to Paris?”; the photo shows “343 km.” In its 568

first rollout, the agent invokes a lightweight OCR 569

tool, passes the raw text to the LLM, and naively 570

returns “343 km,” earning a low post-evaluation 571

score (0.2). By the fifth rollout, the search has 572

inserted the patch-zoom tool to crop the numeric 573

region and rerun OCR, but it still reports kilo- 574

meters and receives only a medium reward (0.5). 575

Guided by these signals, the tenth rollout adds a 576

unit-conversion API after OCR; the calculator mul- 577

tiplies 343 × 0.621 371, and the LLM outputs the 578

correct “213.75 miles,” which the judge scores 0.9. 579

The example illustrates how dual LLM feedback 580

steers the MCTS toward richer tool chains. More 581

case study can be found in Appendix A.5. 582

7 Conclusion 583

This paper presents ToolTree, a training-free 584

agent framework that integrates a plug-and-play 585

MCTS-based tool selection module and domain- 586

specialized tool library to enable robust multi-tool 587

orchestration across diverse tasks. ToolTree ex- 588

plores a dual feedback mechanism from the envi- 589

ronment to provide nuanced guidance for MCTS, 590

enabling both efficient search via strategic pruning 591

and effective discovery of optimal tool trajectory. 592

Experiments over the 15 datasets across diverse 593

domains demonstrate ToolTree consistently outper- 594

forms state-of-the-art agent systems by 5 percent 595

on average success rate. We hope this framework 596

will serve as a valuable foundation for future ex- 597

plorations into sophisticated tool orchestration and 598

deliberate reasoning in more advanced AI agents. 599

8



Limitation600

While ToolTree excels across a diverse range of601

tasks, its dependence on a powerful LLM endowed602

with extensive world knowledge and reasoning pri-603

ors may limit applicability to smaller language604

models. Moreover, despite the benefits of pruning,605

the MCTS-driven search is still hard to to match606

the efficiency of greedy heuristics. To address607

these limitations, we intend to explore methods608

for enhancing the applicability of ToolTree with609

smaller language models, such as by developing610

more lightweight reasoning components or employ-611

ing knowledge distillation techniques to transfer es-612

sential capabilities. We also intend to develop a bet-613

ter strategy in the future that enables dynamically614

switching from deliberate reasoning to heuristic615

reasoning.616

References617

AutoGPT. 2024. AutoGPT. https://github.com/618
Significant-Gravitas/AutoGPT. GitHub reposi-619
tory.620

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy621
Liang. 2013. Semantic parsing on freebase from622
question-answer pairs. In EMNLP, pages 1533–1544.623
ACL.624

Tom Brown, Benjamin Mann, Nick Ryder, Melanie625
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind626
Neelakantan, Pranav Shyam, Girish Sastry, Amanda627
Askell, et al. 2020. Language models are few-shot628
learners. Advances in neural information processing629
systems, 33:1877–1901.630

Google. 2025. Gemini Deep Research. https:631
//gemini.google/overview/deep-research/.632
Web page.633

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv634
Batra, and Devi Parikh. 2017. Making the v in vqa635
matter: Elevating the role of image understanding636
in visual question answering. In Proceedings of the637
IEEE conference on computer vision and pattern638
recognition, pages 6904–6913.639

Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu640
Gou, Tianci Xue, Cheng Chang, Sanjari Srivastava,641
Yanan Xie, Peng Qi, et al. 2024. Is your llm secretly642
a world model of the internet? model-based planning643
for web agents. arXiv preprint arXiv:2411.06559.644

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen645
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea-646
soning with language model is planning with world647
model. In Proceedings of the 2023 Conference on648
Empirical Methods in Natural Language Processing,649
pages 8154–8173, Singapore. Association for Com-650
putational Linguistics.651

Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and 652
Pengtao Xie. 2020. Pathvqa: 30000+ questions for 653
medical visual question answering. arXiv preprint 654
arXiv:2003.10286. 655

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 656
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 657
cob Steinhardt. 2021. Measuring mathematical prob- 658
lem solving with the math dataset. arXiv preprint 659
arXiv:2103.03874. 660

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng 661
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven 662
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023. 663
Metagpt: Meta programming for multi-agent collabo- 664
rative framework. arXiv preprint arXiv:2308.00352, 665
3(4):6. 666

Drew A Hudson and Christopher D Manning. 2019. 667
Gqa: A new dataset for real-world visual reasoning 668
and compositional question answering. In Proceed- 669
ings of the IEEE/CVF conference on computer vision 670
and pattern recognition, pages 6700–6709. 671

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, 672
Hanyi Fang, and Peter Szolovits. 2021. What disease 673
does this patient have? a large-scale open domain 674
question answering dataset from medical exams. Ap- 675
plied Sciences, 11(14):6421. 676

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Rus- 677
lan Salakhutdinov. 2024. Tree search for language 678
model agents. arXiv preprint arXiv:2407.01476. 679

LangChain. 2024. LangChain. https://github.com/ 680
langchain-ai/langchain. GitHub repository. 681

Jason J. Lau, Soumya Gayen, Asma Ben Abacha, and 682
Dina Demner-Fushman. 2018. A dataset of clinically 683
generated visual questions and answers about radiol- 684
ogy images. Scientific Data, 5(1):1–10. VQA-RAD 685
dataset. 686

Binxu Li, Tiankai Yan, Yuanting Pan, Jie Luo, Ruiyang 687
Ji, Jiayuan Ding, Zhe Xu, Shilong Liu, Haoyu Dong, 688
Zihao Lin, and Yixin Wang. 2024. MMedAgent: 689
Learning to use medical tools with multi-modal agent. 690
In Findings of the Association for Computational Lin- 691
guistics: EMNLP 2024, pages 8745–8760, Miami, 692
Florida, USA. Association for Computational Lin- 693
guistics. 694

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, 695
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 696
2023. Llm+ p: Empowering large language mod- 697
els with optimal planning proficiency. arXiv preprint 698
arXiv:2304.11477. 699

Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie, 700
Lirong Xiang, Yuchen Liu, and Dongkuan Xu. 701
2024. Toolnet: Connecting large language models 702
with massive tools via tool graph. arXiv preprint 703
arXiv:2403.00839. 704

9

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2013.html#BerantCFL13
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2013.html#BerantCFL13
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2013.html#BerantCFL13
https://gemini.google/overview/deep-research/
https://gemini.google/overview/deep-research/
https://gemini.google/overview/deep-research/
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://doi.org/10.18653/v1/2023.emnlp-main.507
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://doi.org/10.1038/sdata.2018.63
https://doi.org/10.1038/sdata.2018.63
https://doi.org/10.1038/sdata.2018.63
https://doi.org/10.1038/sdata.2018.63
https://doi.org/10.1038/sdata.2018.63
https://doi.org/10.18653/v1/2024.findings-emnlp.510
https://doi.org/10.18653/v1/2024.findings-emnlp.510
https://doi.org/10.18653/v1/2024.findings-emnlp.510


Yanming Liu, Xinyue Peng, Jiannan Cao, Shi Bo, Yuwei705
Zhang, Xuhong Zhang, Sheng Cheng, Xun Wang,706
Jianwei Yin, and Tianyu Du. 2025. Tool-planner:707
Task planning with clusters across multiple tools. In708
The Thirteenth International Conference on Learning709
Representations.710

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-711
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-712
Wei Chang, Michel Galley, and Jianfeng Gao. 2024.713
Mathvista: Evaluating mathematical reasoning of714
foundation models in visual contexts. In Inter-715
national Conference on Learning Representations716
(ICLR).717

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph718
Boen, and James Zou. 2025. Octotools: An agentic719
framework with extensible tools for complex reason-720
ing. arXiv preprint arXiv:2502.11271.721

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-722
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter723
Clark, and Ashwin Kalyan. 2022. Learn to explain:724
Multimodal reasoning via thought chains for science725
question answering. Advances in Neural Information726
Processing Systems, 35:2507–2521.727

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,728
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual ques-729
tion answering benchmark requiring external knowl-730
edge. In Proceedings of the IEEE/cvf conference731
on computer vision and pattern recognition, pages732
3195–3204.733

Minesh Mathew, Dimosthenis Karatzas, and CV Jawa-734
har. 2021. Docvqa: A dataset for vqa on document735
images. In Proceedings of the IEEE/CVF winter con-736
ference on applications of computer vision, pages737
2200–2209.738

nlile. 2025. Game of 24 dataset. Hugging Face739
repository, https://huggingface.co/datasets/740
nlile/24-game. [Dataset].741

OpenAI. 2024. Function Calling. https://platform.742
openai.com/docs/guides/function-calling.743
Online documentation.744

OpenAI. 2025. Introducing Deep Re-745
search. https://openai.com/index/746
introducing-deep-research/. Blog post.747

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,748
Carroll Wainwright, Pamela Mishkin, Chong Zhang,749
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.750
2022. Training language models to follow instruc-751
tions with human feedback. Advances in neural in-752
formation processing systems, 35:27730–27744.753

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,754
Hannaneh Hajishirzi, Luke Zettlemoyer, and755
Marco Tulio Ribeiro. 2023. Art: Automatic multi-756
step reasoning and tool-use for large language mod-757
els. arXiv preprint arXiv:2303.09014.758

Gabriel Poesia, David Broman, Nick Haber, and Noah 759
Goodman. 2024. Learning formal mathematics from 760
intrinsic motivation. Advances in Neural Information 761
Processing Systems, 37:43032–43057. 762

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 763
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 764
Bill Qian, et al. 2023. Toolllm: Facilitating large 765
language models to master 16000+ real-world apis. 766
arXiv preprint arXiv:2307.16789. 767

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, 768
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong 769
Wen. 2025. Tool learning with large language mod- 770
els: A survey. Frontiers of Computer Science, 771
19(8):198343. 772

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 773
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 774
moyer, Nicola Cancedda, and Thomas Scialom. 2023. 775
Toolformer: Language models can teach themselves 776
to use tools. Advances in Neural Information Pro- 777
cessing Systems, 36:68539–68551. 778

Dustin Schwenk, Apoorv Khandelwal, Christopher 779
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022. 780
A-okvqa: A benchmark for visual question answer- 781
ing using world knowledge. In European conference 782
on computer vision, pages 146–162. Springer. 783

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, 784
Weiming Lu, and Yueting Zhuang. 2023. Hugging- 785
gpt: Solving ai tasks with chatgpt and its friends 786
in hugging face. Advances in Neural Information 787
Processing Systems, 36:38154–38180. 788

Noah Shinn, Federico Cassano, Ashwin Gopinath, 789
Karthik Narasimhan, and Shunyu Yao. 2023. Re- 790
flexion: Language agents with verbal reinforcement 791
learning. Advances in Neural Information Process- 792
ing Systems, 36:8634–8652. 793

Amanpreet Singh, Vivek Natarajan, Meet Shah, 794
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, 795
and Marcus Rohrbach. 2019. Towards vqa models 796
that can read. In Proceedings of the IEEE/CVF con- 797
ference on computer vision and pattern recognition, 798
pages 8317–8326. 799

Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming 800
Li, Yilun Zhao, Xingyao Zhang, Arman Cohan, and 801
Mark Gerstein. 2024. MedAgents: Large language 802
models as collaborators for zero-shot medical rea- 803
soning. In Findings of the Association for Com- 804
putational Linguistics: ACL 2024, pages 599–621, 805
Bangkok, Thailand. Association for Computational 806
Linguistics. 807

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 808
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 809
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 810
Bhosale, et al. 2023. Llama 2: Open founda- 811
tion and fine-tuned chat models. arXiv preprint 812
arXiv:2307.09288. 813

10

https://openreview.net/forum?id=dRz3cizftU
https://openreview.net/forum?id=dRz3cizftU
https://openreview.net/forum?id=dRz3cizftU
https://huggingface.co/datasets/nlile/24-game
https://huggingface.co/datasets/nlile/24-game
https://huggingface.co/datasets/nlile/24-game
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://doi.org/10.18653/v1/2024.findings-acl.33
https://doi.org/10.18653/v1/2024.findings-acl.33
https://doi.org/10.18653/v1/2024.findings-acl.33
https://doi.org/10.18653/v1/2024.findings-acl.33
https://doi.org/10.18653/v1/2024.findings-acl.33


Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,814
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and815
Denny Zhou. 2022. Self-consistency improves chain816
of thought reasoning in language models. arXiv817
preprint arXiv:2203.11171.818

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten819
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,820
et al. 2022. Chain-of-thought prompting elicits rea-821
soning in large language models. Advances in neural822
information processing systems, 35:24824–24837.823

Chenfei Wu, Shengming Yin, Weizhen Qi, Xi-824
aodong Wang, Zecheng Tang, and Nan Duan.825
2023. Visual chatgpt: Talking, drawing and edit-826
ing with visual foundation models. arXiv preprint827
arXiv:2303.04671.828

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan829
Li, Siheng Zhao, Ruisheng Cao, Toh J Hua, Zhou-830
jun Cheng, Dongchan Shin, Fangyu Lei, et al. 2024.831
Osworld: Benchmarking multimodal agents for open-832
ended tasks in real computer environments. Ad-833
vances in Neural Information Processing Systems,834
37:52040–52094.835

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao,836
Min-Yen Kan, Junxian He, and Qizhe Xie. 2023.837
Self-evaluation guided beam search for reasoning.838
In Thirty-seventh Conference on Neural Information839
Processing Systems.840

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosen-841
berg, Zhen Qin, Daniele Calandriello, Misha Khal-842
man, Rishabh Joshi, Bilal Piot, Mohammad Saleh,843
et al. 2024. Building math agents with multi-844
turn iterative preference learning. arXiv preprint845
arXiv:2409.02392.846

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian847
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir848
Press. 2024. Swe-agent: Agent-computer interfaces849
enable automated software engineering. Advances in850
Neural Information Processing Systems, 37:50528–851
50652.852

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,853
Xiu Li, and Ying Shan. 2023. Gpt4tools: Teaching854
large language model to use tools via self-instruction.855
Advances in Neural Information Processing Systems,856
36:71995–72007.857

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-858
gio, William W. Cohen, Ruslan Salakhutdinov, and859
Christopher D. Manning. 2018. HotpotQA: A dataset860
for diverse, explainable multi-hop question answer-861
ing. In Conference on Empirical Methods in Natural862
Language Processing (EMNLP), pages 2369–2380.863

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,864
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.865
2023a. Tree of thoughts: Deliberate problem solving866
with large language models. Advances in neural867
information processing systems, 36:11809–11822.868

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 869
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b. 870
React: Synergizing reasoning and acting in language 871
models. In International Conference on Learning 872
Representations (ICLR). 873

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and 874
Yanlin Wang. 2024. Memorybank: Enhancing large 875
language models with long-term memory. In Pro- 876
ceedings of the AAAI Conference on Artificial Intelli- 877
gence, volume 38, pages 19724–19731. 878

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, 879
Haohan Wang, and Yu-Xiong Wang. 2024. Lan- 880
guage agent tree search unifies reasoning, acting, and 881
planning in language models. In Proceedings of the 882
41st International Conference on Machine Learning, 883
volume 235 of Proceedings of Machine Learning 884
Research, pages 62138–62160. PMLR. 885

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, 886
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue 887
Ou, Yonatan Bisk, Daniel Fried, et al. 2023. We- 888
barena: A realistic web environment for building au- 889
tonomous agents. arXiv preprint arXiv:2307.13854. 890

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra, 891
Victor Bursztyn, Ryan A. Rossi, Somdeb Sarkhel, 892
and Chao Zhang. 2024. Toolchain*: Efficient action 893
space navigation in large language models with a* 894
search. In The Twelfth International Conference on 895
Learning Representations. 896

11

https://openreview.net/forum?id=Bw82hwg5Q3
https://proceedings.mlr.press/v235/zhou24r.html
https://proceedings.mlr.press/v235/zhou24r.html
https://proceedings.mlr.press/v235/zhou24r.html
https://proceedings.mlr.press/v235/zhou24r.html
https://proceedings.mlr.press/v235/zhou24r.html
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8


A Additional Experiment Results897

A.1 Performance Comparison for Each898

Domain899

Figure 6 presents a detailed breakdown compari-900

son of ToolTree’s average performance across five901

specialized domains under two backbone models.902

ToolTree consistently achieves the highest perfor-903

mance across all domains, particularly excelling in904

the Math and External Knowledge domains. For905

example, in the Math domain under GPT4o-mini,906

ToolTree reaches 63.4%, significantly outperform-907

ing Few-Shot by 19.3%, HuggingGPT by 22.2%,908

and OctoTools by 11.2%. Similarly notable gains909

are observed under GPT4o.910

In the Medical domain, ToolTree surpasses Hug-911

gingGPT by 12.0% and OctoTools by 5.0% using912

GPT4o-mini, demonstrating its strength in tasks913

requiring specialized external knowledge and pre-914

cise tool interactions. In the General Visual and915

Text/Document domains, ToolTree continues to916

show consistent improvements of roughly 5 – 7%917

over baselines for both backbone models. These918

results underscore the robustness of ToolTree’s919

MCTS-based tool selection and dual evaluation920

across diverse reasoning challenges.921

A.2 Performance Comparison with Baseline922

We measured ToolTree’s per-dataset improvement923

over a GPT4o few-shot baseline by subtracting924

the baseline accuracy from ToolTree’s accuracy on925

each of the fifteen tasks and plotting the results in926

Figure 7. The chart shows gains on every bench-927

mark: PathVQA sits at the top with an uplift ex-928

ceeding twenty points, followed by the Game of929

24 and HotpotQA climbing into the mid-teens, and930

VQA-Rad and A-OKVQA rising by around 15%931

and 10% respectively. Even general visual tasks932

like VQAv2 and TextVQA register solid improve-933

ments of roughly six to eight points. This pattern934

reflects ToolTree’s strength in orchestrating multi-935

step, domain-specialized tool chains that is essen-936

tial for medical and mathematical puzzles, while its937

verification and pruning mechanisms consistently938

enhance performance on more conventional down-939

stream tasks.940

A.3 Comparison With Domain-Specific941

Framework942

We conducted experiments comparing ToolTree943

against several domain-specialized agent frame-944

works, including MMedAgent, LATS, and945

Model VQA-Rad OK-VQA MathVista ScienceQA HotpotQA Average

MMedAgent 84.32 31.25 21.15 57.24 38.20 46.43

LATS 20.48 27.26 59.33 58.17 77.54 48.56

VIPERGPT 58.24 52.44 64.28 88.64 48.22 62.36

ToolTree (Ours) 74.12 59.27 65.58 87.33 56.33 68.53

Table 4: Performance (%) comparison between domain-
specialized agent baselines and our ToolTree framework
across five diverse benchmarks. Tooltree generalize well
on different domain-specific tasks.

VIPERGPT, across five representative benchmarks 946

from medical (VQA-Rad), external knowledge 947

(OK-VQA), mathematics (MathVista), science rea- 948

soning (ScienceQA), and multi-hop reasoning (Hot- 949

potQA) domains. Each domain-specialized base- 950

line is designed specifically for optimal perfor- 951

mance in its own niche area. 952

As illustrated in Table 4, our ToolTree consis- 953

tently achieves the highest average accuracy of 954

68.53%. Specifically, ToolTree significantly outper- 955

forms MMedAgent in external knowledge, mathe- 956

matics, science reasoning, and multi-hop reasoning 957

tasks. Compared to LATS, which excels specifi- 958

cally in multi-hop reasoning, our framework sub- 959

stantially surpasses it by over 53.64% in medical 960

image analysis (VQA-Rad), and around 32.01% 961

in external knowledge (OK-VQA). ToolTree also 962

achieves competitive performance compared with 963

VIPERGPT, consistently outperforming it in med- 964

ical tasks and external knowledge tasks. This im- 965

provement pattern indicates that domain-specific 966

LLM agents suffer from poor cross-domain gen- 967

eralization, resulting in reduced overall accuracy 968

across diverse tasks. Moreover, specialized LLM 969

agent rely heavily on large-scale domain-specific 970

datasets, many of which are not publicly available, 971

limiting their reproducibility and adaptability 972

A.4 Effect of Dual Feedback on Accuracy 973

We measured how the choice of post-evaluation 974

model affects overall and domain-specific accu- 975

racy by running the MCTS pipeline under four 976

settings: no post-evaluation, GPT4o-mini as judge, 977

GPT4o as judge, and Gemini 2.0 as judge as Fig- 978

ure 8. Across all tasks, accuracy steadily increases 979

with more powerful judges, rising from 54.2% to 980

60.8% (Gemini 2.0). The largest improvements 981

appear in vision and text/document tasks, where 982

nuanced output verification matters most. These 983

results show that richer post-execution feedback 984

enables the agent to better discriminate useful tool 985

calls, leading to more accurate final answers. 986

12



Figure 6: Break down comparison for each of the domain

Figure 7: Break down comparison with the few-shot
baseline setup under GPT4o-mini.

Figure 8: Effect of different LLM for post evaluation.

(a) Example inference trajectory for a medical VQA query.

(b) Example inference trajectory for a multi-hop reasoning
query.

Figure 9: Two qualitative case studies showcasing
ToolTree’s iterative tool orchestration on (a) a radiology
image question and (b) a multi-hop knowledge reason-
ing task.

A.5 Additional Case Study 987

B Experiment Details 988

B.1 Benchmark Dataset 989

B.1.1 General Visual Understanding 990

• VQAv2 (Goyal et al., 2017): A large-scale 991

dataset for visual question answering based 992

on COCO images with open-ended questions. 993

It requires diverse visual understanding capa- 994

13



bilities like object recognition and counting.995

VQAv2 serves as a standard benchmark with996

a balanced question distribution.997

• GQA (Hudson and Manning, 2019): Fo-998

cuses on compositional reasoning and spa-999

tial understanding using scene graphs derived1000

from Visual Genome images. Questions are1001

generated with controlled reasoning structures1002

and complexity. It also offers a balanced ver-1003

sion to mitigate language priors.1004

• ScienceQA (Lu et al., 2022): A multimodal1005

dataset featuring science questions from edu-1006

cational curricula, often including text and an1007

image (diagrams, experiments). It requires1008

scientific reasoning and involves chain-of-1009

thought reasoning that provides explanations1010

for answers. It Covers diverse topics like1011

physics, chemistry, and biology.1012

B.1.2 Knowledge-Based Question Answering1013

• OK-VQA (Marino et al., 2019): A visual1014

question answering dataset where questions1015

necessitate external knowledge not present in1016

the COCO images. It challenges models to1017

connect visual concepts with world knowl-1018

edge.1019

• A-OKVQA (Schwenk et al., 2022): Extends1020

knowledge-based VQA by requiring verifiable1021

and explainable reasoning for answers. It uses1022

complex questions answerable via direct input1023

or multiple choice and focuses on the reason-1024

ing process linking vision and knowledge.1025

• WebQ (Berant et al., 2013): A text-based1026

question answering dataset using questions1027

derived from web searches, answerable using1028

facts from the Freebase knowledge graph. It1029

tests the ability to map natural language ques-1030

tions to structured KB queries, containing pri-1031

marily factoid questions.1032

B.1.3 Medical Question Answering1033

• MedQA (Jin et al., 2021): A text-based1034

dataset containing multiple-choice questions1035

from professional medical board exams. It1036

requires specialized medical domain knowl-1037

edge and clinical reasoning that covers a wide1038

range of biomedical subjects.1039

• VQA-Rad (Lau et al., 2018): Focuses on1040

visual question answering specifically for ra-1041

diology images (X-rays, CT scans). Questions1042

are posed by clinicians regarding image find- 1043

ings, anatomy, or potential diagnoses. 1044

• PathVQA (He et al., 2020): A VQA dataset 1045

centered on pathology images (microscopic 1046

tissue slides). Questions require identifying 1047

fine-grained visual details relevant to disease 1048

diagnosis and analysis. Its questions often 1049

relates to cancer detection and grading. 1050

B.1.4 Mathematical Reasoning 1051

• MATH (Hendrycks et al., 2021): A dataset 1052

comprised of challenging mathematics prob- 1053

lems from competitions (AMC, AIME), pre- 1054

sented in text format. It requires complex, 1055

multi-step symbolic reasoning across various 1056

math subjects and provides step-by-step solu- 1057

tions. 1058

• Game of 24 (nlile, 2025): A mathematical 1059

reasoning task requiring the use of four given 1060

numbers exactly once with arithmetic opera- 1061

tions (+, -, *, /) to reach 24. It tests numerical 1062

reasoning, planning, and symbolic manipula- 1063

tion capabilities. 1064

• Mathvista (Lu et al., 2024): A benchmark 1065

for evaluating mathematical reasoning within 1066

visual contexts like plots, charts, and diagrams. 1067

It requires integrating visual perception (e.g., 1068

reading values from axes) with mathematical 1069

problem-solving. 1070

B.1.5 Text/Document Recognition and 1071

Understanding 1072

• TextVQA (Singh et al., 2019): A VQA 1073

dataset where answering questions requires 1074

reading and understanding text depicted 1075

within real-world images (e.g., signs, labels). 1076

It necessitates integrating OCR capabilities 1077

with visual and language reasoning. 1078

• DocVQA (Mathew et al., 2021): Focuses on 1079

visual question answering applied to images 1080

of documents with complex layouts. It re- 1081

quires understanding document structure, ex- 1082

tracting text (OCR), and potentially synthe- 1083

sizing information from different regions. It 1084

is sourced from scanned or digital document 1085

pages. 1086

• HotpotQA (Yang et al., 2018): A text-based 1087

question answering dataset specifically de- 1088

signed for multi-hop reasoning. Answering 1089

14



questions requires finding and integrating in-1090

formation scattered across multiple source1091

text passages (from Wikipedia).1092

B.2 Baselines1093

Baselines. We compare ToolTree against the fol-1094

lowing methods, using each dataset’s primary eval-1095

uation metric (accuracy, exact match, F1 or success1096

rate):1097

• Few-Shot Inference. Direct prompting of1098

the backbone LLM (GPT-4o-mini or GPT-4o)1099

with the same in-context examples but without1100

any external tools or specialized framework.1101

• OctoTools (Lu et al., 2025). An LLM-1102

agent framework that uses an iterative plan-1103

ner–executor–verifier loop over “tool cards”1104

for structured API invocation, but relies on1105

greedy selection and single-stage verification.1106

• HuggingGPT (Shen et al., 2023). A pioneer-1107

ing tool-augmented system where an LLM1108

plans and dispatches sub-tasks to Hugging1109

Face models; it lacks dynamic search or multi-1110

step pruning.1111

• Chain-of-Thought with Self-Consistency1112

(CoT-SC) (Wang et al., 2022). A prompt-1113

ing technique that samples multiple chain-of-1114

thought traces and aggregates answers by ma-1115

jority vote, but does not incorporate external1116

tool calls.1117

• Tree of Thoughts (ToT) (Yao et al.,1118

2023a). A search-based reasoning module1119

that branches on intermediate reasoning to-1120

kens in the prompt, offering look-ahead over1121

textual hypotheses but limited to internal LLM1122

operations.1123

• ReAct (Yao et al., 2023b). A tool-use schema1124

that interleaves chain-of-thought with action1125

calls in a fixed loop, providing basic tool invo-1126

cation but no strategic backtracking or prun-1127

ing.1128

B.3 Tool Library1129

Table 6 summarizes the external tools and models1130

integrated within the ToolTree library, categorized1131

by their domain specialization. The library offers1132

broad coverage across general visual understand-1133

ing, knowledge-based VQA, medical QA, mathe-1134

matical reasoning, and text/document tasks. For1135

each domain, a diverse set of functions—ranging 1136

from object detection and image segmentation to 1137

knowledge graph querying, medical report genera- 1138

tion, and OCR—are supported by state-of-the-art 1139

models and APIs. This comprehensive and modu- 1140

lar toolset enables ToolTree to handle a wide spec- 1141

trum of complex, multi-modal tasks with domain- 1142

adaptive precision. 1143

B.4 Tool card Metadata Example 1144

We hereby attach the metadata for medical object 1145

detection tool as an illustrative example in Table 5. 1146

Field Type Description / Example

tool_name string "Medical_Object_Detection"

description string A tool that detects the organs
within a given medical image such
as CT, MRI, X-Ray and pathology
images.

input
image: str Path to the image file (e.g.

"lung_cancer_Image.png")
prompt: str Prompt to guide detection (default:

“Detect the organs in the given im-
age.”)

output dict Detected organs with their bound-
ing box, organ name, and confi-
dence score.

example
input {"lung_cancer_Image.png"}
output {"object_1": {"name":"left

lung", "bounding
box":[27,45,31,102],
"confidence":0.82},

"object_2":
{"name":"right
lung", "bounding
box":[57,48,35,98],
"confidence":0.82}}

Table 5: Metadata schema for the
Medical_Object_Detection tool.

15



Domain Tool Function / Model

General Visual

Object Detection GroundingDINO v2
Image Segmentation Segment Anything Model (SAM)
Image Captioning GPT-4o-mini
Image Tagging RAM (Recognize Anything Model)
Patch Zooming Vanilla Patch Zoomer (4×)

Knowledge-based VQA

Search Engine Google Search API
Knowledge Graph Wikidata SPARQL
Object Detection GroundingDINO v2
Image Segmentation SAM
Image Captioning GPT-4o-mini
Image Tagging RAM
Patch Zooming Vanilla Patch Zoomer (4×)

Medical QA

Image Retrieval PubMed Search API
Object Detection BioMedParse
Image Segmentation BioMedParse
Image Classification BioMedCLIP
Report Generation ChatCAD
Retrieval-Augmented ChatCAD+ (RAG)

Math Reasoning

Calculator Arithmetic API
Code Interpreter Python Code Interpreter
Math Solver Wolfram Alpha
Image Captioning GPT-4o-mini (when visual input)

Text/Document

OCR EasyOCR
Layout Parsing PDFMiner
Knowledge Graph Wikidata SPARQL
Object Detection GroundingDINO v2
Image Segmentation SAM
Image Captioning GPT-4o-mini
Image Tagging RAM
Patch Zooming Vanilla Patch Zoomer (4×)

Table 6: Summary of external tools and models in the ToolTree library, organized by domain specialization.

16


	Introduction
	Related Work
	Methodology
	Domain-Specialized Tool library
	Planner
	MCTS-based Tool Selector
	Answer Generator/Predictor

	Experiment
	Result
	Main Results
	Plug-and-Play Module Comparision
	Number of Iteration Influence
	Influence of Dual Evaluation on Efficiency

	Qualitative Analysis
	Conclusion
	Additional Experiment Results
	Performance Comparison for Each Domain
	Performance Comparison with Baseline
	Comparison With Domain-Specific Framework
	Effect of Dual Feedback on Accuracy
	Additional Case Study

	Experiment Details
	Benchmark Dataset
	General Visual Understanding
	Knowledge-Based Question Answering
	Medical Question Answering
	Mathematical Reasoning
	Text/Document Recognition and Understanding

	Baselines
	Tool Library
	Tool card Metadata Example


