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University of Tübingen, Germany
Max Planck Institute for Intelligent Systems, Tübingen, Germany
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Abstract

Latent space smoothness is often associated with better sample quality in generative
models. However, the theoretical understanding of smoothness-inducing regularizers, e.g.,
the gradient norm penalty on the decoder, is poorly understood. We leverage insights from
variational inference and Sharpness-Aware Minimization (SAM) to connect gradient norm
penalties to smoothness. We propose the deterministic SAM-Based Autoencoder (SAMBA)
and show that its gradients are equivalent to the gradient-norm–penalized Regularized
Autoencoder (RAE). We show experimentally on CIFAR10 that SAMBA has more means
to induce smoothness than the RAE and has better smoothness properties than VAEs.

1. Introduction

Latent Variable Models (LVMs) encode high-dimensional observations into a lower-dimensional
latent manifold, from which generative models can create samples, e.g., images (Bishop,
2006; Murphy, 2012). Variational Inference (VI) is prevalent to learn LVMs. Since the data
log-likelihood is often intractable, a variational approximation relies on an evidence lower
bound (ELBO), e.g., in Variational Autoencoders (VAEs) (Kingma and Welling, 2014). To
improve sample quality, several heuristics are used, such as smoothing the latent space (Gul-
rajani et al., 2017; Mescheder et al., 2018; Ghosh et al., 2020; Kumar et al., 2020; Karras
et al., 2020; Kato et al., 2020). This can be accomplished, e.g., by a gradient norm penalty
on the decoder (i.e., the generated sample is differentiated w.r.t. the latents). Ghosh et al.
(2020) reason that such a regularizer smooths the latent space akin to the noise in VAEs.
However, it is unclear why gradient-norm penalties work well. We rely on Sharpness-Aware
Minimization (SAM) (Foret et al., 2021), which posits a worst-case view on optimization,
leading to a smoother loss surface by excluding sharp minima. The notion of smoothness
and the connection between Mean Field Variational Inference (MFVI) and SAM (Ujváry
et al., 2022) intuits our work to explain the mechanism of gradient norm penalties. We
propose SAM-Based Autoencoder (SAMBA) (Figure 1), a deterministic AutoEncoder (AE),
where SAM replaces the noise distribution and show that SAMBA and the Regularized
Autoencoder (RAE) have the same gradients. We summarize our contributions as follows:

• We develop a deterministic SAM-Based Autoencoder (SAMBA) and show that it
has equivalent gradients to the RAE; elucidating why gradient norm penalties are
beneficial in generative models.

• We demonstrate experimentally that traditional VAEs, our SAMBA, and the RAE
each have mechanisms that affect latent space smoothness.

∗ Corresponding author. Code available at: https://github.com/rpatrik96/vae-sam

© P. Reizinger & F. Huszár.



Reizinger Huszár

qϕ(z|x) pθ(x|z)x µz|x

µz|x +
√

Σϕ
z|x · η

µz|x +
√
ΣSAM · η(ΣSAM )

ELBO

LRAE

LSAMBA

Figure 1: Information flow in VAEs, the Regularized Autoencoder (RAE) and
our SAM-Based Autoencoder (SAMBA). All models encode observations x as a mean
encoding µz|x, but the decoders differ in their inputs: VAEs add Gaussian noise; the RAE
uses µz|x; SAMBA makes a deterministic SAM update (10). VAEs optimize the ELBO (1);
the RAE adds a penalty on the decoder Jacobian’s norm to the MSE and Kullback-Leibler
Divergence (KL) (3); SAMBA uses the MSE for the worst-case encoding and the KL

2. Background

Variational Autoencoders (VAEs). Since the data likelihood pθ(x) in deep LVMs is gen-
erally intractable, approximate objectives are required. Variational approximations (Struwe,
2000) rely on an approximate (variational and stochastic) posterior qϕ(z|x) with parameters
ϕ, mapping x 7→ z, instead of the true pθ(z|x), yielding a tractable evidence lower bound
(ELBO) (Kingma and Welling, 2014; Rezende et al., 2014) on the data log-likelihood:

ELBO(x,θ,ϕ) = Eqϕ(z|x) [log pθ(x|z)]−KL [qϕ(z|x)||p0(z)] , (1)

comprising of a reconstruction term and a KL regularizer between the prior p0(z) and the
encoder (Kingma and Welling, 2019), where pθ(x|z) is the generative model.

VAEs (Kingma and Welling, 2014) rely on the variational approximation in (1) to train
deep LVMs, where neural networks parametrize the encoder qϕ(z|x) and the decoder pθ(x|z).
Gaussian distributions are a common choice: p0(z) is isotropic, the variational family of

qϕ(z|x) with parameters ϕ is factorized with posterior means µϕ
k (x) and variances σϕ

k (x)
2

for the kth factor with a diagonal covariance Σϕ
z|x and encoder map g ; and the decoder (with

parameters θ) is isotropic Gaussian, conditioned on z, with mean f (z), which simplifies (1)
to (dimx = D,dim z = d):

ELBO = −Eqϕ(z|x)

[
∥x− f (g (x))∥2

]
− 1

2

[
− log

∣∣∣Σϕ
z|x

∣∣∣+ tr
(
Σϕ

z|x

)
+
∥∥µz|x

∥∥2+ d
]
. (2)

Regularized Autoencoder (RAE). Ghosh et al. (2020) derives the deterministic RAE

from a VAE by setting Σϕ
z|x = α2Id : α > 0 and substituting noise injection with a regularizer

on the decoder1. The authors argue that adding noise smooths the decoder (Sietsma and
Dow, 1991; An, 1996) and the same can be achieved via a regularizer. They consider
multiple options, such as ℓp-regularization of the decoder parameters θ. Based on best
practices (Gulrajani et al., 2017; Mescheder et al., 2018), they focus on penalizing the

1. Since the RAE is deterministic µz|x (x) = z

2
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decoder Jacobian’s norm, i.e., ∥Jf (z)∥, yielding the loss (β, λ > 0)2:

LRAE = Eqϕ(z|x)

[
∥x− f (z)∥2

]
+

β

2
∥z∥2 + λ ∥Jf (z)∥ . (3)

Denoting the expected MSE as L and omitting ∥z∥2 (i.e., the KL), the gradient is

∇θLRAE =
∂

∂θ
[L (z0,θ) + λ ∥Jf (z)∥] . (4)

Sharpness-Aware Minimization (SAM). Foret et al. (2021) proposed the SAM opti-
mizer to smooth the loss landscape to improve generalization. SAM can be thought as fitting
a hyperball with radius ρ according to a (weighted) ℓp-norm

3 into the loss landscape. SAM
requires two gradient steps to yield the worst-case loss within the hyperball: at the current
parameter values Ψ0; then after a gradient ascent step. For a loss function L, original and
perturbed model parameters Ψ0, Ψ, the corresponding SAM-objective is:

LSAM(Ψ0,ΣSAM ) = max
(Ψ−Ψ0)⊤ΣSAM

−1(Ψ−Ψ0)≤ρ
[L(Ψ)− L(Ψ0)] + L(Ψ0), (5)

where ΣSAM weighs specific directions by reshaping the hyperball to a hyperellipsoid—
choices include, e.g., the Fisher information matrix (Kim et al., 2022). For small enough
radius ρ > 0, LSAM is approximately the original loss and a gradient norm penalty:

LSAM(Ψ0,ΣSAM ) ≈ L(Ψ0) + ρ
∥∥∥√ΣSAM∇Ψ0L(Ψ0)

∥∥∥ (6)

The gradient of (5) w.r.t. Ψ0 approximately yields:

∇Ψ0LSAM(Ψ0,ΣSAM ) ≈ ∇Ψ0L(Ψ0 +
√

ΣSAM · η (Ψ0,ΣSAM ,ρ)), (7)

where η (Ψ0,ΣSAM ,ρ)4 is the normalized weighted gradient of L at Ψ0:

η (Ψ0,ΣSAM ,ρ) = ρ

√
ΣSAM∇Ψ0L(Ψ0)

∥
√
ΣSAM∇Ψ0L(Ψ0)∥

. (8)

MFVI SAM. MFVI is a stochastic VI approach with fully factorized (Gaussian) distribu-
tions, and was connected to SAM by Ujváry et al. (2022). MFVI relies on samples drawn from
a standard normal distribution η ∼ N (0d, Id), which in d dimensions concentrates in ℓ2-norm
around the hypersphere with radius

√
d, i.e., ∥η∥2 ≈

√
d. With diagonal ΣSAM , the loss gra-

dients are approximately (using the reparametrization trick to express the factorized Gaussian
with a standard normal and ΣSAM ) ∇Ψ0LMFVI(Ψ0,

√
ΣSAM ) ≈ ∇Ψ0L(Ψ0 +

√
ΣSAM · η).

Setting ΣSAM = ρ2/d · Id, η will be normalized to the hypersphere with the SAM radius ρ.
Thus, we can upper bound the expected gradient in MFVI with the SAM gradient.

Eη∼N (0d,Id)

[
∇Ψ0L

(
Ψ0+

ρη√
d

)]
≤ max

∥η∥≤
√
d
∇Ψ0L

(
Ψ0 +

ρη√
d

)
=∇Ψ0LSAM

(
Ψ0,

ρ2

d
·Id

)
. (9)

2. Note that Ghosh et al. (2020) uses both ∥Jf (z)∥ (Eq. 15) and ∥Jf (z)∥2 (Sec. 3.1); we use ∥Jf (z)∥
3. Our analysis focuses on p = 2
4. We use η for both the noise in VAEs and the normalized gradient in SAM since they are related, as

shown by Ujváry et al. (2022)
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3. Theory

Ujváry et al. (2022) connects MFVI to SAM (agnostic to model architecture). The SAM ob-
jective approximately adds a gradient norm penalty to the original loss, and the RAE (Ghosh
et al., 2020) also uses a gradient norm penalty. We connect smoothness of decoder gradients
and SAM by designing an AE with a SAM update. Details are in Appx. A.

3.1. SAM-Based Autoencoder (SAMBA)

We propose the deterministic SAMBA by substituting the noise distribution η with the
SAM gradient ascent step (cf. Figure 1 for a comparison of VAEs, RAE, and SAMBA), i.e.,
we calculate z as (ΣSAM is diagonal):

z = µz|x +
√
ΣSAM · η

(
θ0,ΣSAM ,

√
d
)
. (10)

Instead of general parameters Ψ0, we use the decoder parameters θ0. We experiment with
learnable (as in a VAE) and fixed (as in the RAE) ΣSAM . By removing sampling, our model
is deterministic and optimizes a worst-case bound on the ELBO. By invoking a second
(SAM) gradient step, the reconstruction loss gives back (6), where fixing ΣSAM to α2Id and√
d · α = λ yields the same gradient penalty as the RAE (cf. (11) in (Ghosh et al., 2020)).

However, SAMBA can also learn ΣSAM . Thus, our model motivates the decoder Jacobian’s
norm penalty via SAM, elucidating why this strategy can be effective.

3.2. Gradient analysis

To show that the RAE and SAMBA are equivalent, we prove that the gradients w.r.t. ϕ, θ,
and z of SAMBA have the form of a gradient-penalized reconstruction loss (i.e., the RAE
loss)5. We denote Jf := ∇zL and H := ∇2

zL and we define ∇zL (z0) := ∇zL (z)
∣∣
z0
. We

calculate the gradients after the SAM step (10) and assume ΣSAM = α2Id and
√
d · α = λ.

We use the following relation between the gradients of LSAM and a general loss L:

∇zLSAM (z)
∣∣
z0

= ∇zL
(
z0 + ρ

∇zL (z0)

∥∇zL (z0)∥

)
≈ ∇zL (z0) + ρH (z0)

∇zL (z0)

∥∇zL (z0)∥
(11)

= ∇zL (z0) + ρ∇z ∥∇zL (z0)∥ = ∇z [L (z0) + ρ ∥∇zL (z0)∥] (12)

= ∇z [L (z0) + ρ ∥Jf (z0)∥] (13)

With the approximation from above, the gradient w.r.t. z and ϕ yields, respectively:

∇zL
(
z0 + ρ

∇zL (z0)

∥∇zL (z0)∥

)
≈ ∇z [L (z0) + ρ ∥Jf (z0)∥] (14)

∂z

∂ϕ
∇zL

(
z0 + ρ

∇zL (z0)

∥∇zL (z0)∥

)
≈ ∂z

∂ϕ
∇z [L (z0) + ρ ∥Jf (z0)∥] (15)

For the gradient w.r.t. θ, the dependence of the reconstruction loss on θ needs to be
considered, i.e., L = L (z0,θ0). Thus, we calculate the gradients at (z0;θ0) for the SAM
step, modify z according to (10), then differentiate again at this updated position for

5. Our analysis omits the KL term for brevity since both RAE and SAMBA use the same KL penalty
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Figure 2: Latent space smoothness (measured by the log of the decoder Jacobian’s norm) in
SAMBA (left) and VAEs (center) for fixed α2. Right: validation loss (i.e., ELBO and
LSAMBA). SAMBA has smoother gradients than the VAE when α2 ≤ 1e−2, for a negligible
increase in the loss. Error bars are calculated across 5 seeds.

backpropagation. The gradient ascent step modifying z0 does not depend on θ (we call
.detach() on the gradients). Nonetheless, for L depends on θ, our approximation requires
that θ and θ0 are sufficiently close, yielding:

∂

∂θ
L
(
z0 + ρ

∇zL (z0,θ0)

∥∇zL (z0,θ0)∥
;θ0

)
≈ ∂

∂θ

[
L (z0;θ0) + ρ∇zL (z0,θ0)

⊤ ∇zL (z0,θ0)

∥∇zL (z0,θ0)∥

]
(16)

=
∂

∂θ
[L (z0;θ0) + ρ∥∇zL (z0,θ0)∥] , (17)

When L is the (expected) MSE, the gradients w.r.t. ϕ, θ, and z can be expressed as the
derivative of LRAE , proving that SAMBA and the RAE are equivalent, and elucidating that
the gradient-norm–penalized RAE can be thought of as implicitly using SAM.

4. Experiments

Our experiments use CIFAR10 to show the relationship between RAE and SAMBA. We
hypothesize that the implicit regularization on the decoder gradient norm in VAEs (through
noise injection) and in SAMBA (6), and the explicit gradient norm penalty in the RAE have
similar effects. However, they differ in motivation, implementation, and flexibility.
Setup. We use Resnet-18 (He et al., 2016) as a backbone for all models, a batch size of 256, a
learning rate of 1e−4, and the Adam optimizer (Kingma and Ba, 2014). The VAE baseline is
Gaussian with diagonal qϕ(z|x) and isotropic pθ(x|z). When the variance of qϕ(z|x) is fixed,
we use α2Id : α2 ∈ {1; 1e−2; 1e−4; 1e−6}. Experiments with trainable encoder variance are
in Appx. B. We stop training after convergence, which yields shorter training for trainable
encoder variance (Figure 4) and the RAE–SAMBA comparison (Figure 3).
Results. Comparing SAMBA to a Gaussian VAE (with fixed, diagonal encoder variance
and ΣSAM , respectively), we observe that when α2 ≤ 1e−2, then ∥Jf∥ is smoother for
SAMBA with a practically insignificant increase in the loss; however, the overall loss
is higher in those cases for both models (Figure 2). It is unclear though why the smoothness
term decreases abruptly for α2 = 1e−2 only for the VAE. We compare SAMBA to the
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Figure 3: Left: latent space smoothness (measured by the log of the decoder Jacobian’s
norm) in the RAE and SAMBA for fixed α2. Reconstruction loss without the SAM step
for a fair comparison: SAMBA (center) and RAE (right). For the same α2, SAMBA’s
gradients are smoother, and its loss more stable. Error bars are calculated across 5 seeds.

RAE with fixed isotropic ΣSAM with λ := α ·
√
d (5 seeds each). Figure 3 shows that as α

increases, Z gets smoother for both RAE and SAMBA, SAMBA yielding a smoother
latent space. However, the reconstruction loss evaluated at µz|x (i.e., without the
SAM update for a fair comparison) has a lower variance with SAMBA than with the
RAE. Note that though SAMBA requires two gradient updates, the gradient norm penalty
in the RAE yields the same computational load.

5. Discussion

Related work. Ghosh et al. (2020) propose a deterministic RAE with a heuristic penalty on
the decoder Jacobian’s norm to induce smoothness, which Kumar and Poole (2020) connect
to a crude approximation of a deterministic Gaussian AE. Kumar et al. (2020) show that
the RAE objective arises as the lower bound on the log-likelihood objective of an injective
probability flow. Our work can be seen as relating the smoothness-inducing aspect in AEs
to SAM, relying on the MFVI–SAM connection of Ujváry et al. (2022), who establish the
SAM gradient as an upper bound on the expected MFVI gradient. Möllenhoff and Khan
(2022) relate SAM to Bayes via the Fenchel biconjugate, showing that SAM is the optimal
convex relaxation of the Bayes objective. On the other hand, Chen et al. (2020) propose a

VAEs for learning flat manifolds, where the authors constrain Σϕ
z|x := α2Id.

Limitations. Our gradient analysis, which shows that the gradient-norm–penalized RAE
can be thought of as implicitly doing SAM, relies on first-order approximations, similar
to (Kumar and Poole, 2020; Kumar et al., 2020); however, such approximations might not
hold in every practical setting. Our goal was to show that there are different meant to
achieve smoothness in AEs; it remains for future work how this affects, e.g., sample quality.
Conclusion. The deterministic SAM-Based Autoencoder (SAMBA) connects the notions of
flatness from the (variational) AE and SAM literatures, theoretically motivating the gradient
norm penalty in the RAE (Ghosh et al., 2020). Our analysis shows that SAMBA and the
RAE have equivalent gradients, providing new insight into the inductive biases shaping the
latent space in (variational) AEs, which is also supported by our experiments on CIFAR10.
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Appendix

Appendix A. Detailed gradient analysis

A.1. Preliminaries

This section provides a more detailed explanation of the gradient analysis from § 3. Recall,
our goal is to show that the gradients of SAMBA w.r.t. ϕ, θ, and z of SAMBA have the
form of a gradient-penalized reconstruction loss (i.e., the RAE loss). We denote Jf := ∇zL
and H := ∇2

zL and we define ∇zL (z0) := ∇zL (z)
∣∣
z0
. We calculate the gradients after the

SAM step (10) and assume ΣSAM = α2Id and
√
d · α = λ. We use the following relation

between the gradients of LSAM and a general loss L, by first expanding the SAM update:

∇zLSAM (z)
∣∣
z0

= ∇zL
(
z0 + ρ

∇zL (z0)

∥∇zL (z0)∥

)
. (18)

Assuming that the SAM step is sufficiently small, we use a first-order Taylor approximation

≈ ∇zL (z0) + ρH (z0)
∇zL (z0)

∥∇zL (z0)∥
, (19)

where we use the chain rule: since H := ∇2
zL, we can rewrite the fraction as the gradient of

∥∇zL (z0)∥ (we absorb the factor of 1/2 coming from differentiating the ℓ2-norm into ρ)

= ∇zL (z0) + ρ∇z ∥∇zL (z0)∥ . (20)

Then we regroup terms, using the linearity of the gradient, and plug in the definition for the
Jacobian, i.e., Jf := ∇zL:

= ∇z [L (z0) + ρ ∥∇zL (z0)∥] = ∇z [L (z0) + ρ ∥Jf (z0)∥] (21)

A.2. Gradient updates for SAMBA

We need to discuss the gradients required for the model update in two groups: gradients
w.r.t. the latent factors z and encoder parameters ϕ can rely on the approximation from
above, since they do not depend on the decoder parameters θ. For the decoder, we need to
include θ0 in our analysis.

Starting with the gradients w.r.t. z and ϕ we get by simply using the approximation
from above:

∇zL
(
z0 + ρ

∇zL (z0)

∥∇zL (z0)∥

)
≈ ∇z [L (z0) + ρ ∥Jf (z0)∥] , (22)

which is identical to the expression from above. For the gradients w.r.t. ϕ, we further
differentiate w.r.t. ϕ. By noting that ∇z = ∂/∂z, we can use the above result by replacing
∂/∂ϕ with ∂z/∂ϕ · ∂/∂z = ∂z/∂ϕ · ∇z:

∂z

∂ϕ
∇zL

(
z0 + ρ

∇zL (z0)

∥∇zL (z0)∥

)
≈ ∂z

∂ϕ
∇z [L (z0) + ρ ∥Jf (z0)∥] (23)
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For the gradient w.r.t. θ, the dependence of the reconstruction loss on θ needs to be
considered, i.e., the loss becomes L = L (z0,θ0). We still modify z according to the SAM
update (10), but the update is calculated at (z0;θ0), then we differentiate again at this
updated position for backpropagation. The gradient ascent step modifying z0 does not
depend on θ (we call .detach() on the gradients). Nonetheless, for L depends on θ, our
approximation requires the additional assumption that θ and θ0 are sufficiently close. To
calculate the gradients w.r.t. θ, we start from the loss with θ0 and the updated latent and
do a first-order Taylor approximation w.r.t. z at z0:

∂

∂θ
L
(
z0+ρ

∇zL (z0,θ0)

∥∇zL (z0,θ0)∥
;θ0

)
≈ ∂

∂θ

[
L (z0;θ0) + ρ∇zL (z0,θ0)

⊤ ∇zL (z0,θ0)

∥∇zL (z0,θ0)∥

]
, (24)

where we second term is the gradient of L w.r.t. z multiplied by (z − z0), with z is taken
after the SAM-update (so only the SAM step remains). The last step is to note that
[∇z]L⊤∇zL = ∥∇zL∥2 , so the denominator cancels, yielding

=
∂

∂θ
[L (z0;θ0) + ρ∥∇zL (z0,θ0)∥] , (25)

When L is the (expected) MSE, the gradients w.r.t. ϕ, θ, and z can be expressed as the
derivative of LRAE , proving that SAMBA and the RAE are equivalent, and elucidating that
the gradient-norm–penalized RAE can be thought of as implicitly using SAM.

Appendix B. Experiments with trainable variance

Figure 4: Left: latent space smoothness (logarithm of the weighted decoder Jacobian’s
norm); Center: validation loss (i.e., ELBO for the VAE and LSAMBA for SAMBA); Right:
reconstruction terms (evaluated at µz|x, i.e., without the SAM step for a fair comparison).
The encoder variance and ΣSAM are learned, showcasing the additional degree of freedom
of our method to induce smoothness in the latent space compared to the RAE (which has
fixed variance), leading to comparable performance as a VAE on CIFAR10. Since the Σ has
different values at each step, we plot the weighted gradient norm, which might confound
some of the differences. Error bars are calculated across 10 seeds
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SAMBA: Regularized Autoencoders perform Sharpness-Aware Minimization

Appendix C. Notation

Acronyms

ELBO evidence lower bound

AE AutoEncoder

KL Kullback-Leibler Divergence

LVM Latent Variable Model

MFVI Mean Field Variational Inference

MSE Mean Squared Error

RAE Regularized Autoencoder

SAM Sharpness-Aware Minimization
SAMBA SAM-Based Autoencoder

VAE Variational Autoencoder
VI Variational Inference

Nomenclature

Sharpness-Aware Minimization

η SAM normalized and weighted gradient

ΣSAM SAM norm weighting parameter

ρ SAM hyberball radius

LSAMBA SAMBA loss

LSAM SAM loss

Variational Autoencoders

ϕ parameters of the variational posterior
qϕ(z|x)

θ parameters of the decoder pθ(x|z)
Σϕ

z|x covariance matrix of qϕ(z|x)
LRAE RAE loss function

µz|x mean encoder of the VAE, i.e.,
Ez∼qϕ(z|x) (z), mapping x 7→ z

p0(z) latent prior distribution

pθ(z|x) true posterior distribution of the
decoded samples of the VAE, map-
ping x 7→ z, parametrized by θ

pθ(x) marginal likelihood

pθ(x|z) conditional distribution of the de-
coded samples of the VAE, mapping
z 7→ x, parametrized by θ

qϕ(z|x) variational posterior of the VAE,
mapping x 7→ z parametrized by ϕ

µϕ
k (x) mean of qϕ(z|x) in dimension k

σϕ
k (x)

2 variance of qϕ(z|x) in dimension
k

Ψ neural network parameters
f decoder map Z → X
g encoder map X → Z
LMFVI MFVI loss
L loss function

Algebra
α scalar field
0 a vector of zeros
H Hessian matrix
I identity matrix
J Jacobian matrix

Latents
z latent vector
Z latents
d dimensionality of the latent space Z

Observations
D dimensionality of the observation space

X
x observation vector
X observation space

Probability theory
Σ covariance matrix
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