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Abstract

Multispectral satellite images are essential for applications in agriculture, fisheries,
and environmental monitoring. However, the high dimensionality, large data vol-
umes, and diverse spatial resolutions across multiple channels present significant
challenges for data compression and analysis. In this paper, we introduce ImpliSat,
a unified framework specifically designed to address these challenges through
efficient compression and reconstruction of multispectral satellite data. ImpliSat
employs Implicit Neural Representations (INR) to model satellite images as contin-
uous functions over coordinate space, capturing fine spatial details across varying
spatial resolutions. Additionally, we propose a Fourier modulation algorithm that
dynamically adjusts to the spectral and spatial characteristics of each channel,
ensuring optimal compression while preserving critical image details.

1 Introduction

Satellite data is essential for research and applications such as climate change [1, 2] and marine
ecosystem monitoring [3]. In particular, multispectral satellite imagery (MSI) enables detailed
analysis of soil conditions [4], vegetation distribution [5, 6], and natural resource management [7], as
it contains information collected across various wavelength bands.

In order to collect MSI, we typically deploy a satellite to orbit the earth at a certain altitude and
control it from a ground station. During its orbit, a satellite captures information from the earth using
broad ranges of sensor and store it in its onboard computer storage which are then sent to the ground
station for further processing. However, a satellite can only establish communication with the ground
station during its orbital pass, which is a period when the satellite is within a line of sight of the
ground station. This can last from a few minutes to several hours depending on the orbit. Therefore,
the satellite can only collect limited data to make sure that they can be fully transmitted during this
period, otherwise they need to be discarded to make room for new data or wait for the next orbital
pass in its cycle to transmit the remaining data. This motivates us to develop a compression algorithm
specific for remote sensing image data.

Recent advancements in Implicit Neural Representation (INR) techniques offer a promising solution.
INR represents data as coordinate-based functions, enabling the efficient compression of high-
resolution imagery. One of the key advantages of INR is its ability to render continuous spatial data at
arbitrary resolutions, making it particularly effective for reconstructing data at varying scales. When
applied to satellite imagery, INR can handle the resolution differences across spectral bands and the
diverse pixel value ranges more efficiently. However, existing INR methods have primarily focused
on RGB images [8, 9] and 3D modeling [10, 11], with little research dedicated to multispectral
satellite data, which involves varying wavelength bands and differing resolutions across channels.

As illustrated in Appendix E, the frequency spectrum of MSI data varies significantly depending on
the spatial resolution, with each resolution displaying distinct spectral characteristics. 10m, 20m and
60m ground sample distance (GSD) images show different frequency characteristics, which suggests
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Figure 1: MSI from the Sentinel-2 L1C dataset (London). These images show 10m GSD (B2,
B8), 20m GSD (B5, B8A), and 60m GSD (B1, B10) bands, illustrating the varying levels of detail
captured at different resolutions. More detailed images can be found in the Appendix E and G.

that the Fourier features used to represent the data may benefit from adaptation based on the resolution.
Therefore, unlike existing INR approaches that apply fixed Fourier features uniformly across all
channels, there is motivation for adaptive modulation that adjusts the Fourier basis according to each
band’s specific resolution and spectral properties. This approach enables a more accurate and efficient
representation of the data.

In this paper, we introduce Implicit Neural Representations for Multispectral Satellite Images
(ImpliSat), a novel INR-based compression framework specifically designed for MSI. ImpliSat
models MSI data as coordinate-based functions, compressing and reconstructing the data while
accounting for the differences in spatial resolution and channel information. Additionally, we propose
a new meta-learning approach based on hypernetworks and Fourier modulation to optimize the
compression of satellite imagery. This approach addresses the common challenges associated with
satellite data, offering a more effective solution for compressing and processing MSI. Our ImpliSat
framework addresses this gap by introducing a hypernetwork-based Fourier modulation technique
that dynamically generates appropriate Fourier bases tailored to each spectral band’s resolution. By
conditioning the modulation on the unique resolution and channel information of each band, our
approach ensures that each spectral channel is represented optimally, enhancing the efficiency of
compression and accuracy of reconstruction.

2 Preliminary: Multispectral Satellite Images and Compression

Unlike standard RGB images, which consist of only three bands capturing visible light in the
400− 700nm range, MSI encompasses multiple spectral bands, often exceeding ten, which includes
non-visible wavelengths such as Near-Infrared (NIR) and Short-Wave Infrared (SWIR). Each spectral
band has different pixel value range and covers a specific range of wavelengths which has different
GSD depending on the sensor (cf. Figure 1). GSD denotes the actual ground distance between
adjacent pixels (10m GSD means 1 pixel in the image represent 1m in actual distance). The bigger
the GSD, the lower the spatial resolution, which means there will be fewer details visible in the image.
This varying GSD between bands poses a unique challenge for data compression and processing.

Traditional image compression algorithms, such as JPEG [12] and PNG [13], are optimized for
uniform resolution images and do not accommodate the complex, multi-resolution structure of MSI.
More importantly, they are designed specifically for images with 3 (RGB) and 4 (RGBA) channels
(for JPEG and PNG, respectively), thus cannot be applied for MSI. Existing deep learning-based
image compression techniques [14] are also not designed to handle the diverse spatial resolutions and
pixel value ranges inherent in MSI, leading to limitations in their performance when applied to such
complex data as we show later in Section 4.

3 Proposed Methods

To compress and reconstruct MSI effectively, we propose the ImpliSat, which is based on modulated
INR frameworks. Our key contribution is Fourier modulation, a novel modulation technique that
leverages spectral information and low-rank adaptation [15] to efficiently handle the MSI data.
ImpliSat consists of two main components: i) Hypernetwork that generates Fourier modulation
vectors based on resolution and channel information, and ii) SIREN-based backbone INR model [8]
that uses these modulation vectors to represent the each band of the multispectral image.
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Figure 2: Overall architecture of ImpliSat. The left part shows the INR backbone, which takes
spatial coordinates as input and is conditioned on resolution (ψ) and channel information (η). The
right part demonstrates the Fourier modulation process, which effectively represent the MSI data.

3.1 Hypernetworks and Fourier Modulation

The hypernetwork parameterized by π in ImpliSat is designed to generate Fourier modulation vectors,
following the approach introduced in [16], to adapt the INR model to varying resolutions η and
channels ψ. Specifically, the hypernetwork takes the following inputs:

• Resolution information (η): Represents the spatial resolution of the input MSI, which can
take values η ∈ {10, 20, 60} (as provided by Sentinel-2 data).

• Channel information (ψ): Encoded as a one-hot vector, representing one of the 13 different
spectral channels in the MSI data. (See Appendix C).

The Fourier modulation generated by the hypernetwork for each layer is represented as follows:

Fmod(η, ψ;π) = {f lmod}L−1
l=2 , f lmod ∈ Rm×m. (1)

In Equation 1, f lmod represents the Fourier modulation vector for l-th layer, with a size of m×m,
where m < n is used to apply low-rank adaptation, reducing the dimension of the weights. The
modulation vector f lmod is generated using a cosine function, as described in Equation 2.

{f lmod}L−1
l=2 = {cos(Ωl ⊙Z + φl)}L−1

l=2 , Ωl ∈ Rm×m, φ ∈ Rm (2)

where Ωl and φl are the Fourier frequency matrix and phase matrix for l-th layer, respectively.
Z ∈ Rm is a vector sampled from a uniform distribution, and ⊙ denotes element-wise multiplication.
This Fourier modulation technique allows each layer of the backbone INR model to represent the
data using Fourier bases adapted to the specific resolution and channel information of the target MSI.

3.2 SIREN-based INR Networks with Fourier-modulated Weights

The main INR network of ImpliSat is a SIREN-based INR model with L layers parameterized by
Θ = {θl}Ll=1, which takes spatial coordinates X ∈ R2 as input and predicts the corresponding
pixel value Vgt(X , η, ψ). Each layer of INR consists of fully connected (FC) layers, where each
l-th layer is parameterized by θl = {W l, bl}, with W l as the weight matrix and bl as the bias
term. For example, the hidden state at (l + 1)-th layer is computed using sinusoidal activations as
hl+1 = sin(W l · hl + bl), where hl is the hidden state at l-th layer. This sinusoidal activation allow
the model to learn high-frequency information, which is crucial for representing complex features in
MSI data.

In our ImpliSat framework, to reduce computational cost, we apply low-rank adaptation. Instead
of directly using the full-rank weight matrix, we form W l by multiplying two learnable low-rank
matrices, W l

α ∈ Rn×m and W l
β ∈ Rm×n, with the Fourier modulation vector f lmod.

W l =W l
α · f lmod ·W l

β , W l
α ∈ Rn×m, W l

β ∈ Rm×n, f lmod ∈ Rm×m (3)
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Table 1: PSNR and MSE comparison for the Fourier modulation method (ours) against baseline
methods (shift and scale modulation)

Methods
London Seoul Merapi Hawaii Cairo

PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE

Shift 30.252 9.437e-4 28.115 1.543e-3 28.567 1.391e-3 29.418 1.143e-3 29.966 1.008e-3

Scale 29.784 1.051e-3 27.876 1.631e-3 28.177 1.522e-3 29.043 1.247e-3 29.264 1.185e-3

Fourier (Ours) 36.091 2.460e-4 33.773 4.195e-4 32.811 5.235e-4 35.589 2.761e-4 36.392 2.295e-4

where, f lmod ∈ Rm×m serves as the modulation vector for the l-th layer, ensuring that the weight ma-
trix W l is constructed efficiently through low-rank approximations. Further details of the modulation
process are provided in Appendix F, which describes how the Fourier modulation vector adjusts the
weights at each layer.

3.3 Objective Function

Our ImpliSat is trained by minimizing the reconstruction loss between the ground truth pixel values
Vgt and the predicted values Vpred. The detailed formulation of the loss function (L) is as follows:

L =
1

NM

N∑
i=1

M∑
j=1

||Vpred(Xi,j ;Fmod(ηj , ψj ;π); Θ)− Vgt(Xi,j , ηj , ψj)||2 (4)

Here, N and M are the number of training samples and number of spectral(or channels) information,
respectively. || · ||2 is the squared error between the ground truth and predicted values. This
loss function guides the model to adjust its parameters to reconstruct the MSI, conditioned on the
resolution η and channel information ψ.

4 Experiments

In this section, we demonstrate the performance of the ImpliSat framework using diverse MSI data
for compression and reconstruction tasks. Additionally, we explore the results of Fourier modulation
across various resolutions. For more details on experimental settings, please refer to Appendix A.

4.1 Experimental Settings

Experimental Setups We implement our ImpliSat framework and baselines in PYTHON 3.11.9,
PYTORCH 2.3.1 [17], CUDA 12.0, and single NVIDIA RTX 3090 GPU. All models are trained for
10,000 iterations with approximately 200K trainable parameters (1MB per model checkpoint, around
10× smaller than the original image). We use the Adam optimizer [18] and early stopping algorithm.

Datasets We compile a dataset of five multispectral Sentinel-2 images, each capturing diverse
environments: London (UK), Seoul (South Korea), Merapi (Indonesia), Hawaii (USA), Cairo (Egypt).
The images vary in complexity and challenge, each with a size of 9.4MB. Additional details are
provided in Appendix A.

4.2 Comparison with Existing Modulated INRs

Figure 3: Comparison of PSNR
across iterations for Shift, Scale,
and Fourier (ours) methods of
Cairo image.

To demonstrate the performance of ImpliSat, we compare our
Fourier modulation approach with existing modulation tech-
niques, specifically shift modulation used in [14, 19, 20] and
scale modulation proposed in [14]. Shift modulation operates
by learning bias terms for each layer, whereas scale modulation
extends this concept by modulating the weights of each layer (cf.
Appendix B). Both approaches are evaluated using PSNR and
MSE to measure the accuracy of reconstructed images against
the ground truth (cf. Appendix D). As shown in Table 1, Fourier
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(a) Ground Truth [B7] (b) Shift (28.712) (c) Scale (28.532) (d) Ours (35.751)

(e) Ground Truth [B8A] (f) Shift (24.400) (g) Scale (24.195) (h) Ours (29.994)

Figure 4: Comparison of ground truth, shift modulation, scale modulation, and our proposed method
with PSNR on the London (B7) and Seoul (B8A) image.
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Figure 5: Density distribution of the frequency component of Fourier modulation vectors generated
by the hypernetwork for different spatial resolutions: Figure 5(a) 10m GSD (B2), (b) 20m GSD (B7)
60m GSD (B10).

modulation consistently outperforms both shift and scale modulation. Notably, in complex areas such
as Seoul, our approach demonstrates a 20% performance improvement over the baseline models. The
results in Figure 4 further illustrate that our Fourier modulation captures sharper and more detailed
structures in complex urban areas, such as the bridges and buildings visible in the Seoul B8A band.
Unlike shift and scale modulation, which tend to blur fine details, our approach preserves clear edges
and sharp features, leading to significantly better reconstructions.

Additionally, in Figure 3, our Fourier modulation achieves higher PSNR values compared to both
shift and scale modulation throughout the training process on the Cairo dataset. Fourier modulation
starts with a rapid increase in PSNR and continues to maintain superior performance as training
progresses. While both shift and scale modulation exhibit slower convergence and lower peak PSNR,
our approach effectively captures the fine details.

4.3 Analysis on Fourier Modulation Vectors

This section analyzes the behavior of Fourier modulation vectors generated by the hypernetwork
across different resolutions. Figure 5 presents histograms depicting the density distribution of the fre-
quency components (Ω⊙Z) for 10m, 20m, and 60m GSD, and the distribution of Fourier modulation
frequencies varies notably with resolution. For 10m GSD, the values are more concentrated near zero,
indicating stable modulation with minimal high-frequency emphasis, suitable for preserving fine
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details in high-resolution data. In contrast, the 60m GSD distribution is broader, suggesting a more
variable modulation strategy that may account for the inherently smoother nature of low-resolution
imagery. These results suggest that the hypernetwork successfully adjusts the frequency content of
the modulation vectors according to the resolution-specific needs of the data. This adaptive capability
underscores the flexibility of the Fourier modulation approach, enabling ImpliSat to handle the diverse
challenges presented by multi-spectral satellite imagery.

5 Related Work

Machine Learning for Satellite Images Due to the distinctive characteristics of satellite imagery,
such as multispectral data, and the high resolution of images, deep learning models have increasingly
been employed for tasks like object detection [21], change detection [22], semantic segmentation [23]
and data generation [24]. These models have been proven effective in handling the high-dimensional
complexity of satellite data. However, there has been limited prior research on satellite image
compression, primarily due to the complexity and variability of the data. Compressing satellite
images while preserving essential details is challenging because of their high spatial and spectral
resolution, which complicates the balance between compression ratio and image quality.

Recent works in neural rendering, such as Sat-NeRF [25] and EO-NeRF [26], apply Neural Radiance
Fields (NeRF) techniques to satellite imagery. These models demonstrate the potential of implicit
neural representations for capturing fine details in satellite data across different viewpoints Although
primarily focused on rendering, these NeRF-based methods highlight the potential for implicit neural
representations to revolutionize satellite image processing, including compression.

Implicit Neural Representations for Compression Implicit Neural Representation (INR) funda-
mentally works by taking coordinates as input and learning a mapping function to the corresponding
function values, thereby enabling continuous data rendering [27, 28]. This characteristic allows
resolution-invariant inference and makes pre-trained INR models highly effective for data compres-
sion [14]. While traditional INR frameworks were limited to representing a single data instance,
recent studies have explored meta-learning-based approaches [29, 30] to develop INR frameworks
capable of representing multiple datasets simultaneously. Notably, Functa frameworks [19, 20]
introduce a highly effective neural compression algorithm by parameterizing datasets through an
auto-decoding method [31] combined with a meta-learning-based INR framework. The data com-
pressed into parameters in this manner can serve as input for other neural networks, enabling various
downstream tasks without the need for decompression [32, 33]. Building on the strengths of such
modulated INR frameworks, we develop a hypernetwork-based modulated INR framework designed
to compress multispectral satellite images from various channels.

6 Conclusion

In this paper, we introduce ImpliSat, a novel framework designed for the efficient compression
and reconstruction of multispectral satellite imagery using INRs with Fourier modulation. ImpliSat
addresses the inherent challenges of MSI data, such as varying spatial resolutions and spectral
characteristics, by adaptively modulating the Fourier basis according to each band’s specific resolution
and channel information. Our experimental results demonstrate that ImpliSat consistently outperforms
existing modulation techniques, including shift and scale modulation, particularly in high-resolution
and complex environments.

Limitation and Future Works Our current ImpliSat framework is specifically designed on multi-
spectral images from the same geographical location. As a result, the pre-trained model struggles to
generalize to unseen MSI data from different regions. This limitation restricts its broader applicability
for global-scale satellite image analysis. In future work, we plan to extend ImpliSat by integrating
auto-decoding techniques with meta-learning algorithms, enabling the model to handle MSI data
from multiple locations simultaneously. This adaptation would allow the framework to generalize
better across varying geographical regions and datasets. Additionally, we aim to develop more
lightweight versions of the model and explore hardware acceleration techniques to facilitate real-time
processing, which would significantly enhance the practical utility of ImpliSat in resource constrained
environments such as onboard satellite systems.
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A Detailed Information of Benchmark Dataset

We collected five different MSI of Sentinel-2 satellite with L1C processing level provided by European
Space Agency (ESA) through Copernicus under Open Access compliant Creative Commons CC
BY-SA 3.0 IGO licence. Each MSI has a resolution of 13 × 600 × 600, denoting 13 different
multispectral bands.

The Table 2 provides the geographical coordinates (Longitude and Latitude) of the benchmark data
used in our experiments. Each location was chosen to evaluate the ability of ImpliSat framework to
compress a variety MSI data.

Table 2: Geographic Coordinates of Benchmark Dataset
London Seoul Merapi Hawaii Cairo

Latitude 51◦26’11"N 37◦31’30"N 07◦32’29"N 19◦31’12"N 30◦01’29"N

Longitude 00◦34’55"E 126◦55’36"E 110◦26’46"E 154◦47’08"W 31◦55’18"E

Environments Urban Urban Volcano Marine Desert

Location Descriptions:

• London (United Kingdom): A densely populated urban area known for its diverse land cover,
including built-up regions, parks, and water bodies. It provides a complex environment to
test urban monitoring capabilities of the framework.

• Seoul (South Korea): A highly complex city characterized by a mix of high-rise buildings,
infrastructure. The big river runs through the city, adding a unique urban water feature that
further complicates the environments.

• Merapi (Indonesia): A volcanic region with active geological features. Merapi provides
a challenging environment with diverse vegetation cover, useful for testing the model
performance in monitoring volcanic landscape.

• Hawaii (USA): A tropical archipelago characterized by coastal zones, and diverse ecosys-
tems. This location is ideal for evaluating multi-spectral imagery performance in coastal
and marine.

• Cairo (Egypt): Located in a desert region with minimal vegetation, Cairo represents arid
conditions. This site is significant for testing the framework’s capability in soil and water
content analysis under extreme conditions.

B Description of modulated INRs

In this section, we describe the modulation techniques used in INR models, specifically shift and
scale modulation.

Shift Modulation Shift modulation, introduced in [14], involves adding a learnable bias term to
the output of each SIREN layer. The shift modulation is defined as:

hl+1 = sin(Wl · hl + bl + µl). (5)

where µ represents the modulation term specifically added to adjust the bias at each layer.

Scale Modulation Scale modulation extends the shift modulation by scaling the output of each
SIREN layer. The scale modulation can be expressed as:

hl+1 = sin(κ⊙ (Wl · hl + bl)). (6)

where κ is the modulation vector that scales the output of the layer.
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C Multispectral Satellite Imagery Bands

Table 3: Multispectral Bands in Sentinel-2 Satellite Imagery
Band Number Band Description Wavelength Range (nm) GSD (m) Usage

B1 Coastal aerosol 433–453 60 Atmospheric correction

B2 Blue 458–523 10 Water body analysis

B3 Green 543–578 10 Vegetation monitoring

B4 Red 650–680 10 Vegetation and soil analysis

B5 Red-edge 1 698–713 20 Vegetation monitoring

B6 Red-edge 2 733–748 20 Vegetation structure analysis

B7 Red-edge 773–793 20 Vegetation chlorophyll assessment

B8 NIR 785–900 10 Biomass and vegetation vigor monitoring

B8A Narrow-NIR 855–875 20 Vegetation monitoring

B9 Water vapour 935–955 60 Cloud detection and water vapor analysis

B10 SWIR-Cirrus 1360–1390 60 Atmospheric correction and cirrus cloud detection

B11 SWIR 1565–1655 20 Cloud and snow monitoring

B12 SWIR 2100–2280 20 Soil and water content analysis

The Table 3 provides a summary of the multi-spectral bands provided by Sentinel-2, including their
band number, wavelength ranges, GSD, and usages. The MSI data spans a wide range of wavelengths,
covering both visible and non-visible spectrums. Each band provides unique information, making
it suitable for various applications such as atmospheric correction, vegetation monitoring, and soil
analysis.

D Metrics: PSNR Calculation

Because each band in MSI has different pixel value range, before calculating the PSNR, we apply
min-max normalization for each band independently, given by:

I′i =
Ii −min(Ii)

max(Ii)−min(Ii)
, (7)

where Ii denotes the i-th band of the MSI. Given a ground truth MSI Vgt and prediction Vpred, we
calculate the MSE for i-th band as follows:

MSEi = ||Vgt,i − Vpred,i||2, (8)

After that we average the MSE across all #Nc bands (Nc: Number of bands),

MSE =
1

Nc

Nc∑
i=1

MSEi, (9)

Finally, we calculate the PSNR for the whole bands using the following formula:

PSNR = −10 logMSE (10)

Alternatively, we can calculate the independent PSNR for each band by applying Equation 10 to
MSEi directly. Note that the results that we presented in Table 1 in the main paper are the PSNR for
all the bands as reflected in Equation 10, while the results in Appendix G are the PSNR for each band
independently.
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E Fourier Spectrum of Multispectral Images

(a) B2 (10m GSD) (b) B3 (10m GSD)

(c) B4 (10m GSD) (d) B8 (10m GSD)

(e) B5 (20m GSD) (f) B6 (20m GSD) (g) B7 (20m GSD)

(h) B8A (20m GSD) (i) B11 (20m GSD) (j) B12 (20m GSD)

(k) B1 (60m GSD) (l) B9 (60m GSD) (m) B10 (60m GSD)

Figure 6: The Fourier spectrum results for multispectral image(London). First two rows from
top represent 10m GSD bands (B2, B3, B4, B8), followed by six images represent 20m GSD bands
(B5, B6, B7, B8A, B11, B12). The final row depicts 60m GSD bands (B1, B9, B10). In each image
pair, the left panel represents the ground truth, while the right panel displays the result after applying
Fast Fourier Transform (FFT).
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F Distribution of Fourier Modulation Vectors

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6
De

ns
ity

(a) Band 2 (10m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6

De
ns

ity

(b) Band 3 (10m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6

De
ns

ity

(c) Band 4 (10m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6

De
ns

ity

(d) Band 8 (10m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6

De
ns

ity

(e) Band 5 (20m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6

De
ns

ity

(f) Band 6 (20m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6

De
ns

ity

(g) Band 7 (20m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6

De
ns

ity

(h) Band 8A (20m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6

De
ns

ity
(i) Band 11 (20m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6

De
ns

ity

(j) Band 12 (20m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6

De
ns

ity

(k) Band 1 (60m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6
De

ns
ity

(l) Band 9 (60m GSD)

6 4 2 0 2 4 6
Value

0.0

0.2

0.4

0.6

De
ns

ity
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Figure 7: The probability density function (PDF) of the Fourier modulation vector. Red histogram
represents PDF of Fourier modulation vector which are the output value of hypernetwork. To provide
more precise analysis, we illustrate the normalized distribution using a blue dashed line.
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G Additional Experiment Results

In this section, we present a more detailed experiment results for all datasets. ‘Shift’ denotes the shift
modulation and ‘Scale’ denotes the scale modulation. Explanations of each modulation can be found
in Appendix B.

G.1 Cairo

(a) Ground Truth [B1] (b) Shift (33.372) (c) Scale (32.886) (d) Ours (52.833)

(e) Ground Truth [B5] (f) Shift (31.002) (g) Scale (30.330) (h) Ours (36.871)

(i) Ground Truth [B2] (j) Shift (29.257) (k) Scale (28.777) (l) Ours (32.124)

Figure 8: Comparison of ground truth, shift modulation, scale modulation, and our proposed method
with PSNR across multibands (B1, B5, B2) of the Cairo image. Each row represents a different GSD:
60m, 20m, and 10m, respectively.

Table 4: Detailed PSNR for each band of Cairo image.
Methods B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12

Shift 33.372 29.257 29.841 30.258 31.002 31.399 31.517 31.042 31.946 34.259 23.242 34.830 34.167

Scale 32.886 28.777 29.209 29.779 30.330 30.807 30.949 30.513 31.324 33.754 22.331 34.042 33.356

Fourier (Ours) 52.833 32.124 32.877 33.289 36.871 37.170 37.213 34.051 37.315 53.009 56.384 40.183 39.541

Table 5: Detailed MSE for each band of Cairo image.
Methods B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12

Shift 4.601e-4 1.186e-3 1.037e-3 9.422e-4 7.940e-4 7.246e-4 7.051e-4 7.866e-4 6.388e-4 3.751e-4 4.740e-3 3.289e-4 3.831e-4

Scale 5.145e-4 1.325e-3 1.200e-3 1.052e-3 9.268e-4 8.304e-4 8.038e-4 8.885e-4 7.373e-4 4.213e-4 5.846e-3 3.942e-4 4.618e-4

Fourier (Ours) 5.209e-6 6.132e-4 5.156e-4 4.689e-4 2.055e-4 1.919e-4 1.900e-4 3.935e-4 1.856e-4 5.001e-6 2.299e-6 9.587e-5 1.111e-4
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G.2 Hawaii

(a) Ground Truth [B1] (b) Shift (33.754) (c) Scale (33.438) (d) Ours (48.434)

(e) Ground Truth [B7] (f) Shift (30.933) (g) Scale (30.654) (h) Ours (35.241)

(i) Ground Truth [B8] (j) Shift (30.743) (k) Scale (30.531) (l) Ours (33.338)

Figure 9: Comparison of ground truth, shift modulation, scale modulation, and our proposed method
with PSNR across multibands (B1, B7, B8) of the Hawaii image. Each row represents a different
GSD: 60m, 20m, and 10m, respectively.

Table 6: Detailed PSNR for each band of Hawaii image.
Methods B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12

Shift 33.754 31.535 31.681 31.530 32.341 31.978 30.933 30.743 31.792 36.075 21.958 30.649 28.697

Scale 33.438 31.282 31.485 31.330 31.947 31.730 30.654 30.531 31.521 35.937 21.405 30.447 28.516

Fourier (Ours) 48.434 35.283 35.276 34.489 36.385 35.647 35.241 33.338 35.698 47.267 52.140 33.518 32.063

Table 7: Detailed MSE for each band of Hawaii image.
Methods B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12

Shift 4.213e-4 7.023e-4 6.791e-4 7.031e-4 5.834e-4 6.342e-4 8.067e-4 8.427e-4 6.619e-4 2.469e-4 6.371e-3 8.611e-4 1.350e-3

Scale 4.531e-4 7.444e-4 7.104e-4 7.362e-4 6.387e-4 6.715e-4 8.602e-4 8.848e-4 7.046e-4 2.549e-4 7.237e-3 9.021e-4 1.407e-3

Fourier (Ours) 1.434e-5 2.963e-4 2.968e-4 3.558e-4 2.299e-4 2.725e-4 2.991e-4 4.637e-4 2.693e-4 1.876e-5 6.110e-6 4.448e-4 6.219e-4
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G.3 London

(a) Ground Truth [B9] (b) Shift (33.490) (c) Scale (33.015) (d) Ours (50.814)

(e) Ground Truth [B6] (f) Shift (29.249) (g) Scale (28.768) (h) Ours (35.876)

(i) Ground Truth [B3] (j) Shift (32.516) (k) Scale (32.074) (l) Ours (35.144)

Figure 10: Comparison of ground truth, shift modulation, scale modulation, and our proposed method
with PSNR across multibands (B9, B6, B3) of the London image. Each row represents a different
GSD: 60m, 20m, and 10m, respectively.

Table 8: Detailed PSNR for each band of London image.
Methods B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12

Shift 35.323 32.849 32.516 30.831 31.257 29.249 28.718 25.133 30.326 33.490 27.604 35.088 35.216

Scale 32.774 32.260 32.074 30.280 30.531 28.768 28.532 24.965 30.018 33.015 27.006 34.586 34.640

Fourier (Ours) 50.365 35.660 35.144 34.138 37.312 35.876 35.751 29.639 36.329 50.814 49.715 40.061 41.087

Table 9: Detailed MSE for each band of London image.
Methods B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12

Shift 2.936e-4 5.189e-4 5.603e-4 8.258e-4 7.487e-4 1.189e-3 1.344e-3 3.067e-3 9.276e-4 4.477e-4 1.736e-3 3.099e-4 3.009e-4

Scale 5.280e-4 5.943e-4 6.202e-4 9.376e-4 8.849e-4 1.328e-3 1.402e-3 3.188e-3 9.959e-4 4.995e-4 1.993e-3 3.479e-4 3.435e-4

Fourier (Ours) 9.193e-6 2.717e-4 3.059e-4 3.857e-4 1.857e-4 2.584e-4 2.660e-4 1.087e-3 2.328e-4 8.291e-6 1.068e-5 9.861e-5 7.786e-5
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G.4 Merapi

(a) Ground Truth [B9] (b) Shift (29.758) (c) Scale (29.562) (d) Ours (45.940)

(e) Ground Truth [B8A] (f) Shift (25.749) (g) Scale (25.356) (h) Ours (31.018)

(i) Ground Truth [B4] (j) Shift (30.183) (k) Scale (29.634) (l) Ours (32.650)

Figure 11: Comparison of ground truth, shift modulation, scale modulation, and our proposed method
with PSNR across multibands (B9, B8A, B4) of the Merapi image. Each row represents a different
GSD: 60m, 20m, and 10m, respectively.

Table 10: Detailed PSNR for each band of Merapi image.
Methods B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12

Shift 36.823 33.036 31.401 30.183 30.343 26.510 25.803 23.690 25.749 29.758 31.593 29.899 37.073

Scale 36.270 32.682 31.059 29.634 29.882 26.109 25.445 23.418 25.356 29.562 30.760 29.428 35.975

Fourier (Ours) 49.430 35.216 33.398 32.650 33.722 31.511 30.852 26.448 31.018 45.940 45.071 34.321 42.444

Table 11: Detailed MSE for each band of Merapi image.
Methods B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12

Shift 2.078e-4 4.971e-4 7.243e-4 9.587e-4 9.241e-4 2.234e-3 2.629e-3 4.276e-3 2.662e-3 1.057e-3 6.929e-4 1.024e-3 1.962e-4

Scale 2.360e-4 5.392e-4 7.837e-4 1.088e-3 1.027e-3 2.450e-3 2.855e-3 4.552e-3 2.914e-3 1.106e-3 8.394e-4 1.141e-3 2.526e-4

Fourier (Ours) 1.140e-5 3.009e-4 4.573e-4 5.433e-4 4.244e-4 7.061e-4 8.220e-4 2.266e-3 7.910e-4 2.547e-5 3.111e-5 3.697e-4 5.697e-5
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G.5 Seoul

(a) Ground Truth [B10] (b) Shift (24.631) (c) Scale (24.326) (d) Ours (51.222)

(e) Ground Truth [B11] (f) Shift (27.047) (g) Scale (26.748) (h) Ours (32.270)

(i) Ground Truth [B8] (j) Shift (32.826) (k) Scale (32.454) (l) Ours (34.540)

Figure 12: Comparison of ground truth, shift modulation, scale modulation, and our proposed method
with PSNR across multibands (B10, B11, B8) of the Seoul image. Each row represents a different
GSD: 60m, 20m, and 10m, respectively.

Table 12: Detailed PSNR for each band of Seoul image.
Methods B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12

Shift 30.128 36.101 35.476 32.686 28.891 27.230 25.220 32.826 24.400 29.025 24.631 27.047 29.931

Scale 29.736 35.614 35.007 32.512 28.689 27.051 25.037 32.454 24.195 28.965 24.326 26.748 29.683

Fourier (Ours) 48.224 37.726 36.884 34.035 32.524 31.161 29.999 34.540 29.944 48.538 51.222 32.270 34.373

Table 13: Detailed MSE for each band of Seoul image.
Methods B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12

Shift 9.710e-4 2.454e-4 2.834e-4 5.388e-4 1.291e-3 1.892e-3 3.006e-3 5.217e-4 3.631e-3 1.252e-3 3.442e-3 1.974e-3 1.016e-3

Scale 1.063e-3 2.746e-4 3.157e-4 5.607e-4 1.352e-3 1.972e-3 3.136e-3 5.684e-4 3.806e-3 1.269e-3 3.693e-3 2.115e-3 1.076e-3

Fourier (Ours) 1.505e-5 1.688e-4 2.049e-4 3.949e-4 5.593e-4 7.653e-4 1.000e-3 3.516e-4 1.013e-3 1.400e-5 7.548e-6 5.929e-4 3.653e-4
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