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Abstract

Large Language Model (LLM) agents are in-
creasingly applied to complex, multi-step tasks
that require interaction with diverse external
tools across domains such as mathematics, vi-
sion, and knowledge retrieval. However, cur-
rent frameworks typically rely on greedy, reac-
tive tool selection strategies that lack foresight
and fail to account for inter-tool dependencies.
In this paper, we present ToolTree, a general-
izable agent framework that integrates a plug-
and-play Monte Carlo Tree Search (MCTS)
module for deliberate tool selection. ToolTree
explores possible tool usage trajectories using
a dual-stage LLLM evaluation mechanism that
enables the agent to make informed, adaptive
decisions over extended tool-use sequences.
To ensure broad applicability, we introduce
standardized “tool library” that encapsulate
domain-specific models, enabling seamless or-
chestration across multiple domains. Empirical
evaluations across 15 tasks demonstrate that
ToolTree consistently improves downstream
performance, achieving an average gain of over
5% compared to state-of-the-art agent systems.

1 Introduction

Recent advancements in Large Language Models
(LLMs) (Brown et al., 2020; Ouyang et al., 2022;
Touvron et al., 2023) have propelled the emergence
of autonomous LLM agents capable of tackling
complex tasks across domains such as software
engineering (Yang et al., 2024), web interaction
(Zhou et al., 2023), computer use (Xie et al., 2024)
and multimodal understanding (Wu et al., 2023).
These agents leverage LLMs’ capabilities in plan-
ning (Hao et al., 2023), reasoning (Wei et al., 2022),
and knowledge representation (Gu et al., 2024), and
have shown impressive performance in open-ended,
multi-step problem-solving scenarios. As these
agents become more sophisticated, the integration
of external tools has become a crucial mechanism
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Figure 1: Comparison of ToolTree with greedy search
and linear heuristic search. A greedy search with cap-
tion, calculator pipeline hallucinates default counts and
answers 10, while a linear heuristic search with caption,
detector, web lookup and calculator chain still fails with
answer 18. ToolTree chooses the optimal tool trajectory
and answer correctly with 20.

for extending their functional capabilities beyond
the limits of their pre-trained knowledge.

A core requirement for effective LLM agents
lies in their ability to interact with external tools to
retrieve up-to-date information, executing computa-
tions, or invoking specialized models (Schick et al.,
2023; Qin et al., 2023). However, simply enabling
tool use is not enough. Effective orchestration that
determines which tools to use, in what order, and
how their outputs influence subsequent decisions
is critical. This orchestration becomes especially
challenging when tools exhibit inter dependencies
or when task success relies on the cumulative out-
come of a tool sequence. As illustrated in Figure
1, even a seemingly simple counting-wheel ques-
tion requiring multi-tool interaction can lead to
incorrect outcomes when agents adopt reactive or
insufficiently planned strategies. Thus, developing
agents that can robustly reason over such sequential



Feature Ours General LLM Agent Framework Tool Augmented LLM System LLM Agent Tree Search
GPT-Functions OctoTools HuggingGPT  ToolChain*  ToolPlanner =~ REACT Reflexion LATS
(OpenAl 2024) (Luetal., 2025) (Shen etal,2023)  (Zhuang etal,2024)  (Liuetal,2025) (Yaoetal,2023b) (Shinnetal,2023) (Zhou etal., 2024)

Tool Calling v v v v v v v v v
Planning v 4 4 X 4 4 v 4 4
Deliberate Tool Selection v X X X v v X X v
Tool Verification v X v X v v X v v
Tool Refinement v X v X v v X v X
Tool Pruning v X X X X X X X v
Skill Dimension

Math v v v X v X v v v
External Knowledge v v v v v v v v v
Medical v v v X X X X X X
General Vision v v v v X X X X X
Document v v X v v X X X X

Table 1: A comparison of ToolTree with notable LLM agent frameworks, tool-augmented LLM systems and LLM
agent tree search. Our method shows significant advantages in tool integration with diverse coverage of skills.

dependencies remains a key open problem.

Existing research on enhancing LLM agents with
tool-use capabilities can be broadly categorized
into three main streams. 1) General-purpose
agent frameworks, such as GPT-Functions (Ope-
nAl, 2024), Langchain (LangChain, 2024) and Oc-
toTools (Lu et al., 2025), provide foundational ca-
pabilities by allowing LLMs to invoke external
APIs or tools. However, these systems largely rely
on greedy tool selection that choose a tool appear-
ing locally optimal at each step without strategic
planning. This lack of foresight often results in
brittle performance when early decisions prove
suboptimal or when later tool choices depend on
earlier outcomes. 2) Tool augmented LLMs, includ-
ing HuggingGPT (Shen et al., 2023), ToolChain*
(Zhuang et al., 2024) and ToolPlanner (Liu et al.,
2025), has made strides in more structured planning
and deliberate tool selection. Nevertheless, these
systems often do not explicitly integrate robust
mechanisms for ongoing verification of intermedi-
ate tool outputs or iterative refinement of these out-
puts once found to be imprecise or incomplete, car-
rying forward unexamined results into subsequent
steps. 3) LLM Agent Tree Search approaches, ex-
emplified by Tree-of-Thought (Yao et al., 2023a),
Reflexion (Shinn et al., 2023), and LATS (Zhou
et al., 2024), have introduced search paradigms to
explore sequences of actions or thoughts. However,
the “tools” in these tree-search agents are usually
limited to one or two generic primitives such as
web retriever or calculator, limiting the evaluations
to stay within text-centric domains. Scaling search
to a multi-modal, multi-domain tool ecosystem,
therefore, remains an open challenge, one that our
framework tackles head-on.

To overcome these challenges, we introduce

ToolTree, a general-purpose agent framework
that integrates a plug-and-play Monte Carlo Tree
Search (MCTS) module for deliberate tool selec-
tion. Unlike conventional greedy methods, our
MCTS module explores multiple tool trajectories to
identify effective multi-step execution plans. Cen-
tral to this is a novel dual-stage LLM-guided evalu-
ation: a pre-execution model predicts the utility of
a tool before it is invoked, while a post-execution
model assesses its actual contribution based on ob-
served outcomes. This feedback loop enables the
agent to refine its strategy iteratively, incorporating
foresight and hindsight into tool selection. Ad-
ditionally, we standardize tool interfaces through
a domain-specific "tool library", allowing seam-
less orchestration across diverse tools and domains.
Empirical evaluations across 15 downstream tasks
demonstrate consistent improvements over strong
baselines, with average gains exceeding 5%.

The main contributions of this paper can be sum-
marized as follows:

* We propose ToolTree, a generalizable LLM
agent framework featuring deliberate tool or-
chestration and standardized "tool library"
that encapsulates domain-specific models for
diverse tasks.

* ToolTree implement a novel plug-and-play
MCTS-based tool selection module, which
leverages both pre-evaluation and post-
evaluation from the environment to guide
strategic multi-step tool planning, moving be-
yond traditional greedy selection approaches.

* Extensive evaluation across 15 datasets
demonstrate consistent downstream task im-
provements exceeding 5% on average com-
pared to state-of-the-art agent frameworks.



2 Related Work

LLM-based Autonomous Agent Recent advance-
ments in LLM-based autonomous agents have fo-
cused on augmenting LLMs with external modules
to enhance planning (Hao et al., 2023; Liu et al.,
2023), reasoning (Wei et al., 2022; Wang et al.,
2022), memory (Zhong et al., 2024) and tool-use
(Schick et al., 2023; Shen et al., 2023). These
agents generally fall into two categories: General
and Domain-Specific frameworks. General frame-
works, like AutoGPT (AutoGPT, 2024), Langchain
(LangChain, 2024), MetaGPT (Hong et al., 2023),
while offering broad applicability with versatile,
domain-agnostic foundational architecture, tend to
lack depth for complex, multi-step tasks and spe-
cialize in tool pruning per task domain. Domain-
specific frameworks for fields such as math (Poesia
et al., 2024; Xiong et al., 2024), vision (Wu et al.,
2023), research (OpenAl, 2025; Google, 2025),
medical (Li et al., 2024; Tang et al., 2024). At
the same time, achieving significant progress for a
single field tends to over-optimized in one domain
with narrow tool coverage without generalizabil-
ity. Our framework distinguishes by incorporating
a domain-specialized Tool-Card Library, enabling
both wide-ranging multi-disciplinary task support
and fine-grained tool specialization, alongside an
explicit planner and executor that interacts with the
environment for robust multi-step reasoning.

Tool Selection for LLM Agents Dynamic tool
selection is crucial for complex tasks that require
the use of sequential tools (Qu et al., 2025). In
order to mitigate such a problem, prompt-based
methods leverage LLMs with their strong world
knowledge priors (Hao et al., 2023; Gu et al.,
2024) as a planner to select tools using in-content
learning techniques, such as chain-of-thought (Wei
et al., 2022) or ReAct (Yao et al., 2023b) schema
(Shen et al., 2023; Paranjape et al., 2023; Lu et al.,
2025). Even though flexible, these approaches
often make greedy, single-step choices without
adequate looking-ahead or backtracking, poten-
tially leading to hallucinated or incorrect actions
(Qin et al., 2023; Liu et al., 2024). Alternatively,
training-based methods fine-tune models or add
specific heads for tool invocation (Schick et al.,
2023; Yang et al., 2023), incurring significant com-
putational and data annotation costs. In contrast,
our method employs a training-free, tree-based
module for hierarchical exploration and ranking of
multi-step tool sequences, featuring both forward-

looking evaluation and backwards verification.

Augmenting LLM Agent with Tree Search To
address the limitations of reactive LLM agents
in complex tasks requiring lookahead (Gu et al.,
2024), augmenting them with tree search provides
a deliberate planning layer. Various search algo-
rithms, such as greedy search (Yao et al., 2023b),
A* Search (Zhuang et al., 2024), Beam Search
(Xie et al., 2023), MCTS (Zhou et al., 2024; Hao
et al., 2023), BFS/DFS (Yao et al., 2023a), Best-
first search (Koh et al., 2024) have been integrated
at inference time. However, this method often lacks
sufficient tool invocation diversity for broad do-
main generalization. Our approach addresses this
with explicit tree search for tool selection, con-
trasting with LLM-internal reasoning prevalent in
prior methods, and further incorporates dual envi-
ronmental feedback for robust verification and plan
refinement.

3 Methodology

In this paper, we introduce ToolTree, a training-
free LLM-agent framework that performs delib-
erate multi-tool orchestration for diverse domain-
specific tasks as visualized in Figure 2. Unlike
previous frameworks that suffer from greedy or
shallow planning of tool selection within a limited
domain, ToolTree systematically addresses these
issues through a four-component architecture: 1)
a Domain-Specialized Tool Library for versatile
access to a broad spectrum of external tools; 2) a
lightweight Planner that sketches a coarse-grained
route by filtering tools relevant to the user query;
3) MCTS-based Tool Selector that iteratively re-
fines this route into a concrete, step-by-step tool
implementation plan steered by dual feedback from
LLM scores; 4) Answer Generator that assembles
the optimal tool trajectory with their output into a
final, fluent response.

3.1 Domain-Specialized Tool library

ToolTree interacts with a diverse set of external
tools through its extensible Domain-Specialized
Tool library, denoted as 7pp. Each tool t € Ty
is represented by a structured tool card C; with
explanatory metadata using JSON format to pro-
vide standardized information for further utiliza-
tion. A card begins with a "name"” plus a brief
"description” so human operators and error logs
remain readable. It also has a categorical "domain
tag" drawn from vision, math, medical, external-
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Figure 2: Architecture of ToolTree. An input query is processed sequentially by: (1) the Domain-Specialized Tool
Library; (2) a lightweight Planner for coarse-grained tool filtering; (3) an MCTS-based Tool Selector that refines
tool sequences via iterative, dual LLM-guided search, including selection, pre-evaluation, expansion, execution,
post-evaluation, and backward-prorogation; and (4) an Answer Generator/Predictor to produce the final output.

knowledge, or text/document so that the planner
discards whole groups that are clearly irrelevant
to the user query. The card also carries a "for-
mal signature", listing every callable parameter
together with admissible value ranges, and paired
"input schema" and "output schema" so the LLM
can reason about type compatibility when chaining
tools. Finally, each card stores three short "exam-
ples” that serve as in-context demonstrations for
the planner. The current library comprises thirty
tool cards: five for vision, four for math, seven for
external knowledge, six for medical reasoning, and
eight for text-centric document tasks. Full details
can be found in Appendix B.3.

This unified schema ensures that heterogeneous
services ranging from a symbolic-algebra solver to
a radiology image classifier can be ranked, com-
pared, and invoked through exactly the same plan-
ning interface. Adding a new capability is therefore
as simple as registering another card in 7.

3.2 Planner

Given a user query ¢ and the full tool library T,
the Planner produces a coarse, low-cost sketch that
seeds the Monte-Carlo Tree Search (MCTS) loop.
We first utilize Planner as a classifier to assign one
or more domain labels to query ¢. Any card whose
"domain tag" is not among these labels is removed.
For survivors, we verify that their declared "input
schema" is satisfiable in the current context and
that their "output schema" can be consumed by at
least one other remaining tool. The check is imple-
mented with a deterministic regex over the schema

strings. For the surviving set, the planner runs a
lightweight ranking pass that returns a scalar utility
estimate p; € [0, 1] for each tool. We then retain
only those tools whose score meets or exceeds the
threshold 7, giving the set of filtered candidates

ond =1t | pe > 7}. All tools in 7}, are passed

into the MCTS loop, forming the immediate action
space for its subsequent fine-grained exploration.

3.3 MCTS-based Tool Selector

The Tool Selector is the primary engine for intelli-
gent decision-making within the ToolTree frame-
work. Starting from the coarse candidate set 7 ,
and context Cy produced by the Planner, it per-
forms an MCTS to construct an explicit, ordered se-
quence of tool invocations that maximizes a learned
utility signal. Unlike greedy schemes that decide
one step at a time, our search explores multiple
future branches, evaluates each prospective call
with lightweight pre-execution scoring, and then re-
fines these estimates with post-execution feedback
once a tool is actually run. This look-ahead/look-
back loop allows the agent to recover from early
mischoices, avoid dead-end tool combinations, and
allocate its limited call budget to the most promis-
ing trajectories.

Problem Definition. We model the search process
as exploring a finite tree. A node at depth ¢ is a
pair s; = (Cy, Ajy.), where C} is the accumulated
context that represents the user query plus all in-
termediate tool outputs and Ay, = (ay,...,a;) is
the sequence of tool calls executed so far. From

s¢ the legal actions are the tools in 7 ; whose



"input schema" is compatible with Cy; we denote
this set A(s;). Invoking a tool a € A(s;) pro-
duces a successor state s;y; and an immediate
post-execution reward rpost(st, a) € [0, 1] scored
by an LLM judge. The objective is to find a tra-
jectory Aj.r that maximizes the cumulative reward
R= ZtT;()l rpost(st, at+1) within a rollout budget
of at most Ry .x.

Within the search tree for every node (s, a), we
update two statistics after each rollout: the visit
count N (s, a), which records how many times ac-
tion a has been selected from state s, and the mean
value estimate (s, a), which stores the running
average of the post-execution rewards observed at
that node. Both are initialized to 0 when the node
is first created.

Selection. Given the current search state s, the se-
lector repeatedly traverses the tree until it reaches
a leaf by choosing the child action that follows
a prior-augmented UCT score to balance the ex-
ploitation and exploration:

UCT(s,a) = Q(s,a) + Arpre(s, a)

The first term Q(s, a) in UCT (s, a) drives exploita-
tion as it accumulates the post evaluation rewards
obtained so far. The second term modulates explo-
ration with multiplier rp (s, a) with pre evaluation
score as a fast prediction obtained before any tool
call is made, acting as a Bayesian before steering
early roll-outs toward likely fruitful paths.

Pre-Evaluation. When a state, action pair (s, a)
is visited for the first time, we query an LLM to
predict the prospective utility of calling a next, re-
turning 7pre(s, @) € [0, 1]. If rpre(s, @) < Tpre, the
branch is discarded. Otherwise, the value is cached
for use in Eq. (1).

Expansion. At a leaf state s;, we first compute the
set of actions that are still unused as Aem(s¢) =
A(st) \ {a1,...,a¢}. For every candidate a €
Arem(S¢) whose pre-evaluation score reaches the
threshold rpre (¢, @) > Tpre, We create a child node
(st,a), caching the corresponding rp value.

Execution. The selected child action is executed
against the real tool API, producing an output o441
that is appended to the context to form Cyyi. We
cache output that is identical so that calls are not
repeated inside a rollout budget.

Post-Evaluation. After the tool has been exe-
cuted, we request a second LLM to assess the triple

(Ct,a,01+1) and return a post-execution score
Tpost(S¢, @) € [0,1] that reflects the utility of the
new output. If 7post(S¢,a) < Tpost, we discard the
responding node. Otherwise, the node remains ex-
pandable in later roll-outs.

Backward Propagation. The obtained post-
evaluation score 7post(s¢, a) is propagated along
the path from the new child back to the root.
For every edge (s,a) on that path, we update
N(s,a) < N(s,a) 4+ 1and Q(s,a) + Q(s,a) +
W thereby refining the exploitation
term in Eq. (1) with the latest empirical evidence.

Tree Pruning. The two thresholds 7, and
Tpost WOrk together via pre-evaluation and post-
evaluation to limit search overhead: the former
filters out obviously irrelevant actions before any
real call is made, while the latter cuts off branches
that deliver disappointing results after execution.

Termination. Search stops when either (i) the al-
lotted number of rollouts R, is reached, or (ii)
the best cumulative () value has not improved by
more than e over the past & rollouts. Upon termina-
tion, the action sequence attached to the root child
with the highest () value is returned to the Answer
Generator as the final ordered tool-execution plan.

3.4 Answer Generator/Predictor

Given the optimal trajectory A;.7 returned by the
tool selector, the Answer Generator converts the ac-
cumulated context Cp that contains the user query,
intermediate reasoning, and the outputs of all exe-
cuted tools into a natural-language form reply.

4 Experiment

Datasets. We evaluate our ToolTree framework
using a diverse collection of 15 datasets spanning
five distinct specialized domains: general, external
knowledge, medical, math, and text/document. The
general visual understanding domain includes main
datasets such as VQAv2 (Goyal et al., 2017), GQA
(Hudson and Manning, 2019), and ScienceQA (Lu
et al., 2022). For the knowledge-based question
answering domain, we utilize OK-VQA (Marino
et al., 2019), A-OKVQA (Schwenk et al., 2022),
and WebQ (Berant et al., 2013). The medical ques-
tion answering domain is represented by MedQA
(Jin et al., 2021), VQA-Rad (Lau et al., 2018), and
PathVQA (He et al., 2020). In the mathematical
reasoning domain, we include MATH (Hendrycks
et al., 2021), Game of 24 (nlile, 2025), and Math-
vista (Lu et al., 2024). Finally, text/document



. GPT40-mini GPT4o
Domain Dataset
Few-Shot HuggingGPT OctoTools ToolTree (Ours) Few-Shot HuggingGPT OctoTools ToolTree (Ours)

VQAv2 68.82 60.17 69.28 74.47 73.22 67.77 74.18 76.43

General Visual GQA 63.80 65.13 66.14 71.54 66.84 60.33 68.58 74.44
SQA 76.50 70.82 78.29 84.28 82.15 78.45 84.13 87.33
MedQA 79.14 84.33 86.18 91.13 83.20 86.73 92.17 93.88

Medical VQA-Rad  48.10 55.14 60.10 63.27 54.47 58.88 66.42 74.12
PathVQA 24.90 40.72 43.13 47.12 26.20 37.82 46.17 50.86
OK-VQA 48.46 44.19 50.17 55.38 53.62 50.12 53.42 59.27

External Knowledge A-OKVQA  60.28 55.81 62.15 70.54 65.91 60.33 68.33 73.48
WebQ 50.20 56.24 61.12 64.28 56.41 58.18 63.44 67.94
MATH 53.26 45.14 58.43 69.42 61.45 53.51 68.57 78.19

Math Game-24 26.50 22.66 34.18 43.33 33.15 25.43 40.18 47.85
MathVista ~ 52.53 55.62 57.97 63.14 59.10 58.44 61.70 65.58
TextVQA 7242 68.24 74.69 82.26 76.28 70.14 77.17 85.43

Text / Doc. Doc-VQA  83.28 83.10 84.23 89.43 87.11 82.13 89.39 92.33
HotpotQA  37.29 46.48 48.11 54.15 43.77 51.82 53.14 56.33
Average 56.37 56.92 62.94 68.65 61.53 60.01 67.80 72.70

Table 2: Comparison across 15 datasets in five domains. ToolTree consistently outperforms standard few-shot
prompting, HuggingGPT, and OctoTools on both GPT-40-mini and GPT-40, achieving highest overall score.

recognition and domain understanding comprises
TextVQA (Singh et al., 2019), Doc-VQA (Mathew
et al., 2021), and HotpotQA (Yang et al., 2018).
Details of each dataset are shown in Appendix B.1.

Baselines and Metric. We compare our proposed
framework, ToolTree, against several established
baselines to demonstrate its efficacy: (1) stan-
dard few-shot inference without specialized frame-
works; (2) OctoTools (Lu et al., 2025), a represen-
tative LLM agent framework employing an itera-
tive planner-executor-verifier paradigm for struc-
tured tool use; and (3) HuggingGPT (Shen et al.,
2023), a pioneering tool-augmented LLM system
that coordinates tasks across Hugging Face mod-
els under an LLM controller. To specifically as-
sess the tool selection and reasoning capabilities of
ToolTree as a plug-and-play module against other
decision-making strategies, we further compare it
with Chain-of-Thought with self-consistency (CoT-
SC) (Wang et al., 2022), Tree of Thoughts (ToT)
(Yao et al., 2023a), and ReAct (Yao et al., 2023b).

To ensure a fair comparison across all ap-
proaches, experiments are conducted using either
GPT-40-mini or GPT-40 as the backbone model,
with all frameworks provided an identical set of
tools and the same number of examples for prompt-
ing. Performance is reported using the primary
evaluation metric native to each dataset: accuracy,
exact match (EM), F1 score, or success rate.

Hyperparameter Setting. All ToolTree com-
ponents, including Planner, Tool Selector, pre-
evaluation LLM, and Answer Generator, run the

same backbone LLM with either GPT-40-mini
GPT-40, while post-evaluation scores are produced
by Gemini 2.0. More details on the influence of
different post evaluation LLMs can be found in
Appendix 8. The Planner retains tools whose rel-
evance exceeds 7 = 0.3. Evoked by (Zhou et al.,
2024), during MCTS we set the exploration con-
stant to A = 1.4, allow at most R,,.x = 60 roll-
outs, and prune branches whenever 7, < 0.3 or
Tpost < 0.4; search stops early if the best ) value
increases by < 1073 over 10 consecutive roll-outs.

5 Result
5.1 Main Results

We evaluate ToolTree against three distinct multi-
tool orchestration baselines: Few-Shot prompting,
HuggingGPT, and OctoTools with two backbone
models, GPT40-mini and GPT40. As covered in
Table 2, our evaluation spans 15 datasets in five
diverse domains, including general visual, medical,
external knowledge, math, and text/document.
Our framework consistently achieves superior
performance across five domains. Under GPT4o-
mini, it attains an average of 68.65%, outperform-
ing Few-Shot and HuggingGPT by over 11.7 points
and OctoTools by 5.71 points on average. A simi-
lar trend is observed with the more capable GPT40
backbone, where ToolTree outperforms Few-Shot
and HuggingGPT by more than 11.1 points and
OctoTools by 4.9 points on average. Notably,
ToolTree demonstrates substantial gains on tradi-
tionally challenging, domain-specific datasets such



Configuration VQA-Rad OK-VQA MathVista SQA HotpotQA AVG

Langchain 62.18 49.18 54.24 76.59 39.82 56.40
w/o COT-SC  65.14 54.37 56.88  82.17 44.90 60.69
w/o REACT 66.28 52.33 59.25 80.95 45.18 60.80
w/o ToT 63.04 48.12 65.33 78.33 5228 6142
w/o ToolTree  67.72 54.27 65.74 8133 5194 64.20

MetaGPT 64.13 53.84 54.88 78.16 37.72 57.75
w/o COT-SC ~ 68.74 54.88 60.30 79.44 46.90 62.05
w/o REACT 66.32 55.11 58.94 80.54 49.56 62.09
w/o ToT 65.42 50.52 60.14 80.47 56.21 62.55
w/o ToolTree  69.24 55.83 62.28 82,57 5477 64.94

Table 3: Comparison of ToolTree as a plug-and-
play module with REACT, COT-SC and ToT modules.
ToolTree achieves highest score on average.

as PathVQA and Game-of-24, with 22.22% and
16.83% performance gain compared with few-shot
baselines under GPT40-mini. These significant
improvements underscore the superiority of our
framework that integrates a domain specialized tool
library and MCTS-based tool selector. Domain-
grouped break down results can be found in Ap-
pendix A.1. Comparison with domain-specific
agent frameworks can be found in Appendix A.3.

5.2 Plug-and-Play Module Comparision

We evaluated our plug-and-play modules ToolTree-
Module on one representative dataset from each
of the five domains under two off-the-shelf LLM-
agent frameworks, Langchain and MetaGPT. For
each framework, we start from the vanilla agent
with no extra tool use module and then insert ex-
actly one of four modules—Chain-of-Thought Self-
Consistency (COT-SC), REACT, Tree-of-Thought
(ToT), or our proposed ToolTree-Module—while
holding all other settings like prompt format, tool
APIs, number of iterations/trajectories, and random
seeds identical.

As Table 3 shows, our ToolTree-Module consis-
tently yields the highest accuracy on overall aver-
age and four of the five benchmarks across both
frameworks, outperforming COT-SC, REACT, and
ToT by 3-8 points on each dataset and 7 points on
average against the unaugmented agent. The only
exception is HotpotQA, where tree-of-thought’s
structured reasoning over LLM’s hidden state ex-
cels at systematically decomposing the multi-hop
problem and exploring diverse evidence-linking
pathways crucial for this dataset. Nevertheless, this
internal state search nature also makes it far worse
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Figure 3: Relationship of performance and number of
iterations. ToolTree consistently beats other modules.

than our module in domain-specialized tasks that
require external tools such as vision, medical and
knowledge, where our module’s versatile integra-
tion and adaptive orchestration of these tools yields
significantly better performance.

5.3 Number of Iteration Influence

To understand the relationship between computa-
tional budget and performance for different plug-
and-play modules, we analyze their accuracy as a
function of "iterations" as illustrated in Figure 3.
Here, an iteration denotes one complete reasoning
pass: for CoT-SC, it is one self-consistent sample,
for ReAct, it is one chain-of-thought + tool-call
cycle, for ToT, it is one branch expansion, and for
our method, it is one MCTS rollout.

We observe a general trend where performance
gains diminish as iterations increase, with all mod-
ules potentially introducing noise and underper-
forming the baseline framework at very low itera-
tion counts (e.g., 0-2 iterations) before their struc-
tured reasoning takes effect. Notably, ToolTree-
Module and ToT exhibit a more pronounced step-
wise improvement curve, indicating their deeper
search or structured exploration mechanisms pro-
gressively uncover better solutions with increased
iterations. In contrast, COT-SC and REACT show
flatter trajectories, suggesting they reach their per-
formance plateaus more quickly with fewer iter-
ations, possibly due to their less extensive explo-
ration of the solution space. Crucially, across the
board, our approach achieves the highest accuracy
at every budget, confirming that dual evaluation
and value-based pruning make each additional roll-
out more informative.
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Figure 4: Impact of Pruning Strategies on Search Ef-
ficiency. Combined pruning yields the fewest median
rollouts and nodes with the tightest variance.

5.4 Influence of Dual Evaluation on Efficiency

To evaluate the effectiveness of our dual-evaluation
pruning strategy on search efficiency, we conducted
experiments on 100 sampled examples from each
dataset, setting a maximum rollout budget of 60.
We compared four configurations: 1) "No Prun-
ing", where LLM evaluation scores solely inform
the MCTS value function without active discard-
ing of trajectories; 2) "Pre Pruning", where pre-
evaluation scores are used for pruning; 3) "Post
Pruning," where post-evaluation scores are used
to prune trajectories after tree expansion; and 4)
"Both Pruning," combining both mechanisms as
mentioned in Section 3.3.

As shown in Figure 4, pre-evaluation pruning
substantially reduces the median number of nodes
expanded to approximately 78 from 98 by directly
curtailing unpromising branch explorations for a
narrower search tree while it has less influence on
the number of rollouts as it basically serves as a
prior for reward function without dominance. Con-
versely, post-evaluation pruning more substantially
reduces median rollouts to approximately 45 from
50, as its accurate rewards provide clearer solu-
tion quality signals for potentially earlier confident
convergence. Crucially, employing "Both Prun-
ing" mechanisms yields the most significant effi-
ciency gains, achieving the lowest median nodes
and rollouts, alongside more stable performance
indicated by reduced variance. These findings
demonstrate that the dual-evaluation pruning strat-
egy effectively enhances search efficiency by re-
ducing unnecessary exploration and converging on
solutions rapidly.
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Figure 5: A Sample Case of ToolTree on TextVQA.

6 Qualitative Analysis

Figure 5 showcases how ToolTree progressively
corrects itself on a TextVQA task. With the num-
ber of rollouts grows in the MCTS loop, ToolTree
finds better tool trajectories guided by both the pre-
evaluation score as the prior and the post-evaluation
score as the dominant reward. The query asks, “Ac-
cording to the sign, how many miles is it from Lon-
don to Paris?”’; the photo shows “343 km.” In its
first rollout, the agent invokes a lightweight OCR
tool, passes the raw text to the LLM, and naively
returns “343 km,” earning a low post-evaluation
score (0.2). By the fifth rollout, the search has
inserted the patch-zoom tool to crop the numeric
region and rerun OCR, but it still reports kilo-
meters and receives only a medium reward (0.5).
Guided by these signals, the tenth rollout adds a
unit-conversion API after OCR; the calculator mul-
tiplies 343 x 0.621 371, and the LLM outputs the
correct “213.75 miles,” which the judge scores 0.9.
The example illustrates how dual LLM feedback
steers the MCTS toward richer tool chains. More
case study can be found in Appendix A.5.

7 Conclusion

This paper presents ToolTree, a training-free
agent framework that integrates a plug-and-play
MCTS-based tool selection module and domain-
specialized tool library to enable robust multi-tool
orchestration across diverse tasks. ToolTree ex-
plores a dual feedback mechanism from the envi-
ronment to provide nuanced guidance for MCTS,
enabling both efficient search via strategic pruning
and effective discovery of optimal tool trajectory.
Experiments over the 15 datasets across diverse
domains demonstrate ToolTree consistently outper-
forms state-of-the-art agent systems by 5 percent
on average success rate. We hope this framework
will serve as a valuable foundation for future ex-
plorations into sophisticated tool orchestration and
deliberate reasoning in more advanced Al agents.



Limitation

While ToolTree excels across a diverse range of
tasks, its dependence on a powerful LLM endowed
with extensive world knowledge and reasoning pri-
ors may limit applicability to smaller language
models. Moreover, despite the benefits of pruning,
the MCTS-driven search is still hard to to match
the efficiency of greedy heuristics. To address
these limitations, we intend to explore methods
for enhancing the applicability of ToolTree with
smaller language models, such as by developing
more lightweight reasoning components or employ-
ing knowledge distillation techniques to transfer es-
sential capabilities. We also intend to develop a bet-
ter strategy in the future that enables dynamically
switching from deliberate reasoning to heuristic
reasoning.
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A Additional Experiment Results

A.1 Performance Comparison for Each
Domain

Figure 6 presents a detailed breakdown compari-
son of ToolTree’s average performance across five
specialized domains under two backbone models.
ToolTree consistently achieves the highest perfor-
mance across all domains, particularly excelling in
the Math and External Knowledge domains. For
example, in the Math domain under GPT40-mini,
ToolTree reaches 63.4%, significantly outperform-
ing Few-Shot by 19.3%, HuggingGPT by 22.2%,
and OctoTools by 11.2%. Similarly notable gains
are observed under GPT4o.

In the Medical domain, ToolTree surpasses Hug-
gingGPT by 12.0% and OctoTools by 5.0% using
GPT40-mini, demonstrating its strength in tasks
requiring specialized external knowledge and pre-
cise tool interactions. In the General Visual and
Text/Document domains, ToolTree continues to
show consistent improvements of roughly 5 — 7%
over baselines for both backbone models. These
results underscore the robustness of ToolTree’s
MCTS-based tool selection and dual evaluation
across diverse reasoning challenges.

A.2 Performance Comparison with Baseline

We measured ToolTree’s per-dataset improvement
over a GPT4o few-shot baseline by subtracting
the baseline accuracy from ToolTree’s accuracy on
each of the fifteen tasks and plotting the results in
Figure 7. The chart shows gains on every bench-
mark: PathVQA sits at the top with an uplift ex-
ceeding twenty points, followed by the Game of
24 and HotpotQA climbing into the mid-teens, and
VQA-Rad and A-OKVQA rising by around 15%
and 10% respectively. Even general visual tasks
like VQAv2 and TextVQA register solid improve-
ments of roughly six to eight points. This pattern
reflects ToolTree’s strength in orchestrating multi-
step, domain-specialized tool chains that is essen-
tial for medical and mathematical puzzles, while its
verification and pruning mechanisms consistently
enhance performance on more conventional down-
stream tasks.

A.3 Comparison With Domain-Specific
Framework

We conducted experiments comparing ToolTree
against several domain-specialized agent frame-
works, including MMedAgent, LATS, and
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Model VQA-Rad OK-VQA MathVista ScienceQA HotpotQA Average

MMedAgent 84.32 31.25 21.15 57.24 38.20 46.43

LATS 20.48 27.26 59.33 58.17 77.54 48.56

VIPERGPT 58.24 52.44 64.28 88.64 4822 62.36

ToolTree (Ours) 74.12 59.27 65.58 87.33 56.33 68.53

Table 4: Performance (%) comparison between domain-
specialized agent baselines and our ToolTree framework
across five diverse benchmarks. Tooltree generalize well
on different domain-specific tasks.

VIPERGPT, across five representative benchmarks
from medical (VQA-Rad), external knowledge
(OK-VQA), mathematics (MathVista), science rea-
soning (ScienceQA), and multi-hop reasoning (Hot-
potQA) domains. Each domain-specialized base-
line is designed specifically for optimal perfor-
mance in its own niche area.

As illustrated in Table 4, our ToolTree consis-
tently achieves the highest average accuracy of
68.53%. Specifically, ToolTree significantly outper-
forms MMedAgent in external knowledge, mathe-
matics, science reasoning, and multi-hop reasoning
tasks. Compared to LATS, which excels specifi-
cally in multi-hop reasoning, our framework sub-
stantially surpasses it by over 53.64% in medical
image analysis (VQA-Rad), and around 32.01%
in external knowledge (OK-VQA). ToolTree also
achieves competitive performance compared with
VIPERGPT, consistently outperforming it in med-
ical tasks and external knowledge tasks. This im-
provement pattern indicates that domain-specific
LLM agents suffer from poor cross-domain gen-
eralization, resulting in reduced overall accuracy
across diverse tasks. Moreover, specialized LLM
agent rely heavily on large-scale domain-specific
datasets, many of which are not publicly available,
limiting their reproducibility and adaptability

A.4 Effect of Dual Feedback on Accuracy

We measured how the choice of post-evaluation
model affects overall and domain-specific accu-
racy by running the MCTS pipeline under four
settings: no post-evaluation, GPT40-mini as judge,
GPT4o as judge, and Gemini 2.0 as judge as Fig-
ure 8. Across all tasks, accuracy steadily increases
with more powerful judges, rising from 54.2% to
60.8% (Gemini 2.0). The largest improvements
appear in vision and text/document tasks, where
nuanced output verification matters most. These
results show that richer post-execution feedback
enables the agent to better discriminate useful tool
calls, leading to more accurate final answers.
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(a) Example inference trajectory for a medical VQA query.
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(b) Example inference trajectory for a multi-hop reasoning
query.

Figure 9: Two qualitative case studies showcasing
ToolTree’s iterative tool orchestration on (a) a radiology
image question and (b) a multi-hop knowledge reason-
ing task.

A.5 Additional Case Study

B Experiment Details

B.1 Benchmark Dataset

B.1.1 General Visual Understanding

* VQAV2 (Goyal et al., 2017): A large-scale
dataset for visual question answering based
on COCO images with open-ended questions.
It requires diverse visual understanding capa-



bilities like object recognition and counting.
VQAV2 serves as a standard benchmark with
a balanced question distribution.

* GQA (Hudson and Manning, 2019): Fo-
cuses on compositional reasoning and spa-
tial understanding using scene graphs derived
from Visual Genome images. Questions are
generated with controlled reasoning structures
and complexity. It also offers a balanced ver-
sion to mitigate language priors.

¢ ScienceQA (Lu et al., 2022): A multimodal
dataset featuring science questions from edu-
cational curricula, often including text and an
image (diagrams, experiments). It requires
scientific reasoning and involves chain-of-
thought reasoning that provides explanations
for answers. It Covers diverse topics like
physics, chemistry, and biology.

B.1.2 Knowledge-Based Question Answering

¢« OK-VQA (Marino et al., 2019): A visual
question answering dataset where questions
necessitate external knowledge not present in
the COCO images. It challenges models to
connect visual concepts with world knowl-
edge.

¢ A-OKVQA (Schwenk et al., 2022): Extends
knowledge-based VQA by requiring verifiable
and explainable reasoning for answers. It uses
complex questions answerable via direct input
or multiple choice and focuses on the reason-
ing process linking vision and knowledge.

* WebQ (Berant et al., 2013): A text-based
question answering dataset using questions
derived from web searches, answerable using
facts from the Freebase knowledge graph. It
tests the ability to map natural language ques-
tions to structured KB queries, containing pri-
marily factoid questions.

B.1.3 Medical Question Answering

e MedQA (Jin et al., 2021): A text-based
dataset containing multiple-choice questions
from professional medical board exams. It
requires specialized medical domain knowl-
edge and clinical reasoning that covers a wide
range of biomedical subjects.

* VQA-Rad (Lau et al., 2018): Focuses on
visual question answering specifically for ra-
diology images (X-rays, CT scans). Questions
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are posed by clinicians regarding image find-
ings, anatomy, or potential diagnoses.

e PathVQA (He et al., 2020): A VQA dataset
centered on pathology images (microscopic
tissue slides). Questions require identifying
fine-grained visual details relevant to disease
diagnosis and analysis. Its questions often
relates to cancer detection and grading.

B.1.4 Mathematical Reasoning

* MATH (Hendrycks et al., 2021): A dataset
comprised of challenging mathematics prob-
lems from competitions (AMC, AIME), pre-
sented in text format. It requires complex,
multi-step symbolic reasoning across various
math subjects and provides step-by-step solu-
tions.

¢ Game of 24 (nlile, 2025): A mathematical
reasoning task requiring the use of four given
numbers exactly once with arithmetic opera-
tions (+, -, *, /) to reach 24. It tests numerical
reasoning, planning, and symbolic manipula-
tion capabilities.

e Mathvista (Lu et al., 2024): A benchmark
for evaluating mathematical reasoning within
visual contexts like plots, charts, and diagrams.
It requires integrating visual perception (e.g.,
reading values from axes) with mathematical
problem-solving.

B.1.5 Text/Document Recognition and

Understanding
* TextVQA (Singh et al., 2019): A VQA
dataset where answering questions requires
reading and understanding text depicted
within real-world images (e.g., signs, labels).
It necessitates integrating OCR capabilities
with visual and language reasoning.

* DocVQA (Mathew et al., 2021): Focuses on
visual question answering applied to images
of documents with complex layouts. It re-
quires understanding document structure, ex-
tracting text (OCR), and potentially synthe-
sizing information from different regions. It
is sourced from scanned or digital document

pages.
* HotpotQA (Yang et al., 2018): A text-based

question answering dataset specifically de-
signed for multi-hop reasoning. Answering



questions requires finding and integrating in-
formation scattered across multiple source
text passages (from Wikipedia).

B.2 Baselines

Baselines. We compare ToolTree against the fol-
lowing methods, using each dataset’s primary eval-
uation metric (accuracy, exact match, F1 or success
rate):

* Few-Shot Inference. Direct prompting of
the backbone LLM (GPT-40-mini or GPT-40)
with the same in-context examples but without
any external tools or specialized framework.

OctoTools (Lu et al.,, 2025). An LLM-
agent framework that uses an iterative plan-
ner—executor—verifier loop over “tool cards”
for structured API invocation, but relies on
greedy selection and single-stage verification.

HuggingGPT (Shen et al., 2023). A pioneer-
ing tool-augmented system where an LLM
plans and dispatches sub-tasks to Hugging
Face models; it lacks dynamic search or multi-
step pruning.

Chain-of-Thought with Self-Consistency
(CoT-SC) (Wang et al., 2022). A prompt-
ing technique that samples multiple chain-of-
thought traces and aggregates answers by ma-
jority vote, but does not incorporate external
tool calls.

Tree of Thoughts (ToT) (Yao et al,
2023a). A search-based reasoning module
that branches on intermediate reasoning to-
kens in the prompt, offering look-ahead over
textual hypotheses but limited to internal LLM
operations.

ReAct (Yao et al., 2023b). A tool-use schema
that interleaves chain-of-thought with action
calls in a fixed loop, providing basic tool invo-
cation but no strategic backtracking or prun-
ing.

B.3 Tool Library

Table 6 summarizes the external tools and models
integrated within the ToolTree library, categorized
by their domain specialization. The library offers
broad coverage across general visual understand-
ing, knowledge-based VQA, medical QA, mathe-
matical reasoning, and text/document tasks. For
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each domain, a diverse set of functions—ranging
from object detection and image segmentation to
knowledge graph querying, medical report genera-
tion, and OCR—are supported by state-of-the-art
models and APIs. This comprehensive and modu-
lar toolset enables ToolTree to handle a wide spec-
trum of complex, multi-modal tasks with domain-
adaptive precision.

B.4 Tool card Metadata Example

We hereby attach the metadata for medical object
detection tool as an illustrative example in Table 5.

Field Type

string

Description / Example

tool_name "Medical_Object_Detection”

description  string A tool that detects the organs
within a given medical image such
as CT, MRI, X-Ray and pathology
images.

image: str Path to the image file (e.g.
"lung_cancer_Image.png")
Prompt to guide detection (default:
“Detect the organs in the given im-

age”)

input

prompt: str

output dict Detected organs with their bound-
ing box, organ name, and confi-

dence score.

input
output

{"lung_cancer_Image.png"}
{"object_1": {"name":"left
lung”, "bounding
box":[27,45,31,102],
"confidence”:0.82},
"object_2":
{"name":"right
lung”, "bounding
box":[57,48,35,98],
"confidence"”:0.82}}

example

Table 5: Metadata schema for  the

Medical_Object_Detection tool.



Domain

Tool

Function / Model

General Visual

Object Detection
Image Segmentation
Image Captioning
Image Tagging
Patch Zooming

GroundingDINO v2

Segment Anything Model (SAM)
GPT-40-mini

RAM (Recognize Anything Model)
Vanilla Patch Zoomer (4x)

Search Engine Google Search API
Knowledge Graph Wikidata SPARQL
Knowledge-based VQA  Object Detection GroundingDINO v2
Image Segmentation SAM
Image Captioning GPT-40-mini
Image Tagging RAM
Patch Zooming Vanilla Patch Zoomer (4%)
Image Retrieval PubMed Search API
Object Detection BioMedParse
Medical QA Image Segm.entat.ion B%oMedParse
Image Classification BioMedCLIP
Report Generation ChatCAD
Retrieval-Augmented ChatCAD+ (RAG)
Calculator Arithmetic API
Math Reasoning Code Interpreter Python Code Interpreter
Math Solver Wolfram Alpha
Image Captioning GPT-40-mini (when visual input)
OCR EasyOCR
Layout Parsing PDFMiner
Knowledge Graph Wikidata SPARQL
Text/Document Object Detection GroundingDINO v2
Image Segmentation SAM
Image Captioning GPT-40-mini
Image Tagging RAM
Patch Zooming Vanilla Patch Zoomer (4x)

Table 6: Summary of external tools and models in the ToolTree library, organized by domain specialization.
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