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Abstract001

Table modeling has progressed for decades. In002
this work, we revisit this trajectory and high-003
light emerging challenges in the LLM era, par-004
ticularly the paradox of choice: the difficulty005
of attributing performance gains amid diverse006
base models and training sets. We replicate007
four table LLMs by instruction-tuning three008
foundation models on four existing datasets,009
yielding 12 models. We then evaluate these010
models across 16 tables benchmarks. Our anal-011
ysis reveals that while training data plays a role,012
base model selection is important, and in many013
cases, dominates performance. Generalization014
and reasoning remain challenging, inviting fu-015
ture effort on table modeling. Based on our016
findings, we share our thoughts on the future017
directions for table modeling.018

1 Introduction019

Understanding semi-structured data, such as tables,020

has been a long-standing challenge in Natural Lan-021

guage Processing (NLP) (Woods, 1972; Warren022

and Pereira, 1982; Reiter et al., 2005; Pasupat and023

Liang, 2015; Yu et al., 2018b; Xie et al., 2022;024

Zhang et al., 2024a). Over the decades, the field025

has witnessed a series of paradigm shifts, from026

symbolic rule-based approaches to neural sequence027

models, to transformer-based architectures, and028

now to the era of Large Language Models (LLMs).029

Each shift has come with distinct characteristics030

and challenges. In this paper, we first offer a retro-031

spective framing of these developments and iden-032

tify the characteristics and challenges associated033

with table modeling for each era.034

The past few years have witnessed a new era for035

table modeling, characterized by researchers em-036

ploying instruction tuning for table-specific tasks,037

giving rise to a wave of “table LLMs” (Li et al.,038

2023; Zhang et al., 2024a,b; Zheng et al., 2024;039

Su et al., 2024; Deng and Mihalcea, 2025). In the040

meantime, while the long-standing challenges such041

as generalization (Warren and Pereira, 1982; Yu 042

et al., 2018b; Suhr et al., 2020; Deng and Mihal- 043

cea, 2025) and reasoning (Liu et al., 2018; Xie 044

et al., 2022; Wu et al., 2025a) still persist, a new 045

challenge emerges, which we frame as “paradox 046

of choice”. Thanks to the numerous foundation 047

LLMs (Touvron et al., 2023; Dubey et al., 2024; 048

Jiang et al., 2023), and the diverse table datasets 049

proposed (Cheng et al., 2022; Nan et al., 2022), 050

these table LLMs vary widely in their base model 051

selection, training data, and evaluation datasets. 052

With so many moving parts, it has become increas- 053

ingly difficult to attribute improvements to any one 054

factor, raising concerns about reproducibility and 055

comparability. 056

In this paper, we select four table LLMs and 057

replicate them by training three distinct foundation 058

LLMs on their proposed dataset, respectively. As 059

a side product, during the replication process, we 060

achieve a new state-of-the-art (SOTA) performance 061

on the HiTab dataset. We then evaluate the 12 repli- 062

cated models on eight real-world table datasets and 063

eight synthetic table datasets. We conduct analysis 064

addressing the identified challenges for table LLMs. 065

Specifically, our findings reveal that while training 066

data plays a meaningful role, base model selection 067

can be the crucial factor that drives performance, 068

and in some cases, explains over 80% of the perfor- 069

mance variance. This questions the experimental 070

setups in prior work, where performance compar- 071

isons are confounded by differences in both base 072

models and training data (Zhang et al., 2024a,b). 073

In addition, generalization and reasoning remain 074

challenging for table LLMs. Last but not least, we 075

discuss the future directions given the paradigm 076

shifts and present challenges. 077

In summary, our contributions are several-fold, 078

1. We replicate existing table LLM setups by 079

instruction-tuning three foundation models on 080

four popular table instruction datasets, yielding 081
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Figure 1: In this paper, we replicate four table LLMs by instruction-tuning three foundation models (OLMo
(Groeneveld et al., 2024), Mistral (Jiang et al., 2023), and Phi (Abdin et al., 2024) models all at 7B scale) on four
existing training datasets (TableGPT (Li et al., 2023), TableLlama (Zhang et al., 2024a), TableLLM (Zhang et al.,
2024b), TableBench (Wu et al., 2025b)), yielding 12 models. We evaluate these models across 16 table benchmarks,
trying to address the five research questions listed on the right.

12 models for systematic comparison. To the082

best of our knowledge, we are the first to con-083

duct such a massive post-training in the context084

of table LLMs.085

2. We conduct a comprehensive evaluation of these086

models across 16 table benchmarks, covering a087

diverse range of table-related tasks and general-088

ization scenarios.089

3. Our findings highlight the dominant influence090

of base model choice on performance, and show091

that current table LLMs continue to struggle with092

generalization and reasoning, inviting future ef-093

fort on table modeling.094

2 Backgrounds and Related Works:095

Paradigm Shift in Table Modeling096

Table-Related Tasks. There has been a long his-097

tory of table-related tasks. Earlier work has focused098

on extracting table content from HTML (Chen099

et al., 2000; Tengli et al., 2004). The deep learn-100

ing era has seen more diverse table-related tasks101

such as table question answering (table QA), the102

task of answering a question given the table and103

certain context in the format of multiple-choice104

(Jauhar et al., 2016) and free-form answer (Nan105

et al., 2022); table fact verification, the task of de-106

termining whether a given claim is supported or107

refuted by the table content (Chen et al., 2020b;108

Gupta et al., 2020); table-to-text, the task of gen-109

erating a description given the table or some high-110

lighted table cells (Parikh et al., 2020); text-to-SQL,111

the task of generating a SQL query given the table112

schema and an user query (Zhong et al., 2018; Yu113

et al., 2018b). These proposed benchmarks cover a114

diverse set of domains, including Wikipedia tables115

(Parikh et al., 2020), financial tables (Chen et al., 116

2021b), scientific tables (Moosavi et al., 2021), 117

which serve as invaluable sources for developing 118

and testing general table understanding models. 119

Paradigm Shift. Researchers have explored var- 120

ious methods for table understanding in the past 121

decades, which can date back to the LUNAR sys- 122

tem back in 1970s (Woods, 1972). We briefly sum- 123

marize the development of table models into four 124

eras (Figure 2), where researchers develop rule- 125

based (Woods, 1972; Warren and Pereira, 1982) 126

and LSTM-based (Sutskever et al., 2014) algo- 127

rithms (Zhong et al., 2018) in the earlier eras. With 128

the rise of transformer (Vaswani et al., 2017) and 129

the success of BERT (Devlin et al., 2019), re- 130

searchers have started to adapt the transformer for 131

table modeling (Herzig et al., 2020; Yin et al., 2020; 132

Yu et al., 2021; Shi et al., 2021; Yang et al., 2022). 133

With the success of LLMs (Ouyang et al., 2022), 134

the community has shifted its focus on prompting- 135

based methods (Chang and Fosler-Lussier, 2023; 136

Deng et al., 2024)1 as well as instruction tuning the 137

base LLMs (Li et al., 2023; Zhang et al., 2024a; 138

Zheng et al., 2024; Zhang et al., 2024b). Ap- 139

pendix A.2 provides additional discussion on the 140

paradigm shifts. 141

3 Challenges in Table Modeling 142

There have been challenges for table models in 143

different eras (Warren and Pereira, 1982; Yin et al., 144

2020). Here, we explain the three challenges we 145

identify for the table LLM era. 146

1Since many of the prompting methods are model-agnostic,
and we have no information on the model size of the commer-
cial LLMs such as GPT-4, we do not include these methods in
Figure 2.
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Rule-based up to 2014

Characteristics: symbolic, static (1972)
Challenges: labor-intensive; generalization (1982)
Seq2Seq 2014∼2018

Characteristics: feature engineering (2018)
Challenges: generalization (2018b);

reasoning (Liu et al., 2018)

Transformer 2018∼2023

Characteristics: domain pre-training (2020);
feature engineering (2020)

Challenges: generalization (2020);
reasoning (2022);
data-intensive (2020)

LLM Era 2023 to now

Characteristics: instruction tuning (2024a)
Challenges: generalization (2025);

complex reasoning (2025a);
paradox of choice (2024a; 2024b)

LUNAR (1972) CHAT-80 (1982)

PRECISE (2003) SumTime (2005)

Pasupat and Liang
(2015)

Neural Enquirer
(2016)

Neural Programmer
(2017)

Wiseman et al. (2017)

Liu et al. (2018) Seq2SQL (2018)

SQLNet (2018) TypeSQL (2018a)

SQLova (2019) RAT-SQL (2020)

RAT-SQL+ (2020) RAT-SQL++ (2020)

TaBERT (2020) Table-BERT (2020b)

Chen et al. (2020c) TAPAS (2020)

TAPAS+ (2020) GraPPa (2021)

GAP (2021) Chen et al. (2021a)

UnifiedSKG (2022) UnifiedSKG+ (2022)

PICARD (2021) TableFormer (2022)

TAPAX (2022) TableLlama (2024a)

TableLLM-7B
(2024b)

TableLLM-13B
(2024b)

TableGPT-2 (2024) TableLlava-7B (2024)

TableLlava-13B
(2024)

TableBenchLLM-7B
(2025b)

TableBenchLLM-8B
(2025b)

TAMA (2025)

Figure 2: Summarization of different eras for table modeling. We note that the model sizes increase logarithmically
with time. When we enter the LLM era, the community has shifted its attention to instruction tune the foundational
models (Zhang et al., 2024a). While there are persistent challenges, such as generalization for table models (Warren
and Pereira, 1982; Yu et al., 2018b; Suhr et al., 2020; Deng and Mihalcea, 2025) across different eras, new challenges
emerge. Appendix A.1 provides additional details of this plot.

Paradox of Choice. As we enter the LLM era, a147

new challenge emerges as the “paradox of choice”,148

which refers to the difficulty of choosing from the149

diverse sets of foundation LLMs and training sets150

(Table 1). We have not seen such a challenge in151

the previous eras, even in the transformer era, re-152

searchers primarily base their models on the BERT153

model (Yin et al., 2020; Herzig et al., 2020), and154

fine-tune their models on a single dataset (Yu et al.,155

2018b; Wang et al., 2020). In contrast, the models156

in the LLM era adapt different base models (Zhang157

et al., 2024a,b; Wu et al., 2025b), some instruction158

tune these models based on a mix of the existing159

benchmarks (Zhang et al., 2024a; Deng and Mihal-160

cea, 2025), while others synthesize their training161

data (Li et al., 2023). Such diversified options make162

it hard to gauge the contributions of base models163

versus training data in the LLM era, and open up164

unanswered questions:165

RQ1. How much does the base model selection166

influence the instruction-tuned models’ capability167

on handling table tasks? 168

RQ2. How much does the training data influence 169

the instruction-tuned models’ capability on han- 170

dling table tasks? 171

Generalization. Researchers have explored the 172

issues of generalization for decades (Warren and 173

Pereira, 1982; Zhong et al., 2018; Yu et al., 2018b; 174

Suhr et al., 2020). While table LLMs demonstrate 175

competitive performance (Zhang et al., 2024a), 176

whether they pick up the table understanding ca- 177

pabilities or overfit to the dataset-specific patterns 178

is still debatable (Deng and Mihalcea, 2025) and 179

open up a research question: 180

RQ3. How do the instruction-tuned models per- 181

form on the out-of-domain table tasks? 182

Reasoning. Prior work has largely focused on 183

reporting numerical improvements, often overlook- 184

ing the types of errors made by models in their 185

predictions (Zhang et al., 2024a). Such a gap moti- 186

vates the research question: 187
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Model Base Model
Self-Created
Training Data

Evaluation
Benchmarks

Open
Model?

Open
Data?

Compare w. Other
Table LLMs?

Train on Multiple
Base LLM?

TableGPT (2023) - - - ✗ ✗ ✗ ✗

Table-GPT (2023) GPT-3.5 ✓ CTA (2022), WikiTQ (2015), ... ✗ ✓ ✗ ✓

TableLlama (2024a) LongLoRA † ✓ FeTaQA (2022), WikiTQ (2015), ... ✓ ✓ ✗ ✗

TableLLM (2024b) CodeLlama Instruct ✓ WikiTQm, TATQAm, ... ✓ ✓ ✓ ✗

TableBenchLLM (2025b) Llama 3.1 & others ✓ TableBench (2025b) ✓ ✓ ✗ ✓

Table 1: Information for current table instruction tuned models. †: a variant based on the Llama 2 model. We
denote the evaluation datasets with a subscript “m” as they are adapted by Zhang et al. (2024b). We note that these
table LLMs are trained from different base LLMs, and each uses its own instruction tuning data, and is tested on a
different set of evaluation benchmarks.

RQ4. How well do the instruction-tuned models188

conduct reasoning on table tasks?189

Appendix B provides additional discussion.190

4 Experimental Setups191

Because of the limited computing resources and192

non-trivial computational costs to train and test193

LLMs, we cannot exhaust all possible evaluations.194

For reference, we spend a total of 4,609 GPU hours195

on model training in this study.196

Model Selection. To rigorously study the influ-197

ences of base model selection and training data, we198

select three LLMs that are all released in the year199

of 2023 and 2024 from non-profit organizations or200

companies, Mistral-7B-Instruct-v0.3 (Jiang et al.,201

2023), OLMo 7B Instruct (Groeneveld et al., 2024)202

and Phi 3 Small Instruct (7B) (Abdin et al., 2024)203

as our base models detailed in Appendix C.204

Replication. For each base model, we replicate205

the instruction tuning stage for TableLlama (Zhang206

et al., 2024a), TableLLM (Zhang et al., 2024b),207

TableBenchLLM (Wu et al., 2025b), and Table-208

GPT (Li et al., 2023). Our implementation yields209

comparable or better results than the performance210

reported in the existing works (Figure 3, additional211

details in Appendix E).212

Evaluation. We select eight real-world table un-213

derstanding datasets, eight synthetic table under-214

standing datasets (details in Appendix D) for our215

evaluation. We note that our controlled replica-216

tion enables an apples-to-apples comparison and al-217

lows us to disentangle the respective contributions218

of base model capabilities and instruction tuning219

datasets, therefore better answering the research220

questions we propose in Section 3 (Figure 1).221

5 Results and Discussions 222

Figure 3 presents the averaged in-domain (ID) per- 223

formance. Table 2 presents the out-of-domain 224

(OOD) evaluation on various table understanding 225

benchmarks. 226

RQ1: How much does the base model selection 227

influence the instruction-tuned models’ capabil- 228

ity on handling table tasks? 229

Answer: Large OOD performance variance 230

across base models. Contrary to performance 231

in Figure 3, where we see minimal ID performance 232

variance across different base models, there is a 233

large performance variance across different base 234

models on the OOD table tasks, as shown in Table 2. 235

For instance, when all trained on TableBenchLLM, 236

Phi achieves 83.0 on TabMWP, significantly out- 237

performing Mistral (70.6) and OLMo (62.6). 238

The base model is crucial, and in some cases, a 239

determinant factor for the OOD performance. 240

In Figure 4, we employ the Shapley R2 decom- 241

position to decompose the performance contribu- 242

tions of the base LLM selection versus the differ- 243

ent instruction tuning data (additional details in 244

Appendix F.1). We find that the base LLMs’ se- 245

lection holds an R2 of 0.816, significantly larger 246

than 0.138, the share of the instruction tuning data. 247

The share for the base LLM selection remains cru- 248

cial when we consider model pairs in Figure 8 249

in Appendix F.1, suggesting that the base model 250

selection is a non-negligible, and sometimes a dom- 251

inant factor that determines the instruction-tuned 252

model’s performance. However, existing works 253

for table instruction tuning (Li et al., 2023; Zhang 254

et al., 2024a,b; Su et al., 2024) barely provide such 255

comparison studies, and typically train their mod- 256

els from a single base LLM, ignoring the crucial 257

factor of base model selection. 258
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(d) Table-GPT.

Figure 3: Averaged in-domain performance (y-axis) between the models in existing works (the leftmost bar for each
plot) versus our replications. Our replicated models achieve better in-domain results than the existing works. The
detailed in-domain performance is reported in Appendix E.

Train
Data

Real Synthesized
Table QA Fact Veri. Tab2Text Schema Reasoning Misc.

FeT HiT TabM TAT Wiki TabF Inf ToT Beer DeepM DI ED C CF CTA TabBeval

BLEU Acc Acc Acc Acc Acc Acc BLEU F1 Recall Acc F1 F1 Acc F1 ROUGE-L
Mistral v0.3 7B Instruct

N/A 20.0 35.5 66.9 18.0 27.9 62.3 42.8 11.5 97.2 42.9 27.9 24.1 30.2 19.1 63.8 18.9
TableLlama 38.7 70.6 71.2 5.6 23.8 86.8 27.7 28.5 25.8 70.0 13.4 25.1 17.4 0.5 34.9 19.6
TableLLM 10.2 44.1 75.0 25.0 32.3 11.9 15.4 6.7 45.0 78.6 33.1 43.1 25.6 15.0 66.9 3.7

TableBench 7.9 44.1 70.6 25.7 37.4 36.5 27.5 3.5 88.5 50.0 32.0 20.3 27.4 13.3 72.2 27.2
TableGPT 19.5 35.8 62.2 14.1 25.5 61.4 35.8 4.5 100.0 98.0 46.4 46.0 23.8 25.3 68.3 13.1

OLMo 7B Instruct
N/A 6.0 27.3 54.4 14.3 19.4 38.2 21.4 5.1 50.5 35.7 28.9 14.1 15.0 16.2 54.5 7.6

TableLlama 36.8 67.9 72.9 9.9 6.7 83.8 15.0 20.8 0.0 7.1 21.2 14.6 14.8 10.7 23.5 17.1
TableLLM 9.7 35.5 65.5 17.7 26.7 40.6 16.9 8.9 16.5 42.9 33.0 37.6 13.0 18.7 43.6 6.3

TableBench 3.8 28.3 62.6 15.6 34.0 30.9 6.5 7.5 43.4 16.6 36.6 28.6 18.1 21.2 46.5 19.3
TableGPT 9.3 27.2 65.6 14.6 16.4 44.9 33.0 11.4 96.2 100.0 45.4 35.3 19.9 29.3 62.5 13.7

Phi 3 Small Instruct (7B)
N/A 5.0 39.6 76.1 13.0 29.7 65.3 62.3 1.4 95.0 42.9 31.9 49.7 30.6 43.4 71.5 8.3

TableLlama 38.1 63.6 74.8 18.3 46.3 86.2 54.3 29.6 95.6 35.7 4.3 19.4 27.9 36.5 43.9 22.4
TableLLM 18.2 45.3 81.2 24.1 37.7 69.6 44.6 8.1 80.2 50.0 34.0 41.3 27.9 49.5 70.1 27.2

TableBench 10.0 3.5 83.0 20.5 34.6 68.0 65.3 0.9 95.0 28.6 35.9 53.8 31.1 46.2 76.7 27.8
TableGPT 24.8 45.1 76.8 15.6 30.0 71.0 67.0 14.0 98.9 98.8 49.4 55.4 24.8 45.2 68.3 26.1

Table 2: Evaluation for table tasks. Gray indicates that the model is trained on the corresponding training set.
Bolded numbers represent the best performance among variants of the same base model, while red is the best overall
performance across all models. Mistral v0.3 7B Instruct, OLMo 7B Instruct, and Phi 3 Small Instruct (7B) indicate
the base model on which we apply the training data, respectively. “ ” marks the model that has the most number
of top performance across all the datasets with respect to the same base model. We note that Phi-based models
yield the highest performance scores across most of the out-of-domain table datasets, while TableLLM training data
consistently yield the most top performance across different base LLMs.

Strong base model leads to significantly better259

OOD performance. In Figure 5, we plot the260

Pearson r scores for the instruction-tuned model’s261

performance v.s. the base model’s performance on262

the out-of-domain datasets. In general, there is a263

strong linear correlation between the two perfor-264

mances (Pearon r around 0.7 to 0.9), suggesting265

that the instruction-tuned model’s performance is266

strongly related to the base model’s performance267

on these table tasks. We notice that in Table 2, the268

best performance for a single dataset is typically 269

achieved by fine-tuning the Phi model. We note 270

that the Phi model consistently outperforms the 271

other two models even when untuned. For instance, 272

TabMWP’s overall best performance is achieved 273

by fine-tuning the Phi model with the TableBench 274

training data, and the original Phi model achieves 275

76.1, outperforming the original Mistral’s 66.9 and 276

the original OLMo’s 54.4. TATQA’s overall best 277

performance is achieved by fine-tuning the Mistral 278
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Base LLM Train Set

0.0 0.2 0.4 0.6 0.8 1.0

0.816 0.138

Figure 4: Shapley R2 decomposition (Shapley et al.,
1953; Israeli, 2007) for the contributions of the down-
stream tasks’ performance by the base LLM versus the
training set. We can see that the choice of the base LLM
is a dominant factor (0.816 compared to 0.138 from the
train set) that decides the model’s performance on down-
stream tasks. Figure 8 provides the additional analysis
for pair-wise base model comparisons.
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Figure 5: Pearson r scores for the fine-tuned model’s
performance v.s. the base model’s performance on the
OOD datasets. We find that in general, there is a strong
linear correlation between the two performances, with a
Pearson r of around 0.7 to 0.9. Even the lowest Pearson
r score, 0.39, indicates a moderate positive correlation.

model with TableBench training data, and the origi-279

nal Mistral model achieves 18.0, outperforming the280

original OLMo’s 14.3 and the original Phi’s 13.0.281

This suggests that while instruction tuning can282

meaningfully improve a model’s performance on283

table tasks, its effectiveness is still heavily bounded284

by the capabilities of the underlying base model.285

RQ2. How much does the training data influ-286

ence the instruction-tuned models’ capability on287

handling table tasks?288

Answer: Instruction tuning yields a significant289

performance boost for ID datasets. When the290

dataset is included as part of the training set (e.g.291

FeTaQA in TableLlama), we observe a signifi-292

cant performance boost compared to the untrained293

base model (Mistral trained on TableLlama data294

achieves 38.7 compared to the base’s 20.0 on Fe-295

TaQA). This echoes with the finding by Zhang et al.296

0 25 50 75
Base Phi scores

0

50

100

Fi
ne

-tu
ne

d 
Ph

i s
co

re
s

TableLlama
TableLLM
TableBenchLLM
TableGPT

Figure 6: Fine-tuned models’ performance (y-axis) with
respect to each training dataset v.s. the base Phi model’s
performance (x-axis) on the OOD table datasets. We
find that there is a linear correlation (Pearson r ranges
from 0.78 to 0.96) between these two scores.

(2024a); Deng and Mihalcea (2025) that instruction 297

tuning can significantly boost the ID performance. 298

Certain training data consistently yield the best 299

OOD performance across different base LLMs. 300

Though in Figure 8, compared to the base LLM 301

selection, the influence of the existing training data 302

remains small in most cases, there is still a lin- 303

ear relation between the training set selection and 304

the instruction-tuned model’s performance, as il- 305

lustrated in Figure 6 In addition, we notice that 306

TableLLM’s training data consistently achieves the 307

best (e.g., on HiTab or competitive performance 308

on table QA tasks across all three base models in 309

Table 2. In contrast, though the recipe for TableL- 310

lama’s training data contains table QA tasks, mod- 311

els trained with the training data from TableLlama 312

underperform those from TableLLM. We attribute 313

the effectiveness of TableLLM’s training data on 314

the table QA task to that when constructing the 315

data, Zhang et al. (2024b) leverage LLMs such as 316

GPT-3.5 to enhance the reasoning process (more 317

in Appendix F.2). Such an enhanced reasoning 318

path would benefit the model’s reasoning process, 319

as suggested by the findings by Guo et al. (2025); 320

Muennighoff et al. (2025). 321

RQ3. How do the instruction-tuned models per- 322

form on the OOD table tasks? 323

Answer: The best OOD performance is signifi- 324

cantly below the ID performance. As shown in 325

Table 2, though there are improvements from the 326

base models on the OOD table tasks, the models’ 327

performance is far below that of the ID tuned mod- 328

els. For instance, for the Phi model, if the training 329

set includes HiTab, the model achieves 63.6 (the 330

6



Error Types Description Example

▶ Grounding Error Fail to properly attend to the
correct information.

: Find the column that contains the cell value “348.55”.
. . . BalanceLeftTD Current Month . . .
. . . 48796.94 348.55 . . .

: BalanceLeftTD

▶ Math Reasoning Er-
ror

Fail to conduct the math rea-
soning process correctly.

: . . . the Soviet Union received 29 medals, while East Ger-
many received 25 medals. Therefore, the Soviet Union did not
receive 4 more medals than East Germany. . .

▶ Not Following In-
structions

Generate output while not
following the instruction.

: . . . Let’s think step by step and show your reasoning before
showing the final result . . .

: Answer: No

▶ Hallucination Fabricate ungrounded de-
tails or facts.

(In the table, Canada has 3 bronze medals; Switzerland has 5.)
: . . . According to the table, Switzerland (SUI) and Canada

(CAN) both received 3 bronze medals . . .

▶ Commonsense
Errors

Generate outputs that violate
common sense.

: . . . release date is November 11, 2008. However, it does
not provide any information about the season in which it was
released. Therefore, . . .

Table 3: Types of reasoning errors commonly made by tableLLMs, with their description and example erroneous
responses ( ) to questions ( ) from our experiment results on the Phi model trained on TableLLM data.

gray value in Table 2), while the best OOD perfor-331

mance on HiTab is 45.3 (achieved by training the332

Phi model using TableLLM’s training set). Such a333

large performance gap suggests a large space for334

improvement.335

The instruction-tuned model may yield worse336

performance than the base model. We note that337

instruction tuning sometimes leads to decreased338

OOD performance compared to the base model.339

For instance, the untuned Mistral model achieves340

a score of 27.9 on WikiTQ, whereas instruction341

tuning it on TableGPT data reduces performance342

to 25.5. This highlights a potential trade-off in-343

troduced by instruction tuning. While it improves344

alignment on in-domain tasks, it may also cause345

the model to overfit or overspecialize, leading to346

reduced generalization on unseen tasks.347

RQ4. How well do the instruction-tuned models348

conduct reasoning on table tasks?349

Answer: Instruction-tuned models still exhibit350

reasoning errors, particularly with grounding351

and numerical operations. Despite improved352

performance on OOD table understanding tasks353

(Table 2), instruction-tuned models continue to dis-354

play notable reasoning errors. To better understand355

these issues, we conduct an error analysis on 1,000356

samples predicted by the Phi model fine-tuned on357

TableLLM data. Representative error cases and358

their distribution are shown in Table 3 and Fig-359
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Figure 7: Frequencies of the TableLLM’s answers con-
taining the five reasoning errors, and the corresponding
prompt, table, and response length.

ure 7, respectively. We find that grounding errors 360

of failing to correctly associate the question with 361

the relevant table content, are the most frequent, 362

particularly in examples involving longer tables 363

or prompts. This suggests that instruction tuning 364

alone may be insufficient to develop robust table 365

grounding capabilities, highlighting the need for 366

future work focused on improving models’ align- 367

ment with tabular inputs. In addition, models fre- 368

quently struggle with basic numerical reasoning, 369

such as subtraction over table entries. This sug- 370

gests a persistent limitation in integrating arith- 371

metic operations in the context of table understand- 372

7



ing. Moreover, we observe instruction-following373

failures in certain cases, aligning with prior find-374

ings that further instruction tuning may degrade375

the base model’s inherent capabilities (Wang et al.,376

2023). While hallucinations and commonsense er-377

rors also occur, they are relatively less frequent in378

table-based tasks compared to general benchmarks379

(Clark et al., 2018; Rein et al., 2023).380

In addition, we explore research questions on381

whether table instruction tuning compromises the382

model’s general capabilities and how model sizes383

affect the performance in Appendix F.384

6 Take-Aways and Discussions385

6.1 Take-Aways386

Effective approach for base model selection. As387

shown in Figures 4 and 5, base model selection is388

crucial for instruction-tuned models’ performance,389

and there exists a strong linear correlation be-390

tween the performance of the base model and the391

instruction-tuned model. Therefore, practitioners392

may evaluate base models on a small development393

set to efficiently guide base model decisions.394

Leaderboard gains often obscure the true395

drivers of model performance. As shown in Fig-396

ure 4 and Figure 8 in Appendix F.1, a substantial397

portion of performance variation can be attributed398

to base model selection rather than the proposed399

instruction tuning data. Existing works such as400

Zhang et al. (2024a,b) have largely overlooked the401

influence of base model choice. Our results suggest402

that leaderboard gains may reflect the strength of403

the underlying foundation model rather than the404

proposed training data.405

Generalization and reasoning remain challeng-406

ing for table LLMs. While recent models achieve407

higher benchmark scores, these gains often reflect408

overfitting rather than true improvements in reason-409

ing or generalization. For instance, our fine-tuned410

Mistral surpasses TableLlama on TabFact (86.8 vs.411

82.5) but underperforms the untuned Mistral on412

InfoTabs (27.7 vs. 42.8), despite both being within413

the same task category. Instruction-tuned models414

still struggle with grounding and numerical rea-415

soning, highlighting the need for future work on416

improving generalization, reasoning, and robust-417

ness of the table LLMs.418

6.2 Future Directions419

As LLMs continue to advance rapidly, there is a420

growing need for comprehensive evaluation frame-421

works that reflect the full range of table-related ca- 422

pabilities. While existing benchmarks often focus 423

on narrow domains or specific subtasks (Chen et al., 424

2020b; Nan et al., 2022), recent work has started to 425

broaden the scope through synthetic datasets and 426

multi-table reasoning setups (Wu et al., 2025b,a). 427

However, the disconnect between synthetic bench- 428

marks and real-world user needs remains a con- 429

cern, calling for future benchmarks grounded in 430

authentic, user-driven scenarios. At the same time, 431

table LLM research has largely emphasized instruc- 432

tion tuning and data curation (Zhang et al., 2024a; 433

Zheng et al., 2024), often overlooking earlier in- 434

sights from table-specific features and structure- 435

aware architectures (Herzig et al., 2020; Yang et al., 436

2022). Bridging these architectural innovations 437

with recent tuning strategies may yield more effec- 438

tive models. Additional discussions in Appendix G. 439

7 Conclusion 440

In this paper, we revisit the instruction tuning 441

paradigm for table understanding and conduct a 442

comprehensive meta-evaluation across multiple 443

base LLMs and training datasets. By systemati- 444

cally replicating four existing table LLMs using 445

three distinct foundation models, Mistral, OLMo, 446

and Phi, we build 12 instruction-tuned models and 447

evaluate them on 16 diverse table benchmarks. 448

Our results reveal that base model selection is the 449

primary determinant of downstream performance, 450

which can explain up to 80% of the performance 451

variance in our controlled setting. In contrast, the 452

impact of training data, while still relevant, plays 453

a comparatively smaller role. In addition, we find 454

that generalization and reasoning remain persis- 455

tent challenges for table LLMs. Even the best- 456

performing models frequently exhibit grounding 457

failures and struggle with basic arithmetic reason- 458

ing, when faced with out-of-domain inputs and 459

long tables. 460

Our findings suggest that leaderboard improve- 461

ments may obscure the actual sources of perfor- 462

mance gains, as performance gains often reflect 463

the strength of the chosen base model. Our study 464

offers the first large-scale controlled analysis that 465

explicitly decouples the effects of base model and 466

instruction tuning data in table understanding. We 467

hope this work establishes a more rigorous founda- 468

tion for future research and encourages the devel- 469

opment of table LLMs that are not only benchmark- 470

efficient but also generalizable and robust. 471
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Limitations472

We believe our work presents the first of its kind473

large-scale controlled analysis that explicitly decou-474

ples the effects of base model and instruction tuning475

data in the table understanding domain. In addition,476

we want to stress the massive training effort we477

have invested in, as noted in Section 4, we have478

spent 4609 GPU hours on replicating the four exist-479

ing table LLMs using the three base models. As a480

side product, we have achieved the new SOTA per-481

formance on the HiTab dataset, and provide the first482

open-source model replication of existing closed-483

source table LLMs such as Table-GPT. Moreover,484

we have comprehensively evaluated these twelve485

models on 16 table understanding benchmarks.486

However, there exist other base models, or other487

datasets proposed by the researchers which can be488

used to train the table LLMs and evaluate these489

models’ capabilities, and by no means we can ex-490

haust all of them in this paper. We encourage future491

efforts in comprehensively evaluating these table492

LLMs’ capabilities, and we believe our work has493

laid a solid foundation for decoupling the contribu-494

tions of training data and base models, and further495

enhancing our understanding of table instruction496

tuning.497

Ethical Considerations498

In this work, we isolate the contributions of train-499

ing data proposed by the existing table LLMs by500

training the same base models and comparing their501

performance. The base models we have used in502

this work include Mistral v0.3 7B Instruct model503

(Jiang et al., 2023), OLMo 7B Instruct (Groeneveld504

et al., 2024), and Phi 3 Small Instruct (7B) (Ab-505

din et al., 2024). We conduct additional studies on506

Phi 3 Mini Instruct (4B) in Appendix F. Founda-507

tional models like Mistral v0.3 7B Instruct model508

are susceptible to jail-breaking instructions (Wei509

et al., 2024) and may lead to harmful behaviors.510

Our objective in this work is to understand the511

limitations of the existing table instruction tuning,512

and we urge practitioners to stick to the good pur-513

pose when developing or using our models. Our514

replicated models can serve as baseline models for515

future research on structured data, and we provide516

a holistic evaluation of these models on both table517

tasks and how they compromise their general ca-518

pabilities. Our results lead to various findings on519

what training data helps the models most on these520

table tasks, and how to construct LLMs specialized521

in tables efficiently. 522
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A Backgrounds and Related Works:1004

Paradigm Shift in Table Modeling1005

A.1 Captions of Figure 21006

In Figure 2, we use “+” and “++” to denote differ-1007

ent sizes of the same model. For instance, TAPAS1008

(Herzig et al., 2020) refers to the model based on1009

the small version of the BERT-base model, while1010

TAPAS+ refers to the model based on the large1011

version of the BERT-base model. For the LSTM1012

models such as Liu et al. (2018)’s model, we esti-1013

mate the parameter sizes based on the description1014

in the original paper.1015

A.2 Different Eras for Table Modeling1016

Here we provide further discussions on different1017

eras for table modeling.1018

Rule-Based and Seq2Seq Era. The first era is1019

characterized by the symbolic and static nature1020

of the proposed algorithms (Woods, 1972; War-1021

ren and Pereira, 1982). Later, with the rise of1022

LSTM in NLP (Sutskever et al., 2014), researchers1023

have incorporated domain-specific features into the1024

models such as specific components to generate1025

SQL queries to query database tables (Zhong et al.,1026

2018).1027

Transformer Era. The earlier trend of domain-1028

specific feature engineering from seq2seq era has1029

made its way into the transformer era, where the1030

pre-trained transformer models (Vaswani et al.,1031

2017) such as BERT (Devlin et al., 2019) have1032

taken over most fields in NLP. Herzig et al. (2020)1033

incorporate embeddings designed for rows and1034

columns, Yang et al. (2022) adapt the attention1035

mechanism to better align with table structures. In1036

addition, this era has witnessed a trend of domain-1037

specific pre-training, where researchers collect a1038

large table pre-training corpus (Yin et al., 2020)1039

and designed table-specific training objectives (Yu1040

et al., 2021; Shi et al., 2021).1041

LLM Era. Ever since the successful launch of1042

the ChatGPT system (Ouyang et al., 2022), re-1043

searchers have increasingly focused on adapting1044

LLMs for table tasks. As LLMs have inherent1045

abilities on table understanding, researchers em-1046

ploy prompt engineering on these LLMs for better1047

performance on tables (Chang and Fosler-Lussier,1048

2023; Deng et al., 2024)2. Another line of re-1049

2Since many of the prompting methods are model-agnostic,
and we have no information on the model size of the commer-

search involves instruction tuning LLMs by adapt- 1050

ing existing table-related benchmarks. This leads 1051

to various table LLMs such as Table-GPT (Li 1052

et al., 2023), TableLlama (Zhang et al., 2024a), 1053

TableLlava (Zheng et al., 2024), and TableLLM 1054

(Zhang et al., 2024b). 1055

Remarks. We have seen a continuous efforts that 1056

last several decades where researchers adapt gen- 1057

eral modeling methods to the domain of table un- 1058

derstanding. As a result, much like the trend in the 1059

general language models, there has been a logrith- 1060

matic increase in terms of the table model size in 1061

the past decades (Figure 2). While these models 1062

have kept pushing the state-of-the-art performance 1063

on many benchmarks (Zhang et al., 2024a), the 1064

monotonic increase in model sizes is concerning as 1065

it limits the access for many research labs where 1066

there is no abundant computing resources. 1067

B Challenges in Table Modeling 1068

In the rule-based era, crafting the rules can be labor- 1069

intensive (Warren and Pereira, 1982); in the trans- 1070

former era, crafting a large-scale pre-training cor- 1071

pus is data-intensive (Yin et al., 2020). In addition 1072

to the discussion in Section 3, here we further dis- 1073

cuss the generalization. 1074

Generalization. The challenge of generalization 1075

has shifted across eras. Since the rules in ear- 1076

lier systems are hand-crafted and static, the chal- 1077

lenge lies primarily in handling the cases where 1078

their rules do not cover (Warren and Pereira, 1982). 1079

Such problems are mediated with the appearance 1080

of the learning-based models (e.g. LSTM, trans- 1081

formers), where the models may have a chance to 1082

conduct compositional reasoning to generalize to 1083

unseen examples (Zhong et al., 2018). However, 1084

an LSTM model excelled on one domain may fail 1085

on other domains (Yu et al., 2018b). This persists 1086

in the transformer era, where models perform well 1087

on one dataset demonstrate near-zero performance 1088

on others (Suhr et al., 2020). While in the table 1089

LLM era, there seem to be some promises on gen- 1090

eralization to unseen tasks (Zhang et al., 2024a), in 1091

our paper, we reveal that generalization challenges 1092

remain. 1093

cial LLMs such as GPT-4, we do not include these methods in
Figure 2.
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C Experimental Setup1094

Foundational LLM Selections. For the training1095

data from each existing work, we fine-tune Mistral-1096

7B-Instruct-v0.3 (Jiang et al., 2023), OLMo 7B1097

Instruct (Groeneveld et al., 2024) and Phi 3 Small1098

Instruct (7B) (Abdin et al., 2024). Following Zhang1099

et al. (2024a,b); Wu et al. (2025b), we fine-tune all1100

the models through full parameter fine-tuning.1101

Hyperparameter Selection. To rule out the ef-1102

fects of the learning rate, we train all three models1103

using a set of learning rates: 5e-5, 1e-5, 5e-6, 1e-6,1104

5e-7, 1e-7, 5e-8, and 1e-8. Empirically, we find1105

that they achieve the best when the learning rate1106

is 5e-7. We do not see significant performance1107

changes as we increase the training steps. For con-1108

sistency, we fine-tune our models for three epochs1109

across all the experiments.1110

We run our experiments on 1 server node with1111

8 A100, each with 48 GB GPU memory. We set1112

the batch size to 16 in our training process. In total,1113

we spend 4609 GPU hours in our training process.1114

D Evaluation Setups1115

D.1 Real-World Table Understanding1116

Benchmarks.1117

Dataset Description. We evaluate our replicated1118

models on eight existing real-world datasets cov-1119

ering the tasks of table question answering (table1120

QA), table fact verification, and table-to-text gener-1121

ation. FeTaQA (FeT) (Nan et al., 2022) is a free-1122

form table QA dataset sourced from Wikipedia-1123

based tables. HiTab (HiT) (Cheng et al., 2022)1124

is a table QA dataset sourced from statistical1125

reports and Wikipedia pages on hierarchical ta-1126

bles. TabMWP (TabM) (Lu et al., 2022) is an1127

open-domain grade-level table question-answering1128

dataset involving mathematical reasoning. TATQA1129

(TAT) (Zhu et al., 2021) is a table QA dataset1130

sourced from real-world financial reports. Wik-1131

iTQ (Wiki) (Pasupat and Liang, 2015) is a table1132

QA dataset sourced from Wikipedia. TabFact1133

(TabF) (Chen et al., 2020b) is a table fact veri-1134

fication dataset sourced from Wikipedia. InfoTabs1135

(Inf) (Gupta et al., 2020) is a table fact verifica-1136

tion dataset with human-written textual hypothe-1137

ses based on tables extracted from Wikipedia info-1138

boxes. ToTTo (ToT) (Parikh et al., 2020) is a table-1139

to-text dataset sourced from Wikipedia tables.1140

Metrics. For FeTaQA, we use the BLEU4 score1141

following Nan et al. (2022). For ToTTo, we follow1142

Xie et al. (2022) to report the BLEU4 scores over 1143

multiple references. We adopt the evaluation script 1144

from the original HiTab, TabMWP, TATQA, and 1145

WikiTQ repository on GitHub. For these table QA 1146

tasks, we notice that since the fine-tuned models 1147

may not follow instructions such as “generate in 1148

the JSON format”, we do not pose any constraints 1149

to these models in terms of the generation format. 1150

Instead, we use Haiku 3.53 to extract the answer 1151

entity from the model generation. For TabFact and 1152

InfoTabs, we report the accuracy by checking if 1153

only the gold answer appears in the prediction. 1154

Data Format. In terms of the test set format, we 1155

use the exact same test set for FeTaQA, HiTab, 1156

TATQA, and ToTTo as Zhang et al. (2024a) with 1157

the Markdown table format. For TabMWP, Wik- 1158

iTQ, and InfoTabs, etc., we follow the original data 1159

format. Specifically, TabMWP uses ‘|’ to separate 1160

columns, and WikiTQ and InfoTabs use HTML 1161

format to represent tables. 1162

D.2 Synthetic Table Understanding Datasets. 1163

In addition, we evaluate these models on eight 1164

synthesized datasets including Beer, DeepM, 1165

Spreadsheet-DI (DI), Spreadsheet-Real (ED), 1166

Column-No-Separator (C), Spreadsheet-CF 1167

(CF), and Efthymiou (CTA) (Li et al., 2023) on 1168

schema reasoning ability (detailed in our replica- 1169

tion for Table-GPT Appendix E.4), and TabBeval 1170

(Wu et al., 2025b) on miscellaneous table tasks. 1171

Appendix H provides examples for these 1172

datasets. 1173

E Replicating Existing Table LLMs 1174

Table 1 outlines the base models used in existing 1175

table LLMs. These base models, ranging from var- 1176

ious Llama models to closed-source models such 1177

as GPT-3.5, differ significantly in their architecture 1178

designs, model sizes, and training recipes. In ad- 1179

dition, each table LLM introduces its own unique 1180

training data, making it challenging to disentangle 1181

the impact of the training data from that of the base 1182

model. Here we report the performance of our fine- 1183

tuned models based on Mistral v0.3 7B Instruct, 1184

OLMo 7B Instruct, and Phi 3 Small Instruct (7B) 1185

versus the original models on the datasets reported 1186

in each of the original works. 1187
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Base Models
FeTaQA HiTab TabFact FEVEROUS HybridQA KVRET ToTTo WikiSQL WikiTQ
(BLEU) (Acc) (Acc) (Acc) (Acc) (F1Micro) (BLEU) (Acc) (Acc)

Original (Zhang et al., 2024a)
LongLoRA 7B‡ 39.0 64.7 82.5 73.8 39.4 48.7 20.8 50.5 35.0

Ours
Mistral v0.3 7B Instruct 38.7 70.6† 86.8 75.9 27.2 46.6 28.5 64.5 47.4

OLMo 7B Instruct 36.8 67.9 83.8 69.8 20.3 44.6 20.8 56.9 38.8
Phi 3 Small Instruct (7B) 38.1 63.6 86.2 78.3 33.6 56.0 29.6 63.3 47.7

Table 4: Performance comparison between the original TableLlama and our fine-tuned models from different model
families on the in-domain tuned (left three columns) and out-of-domain (right six columns) datasets. The number
is bold if it is the best among the four, and underscored if it is the second. †: we surpass the previous SOTA
performance (64.7 by TableLlama) on HiTab.

E.1 Replicating TableLlama1188

Training Datasets. The original TableLlama1189

(Zhang et al., 2024a) uses 2 million data points1190

in its instruction tuning stage, which can be unnec-1191

essarily large. In addition, we do not have enough1192

computing resources to instruction-tune our model1193

on a dataset of such a scale. Therefore, we rule1194

out the table operation datasets and only maintain1195

the training data for FeTaQA (Nan et al., 2022),1196

HiTab (Cheng et al., 2022), and TabFact (Chen1197

et al., 2020b) to fine-tune our model, which results1198

in 107K training instances.1199

Evaluation Datasets. Following Zhang et al.1200

(2024a), we use the FeTaQA (Nan et al., 2022),1201

HiTab (Cheng et al., 2022), and TabFact (Chen1202

et al., 2020b) as the in-domain evaluation sets. In1203

addition, we compare our fine-tuned models versus1204

the original TableLlama on FEVEROUS (Aly et al.,1205

2021), HybridQA (Chen et al., 2020c), KVRET1206

(Eric and Manning, 2017), ToTTo (Parikh et al.,1207

2020), WikiSQL (Zhong et al., 2018), and WikiTQ1208

(Pasupat and Liang, 2015).1209

Comparison. Table 4 compares the original1210

TableLlama model (first row) versus our fine-tuned1211

models. Our fine-tuned models yield similar or1212

better performance than the original TableLlama1213

model in most cases. In addition, we achieve the1214

new SOTA performance on HiTab by fine-tuning1215

the Mistral model. As we only use 107K (5% of the1216

2M data points used by the original TableLlama),1217

our results demonstrate that with proper instruction-1218

tuning, we can achieve competitive results on table1219

tasks with much fewer data.1220

3https://www.anthropic.com/claude/
haiku

Base WikiTQm TATQAm FeTaQAm OTT-QAm

Models (Accp) (Accp) (BLEU) (Accp)

Original (Zhang et al., 2024b)
CodeLlama‡ 72.5 51.1 8.4 57.3

Ours
Mistral 76.0 55.4 10.6 64.3
OLMo 66.8 50.2 10.5 58.1

Phi 75.4 57.8 12.1 63.3

Table 5: Performance comparison between the original
TableLLM and our fine-tuned models. All four models
are 7B and instruction-tuned. We denote the evaluation
datasets with a subscript “m” as they are adapted by
Zhang et al. (2024b).

E.2 Replicating TableLLM 1221

Training Datasets. We use the original 1222

instruction-tuning set by Zhang et al. (2024b), 1223

which includes 80.5K training instances. 1224

Evaluation Datasets. Following Zhang et al. 1225

(2024b), we use the modified version of WikiTQ 1226

(Pasupat and Liang, 2015), TATQA (Zhu et al., 1227

2021), and FeTaQA (Nan et al., 2022) as the in- 1228

domain evaluation sets, and OTT-QA (Chen et al., 1229

2020a) as the out-of-domain evaluation set. 1230

Comparison. Table 5 compares the original 1231

TableLLM versus our fine-tuned models. We note 1232

that our evaluation metrics are distinct from what 1233

Zhang et al. (2024b) have used originally. Zhang 1234

et al. (2024b) use CritiqueLLM (Ke et al., 2024) 1235

as a judge to decide the correctness of the answers. 1236

However, the model judgments are made in Chi- 1237

nese4, a different language from the language in 1238

4Zhang et al. (2024b)’s inference results are avail-
able at https://github.com/RUCKBReasoning/
TableLLM/blob/main/inference/results/
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Base TableBencheval

Models (R-L)

Original (Wu et al., 2025b)
Llama 3.1 8B ‡ 27.2

Ours
Mistral v0.3 7B Instruct 27.2

OLMo 7B Instruct 19.3
Phi 3 Small Instruct (7B) 27.8

Table 6: Performance comparison between the original
TablebBenchLLM based on Llama 3.1 8B and our fine-
tuned models. “R-L” denotes the ROUGE-L score.

all the training and evaluation datasets. In addition,1239

the scores assigned by the CritiqueLLM is not con-1240

sistent for a single evaluation example. Therefore,1241

for WikiTQm, TATQAm, and OTT-QAm, we report1242

the Accp scores, where we calculate whether the1243

gold answer entities appear in the model’s response.1244

We find that our fine-tuned models based on the1245

Mistral and Phi models consistently outperform1246

the original TableLLM model on these datasets,1247

and we attribute the performance improvement to1248

the stronger base model (Mistral v0.3 7B Instruct1249

and Phi 3 Small Instruct) we have versus theirs1250

(CodeLlama 7B Instruct).1251

E.3 Replicating TableBenchLLM1252

Training Datasets. We use the original1253

instruction-tuning set by Wu et al. (2025b), which1254

includes 20K training instances.1255

Evaluation Datasets. Following Wu et al.1256

(2025b), we only evaluate the model on their con-1257

structed test set, which we denote as TableBencheval1258

in Table 6.1259

Comparison. Following Wu et al. (2025b),1260

we report the ROUGE-L score of our Mistral-1261

TableBenchLLM. In Table 6, we compare our1262

model with the scores reported by Wu et al. (2025b)1263

in the original paper, corresponding to the version1264

of TableBenchLLM fine-tuned based on Llama1265

3.1 8B model. Our Mistral-TableBenchLLM and1266

Phi-TableBenchLLM achieve similar performance1267

scores of 27.2 and 27.8, respectively, compared to1268

the original TableBenchLLM’s 27.2.1269

E.4 Replicating Table-GPT1270

Training Dataset. We use the instruction-tuning1271

dataset provided by Li et al. (2023) that contains1272

TableLLM-7b/Grade_fetaqa.jsonl

Base Beer DeepM DI ED C CF Wiki CTA
Models (F1) (Recall) (Acc) (F1) (F1) (Acc) (Acc) (F1)

Original (Li et al., 2023)
GPT-3.5‡ 72.7 100.0 55.8 56.5 29.4 71.3 48.6 88.6

Ours
Mistral 100.0 98.0 46.4 46.0 23.8 25.3 25.5 68.3
OLMo 96.2 100.0 45.4 35.3 19.9 29.3 16.4 62.5

Phi 98.9 98.8 49.4 55.4 24.8 45.2 30.0 68.3

Table 7: Performance comparison between the original
Table-GPT and our fine-tuned models.

Beer DeepM DI ED C CF Wiki CTA
(F1) (Recall) (Acc) (F1) (F1) (Acc) (Acc) (F1)

13K 98.9 92.9 45.9 43.8 29.4 21.2 29.2 66.8
66K 100.0 98.0 46.4 46.0 23.8 25.3 29.8 68.3

Table 8: Performance comparison between training Mis-
tral v0.3 7B Instruct on 13K instances versus 66K in-
stances provided by Li et al. (2023).

66K instances. 1273

Evaluation Datasets. We select four in-domain 1274

test sets by Li et al. (2023), Beer for entity match- 1275

ing, DeepM for schema matching, Spreadsheet- 1276

DI (DI) for data imputation, and Spreadsheet-Real 1277

(ED) for error detection. Furthermore, we re- 1278

port the out-of-domain performance on Column- 1279

No-Separator (C) for missing value identification, 1280

Spreadsheet-CF (CF) for column finding, WikiTQ 1281

(Wiki) for table question answering, and Efthymiou 1282

(CTA) for column type annotation. 1283

Comparison. Table 7 reports the results. We 1284

note that though the size of our fine-tuned models 1285

are all 7B, they achieve better performance than 1286

Table-GPT which is based on GPT-3.5 on Beer, and 1287

comparable performance on DeepM. However, on 1288

the out-of-domain datasets, we can see that Mistral- 1289

TableGPT underperforms the original Table-GPT. 1290

We attribute such performance differences to the 1291

differences between the base models. Since GPT- 1292

3.5 is stronger than these open-source 7B models, 1293

its innate table understanding ability as well as its 1294

generalization ability leads to better performance 1295

on these out-of-domain table datasets for Table- 1296

GPT. This reinforces our motivations of conduct- 1297

ing the comparisons using the same base model, 1298

as the performance difference may be because of 1299

the base model’s capability, therefore we need the 1300

same base model to conduct an apple-to-apple com- 1301

parison. 1302
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Base LLM Train Set
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Figure 8: Shapley R2 decomposition (Shapley et al.,
1953; Israeli, 2007) for the contributions of the down-
stream tasks’ performance by the base LLM versus the
training set. We can see that the choice of the base
LLM is a non-negligible factor, and in many cases, the
dominant factor that decides the model’s performance
on downstream tasks.

Side Findings. There is a smaller training set1303

provided by Li et al. (2023) containing 13K training1304

instances. We report the performance comparison1305

by training the Mistral v0.3 7B Instruct model on1306

the two sets in Table 8 We do not find a significant1307

performance boost when we use the larger 66K1308

dataset. And on one of the out-of-domain datasets,1309

C, training on 13K instances even yields a better1310

score of 29.4 than training on 66K instances’ 23.8.1311

This echoes with the findings by Zhou et al. (2024);1312

Deng and Mihalcea (2025) that limited instruction1313

tuning instances are able to yield a strong model.1314

F Results and Discussions1315

F.1 Shapley R2 Decomposition1316

Figure 8 provides the Shapley R2 results for the1317

three models as well as for each pair of models.1318

We note that when we consider model pairs, base1319

model selection is a dominant factor that decides1320

the instruction-tuned models’ performance for Mis-1321

tral and Phi, OLMo and Phi. For models fine-tuned1322

from Mistral and OLMo, base model selection still1323

explains 35.6% of the performance variance. This1324

suggests that the base model selection is a crucial,1325

and in many cases, a dominant factor that deter-1326

mines the instruction-tuned model’s performance.1327

F.2 Training Data Example 1328

As shown in Table 9, the training instance from 1329

TableLLM contains the underlying reasoning pro- 1330

cess to reach the final answer. Such traces would 1331

benefit the model’s reasoning process, as suggested 1332

by the findings by Guo et al. (2025); Muennighoff 1333

et al. (2025). Figure 9 displays the distributions of 1334

input and output lengths across training datasets. 1335

Notably, TableLlama exhibits significantly shorter 1336

output lengths compared to other training datasets. 1337

While TableBench has the longest average output 1338

length, its distribution possesses a high frequency 1339

of single-word answers (the prominent peak in the 1340

output distribution in Figure 9c). Furthermore, 1341

TableBench outputs may contain irrelevant reason- 1342

ing elements (the first half of the gold answer is not 1343

relevant to the comparison of the performance in 1344

Table 9). 1345

F.3 RQ5: How does the table instruction 1346

tuning compromise the general 1347

capabilities of the foundation LLMs? 1348

Evaluation Setup. We select five general bench- 1349

marks. MMLU (Hendrycks et al., 2021) examines 1350

the general ability of the model on 57 tasks includ- 1351

ing elementary mathematics, US history, computer 1352

science, etc. We adopt the 5-shot setup. MMLUPro 1353

(Wang et al., 2024a) is an enhanced benchmark 1354

evaluating the general ability of the model, which 1355

contains up to ten options and eliminates the trivial 1356

questions in MMLU. We adopt the 5-shot setup. 1357

AI2ARC (Clark et al., 2018) is a reasoning bench- 1358

mark containing natural, grade-school questions. 1359

We adopt the 0-shot setup and report the accuracy 1360

score on the challenging set. GPQA (Rein et al., 1361

2023) is a reasoning benchmark containing ques- 1362

tions in biology, physics, and chemistry written by 1363

domain experts. We adopt a 0-shot setup and report 1364

the accuracy score on its main set. IFEval (Zhou 1365

et al., 2023) is a dataset evaluating the general in- 1366

struction following ability of the model containing 1367

instructions such as “return the answer in JSON for- 1368

mat”. We report the instance-level strict accuracy 1369

defined by Zhou et al. (2023). We include provide 1370

examples from these datasets in Appendix H. 1371

For MMLU, MMLUPro, AI2ARC, and GPQA, 1372

as they are all multi-choice question-answering 1373

datasets, our objective is to select the most appro- 1374

priate completion among a set of given options 1375

based on the provided context. Following Touvron 1376

et al. (2023), we select the completion with the 1377
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(a) TableLLlama.
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(d) TableGPT.

Figure 9: Distributions of the training data in terms of the input length and output length.

TableLlama (Zhang et al., 2024a)
Q What was the percent of restaurants and bars that were frequently the setting of behaviours related to unwanted

physical contact or suggested sexual relations that happened off campus?

Gold 49.4.

TableLLM (Zhang et al., 2024b)
Q How many works did Leyla Erbil publish in total?

Gold
Leyla Erbil published a total of 11 works. This can be determined by counting the number of entries in the

“Name” column in the provided table.

TableBench (Wu et al., 2025b)

Q
Can you compare the performance of the advocates based on their wins, losses, and poll results, and identify
which advocate has the most balanced performance across all metrics?

Gold
The table lists various advocates along with their performance metrics in terms of wins, losses, ties, poll wins,
and poll losses. Patton Oswalt shows the most balanced performance across all metrics with 3 wins, 2 losses, 1
tie, 3 poll wins, and 3 poll losses.

TableGPT (Li et al., 2023)
Q predict the output value for the last row denoted as ’[Output Value].’

Gold 6406 m.

Table 9: Training examples from TableLlama, TableLLM, TableBench, and TableGPT. We omit the corresponding
table here for readability. The reasoning part is in italics for TableLLM data.

highest likelihood given the provided context. As1378

we evaluate the model based on their selection of1379

the letter choice of “A”, “B”, etc., we do not nor-1380

malize the likelihood by the number of characters1381

in the completion.1382

Answer: Table instruction tuning does not nec-1383

essarily compromise the base models’ general1384

capabilities. Figure 10 provides the model’s per-1385

formance on the five general benchmarks, while1386

Table 10 provides the performance in numbers.1387

We find that on MMLU, MMLUPro, AI2ARC, and1388

GPQA, our fine-tuned models do not compromise1389

too much of the base models’ general capabilities.1390

On AI2ARC, the score for Mistral-TableGPT is1391

even slightly higher than the base model. Such 1392

performance improvement is likely due to the fact 1393

that many table tasks involve reasoning over tables, 1394

which may enhance the model’s general reason- 1395

ing ability. On IFEval, models fine-tuned from 1396

the Mistral model suffer a significant performance 1397

drop of over 20 points compared to the original 1398

model. However, models fine-tuned from the Phi 1399

model even improve the base model’s performance. 1400

Contrary to the works arguing that tuning would 1401

compromise the model’s capabilities (Luo et al., 1402

2023), our finding suggests that domain-specific 1403

tuning does not necessarily lead to performance 1404

decay on general benchmarks, and the base model 1405

selection plays a crucial role in maintaining base 1406
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LLMs’ general capabilities.1407

F.4 RQ6: How does the model size affect1408

performance on table tasks?1409

Evaluation Setup. We compare Phi 3 Mini In-1410

struct (4B) versus Phi 3 Small Instruct (7B) on the1411

table benchmarks introduced in Appendix D.1412

Answer: The larger the better. Figures 111413

and 12 provide performance comparison between1414

Phi 3 Mini Instruct (4B) versus Phi 3 Small Instruct1415

(7B). Similar to the findings for the general LLMs1416

(Dubey et al., 2024; Wei et al., 2022), we find that1417

the larger-sized model often leads to better perfor-1418

mance for both the original model and the model1419

after training on the same set of data.1420

G Additional Discussions1421

G.1 Future Directions1422

Toward better table benchmarks. As LLMs1423

continue to advance rapidly (Ouyang et al., 2022;1424

Touvron et al., 2023; Dubey et al., 2024; Yang1425

et al., 2024), there is a growing need for a com-1426

prehensive evaluation of table-related capabilities.1427

Existing benchmarks often focus on narrow do-1428

mains or specific subtasks (Chen et al., 2020b; Nan1429

et al., 2022), while recent work has begun to ex-1430

plore broader coverage through synthetic datasets1431

(Wu et al., 2025b) and multi-table reasoning se-1432

tups (Wu et al., 2025a). However, concerns remain1433

regarding the gap between synthetic benchmarks1434

and authentic user needs. Future work shall ground1435

table benchmarks in real-world use cases and build1436

datasets that more accurately reflect user-driven1437

queries and interactions with structured data.1438

Incorporating prior insights from table model-1439

ing. In the era of table LLMs, most efforts have1440

focused on instruction tuning and dataset construc-1441

tion (Zhang et al., 2024a; Zheng et al., 2024). Yet,1442

earlier work in table modeling demonstrates that1443

incorporating table-specific features and structure-1444

aware model architectures can significantly im-1445

prove performance (Herzig et al., 2020; Yang et al.,1446

2022). We advocate for future research to revisit1447

and integrate these insights into modern table mod-1448

eling, potentially bridging architecture-level inno-1449

vations with instruction tuning strategies.1450

Bridging techniques from other fields. Table1451

modeling has a long-standing tradition of adapting1452

techniques from other areas of NLP (Yin et al.,1453

2020). Recent efforts leverage vision-language1454

models (Deng et al., 2024; Zheng et al., 2024). In 1455

this paper, we endeavor to leverage meta-evaluation 1456

(Kobayashi et al., 2024; Veuthey et al., 2025) to 1457

scrutinize the existing table evaluation framework. 1458

Here we list two future directions: (1) employing 1459

mechanistic interpretability methods (Huben et al., 1460

2024) to better understand how models represent 1461

and reason over structured inputs; and (2) lever- 1462

aging membership inference attacks (Shokri et al., 1463

2017) to probe the potential leakage or memoriza- 1464

tion of structured data in pretraining corpora. 1465

Bringing structures to the broader NLP. While 1466

table modeling often borrows from other subfields, 1467

we believe that table research can benefit the 1468

broader NLP community. Hawkins (2021) sug- 1469

gest that inherent structures5 exist in human rea- 1470

soning, and recent works suggest that LLMs can 1471

benefit from reasoning with structures (Sun et al., 1472

2025). Reasoning in structures can potentially lead 1473

to more robust, interpretable, and modularized out- 1474

put (Wang et al., 2024b). We encourage future 1475

efforts on this and potentially bringing insights into 1476

table research to the broader NLP community. 1477

H Dataset Examples 1478

H.1 FeTaQA 1479

Input: 1480

[TLE] The Wikipedia page title of this 1481
table is Gerhard Bigalk. The Wikipedia 1482
section title of this table is Ships 1483
attacked. [TAB] | Date | Name | 1484
Nationality | Tonnage (GRT) | Fate | [ 1485
SEP] | 14 June 1941 | St. Lindsay | 1486
United Kingdom | 5,370 | Sunk | [SEP] | 1487
21 December 1941 | HMS Audacity | Royal 1488
Navy | 11,000 | Sunk | [SEP] | 2 1489
February 1942 | Corilla | Netherlands | 1490
8,096 | Damaged | [SEP] | 4 February 1491
1942 | Silveray | United Kingdom | 4,535 1492
| Sunk | [SEP] | 7 February 1942 | 1493

Empire Sun | United Kingdom | 6,952 | 1494
Sunk | [SEP] | 16 May 1942 | Nicarao | 1495
United States | 1,445 | Sunk | [SEP] | 1496
19 May 1942 | Isabela | United States | 1497
3,110 | Sunk |\n\nThe highlighted cells 1498
of the table are: [HIGHLIGHTED_BEGIN] 1499
[11,000], [Sunk], [8,096], [Damaged] [ 1500
HIGHLIGHTED_END] What happened to the 1501
two heaviest ships Gerhard Bigalk 1502
attacked? 1503

Instruction: 1504

This is a free-form table question 1505
answering task. The goal for this task 1506
is to answer the given question based on 1507

5Hawkins (2021) refer to these structures as “reference
frame”.
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(c) Phi 3 Small Instruct (7B).

Figure 10: Performance of fine-tuned models trained on different data (e.g. TableLlama) on general benchmarks.
The green and red hatched bars represent performance gains or losses relative to the base model, respectively. As
indicated by the similar performance bar heights, table instruction tuning does not necessarily compromise the base
model’s general capabilities. Table 10 provides the performance in number.

the given table and the highlighted1508
cells.1509

Output:1510

Gerhard Bigalk damaged one ship of 8,0961511
GRT, and sunk one warship of 11,0001512

tons.1513

H.2 TabFact1514

Input:1515

[TLE] The table caption is about tony1516
lema. [TAB] | tournament | wins | top -1517
5 | top - 10 | top - 25 | events | cuts1518
made [SEP] | masters tournament | 0 | 11519
| 2 | 4 | 4 | 4 | [SEP] | us open | 0 |1520
2 | 3 | 4 | 6 | 5 | [SEP] | the open1521
championship | 1 | 2 | 2 | 2 | 3 | 3 | [1522
SEP] | pga championship | 0 | 0 | 1 | 21523
| 5 | 4 | [SEP] | totals | 1 | 5 | 8 |1524
12 | 18 | 16 |\n\nThe statement is: <1525
tony lema be in the top 5 for the master1526
tournament , the us open , and the open1527
championship>. Is it entailed or1528

refuted by the table above?1529

Instruction:1530

This is a table fact verification task.1531
The goal of this task is to distinguish1532
whether the given statement is entailed1533
or refuted by the given table.1534

Output:1535

entailed1536

H.3 ToTTo1537

Input:1538

<page_title> List of Governors of South1539
Carolina </page_title> <section_title>1540
Governors under the Constitution of 18681541
</section_title> <table> <cell> 76 <1542

col_header> # </col_header> <col_header>1543
74 </col_header> <col_header> 75 </1544

col_header> </cell> <cell> Daniel Henry1545
Chamberlain <col_header> Governor </1546

col_header> <row_header> 76 </row_header 1547
> </cell> <cell> December 1, 1874 < 1548
col_header> Took Office </col_header> < 1549
row_header> 76 </row_header> </cell> </ 1550
table> 1551

Instruction: 1552

This is a highlighted cells description 1553
task. The goal of this task is to 1554
generate the language description given 1555
table cells. 1556

Output: 1557

Daniel Henry Chamberlain was the 76th 1558
Governor of South Carolina from 1874. 1559

H.4 Beer 1560

Input: 1561

Beer A is:\n|name|factory|\n|---|---|\n| 1562
Sierra Amber Ale|Silver Peak Restaurant 1563
\& Brewery|\n\nBeer B is:\n|name|factory 1564
|\n|---|---|\n|Sierra Andina Alpamayo 1565
Amber Ale|Sierra Andina| 1566
\# Task Description: Please determine 1567
whether Beer A and Beer B refer to the 1568
same entity or not. 1569

Instruction: 1570

You are a helpful assistant that 1571
specializes in tables.\n Your final 1572
answer should be \’Yes\’ or \’No\’. 1573
Return the final result as JSON in the 1574
format \{"answer": "<Yes or No>"\}. Let’ 1575
s think step by step and show your 1576
reasoning before showing the final 1577
result. 1578

Output: 1579

\{"answer": "No"\} 1580

H.5 TabBeval 1581

Input: 1582
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Method
MMLU MMLUPro AI2ARC GPQA IFEval

Acc Acc Acc Acc Acc
M 61.2 31.4 73.3 28.6 58.8

M-TableLlama 59.4 29.5 69.6 23.7 38.0
∆ ↓ 1.9 ↓ 1.9 ↓ 3.4 ↓ 4.9 ↓ 20.7

M-TableLLM 61.4 29.3 74.2 25.9 29.6
∆ ↑ 0.2 ↓ 2.0 ↑ 0.9 ↓ 2.7 ↓ 29.1

M-TableBenchLLM 62.0 31.0 73.6 28.1 31.8
∆ ↑ 0.7 ↓ 0.4 ↑ 0.3 ↓ 0.5 ↓ 27.0

M-TableGPT 61.3 31.3 74.6 26.1 31.4
∆ ↑ 0.1 ↓ 0.1 ↑ 1.3 ↓ 2.4 ↓ 27.3

O 52.6 22.5 67.6 27.9 45.6
O-TableLlama 53.7 23.1 66.2 29.7 46.8

∆ ↑ 1.1 ↑ 0.6 ↓ 1.4 ↑ 2.0 ↑ 1.2
O-TableLLM 53.3 22.3 66.0 29.0 42.8

∆ ↑ 0.7 ↓ 0.3 ↓ 1.6 ↑ 1.9 ↓ 2.8
O-TableBenchLLM 53.1 21.9 67.7 28.6 45.2

∆ ↑ 0.5 ↓ 0.7 ↑ 0.1 ↑ 0.9 ↓ 0.4
O-TableGPT 52.9 21.9 66.8 28.8 48.9

∆ ↑ 0.3 ↓ 0.6 ↓ 0.8 ↑ 0.8 ↑ 3.4

P 75.7 41.2 73.1 31.0 60.7
P-TableLlama 75.5 45.1 73.5 31.5 70.1

∆ ↓ 0.2 ↑ 3.9 ↑ 0.3 ↑ 0.4 ↑ 9.9
P-TableLLM 75.0 42.6 73.1 30.4 64.8

∆ ↓ 0.7 ↑ 1.3 ↑ 0.0 ↓ 0.8 ↑ 4.1
P-TableBenchLLM 75.7 43.3 60.8 28.8 63.3

∆ ↑ 0.0 ↑ 2.0 ↓ 1.5 ↓ 2.1 ↑ 2.6
P-TableGPT 75.1 40.1 72.6 32.4 70.0

∆ ↓ 0.5 ↓ 1.2 ↓ 0.3 ↑ 1.4 ↑ 9.4

Table 10: Evaluation of the models on general bench-
marks. “M-”, “O-”, and “P-” represent Mistral v0.3 7B
Instruct, OLMo 7B Instruct, Phi 3 Small Instruct (7B),
respectively. “∆” denotes the performance difference
between the instruction-tuned model and its base model.

Read the table below in JSON format:\n[1583
TABLE] \n\{"columns": ["index", "1584
organization", "year", "rank", "out of"],1585
"data": [["bribe payers index", "1586

transparency international", 2011, 19,1587
28], ["corruption perceptions index", "1588
transparency international", 2012, 37,1589
176], ["democracy index", "economist1590
intelligence unit", 2010, 36, 167], ["1591
ease of doing business index", "world1592
bank", 2012, 16, 185], ["economic1593
freedom index", "fraser institute", 2010,1594
15, 144], ["economic freedom index", "1595

the heritage foundation", 2013, 20, 177],1596
["global competitiveness report", "1597

world economic forum", 20122013, 13,1598
144], ["global peace index", "institute1599
for economics and peace", 2011, 27, 153],1600
["globalization index", "at kearney /1601

foreign policy magazine", 2006, 35, 62],1602
["press freedom index", "reporters1603

without borders", 2013, 47, 179], ["1604
property rights index", "property rights1605
alliance", 2008, 28, 115]]\}\n\nLet\’s1606

get start!\nQuestion: What is the1607

average rank of the indices published by 1608
Transparency International? 1609

Instruction: 1610

You are a helpful assistant that 1611
specializes in tables.\nYou are a table 1612
analyst. Your task is to answer 1613
questions based on the table content.\n\ 1614
n\nThe answer should follow the format 1615
below:\n[Answer Format]\nFinal Answer: 1616
AnswerName1, AnswerName2...\n\nEnsure 1617
the final answer format is the last 1618
output line and can only be in the " 1619
Final Answer: AnswerName1, AnswerName2 1620
..." form, no other form. Ensure the " 1621
AnswerName" is a number or entity name, 1622
as short as possible, without any 1623
explanation.\n\n\nGive the final answer 1624
to the question directly without any 1625
explanation. 1626

Output: 1627

28 1628

H.6 MMLU 1629

Input: 1630

{5-shot examples} 1631
Find the degree for the given field 1632
extension Q(sqrt(2), sqrt(3), sqrt(18)) 1633
over Q. 1634
\nA. 0\nB. 4\nC. 2\nD. 6\nAnswer: 1635

Instruction: 1636

The following are multiple choice 1637
questions (with answers) about abstract 1638
algebra.\n\n 1639

Output: 1640

B 1641

H.7 IFEval 1642

Input: 1643

Can you help me make an advertisement 1644
for a new product? It’s a diaper that’s 1645
designed to be more comfortable for 1646
babies and I want the entire output in 1647
JSON format. 1648

Instruction: 1649

You are a helpful assistant. 1650

Output: 1651

[JSON formatted answer] 1652
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(a) No training data, the original model.
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(b) Training data for TableLlama.

FeT HiT TabM TAT Wiki TabF Inf ToT Beer DeepM DI ED C CF CTA TabBeval
0

20

40

60

80

11.6

38.3

80.7

22.7

31.6

46.1
42.6

7.8

92.3

64.3

36.8

44.7

24.2
20.9

63.8

19.218.2

45.3

81.2

24.1

37.7

69.6

44.6

8.1

80.2

50.0

34.0

41.3

27.9

49.5

70.1

27.2

(c) Training data for TableLLM.

Figure 11: Performance of Phi 3 Mini Instruct (4B) versus Phi 3 Small Instruct (7B) model on different table tasks
with different training data. In most cases, the 7B model outperforms the 4B model.
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(a) Training data for TableBench.
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(b) Training data for TableGPT.

Figure 12: Performance of Phi 3 Mini Instruct (4B) versus Phi 3 Small Instruct (7B) model on different table tasks
with different training data. In most cases, the 7B model outperforms the 4B model.
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