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ABSTRACT

The machine learning community is increasingly recognizing the importance of
fostering trust and safety in modern generative AI (GenAI) models. We posit
machine unlearning (MU) as a crucial foundation for developing safe, secure,
and trustworthy GenAI models. Traditional MU methods often rely on stringent
assumptions and require access to real data. This paper introduces Score Forgetting
Distillation (SFD), an innovative MU approach that promotes the forgetting of
undesirable information in diffusion models by aligning the conditional scores of
“unsafe” classes or concepts with those of “safe” ones. To eliminate the need for
real data, our SFD framework incorporates a score-based MU loss into the score
distillation objective of a pretrained diffusion model. This serves as a regularization
term that preserves desired generation capabilities while enabling the production
of synthetic data through a one-step generator. Our experiments on pretrained
label-conditional and text-to-image diffusion models demonstrate that our method
effectively accelerates the forgetting of target classes or concepts during generation,
while preserving the quality of other classes or concepts. This unlearned and
distilled diffusion not only pioneers a novel concept in MU but also accelerates the
generation speed of diffusion models. Our experiments and studies on a range of
diffusion models and datasets confirm that our approach is generalizable, effective,
and advantageous for MU in diffusion models.
Warning: This paper contains sexually explicit imagery, discussions of pornogra-
phy, racially-charged terminology, and other content that some readers may find
disturbing, distressing, and/or offensive.

1 INTRODUCTION

Diffusion models, also known as score-based generative models (Sohl-Dickstein et al., 2015; Song
and Ermon, 2019; Ho et al., 2020; Dhariwal and Nichol, 2021; Karras et al., 2022), have emerged

(a) Brad Pitt (b) Angelina Jolie

Figure 1: Celebrity forgetting effects of two celebrities, i.e., “Brad Pitt” and “Angelina Jolie.”
Each column represents the images generated from the same text prompt on the top and the same
random seed (initial noise) by SFD checkpoints at 0,5,10,25,50,100 thousands images (#kimgs) seen.
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as the leading choice for generative modeling of high-dimensional data. These models are widely
celebrated for their ability to produce high-quality, diverse, and photorealistic images (Nichol et al.,
2022; Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022; Podell et al., 2024; Zheng
et al., 2024). However, their capacity to memorize and reproduce specific images and concepts
from training datasets raises significant privacy and safety concerns. Moreover, they are susceptible
to poisoning attacks, enabling the generation of targeted images with embedded triggers, posing
substantial security risks (Rando et al., 2022; Chen et al., 2023b).

To address these challenges, we introduce Score Forgetting Distillation (SFD), a novel framework
designed to efficiently mitigate the influence of specific characteristics in data points on pre-trained
diffusion models. This framework is a key part of the broader domain of Machine Unlearning (MU),
which has evolved significantly to address core issues in trustworthy machine learning (Lowd and
Meek, 2005; Narayanan and Shmatikov, 2008; Abadi et al., 2016). Originating from compliance
needs with data protection regulations such as the “right to be forgotten” (Hoofnagle et al., 2019),
MU has broadened its scope to include applications in diffusion modeling across various domains
like computer vision and content generation (Gandikota et al., 2023; Fan et al., 2024; Heng and Soh,
2024). Additionally, MU aims to promote model fairness (Oesterling et al., 2024), refine pre-training
methodologies (Jain et al., 2023; Jia et al., 2023), and reduce the generation of inappropriate content
(Gandikota et al., 2023). The development of SFD is aligned with these objectives, providing a
strategic approach to mitigate the potential risks and reduce the high generation costs associated with
diffusion models, thereby advancing the field of trustworthy machine learning.

MU methods are generally categorized into two types: exact MU and approximate MU. Exact MU
entails creating a model that behaves as if sensitive data had never been part of the training set (Cao
and Yang, 2015; Bourtoule et al., 2021). This process requires the unlearned model to be identical in
distribution to a model retrained without the sensitive data, both in terms of model weights and output
behavior. In contrast, approximate MU does not seek an exact match between the unlearned model
and a retrained model. Instead, it aims to approximate how closely the output distributions of the
two models align after the unlearning process. A prominent strategy in approximate MU utilizes the
principles of differential privacy (Dwork, 2006). For instance, Guo et al. (2019) introduced a certified
removal technique that prevents adversaries from extracting information about removed training data,
offering a theoretical guarantee of data privacy. However, these approaches typically necessitate
retraining the model from scratch, which can be computationally intensive and require access to the
original training dataset. Efficient and stable unlearning has become crucial in MU. Techniques like
the influence functions (Warnecke et al., 2021; Izzo et al., 2021), selective forgetting (Golatkar et al.,
2020), weight-based pruning (Liu et al., 2024), and gradient-based saliency (Fan et al., 2024) have
been explored, though they often suffer from performance degradation or restrictive assumptions
(Becker and Liebig, 2022). These methods are primarily applied to MU for image classification tasks
and do not adequately address the rapid forgetting and unlearning required for data generation tasks.

Given the prominence of diffusion models, there is a growing need to develop MU techniques
that specifically cater to these models, ensuring efficient unlearning while maintaining generation
capabilities (Gandikota et al., 2023; Fan et al., 2024; Heng and Soh, 2024). Our SFD framework
efficiently distills the knowledge from a pre-trained diffusion model by optimizing two learnable
modules—a generator network and a score network—guided by the frozen pre-trained model itself.
The score network is trained to optimize the score associated with the generator by minimizing a
score distillation loss, which aims to match the conditional scores of the class to forget and the classes
to remember with those of the pre-trained model. The generator network learns to produce examples
that are “indistinguishable” by the pre-trained score network and fake score network in terms of score
predictions, utilizing a model-based cross-class score distillation loss.

This dual functionality facilitates both MU and rapid sampling, effectively bridging the gap in
generation speed between diffusion-based models and one-step counterparts such as GANs and VAEs.
The forgetting process is seamlessly integrated into the model distillation, where we concurrently
optimize the score-matching loss and the forgetting loss. This integrated approach offers a robust
framework for achieving effective unlearning and fast generation, thereby providing a comprehensive
solution for enhancing the efficiency and trustworthiness of diffusion-based generative modeling.

Our approach’s effectiveness is demonstrated through both class and concept forgetting tasks for dif-
fusion models in image generation. The experiments conducted on class-conditional diffusion models
pretrained on CIFAR-10 and STL-10 demonstrate that SFD effectively erases the target class while
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Figure 2: Overview of score forgetting distillation (SFD). Some notations are labeled along with
corresponding components. ‘Snowflake’ refers to the frozen (non-trainable), ‘Fire’ refers to the
trainable, and ‘Combine’ refers to combining operation on input losses by arithmetic addition
according to predefined weights.
preserving the image generation quality for other classes. We also present extensive ablation studies
that support the robustness and efficiency of our method, which achieves competitive performance on
the key metric for class forgetting, namely Unlearning Accuracy (UA), and significantly improves
several metrics for preserving generative quality and efficiency, including Fréchet Inception Distance
(FID), Inception Score (IS), Precision and Recall, and generation speed measured by the number of
function evaluations (NFEs).

Additionally, experiments conducted on Stable Diffusion reveal that SFD successfully erases concepts
associated with specific text inputs. Our method outperforms the baselines in both celebrity forgetting
and NSFW-concept forgetting tasks. Moreover, because our method operates in a completely data-
free manner, it significantly reduces the privacy risks associated with the MU fine-tuning process.
The development of SFD benefits from related works on MU, distribution matching, score matching,
acceleration methods for diffusion sampling, and data-free diffusion distillation. A detailed review of
these topics is provided in Appendix A.

Our key contributions are:

• Introducing SFD, a pioneering data-free approach for MU that utilizes cross-class score distilla-
tion in diffusion models to achieve not only effective forgetting but also fast one-step generation.

• Developing a robust and efficient technique to distill score-based generative models into one-step
generators, incorporating the MU loss as a regularization element within the model-based score
distillation framework to optimize both distillation and forgetting simultaneously.

• Validating the effectiveness of our method with experiments on not only class-conditional
diffusion models based on DDPM and EDM, but also text-to-image diffusion models based
on Stable Diffusion, marking the first instance of accelerated forgetting in machine unlearning
for diffusion models. This achievement demonstrates the potential of our method for broader
applications and sets the stage for future advancements in the field.

2 METHOD

Diffusion models are celebrated for their superior performance in generating high-quality and diverse
samples. However, their robust capabilities also introduce challenges, particularly the risk of misuse
in generating inappropriate content. This concern highlights the ethical implications and potential
negative impacts of their application. Additionally, these models have a significant drawback: slow
sampling speeds. This inefficiency becomes particularly problematic in downstream tasks that require
finetuning on synthetic data generated by these models. When access to real data is not feasible, the
task of preparing a sufficiently large synthetic dataset can already become computationally prohibitive
(Yin et al., 2024). This issue is especially acute in the context of MU and image generation,
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where access to real data often raises privacy concerns, making reliance on synthetic data crucial.
Consequently, the slow sampling rate of diffusion models presents a critical bottleneck, necessitating
improvements to enable effective data-free MU operations.

In this section, we introduce SFD, a principled and data-free approach designed to address the MU
problem while simultaneously achieving fast sampling for diffusion models. Building on recent
advancements in data-free diffusion distillation for one-step generation (Luo et al., 2023; Zhou et al.,
2024b), we conceptualize MU in diffusion models as a problem of MU-regularized score distillation.

2.1 PROBLEM DEFINITION AND NOTATIONS

Before diving into the specific MU problem, we will first establish the essential concepts and
notations in diffusion modeling: A diffusion model corrupts its data x ∼ pdata(x | c) during the
forward diffusion process at time t as zt = atx + σtϵt, where ϵt ∼ N (0, 1), c represents the
given condition such as a label or text, and at and σt are diffusion scheduling parameters. The
goal of pretraining a diffusion model is to obtain an optimal score estimator sϕ(zt, c, t) such that
sϕ(zt, c, t) = ∇zt ln pdata(zt | c). Let xϕ(zt, c, t) be the optimal conditional mean estimator such that
for xϕ(zt, c, t) = E[x | zt, c, t]. Applying Tweedie’s formula (Robbins, 1992; Efron, 2011) in the
context of diffusion modeling (Luo, 2022; Chung et al., 2023; Zhou et al., 2024b), the optimal score
and conditional mean estimators, sϕ and xϕ, for the training data are related as follows:

sϕ(zt, c, t) =
atxϕ(zt,c,t)−zt

σ2
t

, xϕ(zt, c, t) =
zt+σ

2
t sϕ(zt,c,t)
at

. (1)

With this optimal score estimator, we can construct a corresponding reverse diffusion process,
enabling us to approximately sample from the data distribution through numerical discretization
along the time horizon (Anderson, 1982; Song et al., 2020).

A distilled one-step diffusion model is a one-step generator capable of producing samples from
the generative distribution of a pretrained model in a single step. The generation process for this
one-step generator is defined as gθ(n, c), where n ∼ N (0, I). Denote the generative distribution of x
given class c as Dθ,c, and the optimal score estimator corresponding to the one-step generator gθ as
sψ∗(θ)(zt, c, t). The same as how xϕ and sϕ is related in Eq. 1, we have

sψ∗(θ)(zt, c, t) =
atxψ∗(θ)(zt,c,t)−zt

σ2
t

. (2)

For class forgetting in class-conditional diffusion models, our goal is to unlearn a specific class by
overriding it with another class while minimizing any negative impact on the remaining classes. We
denote the class to forget as cf , the remaining classes (classes other than cf ) as Cr := {cr | cr ̸= cf},
and the class for overriding cf as co ∈ Cr. The distribution of the remaining classes is denoted as Dr
over the set Cr, the sampling distribution of all classes after unlearning as Ds, and the conditional
distribution of samples from class c generated by gθ as Dθ,c := gθ(N (0, I), c). The class forgetting
problem can be solved by aligning the model distribution of x given cf under the generator gθ with
the original data distribution of x given co, and by simultaneously ensuring that the distributions of
x given cr under both the model and the original data are matched. Specifically, our objective is to
forget cf and override it with co by aligning the distributions such that Dθ,cf

d
= pdata(x | co), while

preserving the remaining classes by ensuring Dθ,cr
d
= pdata(x | cr), ∀cr ∈ Cr.

In the problem setting of concept forgetting in text-to-image diffusion models, our goal is to unlearn
the concepts associated with specific keywords, such as “Brad Pitt,” by substituting them with more
generic terms like “a middle aged man,” as illustrated in Figure 1. This process aims to minimize any
negative impact on the generation quality of other concepts, thereby maintaining the overall integrity
and diversity of the images generated under text guidance.

2.2 SCORE FORGETTING DISTILLATION

In the problem of class unlearning, as described in Section 2.1, our goal is to align the conditional
distributions of both the forgetting class and the remaining classes with those that would exist if the
model had been retrained without the data from the forgetting class. By adapting the concept of
data-free score distillation to the MU challenge, we aim to achieve this alignment using our proposed
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data-free MU process, SFD. Our method eliminates the need for access to the original training data
and accelerates synthetic data sampling, effectively enabling the forgetting of a specific class while
preserving the original generative capabilities for the other classes.

Specifically, for two arbitrary classes c1 and c2, we define a Score Forgetting Distillation (SFD)
loss over the forward diffusion process of one-step generated fake data. The following analysis also
applies when c1 and c2 refer to concepts. We denote zt, t, x ∼ Dθ,c as a random sample generated as

zt = atx+ σtϵt, ϵt ∼ N (0, I), t ∼ Unif[tmin, tmax], x = gθ(n, c), n ∼ N (0, I).

Taking the expectation over fake data generated by the distilled one-step generation model gθ under
class c2 and subsequently corrupted through the forward diffusion process, we formulate this loss as:

Lsfd(θ;ϕ, c1, c2) = Ezt,t,x∼Dθ,c2

[
ωt∥sϕ(zt, c1, t)− sψ∗(θ)(zt, c2, t)∥2

]
, (3)

where ωt > 0 is a re-weighting function, and ψ∗(θ) represents the optimal solution to the model-based
explicit SM (MESM) loss, which can be expressed as

Lmesm(ψ; θ, c) = Ezt,t,x∼Dθ,c
[
γt∥sψ(zt, c)−∇x ln pθ(zt | c)∥22

]
, (4)

where γt > 0 is a re-weighting function. In practice, the lack of the access to ∇x ln pθ(zt | c) makes
Eq. 4 intractable. However, we can alternatively optimize a denoising SM loss (Vincent, 2011) as

Ldsm(ψ; θ, c) = Ezt,t,x∼Dθ,c

[
γt
a2t
σ4
t
∥xψ(zt, c)− x∥22

]
, (5)

which admits the same optimal solution as Eq. 4 and provides an estimation of the score of the
generator gθ at different noise levels. This setup allows us to tailor the SFD loss in Eq. 3 specifically for
different class dynamics. When c1 = c2 = c, the SFD loss facilitates class-specific score distillation,
optimizing the score to closely model that of the generator within the same class. Conversely, setting
c1 ̸= c2 configures the SFD loss for score overriding, replacing the score sψ∗(θ) for class c2 with the
score sϕ for class c1. This approach effectively addresses the dual objectives of class forgetting and
targeted score modification, introducing two distinct losses to manage these scenarios:

• Distillation Loss: Enhances fidelity within a class by refining the generator’s score to closely
match the true distribution of the class:

Lsfd(θ;ϕ, cr, cr) = Ezt,t,x∼Dθ,cr
(
ωt∥sϕ(zt, cr, t)− sψ∗(θ)(zt, cr, t)∥2

)
. (6)

• Forgetting Loss: Alters the generator’s score to reflect characteristics of a different class,
facilitating the effective forgetting of the original class attributes:

Lsfd(θ;ϕ, co, cf ) = Ezt,t,x∼Dθ,cf

(
ωt∥sϕ(zt, co, t)− sψ∗(θ)(zt, cf , t)∥2

)
. (7)

To summarize our approach, we now present the entire formulation as follows:

min
θ

Ecr∼CrLsfd(θ;ϕ, cr, cr), s.t. ψ∗(θ) = argmin
ψ

Ec∼CsLdsm(ψ; θ, c), Lsfd(θ;ϕ, co, cf ) ≤ C0.

This formulation corresponds to a bi-level optimization problem (Ye et al., 1997; Hong et al., 2023;
Shen et al., 2023), subject to an additional forgetting-based constraint. Solving this problem directly is
challenging, so we initially relax the constraint specified by Lsfd in the above equation by integrating
it into the distillation objective as an additional MU regularization term:

min
θ

Ecr∼CrλLsfd(θ;ϕ, cr, cr) + µLsfd(θ;ϕ, co, cf ), s.t. ψ∗(θ) = argmin
ψ

Ec∼CsLdsm(ψ; θ, c),

where λ and µ are tunable constants that serve as control knobs to balance the distillation of the
remaining classes and the unlearning of the target class. Furthermore, we implement an alternating
update strategy between θ and ψ. This approach mitigates the need to obtain the optimal score estima-
tor ψ∗(θ) for each θ, simplifying the computational process. We outline a practical implementation
of this strategy in Algorithm 1. Specifically, generalizing the derivation in Zhou et al. (2024b), we
have the following Lemma, whose proof is provided in Appendix D:
Lemma 1. The Score Forgetting Distillation (SFD) loss in Eq. 3 can be equivalently expressed as

Lsfd(θ;ϕ, c1, c2) = Ezt,t,x∼Dθ,c2

[
ωt

a2t
σ4
t
(xϕ(zt, c1, t)− xψ∗(θ)(zt, c2, t))

T (xϕ(zt, c1, t)− x)
]
. (8)
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A biased loss for θ can be derived by replacing ψ∗(θ) in either Eq. 3 or Eq. 8 with its SGD-based
approximation ψ, and disregarding the dependency of ψ∗ on θ when computing the gradient of θ.
Empirical experiments by Zhou et al. (2024b) suggest that in the context of diffusion distillation
without involving unlearning, Eq. 8 can be effective independently, while Eq. 3 may not perform as
expected. This observation leads to a practical approach that involves subtracting Eq. 3 from Eq. 8.
This strategy aims to sidestep detrimental biased gradient directions and potentially compensate for
the overlooked gradient dependency of ψ∗(θ). We implement this approach in practice under the
framework of SFD, defining the loss used in practice as follows:

L̂sfd(θ, ψ;ϕ, c1, c2, α) = (1− α)ωt
a2t
σ4
t
∥xϕ(zt, c1, t)− xψ(zt, c2, t)∥2+ (9)

ωt
a2t
σ4
t
(xϕ(zt, c1, t)− xψ(zt, c2, t))

T (xψ(zt, c2, t)− x), (10)

where α ≥ 0 is some constant that typically set as 1 or 1.2, zt = atx + σtϵt, x ∼ Dθ,c2 , ϵt ∼
N (0, I), t ∼ Unif[tmin, tmax]. In this paper, we follow Yin et al. (2024) and Zhou et al. (2024b) to
set ωt =

σ4
t

a2t

C
∥xϕ(zt,t,c)−x∥1,sg

, where C is the data dimension and “sg” stands for stop gradient.

Similar to Eqs. 6 and 7, we have the following:

Distillation Loss: L̂sfd(θ, ψ;ϕ, cr, cr, α), where zt, t, x ∼ Dθ,cr (11)

Forgetting Loss: L̂sfd(θ, ψ;ϕ, co, cf , α), where zt, t, x ∼ Dθ,cf (12)

where timestep t is omitted for brevity. Intuitively speaking, our algorithm first trains the approximate
score estimator sψ to mimic the score of the generator gθ at different time points t of the forward
diffusion process, and then uses both the pre-trained score estimator and the fake score estimator
across these time points to instruct the generator itself. The alternate updating approach largely
reduces the computational cost of obtaining an optimal score estimator for the generator while
effectively passing an informative learning signal to the generator and helping the generation quality
improve rapidly over time. It is worth noting that the whole training process require neither real data
nor fake data synthesized by reversing the full diffusion process, and a pre-trained score network
of a diffusion model is sufficient to provide proper supervision on distillation as well as machine
unlearning. In other words, our method is data-free.

Table 1: Class forgetting results on CIFAR-10 and STL-10. “SFD” refers to the DDPM model
trained with Score Forgetting Distillation, while “SFD-CFG” refers to the SFD model trained with
classifier-free guidance (as discussed in Section 3.2). UAs that exceed the testing recall rate of the
forgetting class (96.60% for CIFAR-10 and 98.15% for STL-10) are highlighted in yellow.

Dataset Model UA (↑) FID (↓) IS (↑) Precision (↑) Recall (↑) NFEs (↓) Data-free

CIFAR-10

Retrain 98.5 7.94 8.34 0.6418 0.5203 1000 ✘
ESD (Gandikota et al., 2023) 91.21 12.68 9.78 0.7709 0.3848 2000 ✔

SA (Heng and Soh, 2024) 85.80 9.08 - 0.4120 0.7670 2000 ✔
SalUn (Fan et al., 2024) 99.96 11.25 9.41 0.7806 0.3176 2000 ✘

SFD (Ours) 99.64 5.35 9.51 0.6587 0.5471 1 ✔

STL-10

Retrain 97.54 26.52 8.30 0.5573 0.4526 1000 ✘
ESD (Gandikota et al., 2023) 92.01 39.32 10.16 0.5229 0.2898 2000 ✔

SalUn (Fan et al., 2024) 99.31 20.78 10.89 0.5713 0.5415 2000 ✘

SFD (Ours) 99.02 18.82 10.93 0.5543 0.4054 1 ✔
SFD-CFG (Ours) 99.64 15.32 11.46 0.5983 0.3551 1 ✔

3 EXPERIMENTS

In our experiments, we thoroughly evaluate our method for class forgetting in diffusion models
pretrained on two datasets, CIFAR-10 and STL-10, which have been commonly used for evaluating
MU in previous studies. We provide the details of them in Appendix B. We also assess our method
for concept forgetting tasks, such as celebrity forgetting, in text-to-image diffusion models.

Forgetting setups We explore class forgetting in class-conditional image generation tasks using
DDPM (Ho et al., 2020), and investigate concept forgetting in text-to-image generation tasks using
Stable Diffusion (Rombach et al., 2022). Class forgetting aims to prevent class-conditional diffusion
models from generating images of a specified class, while concept forgetting seeks to remove the
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model’s ability to generate images containing specific concepts, such as celebrities or inappropriate
content. Class-conditional and text-to-image sampling are achieved by inputting class labels and
text prompts into the respective diffusion models, with fidelity further enhanced by classifier-free
guidance introduced in Ho and Salimans (2022). Specifically, we approach unlearning by overriding
a class or concept with another that is safe to retain. The class forgetting experiments were conducted
on class-conditional diffusion models pre-trained on CIFAR-10 and STL-10, while the concept for-
getting experiments were conducted on Stable Diffusion, including forgetting celebrities, specifically
American actor Brad Pitt and actress Angelina Jolie, and forgetting a general NSFW (not safe for
work) concept, i.e., nudity. For DDPM baselines, we used the default 1000-step DDPM samplers to
obtain FIDs for samples from the remaining classes, while for SD baselines, we used DDIM samplers
with 50 steps. In contrast, our method requires only a single step for generation, making it 1,000
times faster than the DDPM baselines and 50 times faster in latent sampling than the SD baselines.

Evaluation To quantitatively assess the effectiveness of class forgetting, we primarily focus on
the success rate of forgetting the target class, and the generative capability on classes to retain.
Specifically, we measure the success rate of forgetting by Unlearning Accuracy (UA) employing an
external classifier trained on the original training set, which is essentially the mis-classification rate
of the classifier on the generated samples from the target class. We measure image generation quality
using Fréchet Inception distance (FID) (Heusel et al., 2017) and sample diversity using Inception
scores (IS) (Salimans et al., 2016). Additionally, we report Precision and Recall (Kynkäänniemi
et al., 2019), and number of function evaluations (NFEs) for sampling. Following Fan et al. (2024),
we compute and report generation quality metrics using generated samples, with the full training
set from the remaining classes serving as the reference. For concept forgetting tasks including
celebrity forgetting and “nudity” forgetting, we also provide quantitative evaluations as well as
qualitative comparison. Specifically, we evaluate celebrity forgetting using a off-the-shelf celebrity
face detector, while we assess the MU performance of our “nudity” forgetting model on the I2P
benchmark (https://github.com/ml-research/i2p). Please refer to Appendix B.2 for more details of the
evaluation metrics.

Implementation details Our main implementation of class forgetting experiments is based on
DDPM (Ho et al., 2020), where we utilize the codebase developed by Fan et al. (2024). Additionally,
we implement our method using EDM (Karras et al., 2022) framework and the official codebase
(https://github.com/NVlabs/edm). For concept forgetting experiments, we implement our method
for SD models based on the implementation of Zhou et al. (2024a). We adopt the same model
configuration for both the generator gθ and its score estimation network sψ and initialize the model
weights according to the pre-trained score network sϕ. This type of initialization prepares a good
starting point for SFD.

SFD-Two Stage In addition to initializing both the generator and the fake score network with the pre-
trained score network, we also experimented on a different initialization, i.e., initializing the generator
with a pre-distilled generator model weights. Considering the nature of “first distilling then forgetting,”
we named this variant “SFD-Two Stage.” For this variant specifically, we disabled exponential moving
average (EMA) and adopted a more aggressive regularization with λψ = µψ = λθ = µθ = 1.0. The
rationale behind this configuration was that the first stage distillation would have prepared a solid
foundation for the second stage forgetting, which enables fast forgetting by increasing the weight of
forgetting loss and by further prioritizing it in the second stage. We use Adam optimizer with β1 = 0
and β2 = 0.999 for all the experiments. The base learning rate for both DDPM and EDM models is
set to 10−5, except that we slightly increase the learning rate for sψ when distilling DDPM models.
More details on the hyperparameter settings for the experiments can be found in Table 10.

3.1 EXPERIMENTAL RESULTS

Class forgetting From the empirical results, the proposed method, SFD, can effectively unlearn
unwanted content (e.g., a class of objects) and converge rapidly towards the level of generation quality
of the pre-trained model. Additionally, the models fine-tuned by SFD inherently enables one step
generation. Figure 3 shows that the remaining classes were in fact intact during the MU-regularized
distillation, the generation quality of class 1 to 9 were consistently improving as the number of
generator-synthesized images, which were used by SFD for distillation and MU, went up. The FID
between generated samples and training dataset decreased nearly exponentially fast as is captured by
Figure 4. The forgetting class, on the other hand, was initialized to output airplanes and gradually
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Figure 3: Generated images on CIFAR-10 and STL-10 during the training of SFD. The upper
panel shows 3× 3 grids of generated samples at different time steps, with fixed random seeds and
class labels arranged from 1 to 9 (left to right, top to bottom). The same sequence of random seeds is
used across all grids to ensure consistency. The lower panel illustrates the forgetting process for two
examples from CIFAR-10 and STL-10.

forced to match the assigned class, i.e., the class of automobile. The forgetting effect noticeably took
place between 10k and 20k training steps. From Figure 4, we observe a steady increase of unlearning
accuracy, reflecting the extent to which the generated Class 0 samples can no longer be correctly
identified by the pre-trained image classifier.

On CIFAR-10, we observed that the SFD-Two Stage model (or Two Stage, for short), which involves
first distilling the pre-trained diffusion model with 50,000 steps and then fine-tuning it using the
SFD loss for the same number of steps, exhibited faster forgetting. In Figure 7, we report two
performance metrics, FID and UA, during the unlearning stage, compared with the results from
SFD. The results indicate that SFD consistently outperforms the two-stage approach in both metrics
given sufficient training. Although the two-stage approach started with a lower FID than SFD, its
performance fluctuated and declined over time. The UA initially increased rapidly, peaked, and then
slightly decreased at the end. The gain in UA during the unlearning stage came at the cost of FID. In
contrast, SFD effectively coordinated machine unlearning and distillation to forget specific classes
while retaining the original generative capability for the remaining classes, thereby improving both
FID and UA throughout finetuning and achieving better final results. Nonetheless, the two-stage
approach remains practical, especially when forgetting requirements vary over time or when there
is an urgent need, as it appears more flexible and efficient under such conditions. Specifically, with
SFD-Two Stage, finetuning achieves more than a 10× speedup, delivering competitive results (FID =
5.73, UA = 99.5%) in as few as ∼1.5k steps.

Celebrity forgetting We provide both qualitative and quantitative results of celebrity forgetting
tasks on two selected celebrities, i.e., Brad Pitt and Angelina Jolie, where the concepts to forget
are “bard pitt” and “angelina jolie”, respectively, and the corresponding concepts to override are “a
middle aged man” and “a middle aged woman”, respectively. As is shown in Figure 1 and Table 2,
we showcase the effectiveness of SFD for forgetting certain concepts in text-to-image diffusion
models, such as removing the generative capability of celebrities. For this experiment, we exclude
the previous baseline, SalUn, as the original paper did not evaluate its performance on the celebrity
forgetting task.

“Nudity” forgetting In addition to the celebrity forgetting experiments, we conducted experiments
on a broader concept forgetting task, namely, forgetting “nudity” as a concept. We note that “nudity”
is a broader concept than individuals (e.g., celebrities) and forgetting “nudity” in general is much
more challenging. Therefore, we adopted a slightly different strategy for this task to enhance the
forgetting performance. In particular, we first created a list of 12 common human subjects (see
Table 5) that can be potentially misused for generating “nudity”-related contents and randomly paired
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Figure 4: FID between generated images and
original dataset of remaining classes. The solid
blue line and dot denote the training FIDs and final
FID evaluated at the last checkpoint of one-step
SFD generator; the dotted green line marks the
initial FID of the pre-trained model using 1,000
sampling steps. The solid orange line and dot mark
the training UAs and final UA evaluated at the last
checkpoint of SFD; the dotted orange line marks
the initial UA of the pre-trained model.

Figure 5: Remaining FIDs on different model
architectures. The solid blue and solid orange
bars denote the remaining FID evaluated for pre-
trained DDPM and EDM respectively. The trans-
parent blue and transparent orange bars denote the
remaining FID evaluated at the last training step
for unlearned and distilled diffusion using DDPM
and EDM respectively.

Table 2: Quantitative results of celebrity forgetting of two celebrities, i.e., “Brad Pitt” and
“Angelina Jolie.” Bold values indicate the best score in each column, while underlined values
represent the second-best.

Model
Brad Pitt Angelina Jolie

Prop. GCD (↓) Prop. GCD (↓)w/o Faces (↓) w/o Faces (↓)

SD v1.4 (Rombach et al., 2022) 10.4% 60.6% 11.7% 73.8%
SLD Medium (Schramowski et al., 2023) 14.1% 0.47% 11.9% 3.29%
ESD-x (Gandikota et al., 2023) 34.7% 2.01% 32.6% 3.35%
SA (Heng and Soh, 2024) 5.8% 7.52% 4.4% 7.74%
SFD-Two Stage (Ours) 1.76% 2.5% 1.92% 1.06%

them with one of NSFW keywords (see Table 6) as prompts to forget. We further leveraged the
negative prompting technique to match these prompts with their corresponding prompts to override.
Specifically, we take the original text prompt as the conditional text input while using the concatenated
NSFW keywords instead of an empty string as the unconditional text input. We notice this approach
also has a concept forgetting effect on the original score distillation method, which is denoted as
“SiD-LSG-Neg.” We report key MU performance metrics in Table 3. Sample images by baselines and
SFD are displayed in Figure 6.

3.2 ABLATION STUDIES

Ablation on the model architecture EDM (Karras et al., 2022) is a state-of-the-art diffusion
model with enhanced capability for generating high-quality images. To evaluate our method’s
generalizability across different model architectures, we additionally conduct experiment using the
EDM architecture. We adapted the codebase used by SiD (Zhou et al., 2024b) and fine-tuned the
pre-trained class-conditional CIFAR-10 EDM-VP model. Figure 5 shows that the FID results of our
method can be further improve when based on a more powerful pre-trained model.

Table 3: Quantitative results of “nudity” forgetting. Bold values indicate the best score in each
column, while underlined values represent the second-best.

Model Inapprop. Prob. (↓) Max. Exp. Inapprop. (↓) CLIP (↑)
SD v1.4 (Rombach et al., 2022) 28.54% 86.6% 31.93
SiD-LSG (Zhou et al., 2024a) 26.86% 88.12% 31.23

SiD-LSG-Neg (Ours) 20.97% 81.64% 31.22
SLD Medium (Schramowski et al., 2023) 14.10% 71.73% 30.77
ESD-u (Gandikota et al., 2023) 16.94 % 69.68% 30.15
SFD-Two Stage (Ours) 11.03% 66.90% 30.25
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Figure 6: Generated images using different text-to-image diffusion models. The prompts used to
generate are in a general form of “A photo of a <nudity keyword> <human subject>.” Sensitive body
parts are manually censored after generation.

Abalation on the classifier-free guidance Classifier-free guidance (CFG), first proposed by Ho
and Salimans (2021), is a commonly-used strategy for conditional sampling. While typically adopted
during inference to enhance class fidelity, it has also been shown to be useful for the training of
score-based distillation (Yin et al., 2024; Zhou et al., 2024a). We compare our models trained with
and without CFG in Table 4. In our experiments on STL-10, we found that including classifier-free
guidance during training improved the performance in terms of both FID and UA. However, we did
not observe such improvements on the CIFAR-10 dataset; on the contrary, we noticed a degradation
in the evaluation metrics. We speculate that the influence of CFG may be tied to the inter-class
differences: when training data contain classes sharing similar features, such as automobile and truck
in CIFAR-10, training with CFG may not be as beneficial as it is when the training dataset consists of
more distinct classes.

Table 4: Ablation study on classifier-free guidance during training and on the CIFAR-10
and STL-10 datasets. The percentages in green and red are the relative performance boost and
degradation respectively when the model is trained without classifier-free guidance.

Model FID (↓) UA (↑)

SFD 5.35 99.64%
+ CFG 7.27 (+35.89%)0 99.62% (-0.02%)

(a) CIFAR-10

Model FID (↓) UA (↑)

SFD 18.82 99.02%
+ CFG 15.32 (-18.60%) 99.64% (+0.63%)

(b) STL-10

4 CONCLUSION

Our work demonstrates the benefits of the proposed score forgetting distillation (SFD), which
achieves accelerated forgetting with score-based distillation, providing a unified and effective solution
to diffusion-based generative modeling and machine unlearning. The generator trained by our method
produces high-quality images of desired classes with a single step while the target class is effectively
forgotten. Our experiments show that the proposed strategy attains noticeable gains in performance
on both CIFAR-10 and STL-10. We further conduct the detailed study with the SFD in different
settings, e.g., comparing SFD against baselines as well as different configurations of SFD in terms of
UA, FID, and other metrics. Additionally, we provide qualitative results of concept forgetting for
text-to-image diffusion models like SD. To summarize, the forgetting method is effective and general,
with the potential to be incorporated into existing models, such as text-to-image diffusion models.
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Appendix for Score Forgetting Distillation

A RELATED WORK

Unlearning for Machine Learning Models The study of MU can be traced back to classical machine
learning models in response to data protection regulations such as “the right to be forgotten” (Cao and Yang,
2015; Hoofnagle et al., 2019; Bourtoule et al., 2021; Nguyen et al., 2022). Due to its capability of assessing
data influence on model performance, the landscape of MU has expanded to encompass diverse domains,
such as image classification (Ginart et al., 2019; Golatkar et al., 2020; Neel et al., 2021; Sekhari et al., 2021),
text-to-image generation (Gandikota et al., 2023; Kumari et al., 2023; Zhang et al., 2024a; Fan et al., 2024),
federated learning (Halimi et al., 2022; Che et al., 2023), and graph neural networks (Chen et al., 2022; Chien
et al., 2022; Wu et al., 2023). In the literature, ‘exact’ unlearning, which involves retraining the model from
scratch after removing specific training data points, is often considered the gold standard. However, this approach
comes with significant computational demands and requires access to the entire training set (Thudi et al., 2022).
To address these challenges, many research efforts have shifted towards the development of scalable and effective
approximate unlearning methods (Liu et al., 2024; Chen et al., 2023a). In addition, probabilistic methods
with certain provable removal guarantees have been explored, often leveraging the concept of differential
privacy (Neel et al., 2021; Sekhari et al., 2021). Focusing on MU in diffusion-based image generation, this
paper introduces a general data-free approach for rapid forgetting and one-step sampling in diffusion models,
eliminating the need to access any real data.

Challenges in Machine Unlearning In examining the challenges and strategies associated with diffusion
models and MU, several key issues and methodologies have been identified. Diffusion models, particularly
when trained on data from open collections, face risks of contamination or manipulation, which could lead to
the generation of inappropriate or offensive content (Chen et al., 2023b; Schramowski et al., 2023). Strategies
to mitigate these include data censoring and safety guidance to steer models away from undesirable outputs
(Nichol et al., 2021), and introducing subtle perturbations to protect artistic styles (Shan et al., 2023). Despite
these measures, challenges remain in fully preventing diffusion models from generating harmful content or
being susceptible to targeted poison attacks (Rando et al., 2022). Furthermore, the evaluation of MU presents
unique difficulties, especially as conventional retraining benchmarks are often impractical. Empirical metrics for
assessing MU include unlearning accuracy, the utility of the model post-unlearning, and the use of classifiers to
gauge the integrity of generated outputs (Jang et al., 2022). Unlike existing methods, our approach efficiently
suppresses the generation of harmful content using a one-step diffusion generator that overrides ‘unsafe’ concepts
with MU-regularized score-based distillation.

Concept Erasure for Diffusion Models Diffusion models have gained significant attention and also
triggered many controversies due to their incredible capability of generating high-quality, diverse visual content.
For example, with ill-intended text prompts, text-to-image diffusion models can easily generate inappropriate
images containing sensitive content. Consequently, concept erasure (CE) has become a high priority for
mitigating such problems. Current approaches mainly fall into two categories: sampling-based training-free
approaches and finetuning-based MU approaches. One classic sampling-based approach is to set concepts to
erase as negative prompts during sampling, which is a direct application of classifier-free guidance (CFG) (Ho
and Salimans, 2021). Further enhancing the idea of safe guidance, Schramowski et al. (2023) propose Safe
Latent Diffusion (SLD) as a configurable method to balance suppressing “unsafe” concepts with minimizing
its impact on generated images. In parallel, finetuning-based MU methods have also been applied to solve
concept erasure problems (Gandikota et al., 2023; Heng and Soh, 2024; Zhang et al., 2024a; Fan et al., 2024).
Closely related to CFG, ESD (Gandikota et al., 2023) finetunes the Stable Diffusion components to fit a target
conditional score function that contains the opposite direction of the score associated with concepts to remove.
Heng and Soh (2024) perceive the MU problem from a Bayesian continual learning perspective and introduce
replaying data to retain the model’s generative capability for data to remember. Zhang et al. (2024a) present
a cross-attention-based loss to tackle the problem by minimizing attention weights related to the concepts to
forget. To improve finetuning efficiency, Fan et al. (2024) propose selecting parameters for finetuning based
on the saliency map of the concept to remove. However, existing methods are all based on standard multi-step
diffusion models, making them not directly compatible with more efficient one-step diffusion models distilled
using score distillation methods. Therefore, we foresee an opportunity for a novel, swift, and data-free MU
approach that leverages score distillation to solve the data-free MU problem while simultaneously enhancing the
distilled model’s resilience to "unsafe" concepts, achieving both goals at once.

Distribution Matching and Score Matching Generative modeling is a pivotal area in statistics and ma-
chine learning. Prior to the development of diffusion models and their associated denoising score matching (SM)
techniques, effectively matching distributions in high-dimensional spaces—particularly those with intractable
probability density functions—posed a significant challenge. Traditionally, deep generative models aimed to
minimize discrepancies between data and model probability distributions using various distribution-matching
related loss functions. These included Kullback-Leibler (KL) divergence (Kingma and Welling, 2013; Yin and
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Zhou, 2018), Jensen-Shannon (JS) divergence (Goodfellow et al., 2014), and transport cost (Tanwisuth et al.,
2021; Zheng and Zhou, 2021; Zhang et al., 2021; Tanwisuth et al., 2023). While VAEs and GANs developed
under this framework have significantly advanced the field of generative modeling, they have exhibited limited
capabilities in faithfully regenerating the original data. More recent methods have utilized data-based Fisher
divergence (Song and Ermon, 2019; Ho et al., 2020; Song et al., 2020) to compare noise-corrupted data with
noise-corrupted model distributions. While directly minimizing Fisher divergence, i.e., the explicit SM loss, is
intractable, diffusion models have effectively transformed the problem into minimizing a data-based denoising
SM loss (Vincent, 2011; Sohl-Dickstein et al., 2015). This transformation has allowed diffusion models to
demonstrate exceptional capabilities in generating high-dimensional data that closely resemble the original
distribution. However, the iterative denoising-based sampling inherent in these models is not only slow but also
complicates efforts to further optimize the data generation process for downstream tasks. This issue becomes
particularly challenging for tasks such as MU, which require the model to selectively forget specific concepts we
are targeting in this paper.

Accelerated Diffusion Models Classic score-matching-based diffusion models (Sohl-Dickstein et al., 2015;
Song and Ermon, 2019; Ho et al., 2020; Song et al., 2020) have become increasingly influential in developing
generative models with high extensibility and sample quality (Dhariwal and Nichol, 2021; Karras et al., 2022;
Ramesh et al., 2022). However, standard Gaussian diffusion models, along with other non-Gaussian variants
(Hoogeboom et al., 2021; Austin et al., 2021; Chen and Zhou, 2023; Zhou et al., 2023), suffer from relatively
slow sampling compared to traditional one-step generative models, such as GANs and VAEs. Inspired by the
success of applying diffusion processes to the training of generative models, Xiao et al. (2021) and Wang et al.
(2022) were among the first to promote faster generation by leveraging both adversarial training techniques
and diffusion-based data augmentation. However, these approaches inevitably reintroduce potential issues like
training instability and mode collapse. Closely related to the original score matching, Salimans and Ho (2022)
proposed progressively halving the steps needed in the reverse generation process. Similarly, Song et al. (2023)
presented the consistency model as a method for distilling the reverse ODE sampling process. Along this
direction, much effort has been made by others (Xu et al., 2023; Yin et al., 2024; Luo et al., 2023; Zhou et al.,
2024b) to improve both sample quality and diversity.

Data-Free Score Distillation To address the slow sampling speed associated with traditional diffusion
models, score distillation methods have been developed to harness pretrained score functions. These methods
approximate data scores, facilitating model distribution matching under noisy conditions to align with the noisy
data distribution governed by the pretrained denoising score matching function. These methods, as explored
in several recent works (Poole et al., 2023; Wang et al., 2023; Luo et al., 2023; Nguyen and Tran, 2023; Yin
et al., 2024), primarily utilize the KL divergence, whose gradients can be analytically computed using both the
pretrained and estimated score functions. Importantly, these KL-based methods do not require access to real data,
as the KL divergence is defined with respect to the model distribution. While these approaches have successfully
approximated the data distribution in a data-free manner, they often suffer from performance degradation when
compared to the original, pretrained teacher diffusion model. Consequently, additional loss terms that require
access to the original training data or data synthesized with the pretrained diffusion models are often necessary to
mitigate this performance degradation. However, employing these terms voids the data-free feature of the process.
In response to these challenges, Score identity Distillation (SiD) has emerged as an effective data-free solution
for matching distributions by minimizing a model-based Fisher divergence. Although directly computing this
divergence is intractable, its minimization is effectively converted into a model-based score distillation loss. This
data-free method facilitates the distillation of the pretrained score function from the teacher diffusion model
into a potentially superior one-step student generator. Inspired by the success of this data-free score distillation,
we are motivated to integrate its loss into our algorithm, SFD, to enhance its effectiveness and efficiency in
generative modeling with data-free unlearning.

Evaluation of Machine Unlearning When applying MU to classification tasks, effectiveness-oriented
metrics include unlearning accuracy, which evaluates how accurately the model performs on the forget set after
unlearning (Golatkar et al., 2020). Utility-oriented metrics include remaining accuracy, which measures the
updated model’s performance on the retain set post-unlearning (Song and Mittal, 2021), and testing accuracy,
which assesses the model’s generalization capability after unlearning. For generation tasks, accuracy-based
metrics use a post-generation classifier to evaluate the generated content (Zhang et al., 2023), while quality
metrics assess the overall utility of the generated outputs (Gandikota et al., 2023). A significant limitation of these
metrics, particularly in measuring unlearning effectiveness, is their heavy dependence on the specific unlearning
tasks (Fan et al., 2024). To address this, we train an external classifier to evaluate unlearning accuracy (UA),
ensuring that the generated images do not belong to the forgetting class or concept. Additionally, we use FID to
evaluate the quality of image generations for non-forgetting classes or prompts.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

B.1 DATASETS FOR CLASS FORGETTING TASKS

For the class forgetting tasks, we utilize CIFAR-10 (Krizhevsky, 2009) at a resolution of 32× 32 and STL-10
(Coates et al., 2011) at 64× 64 resolution. The CIFAR-10 dataset consists of 60,000 32×32 color images in
10 classes, with 6,000 images per class. There are 50,000 training images and 10,000 test images. The dataset
consists of 50,000 training images and 10,000 test images. It is organized into five training batches and one test
batch, each containing 10,000 images. The test batch includes precisely 1,000 randomly-selected images from
each class. The training batches, which hold the remaining images in random order, may have varying numbers
of images from each class. The STL-10 dataset is another natural image dataset with 10 classes, each of which
has 500 training data and 800 testing data. The image data has a higher resolution of 96×96 in pixels and RGB
color channels compared with CIFAR-10. The images were acquired from labeled examples on ImageNet (Deng
et al., 2009). During training time, the image data from STL-10 are resized to 64×64. Due to the limited number
of the original training data, both training and testing data were used in the experiments, making up 13,000
training images in total.

B.2 EVALUATION

Unlearning accuracy For class forgetting tasks, we employed an external classifier to obtain unlearning
accuracy (UA), ensuring that the generated images are not associated with the class or concept designated for
forgetting. The UA is essentially the mis-classification rate of the classifier on the generated samples from the
target class. A classifier with high test accuracy and low UA typically indicates effective forgetting, ensuring
that the generated images are unlikely to belong to the target class or concept. For the external classifier, we
fine-tuned ResNet-34 (He et al., 2016) for 10 epochs on both CIFAR-10 and STL-10 datasets using transfer
learning, which is originally pretrained on ImageNet (Deng et al., 2009). We adapted the original 1000-way
classification model by replacing the last fully-connected layer with a customized fully-connected layer with 10
output dimension. The resulting classifiers achieved training and testing accuracies of 99.96% and 95.03% on
CIFAR-10, and 100.00% and 96.20% on STL-10, respectively.

GCD score For the celebrity forgetting task, we first generated 1,000 images generated from 50 different
prompts per celebrity. We then utilized an open-source celebrity detector1 to calculate the proportion of images
without human faces, referred to as probability without faces (“Prop. w/o Faces”), and the average probability of
detecting specific celebrities in images that contain faces, referred to as the Giphy Celebrity Detection (GCD)
score.

I2P metrics We followed the Inappropriate Image Prompts (I2P) benchmark introduced by Schramowski
et al. (2023) to assess the risk of generating NSFW images in text-to-image diffusion models. The I2P dataset
consists of 4,703 text prompts covering a wide range of NSFW concepts, including “nudity.” For each prompt,
we generated 10 images and applied both the NudeNet and Q16 detectors to identify inappropriate content.
We report the sample-level inappropriate probability (referred to as “Inapprop. Prob.”) and the prompt-level
inappropriate rate (referred to as “Max. Exp. Inapprop.”).

B.3 SFD-TWO STAGE

We plot two main evaluation metrics for class forgetting experiments on CIFAR-10 for comparing SFD with
SFD-Two Stage in Figure 7.

B.4 IMPLEMENTATION DETAILS

We implemented our techniques in a newly developed codebase, loosely based on the original implementations
by (Karras et al., 2022; Fan et al., 2024; Zhou et al., 2024a). The pseudo-code is described in Algorithm 1. We
performed extensive evaluation to verify that our implementation produced exactly the same results as previous
work, including samplers, pre-trained models, network architectures, training configurations, and evaluation. We
ran all experiments using PyTorch with 4 NVIDIA RTX A5000 GPUs.

B.5 FORGETTING CELEBRITIES

The text prompts used to train our model to forget “Brad Pitt” and “Angelina Jolie” were simply “brad pitt” and
“angelina jolie,” which correspond to the overriding prompts “a middle aged man” and “a middle aged woman,”
respectively.

1https://github.com/Giphy/celeb-detection-oss
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(a) FID (b) UA

Figure 7: Comparison between evaluation metrics, i.e., FID and UA, of the joint finetuning
(ours) and the second stage of the two-stage approach on the CIFAR-10 dataset. The blue line
and dot denotes the learning curve and last point of SFD. The orange line and dot denotes the learning
curve and last point of the two-stage approach.

Algorithm 1 SFD: Score Forgetting Distillation
Input: pre-trained score network sϕ, generator gθ , fake score network sψ , hybrid coefficient η, label/concept
to forget cf , label/concept to override co, remaining coefficient λψ and forgetting coefficient µψ for ψ update,
forgetting coefficient λθ and remaining coefficient µθ for θ update, tmin < tinit ≤ tmax
Initialization θ ← ϕ, ψ ← ϕ
repeat

Sample cr ∼ Dr , nr, nf ∼ N (0, I); Let xr = gθ(σinitnr, cr, tinit), xf = gθ(σinitnf , cf , tinit)
Sample ϵr, ϵf ∼ N (0, I), s, t ∼ Unif[tmin, tmax]
zr ← αsxr + σsϵr , zf ← atxf + σtϵf
Compute xψ according to Eq. 2 and reweighting coefficients γ(s), ωt
Update ψ with SGD using the following loss:
Lψ = λψγ(s)∥xψ(zr, cr, s)− xr∥22 + µψωt∥xψ(zf , cf , t)− xf∥22

Sample cr ∼ Dr , nr, nf ∼ N (0, I); Let xr = gθ(σinitnr, cr, tinit), xf = gθ(σinitnf , cf , tinit)
Sample ϵr, ϵf ∼ N (0, I), s, t ∼ Unif[tmin, tmax]
zr ← αsxr + σsϵr , zf ← atxf + σtϵf
Update gθ using SGD with the loss specified in Eq. 10:
Lθ = λθL̂sfd(θ, ψ;ϕ, cr, cr, η) + µθL̂sfd(θ, ψ;ϕ, co, cf , η)

until the maximum number training steps or images seen is reached
Output: gθ

B.6 FORGETTING NUDITY AS A CONCEPT

We provide details of “nudity” forgetting experiments. Table 5 lists 12 common human subjects by category
that were used for fine-tuning our model, while Table 6 lists 27 NSFW keywords, which often carry sexual
connotations and suggest nudity. For the forgetting text prompts, we randomly combined one of the human
subject with one NSFW keyword in two forms: “<NSFW keyword> <human subject>” and “<human subject>,
<NSFW keyword>,” which correspond to a negative prompt composed of the comma-separated 27 NSFW
keywords.

We also provide additional nudity detection results by NudeNet detector in Table 7. Upon reviewing the ’unsafe’
images flagged by NudeNet, we identified several false positives (see Figure 8 for examples) that were unrelated
to the classification results, such as cases where no exposed anus was present in images generated by SFD.

B.7 ADDITIONAL EXPERIMENTS ON ADVERSARIAL ROBUSTNESS

We conducted additional experiments to evaluate the robustness of our method against adversarial attacks.
Specifically, we followed the adversarial setup described in UnlearnDiffAtk (Zhang et al., 2025) and evaluated
our nudity-forgetting SFD model under scenarios without attacks and with adversarial prompts. We measured
the adversarial robustness of our model using the Attack Success Rate (ASR), calculated based on NudeNet
detection results of generated images from 142 prompts in the I2P dataset. We denote the scenario without
attacks as “Pre-ASR” and the scenario with UnlearnDiffAtk as “Post-ASR.”
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Table 5: List of 12 subjects potentially prone to abuse

Category Subjects
Age and Gender boy, girl, man, woman
Group couple, people
Human Form person, figure, body, human form
Representation portrait, silhouette

Table 6: List of nudity-related NSFW keywords used for negative prompts

Category NSFW Keywords
Sexual Themes nudity, sexual, explicit, erotic, inappropriate, indecent, suggestive,

provocative, seductive, lewd

Clothing and Exposure revealing, topless, bottomless, lingerie, bikini, underwear, skimpy,
swimsuit, improper clothing, overexposure

Explicit Contexts pornography, adult content, nsfw, intimate, mature themes, objectifi-
cation, private setting

Table 7: Count of exposed body parts detected using the NudeNet classifier on the I2P benchmark
dataset (4703 images).

Model Armpits Belly Buttocks Feet Female Female Male Male Anus
Breasts Genitalia Breasts Genitalia

SD v1.4 214 171 40 39 295 23 21 6 0
SD v2.1 191 124 24 30 154 14 12 6 0
SLD Medium 58 60 7 15 42 1 21 0 0
ESD-u 60 17 13 9 26 1 4 3 0
SA 72 77 19 25 83 16 0 0 0
SFD (Ours) 25 10 4 3 8 2 1 7 1
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Figure 8: Detection results of SFD-generated images using NudeNet. False alarms are marked in
red, while true positives are marked in green.

In addition to MU baselines for diffusion models, we included a stronger baseline in terms of adversarial
robustness against UnlearnDiffAtk, i.e., AdvUnlearn Zhang et al. (2024b). Here, “AdvUnlearn-UN” and
“AdvUnlearn-TE” represent SD models with UNet and text encoder finetuned using AdvUnlearn, respectively.
The evaluation results are provided in Table 8.

We note that our method, SFD, achieves the best Pre-ASR among all baselines and the best Post-ASR among
all UNet-based baselines, demonstrating the inherent robustness of our model. While the original SFD model
underperforms AdvUnlearn-TE in Post-ASR, incorporating AdvUnlearn-TE into our SFD model (referred to
as “SFD-TE”) achieves the best adversarial robustness across all models. These results further demonstrate the
flexibility and adaptability of our method.

Table 8: Adversarial robustness of different MU methods

Metric ESD FMN SLD AdvUnlearn-UN AdvUnlearn-TE SFD (ours) SFD+TE (ours)
Pre-ASR 20.42% 88.03% 33.10% - 7.75% 7.04% 0.70%
Post-ASR 76.05% 97.89% 82.39% 64.79% 21.13% 55.63% 7.04%

B.8 ADDITIONAL EXPERIMENTS ON ALTERNATIVE SCORE DISTILLATION METHODS

To demonstrate the flexibility of the SFD framework, we adapted it to accommodate alternative score distillation
methods, such as Diff-Instruct (Luo et al., 2024). Specifically, we incorporated a Kullback-Leibler (KL)-
divergence-based forgetting distillation loss into the SFD framework, resulting in a variant denoted as “SFD-KL.”
Similar to Equation (3), this KL-based score forgetting distillation loss is defined as follows:

Lsfd-kl(θ;ϕ, c1, c2) = Ezt,t,x∼Dθ,c2

[
ωt log

pθ(zt | c2, t)
pϕ(zt | c1, t)

]
. (13)

Following Luo et al. (2024), the gradient of this loss with respect to the generator is given by:

∇θLsfd-kl = Ezt,t,x∼Dθ,c2

[
ωtαt

(
sψ∗(θ)(zt, c2, t)− sϕ(zt, c1, t)

)
∇θx

]
, (14)
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where the true score sψ∗ is approximated by the score estimator sψ during training. A comparison of the original
SFD and the adapted SFD-KL is presented in Table 9. While both methods perform well, the original SFD
achieves superior results across all metrics except Precision, demonstrating its enhanced generation quality and
diversity. Figure 9 further highlights the advantages of SFD, showcasing faster convergence and a lower final FID
compared to SFD-KL. These findings emphasize the efficiency and effectiveness of SFD in MU tasks. Overall,
the results demonstrate the flexibility of the SFD framework in adapting to alternative score distillation methods
while maintaining competitive performance. Additionally, the faster convergence and improved generation
quality achieved by the original SFD underscore its robustness and practicality for real-world applications.

Table 9: Comparison of SFD and SFD-KL across various metrics.

Model UA (↑) FID (↓) IS (↑) Precision (↑) Recall (↑) NFEs (↓) Data-free
SFD 99.64 5.35 9.51 0.6587 0.5471 1 Yes

SFD-KL 99.53 6.99 9.44 0.6688 0.5016 1 Yes

Figure 9: FID training curve comparison between SFD and SFD-KL. SFD achieves faster convergence
and a better final FID, highlighting its superior efficiency and performance.

B.9 HYPERPARAMETER SETTINGS

We list all the detailed hyparameter settings for training our DDPM, EDM, SD models in Table 10.

C LIMITATIONS

There can be substantial disparities and biases between training and testing datasets in real-world settings. These
discrepancies might result in models performing poorly and having unintended effects when applied to new,
unseen data. To address these challenges and lessen the impact of biases, it is crucial to employ strategies like
data preprocessing, augmentation, and regularization. Additionally, considerations around environmental and
computational resource usage are important. Such measures will enhance the models’ usability and accessibility
across diverse user groups.
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Table 10: Detailed unlearned and distilled diffusion hyperparameter setting in for both DDPM, EDM,
and SD model architectures

Scope Hyperparameter Model
DDPM EDM SD

Training batch size 128 256 8
#kimgs 6,400 20,480 100 / 300

Distillation
σinit 2.5 2.5 2.5
tmin 38 0 20
tmax 712 800 980
η 1.2 1.2 1.0

Forgetting cf 0 0 see B.5/B.6
co 1 1 see B.5/B.6

sψ

λψ 1.0 1.0 1.0
µψ 0.01 0.01 1.0

optimizer Adam Adam Adam
learning rate 3× 10−5 10−5 3× 10−6

β1 0.0 0.0 0.0
β2 0.999 0.999 0.999
ϵ 10−8 10−8 10−8

gθ

λθ 1.0 1.0 1.0
µθ 0.01 0.01 1.0

optimizer Adam Adam Adam
learning rate 10−5 10−5 10−6

β1 0.0 0.0 0.0
β2 0.999 0.999 0.999
ϵ 10−8 10−8 10−8
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D PROOF OF LEMMA 1

For a fixed timestep t, we have:

Egθ∥sϕ(y, c1)− sθ(y, c2)∥
2

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]− Egθ [(sϕ(y, c1)− sθ(y, c2))

T sθ]

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]−

∫
y

(sϕ(y, c1)− sθ(y, c2))T∇ypθ(y | c2)dy

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]−

∫
y

(sϕ(y, c1)− sθ(y, c2))T∇y
(∫

x

p(y | x)pθ(x | c2)dx
)
dy

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]−

∫
y

(sϕ(y, c1)− sθ(y, c2))T
∫
x

∇yp(y | x)pθ(x | c2)dxdy

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]−

∫∫
x,y

(sϕ(y, c1)− sθ(y, c2))T s(y | x)pθ(x, y | c2)dxdy

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T sϕ]− Egθ [(sϕ(y, c1)− sθ(y, c2))

T s(y | x)]

= Egθ [(sϕ(y, c1)− sθ(y, c2))
T (sϕ + σ−2(y − αx))]

= ασ−2Egθ [(sϕ(y, c1)− sθ(y, c2))
T ((σ2sϕ + y)/α− x)]

= ασ−2Egθ [(sϕ(y, c1)− sθ(y, c2))
T (xϕ(y, c1)− x)]

where gθ represents the joint distribution of z, x and z = αx+ σϵ, x ∼ Dθ,c2 , ϵ ∼ N (0, I). We can see that
the equality holds for arbitrary t up to some constant. Therefore, for any weighted sum or expectation of the
losses w.r.t. t, we know the two expressions are equivalent.
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