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Abstract

Multi-modal Large Language Models (MLLMs) excel at single-image tasks but
struggle with multi-image understanding due to cross-modal misalignment, leading
to hallucinations (context omission, conflation, and misinterpretation). Existing
methods using Direct Preference Optimization (DPO) constrain optimization to
a solitary image reference within the input sequence, neglecting holistic con-
text modeling. To address this, we propose Context-to-Cue Direct Preference
Optimization (CcDPO), a multi-level preference optimization framework that en-
hances per-image perception in multi-image settings by zooming into visual clues—
from sequential context to local details. Our approach features two sequentially
dependent components: (i) Context-Level Optimization: By introducing low-cost
sequence preference pairs, we optimize the model to distinguish between complete
and disrupted multi-image contexts, thereby correcting cognitive biases in MLLMs’
multi-image understanding. (ii) Needle-Level Optimization: By integrating region-
specific visual prompts with multimodal preference supervision, we direct the
model’s attention to critical visual details, effectively suppressing perceptual biases
toward fine-grained visual information. To support scalable optimization, we also
construct MultiScope-42k, an automatically generated multi-image dataset with
hierarchical preference pairs. Experiments show that CcDPO significantly reduces
hallucinations and yields consistent performance gains across general single- and
multi-image tasks. Codes are available at https://github.com/LXDxmu/CcDPO.

1 Introduction

Simultaneously understanding multiple images remains a fundamental yet underexplored challenge
for Multi-modal Large Language Models (MLLMs) [1, 2, 3, 4]. Despite MLLMs excelling in
single-image tasks like visual question answering (VQA) [5, 6, 7], code generation [8, 9], and
storytelling [10, 11], and open-source models such as LLaVA [12], BLIP-2 [13], and InternVL [14]
showing competitive results on benchmarks including VQAv2 [15], OKVQA [16], and MMMU [17],
their capabilities in multi-image contexts are notably constrained. These models frequently struggle
with tasks demanding cross-image comparison, spatial reasoning, or temporal alignment [18], often
resulting in hallucinations like context omission, conflation, and misinterpretation of local details.
These deficiencies ultimately compromise model reliability. The root cause lies in the weak cross-
modal alignment within MLLMs, which frequently fails to integrate visual and textual information
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（d）Performance Comparison

（b）

Rationale: The Image 1 shows a personality and mood 
that is different from other images, because the woma
n is smiling and holding flowers. This indicates a positi
ve and cheerful atmosphere, which is different from the 
serious and focused expressions seen in Image 2. 

Question:  Among <image>, <image> and <image>, 
which image shows a different mood of character?

Answer: The image that shows the emotions 
different from others is Image 1.

Rationale: In the Image 1, there are two people taking 
pictures, and each of them has a cat on their shoulder. 
In the Image 2, there is a flock of sheep but no cats. In 
the Image 3, there are three cats sitting on the bench 
and one cat standing on the ground. 

Question: Among <image>, <image> and <image>,  
How many cats are there in all images?

Prediction: Therefore, the total number of cats in 
all the images is 2 + 3 + 1 = 6. 

Rationale: In Image 1, there is a pair of scissors and 
silver blades placed on a wooden surface.  In Image 2, 
there is only a pink plate with a pig face design on it. In 
Image 3, there is a pink plate with a pig face design on 
it. Next to the plate, there is a pink bowl.

Question: Among <image>, <image> and <image>, 
What item only showed up in exactly 1 image? 

Prediction: The item that appears in only 1 image 
is scissors, but not in Image 2 and 3. 

（a）Previous MIA-DPO method
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Figure 1: (a) Prior multi-image DPO (e.g., MIA-DPO) is constrained by its reliance on predefined
image references and text-only preferences, limiting holistic context modeling. (b) These limitations
commonly lead to failures such as Context Omission (ignoring relevant images), Context Conflation
(misattributing content across images), and Detail Misinterpretation (misrepresenting fine-grained
visual cues). (c) CcDPO addresses these issues by hierarchically enhancing MLLMs’ visual percep-
tion, from overall multi-image contexts to specific fine-grained details. (d) Benchmark comparisons
demonstrate CcDPO’s improved reasoning capabilities on both multi-image and single-image tasks.

coherently and comprehensively. This limitation becomes particularly pronounced in multi-image
settings, where accurate reasoning requires both: (i) Precise interpretation of intra-image regional
details, and (ii) establishing meaningful inter-image connections through contextual integration.

To overcome these limitations, instruction tuning with multi-image supervision has been adopted in
recent models such as Flamingo [19], IDEFICS [20], and Emu2 [21]. However, these approaches rely
on large-scale annotated data, which is costly to construct due to the complexity of modeling inter-
image relationships. As a lightweight alternative, Direct Preference Optimization (DPO) [22] has
emerged as a promising training paradigm, aligning model outputs with human preferences through
pairwise supervision without requiring large-scale labeled data, significantly reducing reliance on
costly annotations. Recent work has extended DPO to multimodal tasks [23, 24, 25, 26], with MIA-
DPO [27] specifically pioneering its application to multi-image scenarios. As shown in Fig. 1(a),
MIA-DPO conditions responses on a specific image through explicit query references (e.g., “In Image
1, what is...?”), helping the model associate questions with the correct visual input in context.

While this anchoring strategy mitigates referential ambiguity in MLLMs, the absence of explicit
contextual modeling in its architectural design fundamentally limits comprehensive cross-image
integration. This constraint is further exacerbated by the high vulnerability of inter-image attention
mechanisms to multi-image interference [28, 29, 30]. Consequently, without explicit image references,
such approaches often demonstrate limited capacity in autonomously capturing sequential visual
context and fine-grained details, giving rise to multiple forms of multi-image hallucinations: Context
Omission: The model selectively ignores subsets of input images, generating responses based on
incomplete sequences (e.g., ignoring Image 3; Fig. 1(b), left). Context Conflation: The model
erroneously attributes visual elements across images (e.g., describing a cat from Image 3 as appearing
in Image 1; Fig. 1(b), middle). Detail Misinterpretation: Critical visual details in a certain image
are either missed or misinterpreted (e.g., without explicit image-specific instructions, the model fails
to recognize the scissors in Image 2 and erroneously detects silver blades in Image 1; Fig. 1(b), right).

To address these challenges, we propose Context-to-Cue Direct Preference Optimization (CcDPO), a
two-level preference optimization framework that enhances MLLMs’ capability to accurately perceive
visual information across hierarchical levels—from sequential multi-image contexts to individual
fine-grained details (as shown in Fig. 1(c)). Specifically, it consists of two levels of alignment:

(1) Context-Level Optimization: We leverage the low-cost preference construction inherent in
multi-image captioning tasks by explicitly decomposing model responses into structured, per-image
descriptions (e.g., “For Image 1: <caption 1>”, “For Image 2: <caption 2>”). This formulation
enforces selective attention on individual images, ensuring contextual completeness while mitigating
both inter-image interference and irrelevant visual content. To address Context Omission and
Context Conflation, we introduce two perturbation techniques—sequence truncation and content
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swapping—into the captioning preference optimization process. By training the model to distinguish
coherent contexts from disrupted ones, we promote holistic reasoning across the entire input sequence.

(2) Needle-Level Optimization: To address Detail Misinterpretation, we propose a fine-grained
preference learning strategy that sharpens the model’s sensitivity to critical visual cues. Our approach
integrates region-focused visual prompts into the preference data and employs DPO training to bias
the model toward descriptions aligned with highlighted regions. This enhances the model’s ability to
detect, attend to, and describe salient visual elements across multiple images. Furthermore, inspired
by [31], we incorporate vision contrastive preference supervision by constructing image pairs with
varying alignment to reference descriptions. This encourages the model to refine its preference
judgments on fine-grained visual cues within each image under contextual settings.

To support both optimization levels, we construct MultiScope-42k, a large-scale, automatically
generated multi-image dataset. It comprises high-quality chosen responses, synthesized from accu-
rate image- and region-level descriptions, alongside rejected responses generated through targeted
perturbations at both contextual and local detail levels. This generation pipeline is fully automated,
cost-effective, and scalable to diverse sources. Our main contributions are summarized as follows:

• We pioneer the investigation of cognitive bias in multi-image comprehension for MLLMs,
categorizing three prevalent hallucination types. To address these challenges, we propose
Context-to-Cue Direct Preference Optimization (CcDPO), an innovative two-level prefer-
ence optimization framework that enhances per-image perception in multi-image settings by
analyzing visual clues—from sequential context to local details.

• We design a low-cost Context-Level Optimization mechanism, incorporating structured
multi-image captioning preferences and targeted perturbation techniques to ensure MLLMs’
comprehensive and consistent global context understanding. Complementarily, we develop
a Needle-Level Optimization mechanism that enhances fine-grained visual acuity through
the integration of region-focused visual prompts and vision contrastive preference signals.

• We construct MultiScope-42k, a large-scale, high-quality dataset for two-level multi-image
preference learning. The fully automatic generation pipeline is cost-effective and scalable
across diverse data sources. After direct preference optimization on this dataset, our method
significantly reduces hallucinations and achieves superior performance on multi-image tasks.

2 Related Work
Multi-modal Large Language Models. Recent advances in MLLMs [12, 32, 33, 34] have combined
powerful large language models (LLMs) with visual encoders via lightweight connectors, achieving
impressive performance across dialogue [35], visual question answering (VQA) [5], and image
captioning tasks [36]. These models are typically trained on image-text pairs with instruction tuning,
yielding strong single-image understanding. However, they remain prone to hallucinations [37,
38, 39], especially in multi-image scenarios where accurate reasoning requires modeling not only
individual images but also their cross-image relationships. Recent studies aim to advance multi-image
understanding by incorporating image-text interleaved data [40, 41] during model training. This
approach helps develop capabilities such as image comparison [42, 43], cross-image association [44,
45], and temporal reasoning [46, 47]. Nevertheless, instruction tuning with such data remains costly
due to the need for complex, fine-grained annotations—an issue exacerbated in multi-image settings.

Direct Preference Optimization. To align LLM outputs with human preferences, Reinforcement
Learning from Human Feedback (RLHF) [48, 39, 3] maximizes the preference gap between favored
and disfavored responses using reward models. Direct Preference Optimization (DPO) [22] offers
a more efficient alternative by removing explicit reward modeling and reinforcement learning,
streamlining preference alignment through supervised contrastive learning. Recent work investigates
DPO’s generalization and stability across tasks [26, 49, 50, 51], with multimodal extensions [31, 52,
53, 26] to reduce hallucinations and enhance vision-language grounding in single-image settings.
However, current language-based DPO methods often neglect visual details. To address this, vision
contrastive DPO approaches either disrupt images [23, 52] or highlight key visual tokens [54, 55],
enhancing preference learning but focusing mainly on single-image tasks. MIA-DPO [27] pioneered
DPO to multi-image settings by anchoring prompts to specific images, achieving promising results on
relevant benchmarks. However, its reliance on predefined references limits holistic context modeling
and autonomous cross-image reasoning. In contrast, we propose CcDPO, which explicitly models
global context and fine-grained visual cues to enhance multi-image reasoning.
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Directly Prediction:  The objects in Image 
2 are more secure and less vulnerable than 
those in Image 1 and 3.

  

Question: Among Image 1, Image 2 and Image 3, are 
the objects shown in each image safe and not fragile?

:

Multi-modal LLM ❄

  

Question: Provide a description for each image. 

:

Multi-modal LLM ❄

  
Question: Among Image 1, Image 2 
and Image 3, are  the objects .... ?

Image token

Caption w/ noise:  In Image 1, there is a wooden hammer 
and an egg. In Image 2, there are four glasses, a bottle and 
grapes. In Image 3, there are stones and a blue surface.

(b) Description Generation and Reasoning based on Descriptions

Multi-modal LLM ❄

Prediction:  The objects in Image 3 are 
made of solid materials such as stone 
and paper, which are generally less pro
ne to breakage compared to glassware 
and delicate objects in Image 1 and 2. 
Therefore, the objects in Image 3 are 
more secure than those in Image 1 and 2.
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Caption w/o noise:  In Image 1, there is a wooden hammer 
and an egg. In Image 2, there are two glasses, two bottles and 
grapes. In Image 3, there are stones and a blue surface.

Inference w/ noisy caption
Inference w/ accurate caption

Baseline (LLaVA-OV)

Figure 2: (a) Baseline: Direct inference without context as a condition. (b) Two-stage approach: Gen-
erating image captions, then reasoning over them. (c) Performance: Accurate caption understanding
as context substantially improves VQA accuracy, with noisy captions also proving beneficial. This
highlights deficient intrinsic captioning in MLLMs as a key bottleneck, motivating its enhancement.

Visual Prompting for MLLMs. Visual prompting has been widely used in vision models [56, 57, 58].
Manually annotated points, boxes, or masks—often encoded by a separate prompt encoder—can
guide the model to adjust segmentation granularity or select specific instances. More recently,
MLLMs have shown the ability to interpret visual prompts directly embedded in the image without
additional prompt encoders [59, 60]. Unlike prior work, our method actively integrates visual prompts
into preference data and uses DPO training to encourage the model to prefer descriptions aligned
with prompted regions, which enhances the model’s sensitivity to visually grounded information.

3 Exploring Cognitive Bias in Multi-Image Comprehension of MLLMs
In this section, we investigate the cognitive biases of MLLMs in multi-image comprehension, first
identifying that deficient internal image captioning ability is a core bottleneck for complex reasoning.
We then introduce a systematic evaluation methodology to diagnose and quantify three fundamental
multi-image hallucination types. Our results confirm that even state-of-the-art models exhibit severe
performance degradation and increased hallucinations as the number of input images grows.

Limited Contextual Awareness. We identify a fundamental limitation in current MLLMs: their
impaired ability to perceive and integrate partial context information for coherent multi-image
understanding severely degrades performance. To investigate this limitation, we systematically
examine how context quality affects multi-image understanding through controlled experiments with
LLaVA-OV-7B [32]. As illustrated in Fig. 2, we evaluate the model’s reasoning capability under three
distinct context conditions: (1) Accurate Context: The model received the images along with accurate,
descriptive captions. (2) Noisy Context: It received the images along with flawed, machine-generated
captions. (3) Baseline (No Explicit Context): It received only the images, forcing it to rely entirely on
its own internal understanding. As shown in Fig. 2 (c), while accurate captions helped slightly more
than noisy ones, the most dramatic finding was a massive 7.37-point accuracy drop when the model
performed inference directly from the images, without any context augmentation. This gap reveals
the model’s heavy reliance on external caption aids, confirming that its intrinsic captioning capability
is a core bottleneck for multi-image reasoning and motivating our direct efforts to enhance this skill.

Multi-image Captioning Re-evaluation. We design a caption generation task as a proxy to system-
atically evaluate MLLMs’ multi-image understanding, identifying three fundamental hallucination
types—Context Omission, Context Conflation, and Detail Misinterpretation—that critically degrade
model performance. To enable this evaluation, we construct Context-AMBER-1K by systemat-
ically concatenating images from the single-image AMBER dataset [37] into sequences of two
types: short-context sequences with 4 images and long-context sequences with 8 images. Each input
is paired with the prompt: “Please sequentially describe each of the images shown
above. Use the following format: For Image *:〈description〉." The expected out-
put format is: “For Image 1:〈caption 1〉,For Image 2:〈caption 2〉,..., For Image
N:〈caption N〉.", ensuring comprehensive coverage of all input images. This controlled for-
mat allows precise identification of hallucination behaviors during multi-image comprehension.

We assess caption quality through four complementary metrics: (a) CHAIR [36] measures object hal-
lucination severity, (b) Response-level Hallucination Rate (Hal) [37] quantifies incorrect descriptions,
(c) Cognition-based Hallucination (Cog) [37] detects reasoning errors, and (d) Sequence Coverage
Rate (SCover) evaluates caption completeness across image sequences. Notably, for each input
sequence, we compute hallucination scores (a), (b), and (c) for each image independently, then
average these to get the sequence-level hallucination scores.
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Table 1: Hallucination and preference alignment results. We report metrics on our constructed
multi-image AMBER benchmark. Lower scores indicate better performance for CHAIR, Hal, and
Cog, while higher is better for SCover. CcDPO achieves consistent improvements under both 4-image
and 8-image settings, effectively reducing hallucinations in contextual multi-image understanding.

Context-AMBER (4 Images) Context-AMBER (8 Images)

Models Parameter CHAIR↓ SCover↑ Hal↓ Cog↓ CHAIR↓ SCover↑ Hal↓ Cog↓

LLaVA-OV 7B 10.2 74.0% 31.8 2.6 50.6 10.3% 69.1 6.5
+ MIA-DPO [27] 7B 8.9 83.9% 29.8 2.1 28.2 36.7% 45.0 3.8
+ CcDPO (Ours) 7B 3.7 100.0% 15.3 1.2 15.3 83.3% 27.5 2.1
∆ - +6.5 +26.0 +16.5 +1.4 +35.3 +73.0 +41.6 +4.4

Results. As shown in Table 1, even strong models like LLaVA-OV-7B exhibit significant halluci-
nation rate increases in multi-image scenarios. For example, when input images grow from 4 to 8,
Detail Misinterpretation hallucinations become severe—the CHAIR score jumps from 10.2 to 50.6,
indicating a sharp decline in grounding accuracy. The sharp drop in the SCover score from 74.0% to
10.3% also reveals context omission issues within multi-image settings. Analysis of failure cases
(Fig. 1) reveals that Context Conflation commonly occurs, critically degrading model performance.

4 CcDPO: Context-to-Cue Direct Preference Optimization
As discussed in Sec. 3, three fundamental hallucinations (context omission, context conflation, and de-
tail misinterpretation) manifest as performance degradations in MLLMs’ multi-image understanding.
To address these challenges, we propose Context-to-Cue Direct Preference Optimization (CcDPO),
a hierarchical preference alignment framework that refines MLLMs at two levels (as shown in Fig. 3):

• Context-Level Optimization: By contrasting complete and disrupted multi-image captions using
language-based preference optimization, we enhance MLLMs’ contextual understanding by ensuring
comprehensive integration of all relevant visual information across image sequences.

• Needle-Level Optimization: A hybrid preference optimization method integrates two complemen-
tary objectives: (1) Contrasts captions that either align with or mismatch visually prompted regions
using language-based preference optimization, and (2) Discriminates between images semantically
matching or contradicting given captions using vision contrastive preference optimization. This dual
approach trains the model to make preference judgments grounded in fine-grained visual details.

To support such hierarchical DPO, we construct MultiScope-42k, a large-scale preference dataset
with automatically generated positive and perturbed response pairs at both levels. See Appendix A.

4.1 Context-Level DPO with Language-Based Preference Optimization
We propose a low-cost DPO mechanism for MLLMs that leverages multi-image captioning as a
proxy task to enforce coherent multi-image understanding, thereby addressing context hallucinations
(omission, conflation). Specifically, we reformulate the response generation task as a structured,
per-image captioning problem. Each image in a sequence is described in an explicit format, generating
the preferred response yw as a coherent sequence of captions that reflect the content of each image:

yw = {For Image 1:⟨caption 1⟩, For Image 2: . . . , For Image N:⟨caption N⟩.}

This encourages the model to practice selective attention and attribution-aware generation. During
training, we construct preference pairs where the positive sample is a coherent, full-sequence
description yw, and the negative sample yl is obtained from following two perturbation strategies:

• Sequence Truncation: simulates context omission by either removing captions entirely from one
or more images (complete content omission) or replacing detailed captions with shorter versions
(partial content omission), generating rejected responses ytrunc

l and yshort
l . Complete omission disrupts

sequence continuity, while partial omission results in sparse or incomplete sequence information:

ytrunc
l = {For Image 1:⟨caption 1⟩, For Image 3:⟨caption 3⟩, . . .}

yshort
l = {For Image 1:⟨short caption 1⟩, For Image 2:⟨short caption 2⟩, . . .}
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Region Caption 1: There's a 
man wearing a black shirt, 
standing on the right side of 
the image.  Given his pos

(b) Context-Level Preference Pair Construction

LLaVA-OV        Details
LLaVA-OV

     Context
LLaVA-OV

Context-Level DPO Needle-Level DPO

Caption 2: A charming red 
clock tower with a gold 
dome stands prominently in 
the middle of street. 

...

...

Caption 1: The image shows 
a Little League baseball game 
in progress, with a young boy 
swinging a baseball bat. 

Question x:<image><image> 
Describe the following image.

Chosen yw: For Image 1, 
the image shows a League 
baseball game...<Caption 1>. 
For Image 2, a charming 
red clock tower with a gold 
dome stands...<Caption 2>. 

(c) Needle-Level Preference Pair Construction

Region Caption 2: On the 
right side of the image, a 
chair is placed close to the 
dining table, likely part ...

...

Chosen ywr: For the marked areas of Im
age 1, There's a man wearing a ...<Caption 1>. 
For the marked areas of Image 2, On the 
right side of the image, a chair ...<Caption 2>. 

Question x:<image> <image> Please provide a 
description of the marked areas in each image. Different regions of the same image

Rejected ylr’: For the marked areas of Im
age 1, A player from the Seattle...<Caption 1>. 
For the marked areas of Image 2, A black 
desk chair is positioned in the ...<Caption 2>. 

Images Images

Image 1

Image 2

Image-Level 
Caption Pool

Region-Level 
Caption Pool

(a) Caption Pool

 
Rejected ylshort: For Image 1, A young boy 
swinging a baseball bat over a base. For Image 
2, A clock tower sitting on the side of a road.

Rejected ylswap: For Image 1, a charming red 
clock tower...<Caption 2>. For Image 2, the 
image shows a Little League ...<Caption 1>.

Context 
Omission

Context 
Omission

Context 
Conflation

Rejected yltrunc: For Image 1, the image sho
ws a Little League baseball game in ...<Caption1>

Figure 3: Overview of CcDPO. (a) Caption pools are built from LLaVA-23K [61], MDVP [63], and
MVC [49] for image- and region-level supervision. (b) Context-Level DPO aligns model outputs
with complete, coherent image sequences and penalizes omissions, conflation, and misalignments.
(c) Needle-Level DPO incorporates visual prompts to enhance local detail understanding. chosen
responses describe marked regions accurately, while rejected are drawn from mismatched regions.
Both language-based and vision-contrastive preferences are used to sharpen fine-grained perception.

• Content Swapping: simulates context conflation by swapping the captions between different
images within the sequence, thereby generating the rejected response yl. e.g.,

yswap
l = {For Image 1:⟨caption 2⟩, For Image 2:⟨caption 1⟩, . . .}

Given an instruction x and image sequence vw, we define the context-level DPO objective as:

LDPOt
= − log σ

(
β log

πθ(yw | vw, x)
πref(yw | vw, x)

− β log
πθ(yl | vw, x)
πref(yl | vw, x)

)
, yl ∈ {ytrunc

l , yshort
l , yswap

l }

(1)
where πθ is the target model and πref is a frozen reference model. This objective reinforces the
preference (x,vw,yw) ≻ (x,vw,yl) for globally coherent responses over disrupted ones. We use
LLaVA-23K [61] and COCO [62] as our detailed and brief context caption pool, respectively. The
visualization cases for three different types of context preferences are presented in Figs. 6, 7, and 8.

4.2 Needle-Level DPO with Hybrid Visual-Language Optimization
Even when global context is preserved, MLLMs often fail to identify or attend to salient visual
elements (e.g., missing objects, actions, or attributes). This leads to detail misinterpretation, which
global response-based supervision alone cannot resolve. To address this, we introduce needle-level
optimization, a fine-grained hybrid preference mechanism employing visual prompts and image-level
perturbations to sharpen the model’s focus on often-overlooked local visual cues.

Language-based Preference Optimization (TDPO). This stage leverages region-specific visual
prompts (bbox and point) to guide the model’s preference judgments. The visual prompt construction
involves three key steps: (1) collecting source data with point or bounding box annotations, where
points are defined as [x, y] coordinates and bounding boxes as [x1, y1, x2, y2] corner coordinates;
(2) converting these annotations into visual prompts (e.g., red points or green rectangles) overlaid
onto original images; (3) enhancing region salience by adding textual labels (e.g., “REF”) adjacent to
visual markers, as illustrated in Fig. 3. These visual prompts explicitly define the target regions for
description. To train the model to interpret these specified areas accurately, our DPO method learns
from preference pairs that penalize misinterpretations. These pairs are constructed as follows:

1) Chosen Responses (yr
w): We integrate region-level visual prompts (e.g., bounding boxes, key-

points) into images v to highlight a target region r, yielding vr. The model is trained to prefer the
accurate description yr

w of this specific region, directing its attention to critical visual elements:

yr
w = {For the marked area of Image 1: ⟨caption r1⟩, For the marked area of
Image 2: ⟨caption r2⟩, . . . , For the marked area of Image N: ⟨caption rN ⟩.}
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2) Rejected Responses (yr′

l ): Descriptions of regions r′ that are non-overlapping with r within the
same image serve as rejections. By learning to identify and reject such region-specific inaccuracies,
the model’s perception of fine-grained image details is more precise. yr′

l is formally defined as:

yr′

l = {For the marked area of Image 1: ⟨caption r′1⟩, For the marked area of
Image 2: ⟨caption r′2⟩..., For the marked area of Image N: ⟨caption r′N ⟩.}

Given an instruction x and the image sequence vr, these pairs (x,vr,y
r
w) ≻ (x,vr,y

r′

l ) inform
the language-based DPO objective (Eq. 1). We utilize MDVP [63] for the region-level caption pool.

Vision Contrastive Preference Optimization (VDPO). Inspired by [49, 31], this stage further hones
the model’s visual discrimination. It trains the model by contrasting a single description yw against
two image inputs: vw, which correctly aligns with yw (often focusing on a specific visual region),
and vl, which is misaligned or visually contradicts yw. The objective combines two components:

1) Focusing on Relevant Visuals (LFocus): This rewards prioritizing details in the correctly aligned
image vw when generating yw, countering MLLMs’ tendency to neglect visual content.

LFocus(vw, yw) = − log σ

(
β1 log

πθ(yw | vw, x)
πref(yw | vw, x)

− β1 log
πθ(yw | x)
πref(yw | x)

)
, (2)

2) Rejecting Contradictory Visuals (LReject): This penalizes assigning high probability to yw when
conditioned on a contradictory image vl.

LReject(vl, yw) = − log σ

(
β2 log

πθ(yw | x)
πref(yw | x)

− β2 log
πθ(yw | vl, x)
πref(yw | vl, x)

)
, (3)

The combined vision contrastive DPO loss is LDPOv
(vw, yw, vl) = LFocus(vw, yw) + LReject(vl, yw).

This objective sharpens the model’s ability to distinguish fine-grained visual cues by rewarding focus
on relevant details and penalizing attention to misleading content. We use the MVC [49] dataset as a
region-level visual counterfactual caption pool. Visualization cases are shown in Figs. 9, 10, and 11.

5 Experiments

5.1 Experimental Settings and Evaluation Benchmarks

Baselines. We apply CcDPO to two different 7B-size MLLMs: Qwen2-VL [33] and LLaVA-OV [32].
Due to differences in base models, preference data, and alignment strategies, direct comparisons
with other LLMs are not possible. However, we provide the results for reference: LLaVA-1.5 [64],
InternVL2-8B [65], Mantis-Idefics [44], mPLUG-Owl3 [66], Idefics2-8B [20], and Emu2-Chat [21].

Implementation Details. Our model undergoes a three-stage sequential training process to better
understand multi-image preferences at both broad (context) and detailed (needle) levels. Stage 1
focuses on context-level alignment, where we fine-tune Qwen2-VL-7B and LLaVA-OV-7B for one
epoch with learning rates of 5 × 10−6 and 5 × 10−5, respectively, using Eq. 1. Stage 2 applies
needle-level language-based DPO using Eq. 1 to improve sensitivity to fine-grained visual cues with
the same learning rate of 5× 10−5. We conduct Stage 1 and Stage 2 by using LoRA adaptation [67]
with rank r = 128 for efficiency. Stage 3 performs vision contrastive DPO via full-parameter tuning
for one epoch with a learning rate of 1 × 10−6 using Eq. 2, strengthening the model’s ability to
distinguish preferred visual content. Following the setup in [27], we set the temperature parameter
β = β1 = β2 = 0.1 and the negative log-likelihood (NLL) loss coefficient γ = 0.1. All training is
conducted on eight GPUs, each equipped with 90GB of memory.

Evaluation Benchmarks. We employ seven multi-image benchmarks—MUIRBench [42],
MIRB [68], BLINK [69], Mantis-Eval [44], NLVR2 [70], Q-Bench2 [71], and MIBench [72]—to
holistically evaluate multi-image reasoning across four key dimensions: co-reference alignment,
fine-grained comparison, contextual reasoning, and temporal understanding. Complementing these,
eight representative single-image benchmarks assess specific multimodal capabilities: (1) Aca-
demic/Scientific Reasoning: MMMU [73], MMStar [74], ScienceQA [75], (2) Diagram Understand-
ing: AI2D [76], (3) Robustness against hallucinations: POPE [77], HallBench [38], (4) General
Multimodal Abilities: MMBench [78], (5) Text Recognition: OCRBench [79]. This comprehensive
evaluation suite demonstrates our method’s strengths in both holistic understanding and fine-grained
visual grounding across single-image and multi-image general tasks.
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Table 2: Main results on general multi-image benchmarks. We compare our proposed method,
CcDPO, with existing multi-image DPO approaches across seven multi-image benchmarks. Our
method consistently enhances the performance of both LLaVA-OV and Qwen2-VL.

Models Parameter MuirBench MIRB BLINK Mantis NLVR2 MIBench Q-Bench2 Average
GPT-4o [80] - 62.3 53.0 60.1 62.7 88.8 71.8 74.5 67.6

LLaVA-v1.5 [64] 7B 19.9 28.4 37.1 41.9 52.1 40.9 53.9 39.2
Idefics2 [20] 8B 26.1 33.0 45.2 48.9 86.9 29.7 57.0 46.6
Mantis-Idefics2 [44] 8B 44.5 41.8 49.1 57.1 89.7 44.3 75.3 57.4
mPLUG-Owl3 [66] 8B 39.6 - 50.3 63.1 90.8 54.5 - 59.6
Emu2-Chat [21] 37B 33.6 27.2 36.2 37.8 58.2 39.7 65.3 42.6
InternVL2-8B [65] 8B 48.7 50.0 50.6 60.3 85.56 52.9 - 58.0

LLaVA-OV [32] 7B 42.5 47.3 51.1 60.4 89.4 73.6 73.8 62.5
+ SFT 7B 45.4 48.9 53.4 64.9 89.0 71.9 75.7 64.1
+ MIA-DPO [27] 7B 41.4 48.0 53.7 60.3 88.2 67.8 74.0 61.9
+ CcDPO (Ours) 7B 48.6 51.4 55.9 69.6 91.2 75.2 77.6 67.1
∆ - +6.1 +4.1 +4.8 +9.2 +1.8 +1.6 +3.8 +4.6

Qwen2-VL [33] 7B 40.5 59.5 53.4 65.9 84.8 68.9 74.5 63.9
+ SFT 7B 43.1 59.8 54.7 64.9 85.2 69.4 74.1 64.5
+ MIA-DPO [27] 7B 40.1 61.4 54.5 69.1 84.5 66.7 75.6 64.5
+ CcDPO (Ours) 7B 44.8 60.7 56.5 69.1 86.4 71.9 77.0 66.6
∆ - +4.3 +1.2 +3.1 +3.2 +1.6 +3.0 +2.5 +2.7

Table 3: Main results on single-image benchmarks. We compare our CcDPO with existing
DPO-based approaches across seven single-image benchmarks. Our CcDPO not only improves
performance in multi-image settings but also preserves strong capabilities on single-image tasks.

Models Parameter MMStar SQA MMMU POPE HallBench MMB OCR AI2D Avg.
LLaVA-v1.6 [81] 7B 37.6 87.5 35.8 70.3 51.6 69.8 53.7 67.0 59.1
Qwen-VL-Chat [82] 7B 34.5 68.8 35.9 74.9 39.2 61.8 48.8 63.0 53.3
Idefics2 [20] 8B 49.5 88.7 43.0 86.2 - 75.7 - 72.3 69.2
OpenFlamingo [83] 9B 36.9 44.8 - 52.6 38.4 32.4 14.9 31.7 35.9
InstructBLIP [84] 13B 32.7 54.1 - 86.1 45.3 38.3 27.6 40.6 46.3
Emu2-Chat [21] 37B 40.7 68.2 36.3 88.0 - 63.4 43.6 49.7 55.7

LLaVA-OV [32] 7B 58.7 92.1 47.7 86.1 52.9 81.8 47.3 81.6 68.5
+ SFT 7B 57.8 91.5 47.1 88.4 57.2 81.5 50.2 81.6 69.4
+ MIA-DPO [27] 7B 57.4 92.4 45.1 87.9 55.4 80.9 52.1 81.5 69.0
+ CcDPO (Ours) 7B 59.5 92.6 45.7 86.6 58.4 81.9 51.0 82.1 69.7

Qwen2-VL [33] 7B 57.8 84.1 50.6 85.9 66.9 81.2 85.6 78.9 73.8
+ SFT 7B 55.0 82.7 50.0 87.7 66.7 81.0 84.8 78.5 73.3
+ MIA-DPO [27] 7B 58.2 84.0 48.6 88.4 62.7 80.8 85.1 78.9 73.3
+ CcDPO (Ours) 7B 58.7 82.8 50.7 87.1 68.8 81.6 83.5 79.7 74.1

5.2 Main Results

Results on General Multi-Image Tasks. As shown in Table 2, we evaluate CcDPO across diverse
multi-image benchmarks that span a wide range of reasoning skills. CcDPO consistently outperforms
both the SFT baseline and other DPO-based methods on all datasets, with a notable gain of +4.8
points on BLINK, which focuses on multi-view and spatial reasoning. On the large-scale MuirBench
dataset—where each sample contains an average of 4.3 images and up to 9 images—CcDPO achieves
the largest improvement of +6.1 points, demonstrating its strength in modeling complex multi-image
dependencies such as fine-grained perception, sequential cues, and holistic context. In contrast,
MIA-DPO underperforms on MuirBench, highlighting its global context limitations. Consistent gains
across LLaVA-OV and Qwen2-VL variants validate our approach’s generality and effectiveness.

Results on General Single-Image Tasks. While previous works [27, 44] indicate that multi-image
training can degrade single-image understanding, our CcDPO, in contrast, generally yields perfor-
mance gains on most single-image datasets as shown in Table 3, averaging +1.2 points for LLaVA-OV
and +0.3 for Qwen2-VL. Visually-driven tasks like HallBench exhibit the largest improvements, up
to +5.5 points under CcDPO. Conversely, for tasks with relatively low reliance on visual information,
exemplified by ScienceQA [20], our method showed no notable gains, and performance slightly
declined. These results highlight CcDPO’s robustness: it not only excels in multi-image scenarios
but also preserves, and often enhances, single-image capabilities. We attribute this success to our
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Table 4: Performance on the image retrieval task from needle-in-a-haystack MM-NIAH [85]. We
compare our proposed method, CcDPO, with DPO-based baselines across 1K–24K contexts, where
the number of images ranges from a few to over a hundred. CcDPO consistently outperforms prior
methods, demonstrating its strength in capturing fine-grained details in ultra-long image sequences.

Models Parameter 1K 2K 4K 8K 12K 16K 24K Average

LLaVA-OV [32] 7B 89.2 88.1 82.3 71.2 65.0 60.9 45.0 71.7
+ SFT 7B 92.0 93.9 88.2 80.7 74.8 69.4 49.9 78.4
+ MIA-DPO [27] 7B 93.9 94.6 90.5 85.1 75.5 68.8 59.4 81.1
+ CcDPO (Ours) 7B 95.3 96.9 91.4 89.6 78.8 74.5 64.7 84.5
∆ - +6.3 +8.8 +9.1 +18.4 +13.8 +13.6 +19.7 +12.8

Table 5: Ablation study of two-level CcDPO on MIBench and MIRB tasks requiring perception,
comparison, and reasoning across multiple images. Detailed task descriptions are in the Appendix B.

MIBench Benchmark MIRB Benchmark
Models GC SD TR LR FVR TRI VTK TVK Know. Reas. Perc. M-Hop
LLaVA-OV-7B [32] 87.7 85.9 72.6 74.5 96.5 77.5 42.7 67.1 70.0 44.0 50.0 12.0

+ Context-Level 87.4 88.6 69.5 76.0 97.9 76.7 43.4 68.8 75.0 44.0 52.0 15.0
⊕ Needle-Level 88.8 90.4 70.3 76.0 98.2 77.6 52.6 69.8 72.0 48.0 55.0 18.0
∆ +1.1 +4.5 -2.3 +2.5 +0.1 +1.7 +9.9 +2.7 +2.0 +4.0 +5.0 +6.0
+ SFT 87.9 88.2 71.0 75.5 87.8 77.4 38.5 68.3 75.0 43.0 53.0 9.0
+ MIA-DPO [27] 85.8 87.2 63.4 67.9 94.9 67.6 42.0 59.6 73.0 50.0 44.0 11.0

preference data design, which employs structured, per-image descriptions, thereby fostering precise
understanding of individual images even within multi-image contexts.

5.3 Ablation Studies
Comparison with SFT Trained on MultiScope-42K. As shown in Table 2, Table 3, Table 4, CcDPO
outperforms SFT across all benchmarks, achieving +3.0 on multi-image tasks, +0.6 on single-image
tests, and a significant +6.1 gain on MM-NIAH. By integrating negative samples into DPO, CcDPO
enhances discrimination between accurate and hallucinated outputs, improving fine-grained detail
recognition and long-range dependency modeling while maintaining single-image performance. This
demonstrates both robust generalization and superior contextual understanding, with negative sample
integration proving essential to its performance advantages.

Superior Context Scaling for Fine-Grained Detail Capture. As shown in Table 4, CcDPO signifi-
cantly outperforms prior DPO-based methods and SFT baselines on the challenging MM-NIAH [85]
needle-in-a-haystack image retrieval task. Remarkably, CcDPO achieves consistent improvements
across all tested context lengths (1K–24K), with its largest gain (+19.7 points) occurring at the maxi-
mum 24K context length compared to the baseline model. This demonstrates CcDPO’s exceptional
ability to: (1) Scale effectively to ultra-long image sequences, and (2) Capture fine-grained visual
details critical for discriminating subtle differences in large image collections. The +12.8-point
average improvement underscores its robustness in handling large-scale multi-image contexts. The
hierarchical preference optimization in CcDPO enables precise, context-aware understanding—an
essential capability for processing extensive visual information.

Effectiveness of Context-Level Optimization. The Context-Level DPO enhances alignment between
language responses and the holistic visual context across image sequences. As shown in Table 6,
this yields significant improvements on sub-tasks requiring global reasoning, including: Diagram
Understanding (+5.1), Image-Text Matching (+9.8), Similarity Matching (+16.4). These gains reflect
the module’s ability to: (1) Capture semantic relationships across images, and (2) Maintain coherent
multi-image descriptions through consistent attribute attribution. Notably, Scene Understanding
and Retrieval tasks also benefit from improved global alignment, confirming that such optimization
effectively reduces context omission and conflation errors in complex visual sequences.

Effectiveness of Needle-Level Optimization. The Needle-Level DPO improves the model’s ability
to capture fine-grained visual cues by contrasting localized content. As shown in Table 5 and Table 6,
this is especially effective for tasks requiring detailed comparisons across images. In MIBench,
the VTK task—where the model must link information across image cells—shows a large gain of
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Table 6: Ablation study of CcDPO on the MuirBench dataset across all sub-datasets, demonstrating
significant performance gains on most subsets. The symbol ⊕ stands for method superposition.
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LLaVA-OV-7B [32] 42.5 35.9 33.1 35.8 24.7 55.0 30.0 46.0 46.9 20.3 72.0 29.7 47.6
+ Context-Levl 44.8 36.6 30.3 37.1 35.5 57.0 37.9 41.0 48.3 15.6 65.1 28.3 48.3
⊕ Needle-Levl-TDPO 47.8 42.3 48.0 34.6 38.0 58.3 40.3 41.0 55.4 14.1 68.9 30.1 45.9
⊕ Needle-Levl-VDPO 48.6 44.5 49.5 33.3 39.3 60.1 39.1 41.0 56.7 13.0 70.4 28.6 46.6
∆ +6.1 +8.6 +16.4 -2.5 +14.6 +5.1 +9.1 -5.0 +9.8 -7.3 -1.6 -1.1 -1.0

Qwen2-VL-7B [33] 40.5 40.8 46.4 41.0 39.7 41.9 34.4 25.0 54.3 9.3 65.0 28.5 20.5
+ Context-Levl 42.1 41.0 45.0 42.3 39.8 46.2 37.9 22.0 56.9 14.1 65.1 27.4 21.0
⊕ Needle-Levl-TDPO 42.3 39.6 43.9 41.0 39.7 46.5 39.1 22.0 56.3 15.7 66.7 26.2 22.9
⊕ Needle-Levl-VDPO 44.8 43.9 46.9 38.5 39.9 53.8 37.9 20.0 61.4 18.8 69.9 23.8 22.9
∆ +4.3 +3.1 +0.5 -2.5 +0.2 +11.9 +3.5 -3.0 +7.1 +4.9 +5.4 -4.7 +2.4

Table 7: Ablation on component and training order.
Configuration MuirBench Mantis BLINK Q-Bench2

Baseline 42.5 60.4 51.1 73.8
Context-Level Only 44.4 69.0 55.3 76.4
Needle-Level Only 46.3 65.0 54.3 75.5
Needle → Context 46.5 66.3 54.1 77.8
Context → Needle 48.6 69.6 55.9 77.6

Table 8: Ablation on visual prompt types.
Bbox Seg. Point Circle BLINK Q-Bench2

✔ ✔ 55.1 76.0
✔ ✔ 56.2 76.6

✔ ✔ 56.8 76.3
✔ ✔ 54.5 77.2
✔ ✔ 55.9 76.8

+9.9, demonstrating that our visual preference signals help focus on factual visual details. Similarly,
in MuirBench, we observe strong gains on Action Understanding (+8.6), Counting (+14.6), and
Difference Spotting (+9.1), all of which depend on localized perception. These results indicate that
Needle-Level DPO significantly boosts the model’s perceptual grounding and resistance to detail-level
hallucinations, complementing the context-level DPO for better multi-image understanding.

Synergistic Two-Level Optimization in CcDPO. As evidenced in Table 7, performing context-level
DPO prior to needle-level DPO consistently yields optimal benchmark performance, underscoring a
hierarchical interdependence between the two stages. This workflow mirrors human general reasoning
for multi-image problems: one first understands the global context, then zooms in to focus on specific
details as needed for the task. Notably, inverting the training sequence or isolating either stage results
in suboptimal outcomes, further validates the necessity of our two-stage sequential optimization.

Sensitivity Analysis of Visual Prompt. As shown in Table 8, our ablation studies reveal minimal
performance variation (±1 point) across visual prompt types (bounding boxes, circles, segmentation
masks) during the Needle-Level Language-based Preference Optimization stage, underscoring our
method’s robustness. Notably, we observe benchmark-specific patterns: fine-grained prompts (e.g.,
segmentation masks) excel in spatial reasoning tasks BLINK by capturing precise local details, while
coarse-grained prompts (e.g., bounding boxes) perform better in image-level comparisons Q-Bench2
through efficient spatial guidance. Consequently, we adopt bounding box + keypoint as the final
format, balancing accuracy and annotation practicality optimally.

Limitations. While CcDPO is primarily designed for general multi-image reasoning, it does not
explicitly model temporal dependencies, which may limit its performance on video-like inputs. How-
ever, our framework is readily extensible to such video data by incorporating video clip descriptions.
Similarly, although OCR supervision is limited in our current dataset, CcDPO can be naturally
enhanced with targeted text-centric preference data in future work.

6 Conclusion
This work introduces CcDPO, a two-level preference optimization method for enhancing multi-image
understanding in MLLMs. By decoupling learning into context-level and needle-level stages, CcDPO
addresses key hallucination issues including context omission, conflation, and detail misinterpretation.
The context-level module promotes holistic sequence comprehension via structured caption prefer-
ences, while the needle-level module strengthens fine-grained perception through visual prompts and
contrastive supervision. To support optimization, we construct MultiScope-42k, a large-scale dataset
with automatically generated multi-level preference pairs. Experiments across seven multi-image
benchmarks show that CcDPO achieves consistent improvements over SFT and prior DPO variants,
confirming its effectiveness in aligning MLLMs with both global and local visual semantics.
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Technical Appendices
In this appendix, we provide additional materials to support a more comprehensive understanding
of our proposed method and dataset. In Sec. A, we detail the low-cost construction pipeline of
MultiScope-42k and conduct comparative data analysis with MIA-DPO, including token length
distributions, word cloud statistics, and supervision source breakdown. We also clarify the image
source overlap between training data and benchmarks to ensure fair evaluation. In Sec. B, we
summarize all benchmarks used in evaluation, including seven multi-image and eight single-image
benchmarks. In Sec. C, we provide additional experimental results, including ablation studies on
training data volume and supervision granularity to assess their impact on model performance. In
Sec. D, we present qualitative observations and visualizations of preference pairs.

A MultiScope-42k: A Context-to-Cue Captioning DPO Dataset

A.1 Low-cost Question-Answer Pair Construction

Constructing high-quality instruction-response preference pairs for multi-image learning traditionally
requires extensive manual annotation, especially when capturing subtle context dynamics or region-
level semantics. To address this bottleneck, we design a low-cost, fully automated pipeline for
question-answer pair construction, enabling efficient and scalable data generation with broad coverage
and controlled distributional properties.

Automated Caption Pool Sampling. We first leverage existing vision-language datasets—LLaVA-
23K [61], MDVP [63], and MVC [49]—to construct a diverse caption pool, containing both image-
level and region-level descriptions. By decoupling question construction from caption generation, we
are able to sample visual contexts and their aligned captions independently, facilitating large-scale
composition of input-output examples.

Structured QA Formatting. Given a sampled image or image sequence, we construct templated
instructions (e.g., “Describe the following images” or “Please describe the marked area in each
image”) to form queries. For the corresponding answers, we use structured formats that encourage
compositional reasoning and grounding, such as:

[ For Image 1: <caption 1>, For Image 2: <caption 2>, ...]

[ For the marked area of Image X: <caption X>, ...]

This approach allows flexible variation in image number, visual scope, and response granular-
ity—supporting both context- and region-level supervision.

Controlled Perturbation for Preference Learning. To generate preference pairs without additional
labeling, we apply lightweight perturbation strategies to the answer side only. Specifically:
• (1) Truncation and swapping: simulate omissions and misalignments in context-level answers.
• (2) Region mismatches: in needle-level samples simulate detail hallucination.
These perturbations require no human involvement yet introduce controlled errors mirroring real-
world MLLM failure modes, enabling scalable preference pair generation with low cost.

Efficient Coverage of Diverse Visual Distributions. Our automated sampling supports stratified
control over image domains, scene compositions, and region attributes. This results in the MultiScope-
42k dataset, a large-scale, distribution-aware corpus covering a wide variety of multi-image tasks.
Its diversity in visual layout and semantic granularity ensures robust preference supervision across
image types and reasoning levels.

Overall, our pair construction strategy eliminates the need for dense manual annotation while
producing rich and challenging preference data at scale—offering a practical solution for instruction
tuning in multi-image multimodal models.

A.2 Data Analysis

To better understand the characteristics of our preference supervision, we conduct a comparative
analysis of MultiScope-42k and MIA-DPO from both lexical and structural perspectives.

Token Length Distributions. Fig. 4 presents the token length histograms of both chosen and
rejected responses. MultiScope-42k responses are significantly longer on average and display a
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Table 9: Summary statistics of MultiScope-42k by supervision level and image source, including total
pairs, number of images per instance, and average token lengths of chosen and rejected responses.

Level Image Source Total Images Range Avg. Chosen Len. Avg. Rejected Len.
Context-Level COCO-2014 27.3k [2, 5] 285.24 165.45
Needle-Level-TDPO COCO-2017 10.8k [2, 4] 173.35 173.97
Needle-Level-VDPO Flickr30k 3.7k [2, 4] 66.09 65.98

Chosen - MultiScope-42K Chosen - MIA-DPO Rejected - MultiScope-42K Rejected - MIA-DPO

Token Length Token Length Token Length Token Length

C
ou

nt

Figure 4: Token length distributions of chosen and rejected responses in our MultiScope-42k and
MIA-DPO [27]. MultiScope-42k exhibits significantly longer and more diverse answers, while
MIA-DPO responses remain short and concentrated, indicating a simpler response pattern.

Chosen - MultiScope-42K Chosen - MIA-DPO Rejected - MultiScope-42K Rejected - MIA-DPO

Figure 5: The dataset word cloud comparison between our MultiScope-42k and MIA-DPO [27].

wider spread, with many responses exceeding 400 tokens. This reflects the dataset’s multi-stage,
image-wise captioning format and compositional design. In contrast, MIA-DPO responses are short
and concentrated, with the majority under 30 tokens. This further suggests that MultiScope-42k
provides richer and more diverse supervision signals, especially for multi-image reasoning.

Linguistic Focus via Word Cloud. We visualize the answer sets of both datasets using word clouds.
As shown in Fig. 5, MultiScope-42k responses prominently feature structured and spatially grounded
expressions such as “image,” “marked area,” “left,” “right,” “foreground,” “scene”, indicating a
strong alignment with multi-image, region-specific prompts. In contrast, MIA-DPO emphasizes
atomic visual concepts (e.g., “man,” “table,” “dog,” “red”), which are well-suited for single-image
tasks but lack explicit inter-image reference or structural composition.

A.3 Dataset Independence Statement

To ensure fair and unbiased evaluation, we verify that the benchmarks used for testing do not overlap
with the data sources involved in model training. We employ three types of annotated data for
two-level DPO training. (1) Image-level captions are sourced from LLaVA-23K [61], which is
derived from the COCO-2014 dataset. (2) Region-level captions come from the MDVP dataset [63],
based on COCO-2017. (3) Visual contrastive preference pairs are taken from MVC [49], whose
image sources include CounterCurate [86] and FineCops-Ref [87].

We conducted a thorough review of all evaluation benchmarks for potential overlap with these training
sources (COCO-2014, COCO-2017, Flickr30k). While most multi-image benchmarks appear to be
independently constructed, we conservatively flag the following for partial or uncertain overlap:

MIRB [68] explicitly uses COCO images (e.g., for counting), and includes content from ImageNet-R,
OpenFoodFact, Bitton et al., and arXiv. MIBench [72] comprises multiple public datasets, including
VrR-VG, which inherits COCO images via Visual Genome. MUIRBench [42] integrates existing
(e.g., SeedBench, IconQA), derived (e.g., NLVR2, MMBench), and newly collected datasets. While
its new data is COCO-free, MMBench and IconQA are known to include COCO images.
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A summary of benchmark image sources is provided below:

MUIRBench combines new and repurposed datasets; some derived components include COCO.
MIRB includes COCO, ImageNet-R, and other web-sourced content. BLINK uses synthetic and
controlled real-world images. Mantis-Eval draws from web queries and manual composition, with
no COCO usage. NLVR2 uses Flickr images and is COCO-independent. Q-Bench2 is based on IQA
datasets like KonIQ-10k and BID, unrelated to COCO or Flickr30k. MIBench includes VrR-VG,
which partially overlaps with COCO.

Although a few benchmarks partially overlap with COCO or Flickr30k, we argue that this does not
compromise evaluation fairness for two reasons. First, our main baseline MIA-DPO is also trained
on LLaVA-23K, which uses COCO images, placing all methods on comparable footing. Second, our
DPO training is designed for image-caption preference alignment rather than question answering.
Since our model is never exposed to multi-image QA or instruction tasks during training, performance
gains cannot be attributed to direct data memorization. Together, these considerations support the
integrity and fairness of our evaluation protocol, even in the presence of partial dataset overlap.

B Benchmark Sources

B.1 More Details on the Construction of Context-AMBER-1K

We design a caption generation task as a proxy to systematically evaluate MLLMs’ multi-image
understanding, identifying three fundamental hallucination types—Context Omission, Context
Conflation, and Detail Misinterpretation—that critically degrade model performance. To en-
able this evaluation, we construct Context-AMBER-1K by systematically concatenating im-
ages from the single-image AMBER dataset [37] into sequences of two types: short-context se-
quences with 4 images and long-context sequences with 8 images. Each input is paired with
the prompt: “Please sequentially describe each of the images shown above. Use
the format: For Image *:<description>.”.

To evaluate Detail Misinterpretation, we employ three established metrics: (a) CHAIR [36];
(b) Response-level hallucination rate (Hal); and (c) Cognition-based hallucination (Cog). Each
generated caption is matched to its corresponding image using regular expressions to extract per-
image descriptions. We then compute hallucination scores for each image separately and average
these scores across the entire image sequence. To assess Context Omission and Context Conflation,
we introduce two rule-based penalization strategies:

(1) For context omission, if fewer than N captions are generated (e.g., the response ends prema-
turely at {For Image N-1: <caption N-1>}), we explicitly pad the output to {For Image N:
<caption N-1>}) to maintain a consistent structure. Missing or incomplete captions are heavily
penalized. Additionally, we introduce the (d) Sequence Coverage Rate (SCover), a metric that
evaluates caption completeness across image sequences and quantifies the degree of context omission.

(2) For context conflation, we include the keyword “sequentially” in the prompt to encourage
models to describe images in order. If the model cannot clearly associate each description with its cor-
responding image (e.g., For Image 1:<caption1>, For Image 3:<caption2>, For Image
2:<caption3>), the resulting hallucination scores will be higher for out-of-order descriptions
compared to their correct GTs, as the mismatch leads to a larger discrepancy.

B.2 Multi-Image Benchmarks

We employ seven multi-image benchmarks—MUIRBench [42], MIRB [68], BLINK [69], Mantis-
Eval [44], NLVR2 [70], Q-Bench2 [71], and MIBench [72]—to holistically evaluate multi-image
reasoning across four key dimensions: co-reference alignment, fine-grained comparison, contextual
reasoning, and temporal understanding.

MUIRBench [42] is a comprehensive benchmark specifically designed to evaluate the robustness of
multimodal large language models (MLLMs) in multi-image understanding scenarios. It comprises
2,600 multiple-choice questions and 11,264 images, averaging 4.3 images per instance. The bench-
mark covers 12 distinct multi-image understanding tasks—including action understanding, diagram
reasoning, geographic comprehension, and visual retrieval—spanning 10 diverse multi-image relation
types such as temporal, narrative, and scene-multiview relations. To ensure both comprehensive-
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ness and robustness, MUIRBench adopts a pairwise design: each standard (answerable) question is
paired with an unanswerable variant with minimal semantic perturbations. This enables fine-grained
assessments of both reasoning capability and abstention behavior.

MIRB [68] is a comprehensive benchmark designed to evaluate vision-language models (VLMs) on
four distinct aspects of multi-image understanding: perception, visual world knowledge, reasoning,
and multi-hop reasoning. It comprises 925 multi-image questions across these categories, averaging
3.78 images per question, with some tasks requiring up to 42 images for complex reasoning. Unlike
prior benchmarks that reuse video frames, MIRB independently sources images from real-world
domains, such as code snippets, sightseeing scenes, food ingredient lists, and arXiv papers, ensuring
diverse and challenging visual contexts. The benchmark includes a wide array of tasks: image
jigsaw reconstruction, object counting, attribute matching (Perception); food label comparison and
geographic recognition (Knowledge); visual analogy, code understanding, 3D scene analysis (Rea-
soning); and synthetic logic chains and citation lookups (Multi-Hop). Each question is formulated to
necessitate reasoning across multiple images rather than from a single image.

MIBench [72] is a large-scale benchmark designed to comprehensively evaluate the fine-grained
multi-image understanding abilities of multimodal large language models (MLLMs). It categorizes
multi-image inputs into three representative scenarios—Multi-Image Instruction (MII), Multimodal
Knowledge-Seeking (MKS), and Multimodal In-Context Learning (MIC)—covering a total of 13
distinct tasks and 13,000 annotated samples. In the MII setting, the model must perform perception,
comparison, and reasoning over multiple images across five tasks: general comparison (GC), subtle
difference (SD), visual referring (VR), temporal reasoning (TR), and logical reasoning (LR). The
MKS scenario evaluates the model’s ability to extract and align information from interleaved image-
text knowledge sources through four tasks: fine-grained visual recognition (FVR), text-rich image
VQA (TRI), vision-linked textual knowledge (VTK), and text-linked visual knowledge (TVK).
Finally, the MIC setting assesses multimodal in-context learning across four tasks, including close-
ended and open-ended VQA, hallucination mitigation, and demo-based task learning.

BLINK [69] tests rapid visual cognition through perceptual similarity, forensic analysis, and spa-
tiotemporal matching. It includes tightly-controlled multi-image tasks such as depth estimation,
object matching, and outlier detection, with an emphasis on speed and perceptual accuracy.

Mantis-Eval [44] introduces 217 multi-image tasks curated for conceptual inference, including
abstract reasoning over physical quantities such as number, size, and weight. It combines both
multiple-choice and open-ended questions, drawing from web-sourced image sets manually organized
into logical visual groupings.

NLVR2 [70] (Natural Language Visual Reasoning) assesses a model’s ability to verify textual
hypotheses against a pair of images. Each sample requires binary classification (True/False) over
whether the provided statement is consistent with both images, making it a canonical test for visual
entailment and compositional reasoning.

Q-Bench2 [71] is a diagnostic benchmark tailored for evaluating visual quality perception and
comparative assessment across image sets. It challenges models to identify subtle visual artifacts,
distortions, or improvements between similar images. Our evaluation is based on the Q-Bench2-A1-
dev subset, which emphasizes multi-image multiple-choice assessments for perceptual judgment.

B.3 Single-Image Benchmarks

We test the model on eight representative single-image benchmarks assess specific multimodal capabil-
ities: (1) Academic/Scientific Reasoning: MMMU [73], MMStar [74], ScienceQA [75], (2) Diagram
Understanding: AI2D [76], (3) Robustness against hallucinations: POPE [77], HallBench [38], (4)
General Multimodal Abilities: MMBench [78], (5) Text Recognition: OCRBench [79]. The results
on this diverse set of benchmarks demonstrate the effectiveness of the proposed method, particularly
in multi-image settings, confirming significant performance improvements.

MMMU [73] (Massive Multimodal Multitask Understanding) includes over 10k university-level
questions from 30+ disciplines such as physics, medicine, and art. It requires detailed reasoning over
image-text inputs and is designed to evaluate advanced academic-level understanding.

MMStar [74] is a comprehensive diagnostic benchmark covering various sub-tasks such as OCR,
VQA, and caption grounding, offering structured and hierarchical annotations across domains like
natural science, medicine, and design.
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Table 10: Benchmark Sources. We have included detailed information for all the multi-image and
single-image benchmarks tested in the paper in the table.

Setting Models Evaluation Metric Number Source

Multi-Image Benchmark

MUIRBench [42] Multiple Choice 2,600 MUIRBench
MIRB [68] Multiple Choice 925 MIRB
MIBench [72] Multiple Choice 13,000 MIBench
BLINK [69] Multiple Choice 3,807 BLINK
NLVR2 [70] Multiple Choice 6,967 NLVR2
Q-Bench2 [71] Multiple Choice 1,000 Q-Bench2
Mantis-Eval [44] Multiple Choice 217 Mantis-Eval

Single-Image Benchmark

MMStar [74] Multiple Choice 1,500 MMStar
MMMU [73] Multiple Choice 1,050 MMMU
Sci-QA [75] Multiple Choice 4,241 ScienceQA
POPE [77] Yes/No 9,000 POPE
HallBench [38] Yes/No 951 HallusionBench
MMB [78] Multiple Choice 1,164 MMBench
OCR [79] VQA 1,000 OCRBench
AI2D [76] Multiple Choice 3,090 AI2D

ScienceQA [75] contains over 21k science questions aligned with elementary and middle school
curricula, involving images such as diagrams and charts. It tests the model’s capability to perform
science-related visual reasoning in a multimodal format.

AI2D [76] (Allen Institute Diagram) features manually annotated science diagrams with associated
multiple-choice questions. It focuses on assessing the model’s understanding of labeled structures
and their functional roles within the image.

POPE [77] (Position and Object-level Prompt Evaluation) is designed to test a model’s resistance to
hallucinations. It uses minimally perturbed prompts to identify failure cases in positional grounding
and object identification, highlighting model robustness.

HallBench [38] provides a structured framework to measure hallucination frequency and grounding
quality by comparing model outputs with annotated ground truths. It supports fine-grained scoring
across categories such as incorrect object mentions or unsupported claims.

MMBench [78] is a general-purpose evaluation benchmark comprising questions across 11 modalities
including VQA, captioning, OCR, and commonsense reasoning. It uses GPT-4-based grading to
ensure high-fidelity evaluation of answer correctness.

OCRBench [79] specifically targets the model’s capability to recognize and reason about text in
the visual domain, covering a range of document layouts, fonts, and multilingual content with both
exact-match and reasoning-based questions.

C More Experiments

Data Scale Alignment with MIA-DPO. To assess the impact of training size and ensure a fair
comparison with MIA-DPO, we conduct an ablation in Tab. 11 using a similar total number of
preference pairs. Specifically, we randomly sample 13.6k from our 27.3k Context-Level pairs and
combine them with the fixed 14.5k Needle-Level data, resulting in a 28.1k training set—comparable
to MIA-DPO’s 28.9k. Notably, under this matched training data size, our CcDPO still outperforms
MIA-DPO across all benchmarks, demonstrating the effectiveness of our structured, dual-level
supervision. In particular, the reduced-context setting yields better performance on BLINK and
Q-Bench2, suggesting that a relatively higher proportion of needle-level data may benefit fine-grained
perceptual tasks. On the other hand, performance on context-heavy benchmarks drops slightly, likely
due to weaker global context modeling. Overall, training with the full 42k preference set (28.1k
Context-Level + 14.5k Needle-Level) leads to the best average performance. These results highlight
the advantage of high-quality, large-scale supervision, while also revealing a trade-off between
contextual alignment and perceptual precision.
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Table 11: Ablation on training data volume. To match MIA-DPO’s training data size, we down-
sample our Context-Level data to 13.6k while keeping needle-level data fixed. The results reveal a
trade-off between modeling global context and capturing fine-grained details: while reduced Context-
Level data leads to performance drops on most multi-image tasks, benchmarks like BLINK and
Q-Bench2—focused on localized perception—benefit from a higher proportion of needle-level data.

Models Data Size MuirBench MIRB BLINK Mantis NLVR2 MIBench Q-Bench2 Average
LLaVA-OV [32] - 42.5 47.3 51.1 60.4 89.4 73.6 73.8 62.5

+ MIA-DPO [27] 28.9K 41.4 48.0 53.7 60.3 88.2 67.8 74.0 61.9
+ CcDPO (Ours) 28.1K 46.7 51.2 56.5 69.1 90.7 72.1 79.3 66.5
+ CcDPO (Ours) 41.8K 48.6 51.4 55.9 69.6 91.2 75.2 77.6 67.1
∆ - +6.1 +4.1 +4.8 +9.2 +1.8 +1.6 +3.8 +4.6

Ablation of Training Strategies. We investigate whether our multi-stage training strategy—first
training on Context-Level data, followed by Needle-Level supervision—is more effective than a
single-stage approach that mixes both types of data from the beginning. As shown in Tab. 12,
the multi-stage strategy consistently outperforms the mixed-data alternative across benchmarks.

Table 12: Ablation on training strategy. Multi-stage
training outperforms one-stage mixed training.

Strategy MuirBench BLINK Mantis
LLaVA-OV 42.5 51.1 60.4
One-Stage 46.2 55.1 65.4
Multi-Stage 48.5 55.9 69.6

We attribute this improvement to the se-
quential learning structure. In the first
stage, the model learns to capture global
context and image-level coherence through
structured, sequence-aligned supervision.
Once this foundation is established, the sec-
ond stage refines the model’s ability to at-
tend to local, fine-grained visual cues via
region-specific preference optimization. In contrast, the one-stage strategy may dilute the model’s
focus by simultaneously exposing it to competing global and local objectives, making optimization
less efficient. These results suggest that decoupling context modeling and fine-grained grounding
into separate stages can better guide the model toward hierarchical visual reasoning.

D More Observations

As illustrated in Fig. 6, 8, 7, 10, and 11, we present additional qualitative examples of the constructed
preference pairs used in our CcDPO training. These examples cover a range of perturbation types
across both Context-Level and Needle-Level supervision, each designed to target specific failure
modes in multi-image reasoning.

Fig. 6 shows a context-level complete content omission scenario, where the rejected response omits
part of the image sequence. This simulates a context omission error, encouraging the model to favor
complete and coherent descriptions across multiple images.

Fig. 7 demonstrates a context-level partial content omission scenario, where the rejected response
uses overly brief or generic captions. Such examples train the model to prefer rich, fine-grained
visual descriptions that capture meaningful details.

Fig. 8 presents a case of caption swapping, where descriptions are mismatched with image indices.
This context conflation perturbation helps the model learn to correctly associate content with its
corresponding image.

Fig. 9 and Fig. 10 move to the Needle-Level and show a case where region-specific (bbox or point)
captions are mismatched. This encourages the model to distinguish between accurate and inaccurate
local grounding within a given image.

Fig. 11 illustrates the use of contrastive image inputs for the same caption, where one image visually
aligns with the text while the other introduces a subtle contradiction. This visual preference pair
sharpens the model’s ability to resolve ambiguous references through visual evidence alone.

Together, these examples highlight how different types of preference signals are systematically
constructed to improve the model’s ability to reason over sequences, resolve visual references, and
discriminate between subtle semantic mismatches. By explicitly encoding both global and local
reasoning objectives into the supervision data, CcDPO promotes more robust and interpretable
multi-image alignment.
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Chosen: For image 1: The image depicts two horses pulling a carriage on a street. Both 
horses are beautifully decorated, and one of them appears to be wearing chain mail hats. They are 
tethered to the carriage and working in unison to transport it through the street.\n\nThere are 
several people in the scene, all around the horses and carriage. Some of the people are walking 
along the sidewalk, while others may be getting on or off the carriage. A stop sign is located on 
the ride side of the scene, indicating a controlled intersection. \n

For image 2: The scene shows a man on a tennis court ready to serve the tennis ball. He is 
holding a tennis racket in his hand, with the ball positioned above him, preparing for the hit. 
Several spectators surround the court area, attentively watching the man's 
performance.\n\nOther items can be seen around the court, such as a suitcase located on the 
right side and a backpack towards the left. Many of the spectators are focused on the tennis 
player, eagerly anticipating the start of the game. \n

For image 3: The image shows a group of people wearing wet suits at a beach, all carrying 
surfboards under their arms while in the water. Some surfers are farther out in the water, while 
one person can be seen walking towards the water with their board. \n\nIn the background, 
multiple airplanes are flying in the sky, and a small boat is noticeable near the middle of the scene. 
The bodyboarders seem to be having a great time enjoying their water activities, with the 
presence of clouds contributing to the beach atmosphere. \n

For image 4: The image is of a crowded beach on a clear day with a blue sky. There are numerous 
people enjoying their time by the ocean, some standing or walking around, while others have set up 
colorful umbrellas and chairs to relax on the beach. \n\nMany large umbrellas are spread along 
the shoreline near the water, providing shade for beachgoers, and brightening up the scene with 
their vibrant colors. A variety of chairs can be found in the area, some near the umbrellas and 
others scattered across the beach. \n\nA few surfboards and handbags are also visible, 
indicating that people are likely engaging in water activities and have brought personal belongings 
for their day at the beach.
 

Rejected: For image 1: The image depicts two horses pulling a carriage on a 
street. Both horses are beautifully decorated, and one of them appears to be 
wearing chain mail hats. They are tethered to the carriage and working in 
unison to transport it through the street.\n\nThere are several people in the 
scene, all around the horses and carriage. Some of the people are walking 
along the sidewalk, while others may be getting on or off the carriage. A stop 
sign is located on the ride side of the scene, indicating a controlled 
intersection. \n

For image 4: The image is of a crowded beach on a clear day with a blue sky. 
There are numerous people enjoying their time by the ocean, some standing or 
walking around, while others have set up colorful umbrellas and chairs to relax 
on the beach. \n\nMany large umbrellas are spread along the shoreline near 
the water, providing shade for beachgoers, and brightening up the scene with 
their vibrant colors. A variety of chairs can be found in the area, some near 
the umbrellas and others scattered across the beach. \n\nA few surfboards 
and handbags are also visible, indicating that people are likely engaging in 
water activities and have brought personal belongings for their day at the 
beach.
 
 

Question: What is this photo about?<image><image><image><image>

Figure 6: Example of Context-Level preference pair with truncation perturbation (Context Omission).
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Chosen: For image 1: The image features a large group of people gathered at 
a sandy beach, flying various kites in the cloudy sky. There are more than ten 
people visible in the scene, dispersed throughout the beach area. The kites 
come in assorted shapes and sizes, with some resembling squid and octopus wind 
streamers soaring above the crowd. \n\nThere are also multiple chairs placed in 
the scene, accommodating those who want to take a break from kite flying or 
simply enjoy the spectacle. Additionally, a few handbags are lying on the beach, 
close to their respective owners. \n

For image 2: In the image, a woman is standing outside near a curb with her 
luggage. She has her hand on her hip, looking confident or perhaps waiting for 
someone. Her luggage consists of a suitcase next to her and a handbag placed 
closer to her. \n\nThe scene appears to be near an airport or a drop-off/pick-
up area, with several cars parked or driving nearby. A bench is located on the 
far right of the scene, commonly found at such locations. Additionally, there 
are multiple other people and various sized handbags and suitcases spotted in 
the area, indicating that this is a bustling and busy place for travelers. \n

For image 3: The image features a man inside a convenience store or 
restaurant, in the process of placing a hot dog in a bun. He is surrounded by an 
assortment of hot dogs in various positions, indicating the convenience store or 
restaurant has a wide selection of hot dogs for customers to choose from. The 
man seems focused on preparing his chosen hot dog for consumption. \n

For image 4: A woman is standing on stage, addressing her audience with a 
microphone. She is wearing a white and red outfit, and there is a large black 
and white picture in the background. The woman appears to be giving a lecture 
or making a presentation to her students or a diverse audience.\n\nThere are 
several people scattered throughout the image, indicating a sizeable gathering 
listening to the woman's lecture. In the vicinity, various cars are parked outside 
the venue, some with a bit of distance between them. There is even a truck 
parked further out near some other vehicles. Additionally, there is a clock 
visible high up on a wall.",
 

Question: What is this photo about?<image><image><image><image>

Rejected:  For image 1: Crowds of people are at the beach with squid and 
octopus wind streamers above. 

For image 2: A woman standing at an airport next to luggage. 

For image 3: The man is at the convenience store selecting a hotdog.

For image 4: The woman is speaking to her audience on stage. ",

Figure 7: Example of Context-Level preference pair with caption shortening perturbation (Context
Omission).
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Chosen: For image 1: The image showcases a bathroom illuminated by a 
stained glass window, with a white bathtub located next to a stone wall. The 
room features stone walls and floors, giving the bathroom a rustic feel.\n\nIn 
the bathroom, a sink is situated along the wall, while a wooden chair is placed in 
the foreground. Several bottles and cups can also be found near the sink, likely 
containing bathroom essentials, such as shampoo, soap, and other toiletries. \n

For image 2: The living room is elegantly arranged with old-fashioned, antique 
furniture and features exquisite details in the woodwork. There is an ornate 
couch situated on the left side of the room, and several antique style chairs are 
placed around a dining table. The parlor features an oriental rug, adding an 
extra layer of charm to the room.\n\nThe living room is also adorned with 
various decorations such as multiple vases and a potted plant, which accentuate 
the antique atmosphere. 

For image 3: In the image, a group of people, including both men and women, is 
gathered in a park flying kites. Among them, two people are prominently seen 
flying a red kite in the field, possibly running to keep it airborne. The audience 
of onlookers is spread out in the park, watching and enjoying the kite-flying 
activities.\n\nSome chairs are placed around the park for people to sit and 
relax. Additionally, there are a few traffic lights visible, indicating that the 
park is likely situated near a road or a busy area.
 

Question: What is this photo about?<image><image><image>

Rejected: For image 1: The image showcases a bathroom illuminated by a 
stained glass window, with a white bathtub located next to a stone wall. The 
room features stone walls and floors, giving the bathroom a rustic feel.\n\nIn 
the bathroom, a sink is situated along the wall, while a wooden chair is placed in 
the foreground. Several bottles and cups can also be found near the sink, likely 
containing bathroom essentials, such as shampoo, soap, and other toiletries. \n

For image 2: In the image, a group of people, including both men and women, is 
gathered in a park flying kites. Among them, two people are prominently seen 
flying a red kite in the field, possibly running to keep it airborne. The audience 
of onlookers is spread out in the park, watching and enjoying the kite-flying 
activities.\n\nSome chairs are placed around the park for people to sit and 
relax. Additionally, there are a few traffic lights visible, indicating that the 
park is likely situated near a road or a busy area.

For image 3: The living room is elegantly arranged with old-fashioned, antique 
furniture and features exquisite details in the woodwork. There is an ornate 
couch situated on the left side of the room, and several antique style chairs are 
placed around a dining table. The parlor features an oriental rug, adding an 
extra layer of charm to the room.\n\nThe living room is also adorned with 
various decorations such as multiple vases and a potted plant, which accentuate 
the antique atmosphere.  

Figure 8: Example of Context-Level preference pair with swapping perturbation (Context Conflation).
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Chosen: For the marked areas of image 1: A large commercial-grade 
stove crawls across a significant section of the kitchen, sparking with 
arrays of burners. Numerous knobs dot the front, lending a look of 
complexity and functionality to the appliance. \n

For the marked areas of image 2: On the far right of the image, 
there's a notably round, possibly teardrop-shaped, vase. This vase 
seems to be the bulkiest among all, being referred to as the 'fat one'. 
It is situated in front of some objects which appear to be red. \n

For the marked areas of image 3: An arm wearing a purple sleeve is 
seen in the top right corner of the image, with a hand gripping a fork 
poised to cut into some food. \n

For the marked areas of image 4: A tall, lush potted plant can be 
observed amidst a setting of a white building. This plant, which could be 
described as a bush or large shrub, is positioned between green and red 
signs. It appears as a significant green element between these signs, 
contributing to the natural allure of the scene.
 

Question:    <image><image><image><image>
Please provide a detailed description of the marked areas in each image. The 

marked areas are indicated by a green rectangle with a 'REF' label around it.",

Rejected: For the marked areas of image 1: The right part of a stainless-
steel oven door is visible in the corner of the image. It almost seems cut-off 
from the frame and includes a sturdy handle, only partially seen due to 
positioning. \n

For the marked areas of image 2: At the center of the image, there's a blue 
vase, distinctively sandwiched between two other vases. Its location in the very 
center of the image makes it a reference point, much like '12 noon' on a clock. 
\n

For the marked areas of image 3: A woman in a grey shirt is seen at the top 
of the image with her left hand gracefully placed on a sandwich. She garners 
further attention due to the shiny ring on her finger, indicating her fidelity to 
her husband. \n

For the marked areas of image 4: On the bottom left, there's a noticeably 
yellowish-green bush, planted in a pot. It's positioned interestingly, partially 
covering a blue sign and situated next to a sign indicating 'Moulin Hotel'. The 
position and color of this bush add an element of intrigue and a splash of green 
to the urban scene.

Figure 9: Example of Needle-Level preference pair with bbox region mismatches perturbation (Detail
Misinterpret).
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Chosen: For the marked point of image 1: The region shows a segment of a 
baseball field, focusing on the batter's area by home plate. Visible are players 
in uniforms engaged in the game, with one in stance to bat and a catcher and 
umpire in position behind him. The dirt-covered ground, home plate, and the 
players' equipment, like the batter's helmet, are prominent. \n

For the marked point of image 2: This region shows a commercial airplane tail 
with distinctive circular branding. The aircraft is stationary on the tarmac, and 
the tail appears prominently against a cloudy sky. \n

For the marked point of image 3: This is an image of a zebra positioned in 
profile, grazing on the ground. It is a full-grown adult with characteristic black 
and white striped fur. The mark is placed near the upper region of the zebra's 
body, close to the base of its neck. This particular stripe pattern is unique to 
each individual zebra, similar to a human fingerprint. The immediate area around 
the mark shows the zebra's mane, which consists of short, erect fur that 
follows along the neck's curve. \n

For the marked point of image 4: A notepad likely containing handwritten 
notes or drawings, surrounded by creative or writing utensils.

Question:<image><image><image><image>Please provide a detailed 
description of the marked point in each image. The marked points are indicated 

by a red hollow circle with a 'REF' label positioned above the circle.

Rejected: For the marked point of image 1: This is a display of a large, 
horizontal electronic advertisement board located at the edge of the stands in 
a baseball stadium, showing a commercial message or sponsorship. The board 
appears to be illuminated and is part of the stadium's infrastructure, meant for 
the audience's viewing. \n

For the marked point of image 2: Focus is on the wingtip of an airplane, 
showing the curved end and navigation lights. The wing is against a backdrop of 
the sky ranging from pale to darker shades, possibly indicating cloudy weather. 

For the marked point of image 3: This is an image of a zebra positioned in 
profile, grazing on the ground. It is a full-grown adult with characteristic black 
and white striped fur. The mark is placed near the upper region of the zebra's 
body, close to the base of its neck. This particular stripe pattern is unique to 
each individual zebra, similar to a human fingerprint. The immediate area around 
the mark shows the zebra's mane, which consists of short, erect fur that 
follows along the neck's curve. \n

For the marked point of image 4: A small, possibly decorative bowl that may 
be utilized for holding various small items or as a decor piece itself.

Figure 10: Example of Needle-Level preference pair with point region mismatches perturbation
(Detail Misinterpret).
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Chosen: For image 1, The child is dressed in red and gray while 
opening a gray and white striped gift, sitting on a man's lap who is 
wearing a blue shirt, and together they are positioned in front of a 
window and a small Christmas tree.\n

For image 2, The thinner woman is positioned to the right of the 
person in the black shirt.\n

For image 3, The elderly Asian man with white hair is to the right of 
the Chinese characters.\n

For image 4, There are 5 people and 6 costumes.
 

Question:  <image><image><image><image>\n
For image 1, what can you tell me about the colors of the child's clothing 

while they're opening the gift, and can you describe the scene around 
them?\n For image 2, how is the thinner woman positioned in relation to 

the person in the black shirt in the image?\n For image 3, what can you tell 
me about the position of the elderly Asian man with white hair in relation to 
the Chinese characters in the image? Is he on the left or the right?\n For 
image 4, how many people are there in the image, and how many costumes 

can you see?

Chosen 
Images

Rejected 
Images

Figure 11: Example of Needle-Level preference pair with image contrastive perturbation (Detail
Misinterpret).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the introduction, I clearly outline the key challenges in multi-image under-
standing and present CcDPO as a two-level solution that directly addresses these issues. I de-
scribe core methods—structured captioning, perturbation-based training, and region-focused
prompts—and introduce the MultiScope-42k dataset to support them. These contributions
align closely with the claims, accurately reflecting the scope of my work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss that CcDPO is designed for general multi-image reasoning and
does not explicitly model temporally correlated inputs like videos, which may limit its
performance in such scenarios. Additionally, due to limited OCR-focused data in our
training set, the model may underperform on text-heavy tasks requiring fine-grained text
recognition.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed implementation settings, including model architectures,
training stages, learning rates, loss formulations (Eq.1, Eq.2), optimization strategies (LoRA
and full-parameter tuning), and hyperparameters (e.g., temperature β, loss weight γ). I
also clearly state the number and type of GPUs used. The evaluation protocol is well-
specified, listing all benchmarks and their assessed capabilities. These details are sufficient
to reproduce the main experimental results and validate the core claims, even if code and
data are not directly released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided open GitHub code and sufficient reproduction instructions.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify the training procedure, learning rates, optimizer settings (LoRA and
full fine-tuning), key hyperparameters (β, γ), and hardware setup. Evaluation is conducted
on standard benchmarks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: We report key results with sufficient experimental comparisons to support our
main claims. While we do not provide detailed error bars in all tables or figures, the results
are consistent across benchmarks and training setups, and variability was assessed during
model development to ensure robustness.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the number and type of GPUs used (8 GPUs with 90GB memory
each).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All authors have reviewed and confirmed that the research conducted in the
paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work improves the reliability of multi-modal large language models in
multi-image reasoning tasks by reducing hallucinations and enhancing visual grounding.
This has positive societal impact in applications requiring accurate visual understanding,
such as education, medical imaging, and scientific analysis. However, more powerful image
understanding capabilities may also raise risks related to surveillance, privacy invasion, or
misuse in generating misleading content. We leave a deeper discussion of these impacts to
future work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work focuses on reducing hallucinations and improving grounding in
multi-image understanding tasks, which poses relatively low risk of misuse. As such, we
do not introduce high-risk components such as large-scale generative models or scraped
dataset.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All benchmark datasets and compared methods are properly cited with appro-
priate references, and their licenses and use terms are respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce a new dataset, MultiScope-42k, which is automatically generated
and used to support our two-level preference optimization framework. The dataset construc-
tion process is thoroughly documented in the paper, including how chosen and rejected
pairs are created at both the context and needle levels. We provide clear descriptions of the
generation pipeline, perturbation strategies, and supervision signals, ensuring transparency
and reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper relies solely on existing publicly available benchmark datasets for
both training and evaluation. It does not involve any crowdsourcing, user studies, or research
with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were directly involved in this research as we used existing
datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method in this research builds on existing multi-modal large language
models (e.g., Qwen2-VL, LLaVA-OV) as backbones but does not introduce new LLM
architectures or non-standard modifications. Our contribution lies in the training framework
(CcDPO) and dataset construction, not in the development or adaptation of the LLMs
themselves.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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