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ABSTRACT

Recent advances in Vision–Language Models (VLMs) have achieved state-of-the-
art performance on numerous benchmark tasks. However, the use of internet-
scale, often proprietary, pretraining corpora raises a critical concern for both
practitioners and users: inflated performance due to test-set leakage. While prior
work has proposed mitigation strategies such as decontamination of pretraining data
and benchmark redesign for LLMs, the complementary direction of developing
detection methods for contaminated VLMs remains underexplored. To address this
gap, we deliberately contaminate open-source VLMs on popular benchmarks and
show that existing detection approaches either fail outright or exhibit inconsistent
behavior. We then propose a novel simple yet effective detection method based on
multi-modal semantic perturbation, demonstrating that contaminated models fail to
generalize under controlled perturbations. Finally, we validate our approach across
multiple contamination strategies, confirming its robustness and effectiveness. The
code and perturbed dataset will be released publicly.

Multi-modal Semantic Perturbation

Clean Model Clean ModelContaminated 
Model

Contaminated 
Model

Question
What is the speed limit on this road?
 

     B. 35     C. 45 A. 25

Figure 1: Example of our multi-modal semantic perturbation pipeline applied to RealWorldQA
benchmark. Using ControlNet trained with Flux models, a new speed limit sign is generated, changing
the correct answer from (B) to (C) while preserving the original image’s overall composition. A
contaminated model that has memorized the original question is likely to fail on the perturbed version.

1 INTRODUCTION

Recent advances in Vision-Language Models (VLMs) have achieved remarkable performance across
a wide range of tasks, including visual reasoning (Yue et al., 2024; Liu et al., 2024b; Chen et al.,
2024a), real-world understanding (xAI, 2024), and complex mathematical problems (Zhang et al.,
2024b; Lu et al., 2024b). A typical VLM training pipeline involves pretraining a vision encoder
and language backbone on internet-scale data, followed by fine-tuning on high-quality multimodal
instruction-tuning datasets. However, as these training corpora are often proprietary with their exact

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Requirements Reliability Practicality Consistency

N-gram Accuracy (Xu et al., 2024) ✗ ✗ ✗
Shared Likelihood (Oren et al., 2023) ✗ ✗ ✗
Guided Prompting (Golchin & Surdeanu, 2024) ✗ ✗ ✗
Multi-modal Leakage (Chen et al., 2024a) ✗ ✗ ▲
CircularEval (Liu et al., 2024b) ▲ ✗ ✗
Choice Confusion (Yao et al., 2024) ✗ ✓ ▲

BGR Shuffling (Lu et al., 2024a) ✗ ✗ ✗
Image Masking / Option Shuffling (Song et al., 2025) ✗ ✗ ✗

Multi-modal Semantic Perturbation Ours ✓ ✓ ✓

Table 1: Analysis of existing detection methods on VLMs. We label the detection method with ✓
if it satisfies all of Requirement 1, 2 or 3 and with ✗ otherwise. ▲ indicates that the requirement is
partially observed but not consistently with varying contamination settings. Most existing detection
methods fail to meet the requirements and cannot accurately classify contaminated models. Our
method, however, satisfies all requirements. Detailed results and analysis is included in the Appendix.

composition undisclosed, a critical concern has emerged: the potential for public benchmark data to
have leaked into the training set, leading to inflated and misleading performance metrics.

Test-set leakage presents a practical and significant challenge. For model users, it becomes difficult
to disentangle genuine reasoning and generalization from mere memorization. For developers,
exhaustively verifying the absence of test examples in massive pretraining corpora is prohibitively
expensive. Although early work on large models proposed decontamination steps by removing
n-gram overlaps (Brown et al., 2020; Bai et al., 2023; Abdin et al., 2024a), many recent models do
not report such procedures, leaving the extent of contamination largely unexamined.

To address this, several methods have been proposed to detect data contamination. One line of work
focuses on verbatim memorization, testing whether a model can reconstruct exact benchmark ques-
tions with high confidence (Xu et al., 2024; Golchin & Surdeanu, 2024; Oren et al., 2023). Another
line of work examines generalization failures, measuring if a model that succeeds on an original
question fails on a simpler variant, which is interpreted as evidence of memorization (Mirzadeh et al.,
2024; Yao et al., 2024; Huang et al., 2025).

However, these detection methods were primarily designed for Large Language Models (LLMs) and
often overlook the unique, multi-modal nature of VLMs. Applying simple text-based perturbations to
a VLM may not be sufficient, as the model could rely on visual features that remain unchanged. This
discrepancy exposes a critical gap and raises a key question:

Is there a reliable, practical, and consistent method for detecting contamination in VLMs?

In this study, we conduct a systematic analysis of the data contamination problem, from which we
derive grounded definitions of the core requirements – reliability, practicality, and consistency. Guided
by these definitions, we systematically contaminate open-source VLMs under varying fine-tuning
epochs, data composition, and training strategies (e.g., standard fine-tuning vs. LoRA (Hu et al.,
2021)). Our results show that existing detection methods struggle with the complexities of VLMs,
frequently failing to meet the core requirements across diverse contamination scenarios (see Table 1).

To overcome these limitations, we introduce a novel multi-modal semantic perturbation pipeline.
Our method generates new test examples by subtly altering the semantics of the image while
preserving its overall composition, thereby creating variants of comparable or lower difficulty
(Figure 1). The core principle is that a contaminated model, which has merely memorized an
image-text pair, will fail to generalize to this perturbed input. In contrast, a clean model with genuine
reasoning capabilities should perform correctly. This approach enables robust contamination detection
without requiring any ground-truth knowledge of the leaked data.
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Our contributions are threefold:

1. We propose a novel, simple yet effective detection framework based on multi-modal semantic
perturbations, which effectively identifies contaminated models by testing for generalization
failures in the visual domain.

2. We validate our method across multiple contamination settings, proving that it is reliable,
practical, and consistent, satisfying all key requirements for a robust detection method.

3. We conduct the first systematic study of VLM behavior under diverse contamination and
detection strategies, demonstrating that existing methods designed for LLMs are often unreliable
for VLMs.

2 INVESTIGATION SETUP

This section establishes the formal framework for our analysis of data contamination. We begin by
defining the degree of contamination, state our core assumption about its relationship with model
generalization, and finally, outline three essential requirements for a robust detection method.

Our analysis is built upon a formal definition of contamination at the data-point level. For a given
data point x, a contamination dataset D, and a training process consisting of n epochs, we define:

Definition 1. (Degree of Contamination). The degree of contamination for a data point x is:

deg(x) =

(∑
d∈D

1{x=d}

)
× n.

This quantity reflects the total number of times x is seen during training. In our experimental
setup, where a model M is fine-tuned on the entire benchmark dataset D for n epochs, this
simplifies to deg(M) = n.

This definition motivates our central assumption, grounded in prior work on model memorization
(Zhang et al., 2017; Carlini et al., 2021; Kandpal et al., 2023):

Assumption 1. Data points with a higher degree of contamination are more likely to be memo-
rized, which increases overfitting risk and impairs generalization.

In particular, we posit that as the degree of contamination grows, models will exhibit degraded
performance on perturbed or out-of-distribution variants of benchmark items, even when the orig-
inal questions are answered correctly. The effect need not scale linearly, since fine-tuning can
disproportionately distort embedding spaces (Choi et al., 2025).

Based on Assumption 1, we argue that any practical and effective detection method must satisfy three
fundamental requirements:

Requirement 1. (Practicality). The method must operate without the knowledge of the leaked
data or the model’s training corpus, relying only on black-box interactions.

Requirement 2. (Reliability). The method must detect contaminated models across heteroge-
neous fine-tuning strategies (e.g., standard fine-tuning vs. LoRA).

Requirement 3. (Consistency). The method’s detection signal should be positively correlated
with degree of contamination (i.e., n = deg(D)).

Together, these requirements define a principled framework for evaluating contamination detection.
A method that satisfies all of them can reliably flag contaminated models, remain agnostic to training
specifics, and provide a signal proportional to the extent of contamination.

3 PREPARATION OF CONTAMINATED MODELS

Models and Benchmarks. To analyze contamination detection across diverse settings, we pair com-
plementary model families and benchmarks. On the model side, we use LLaVA-v1.5-7B (Liu et al.,
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2024a) – a LLaMA–adapter design – and Qwen2-VL-7B (Wang et al., 2024), which integrates tighter
multimodal alignment. Both are widely adopted open-source VLMs with publicly documented train-
ing details (e.g., released corpora or decontamination policies), making them suitable for controlled
contamination experiments. Spanning these distinct training paradigms lets us probe robustness under
heterogeneous contamination footprints.
For benchmarks, we use MMStar (Chen et al., 2024a) and RealWorldQA (xAI, 2024), which both
require visual and textual evidence. MMStar aggregates and filters prior tasks to remove leaked or
non-visual items, while RealWorldQA enforces visual dependence by design. This prevents linguistic
shortcuts and ensures our perturbation-based detector evaluates genuine vision–language reasoning.
Training Strategies. We contaminate models by training directly on evaluation data. Because VLM
training typically has two stages—(i) large-scale pretraining of the vision encoder and language back-
bone and (ii) instruction-tuned multimodal fine-tuning—leakage can arise at either stage. Ablating
pretraining is computationally prohibitive, so we focus on continual fine-tuning, which affords precise
control over contamination levels.
We compare standard fine-tuning and LoRA (Hu et al., 2021). For standard fine-tuning, we follow
three common variants: fine-tune the LLM and adapter as in LLaVA-v1.5-7B; fine-tune only the
LLM as in Qwen2-VL-7B; or unfreeze all parameters as in InternVL (Chen et al., 2024b). This
diversity tests robustness across parameter-efficient and full fine-tuning regimes.
Epochs. We save checkpoints at epochs 1–3 (i.e. deg(M) ∈ {1, 2, 3}), since VLMs are typically
fine-tuned for at most three epochs – and often just one. Contamination footprints of varying strength
enables a graded analysis of detection sensitivity (Liu et al., 2024a; Chen et al., 2025).
Hyperparameters. We use model defaults, adjusting only the learning rate to inflate test perfor-
mance. For LLaVA-v1.5-7B, we follow the official repo; for Qwen2-VL-7B, we use LLaMA-
Factory (Zheng et al., 2024). (Full settings are in the Appendix A.1.)

4 MULTI-MODAL SEMANTIC PERTURBATION

We propose multi-modal semantic perturbation framework for contamination detection, that generates
variants of image–text pairs with modified answers while keepingthe original image composition
intact. In controlled experiments, our method consistently detects contaminated models and satisfies
all three requirements, while existing methods fail to yield a stable signal of test-set leakage in VLMs.

To generate semantically perturbed questions, we combine an LLM with a diffusion-based generative
model. In our main experiments, we use GPT-4o (OpenAI, 2024) and Flux (Labs, 2024) + ControlNet
(Zhang et al., 2023), but later show that our framework is model-agnostic through ablation studies.

The pipeline of our framework is as follows. First, we randomly change the answer of the original
question to a different option, preventing contaminated models from getting away with memorized
responses. Next, GPT-4o generates a dense caption of the image, conditioned both on the original
question, original answer and the newly chosen answer choice. We find this explicit conditioning
essential: it ensures the caption highlights the salient visual features required to answer the question
(Section 6). Flux ControlNet then uses this caption, together with Canny edge maps (Canny, 1986), to
guide the diffusion process. ControlNet preserves the global structure of the image while introducing
new elements that minimally alter semantics, yielding an updated image with a different correct
answer (Figure 2). We note that, due to limitations in rendering text or complex geometries, especially
at low resolution, some generated images do not fully correspond to the new answer. To mitigate
this, we filter generated pairs using a single criterion: perturbed questions must be answerable
unambiguously.1 For the main results, we apply manual filtering to demonstrate the upper-bound
performance of our approach. However, as shown in Table 9, this manual step can be replaced with
automated filtering with a strong reasoning model.

To detect whether a model is contaminated on a dataset-level, i.e. has memorized the training
image-text pairs, we compare its aggregate performance (i.e. accuracy) on the original vs. perturbed
benchmarks. If the model fails to generalize (i.e. it gets the original input correct but the perturbed one

1Generation quality itself is not considered. This ensures that the evaluation set focuses solely on reasoning
rather than visual fidelity. While our main results report human-filtered outcomes, we show in Table 9 that this
step can be automated. We stress that filtering is necessitated by current generative model limitations, not by our
detection principle.
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incorrect, leading to a lower performance on the perturbed benchmark), we flag contamination2. This
is because a clean model with genuine reasoning capabilities should perform correctly in both settings,
given that they have comparable difficulty. Critically, our approach enables robust contamination
detection without requiring any ground-truth knowledge of the leaked data.

Flux

ControlNetLLM

Original Question

How far from the camera is the leftmost vehicle?
 
          C. 100m A. 20m B. 60m

Perturbed Question

How far from the camera is the leftmost vehicle?
 
     B. 60m     C. 100m A. 20m

Generate

Dense Caption

Canny Edge

Preserve Composition

Randomly Sample 

New Answer

Figure 2: Illustration of our multi-modal semantic perturbation pipeline. The original question–image
pair is used to generate a dense caption with an LLM, which guides Flux ControlNet to produce a
perturbed image and new answer, yielding a modified but semantically consistent benchmark sample.

5 COMPARATIVE EVALUATION OF CONTAMINATION DETECTION

In this section, we present our main results: detecting contamination on a dataset level. After
perturbation and filtering, 440 image–question pairs remain from the original 765 in RealWorldQA,
and 478 remain from 1,500 in MMStar (Section 6 shows that these are representative subsets). Table 2
reports results for MMStar; results for RealWorldQA are in in the Appendix (Table 12).

First, we see that clean models perform better than contaminated models, confirming that the perturbed
questions are indeed of equal or lower difficulty. In contrast, all contaminated models perform worse,
enabling our method to reliably detect via a simple check for performance drops.

We compare to the following contamination detection methods:

Multi-modal Leakage (Chen et al., 2024a). With multi-modal leakage, contamination is flagged
by measuring text-only performance on benchmarks that require visual input. After fine-tuning, any
boost in text-only performance indicates memorization of leaked question–answer pairs rather than
genuine multi-modal reasoning. Multi-modal leakage requires clean models by design and hence
does not satisfy Practicality (Req. 1). And from Table 2 we observe that Reliability (Req. 2) is not
satisfied since it fails to detect LLaVA-v1.5-7B trained for 3 epochs with standard fine-tuning. While
its gain in performance positively correlates with the degree of contamination in other cases, this
trend breaks across benchmarks and training strategies such as for Qwen2-VL-7B trained for 3 epochs
with LoRA and LLaVA-v1.5-7B trained for 3 epochs with standard fine-tuning, thus only partially
satisfying Consistency (Req. 3).

CircularEval (Liu et al., 2024b). Selection bias in multiple-choice questions is mitigated by rotating
answer options n times and requiring the model to be correct on all rotations. This stricter criterion
lowers absolute accuracy compared to standard evaluation. For contamination detection, however,
CircularEval’s effectiveness is limited. Practicality (Req. 1) fails, as CircularEval lacks a clear
threshold-independent detection mechanism. Reliability (Req. 2) is undermined by inconsistent
contamination signals, as it fails to detect LLaVA-v1.5-7B trained with LoRA for 2 and 3 epochs,
and Qwen2-VL-7B trained with standard fine-tuning for 2 epochs. And despite some positive trends,
Consistency (Req. 3) breaks across models and training setups, as shown with LLaVA-v1.5-7B
trained with LoRA for 2, 3 epochs and Qwen2-VL-7B trained with standard fine-tuning for 2,3
epochs, limiting its diagnostic value.

Choice confusion (Yao et al., 2024). Generalization is tested by constructing an easier benchmark
variant: false options are replaced with correct answers drawn from unrelated questions. Clean models
should leverage this simplification to improve, whereas contaminated models—bound by memorized
original answers—might not. We apply this method to measure the model’s performance drop (∆)

2We make a note that our approach can also be used to detect contamination on a sample-level by comparing
the model’s behavior on the perturbed sample instead of the aggregate performance.
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Method Metric LLaVA-v1.5-7B (clean) LoRA (contaminated) LLM+MLP (contaminated) Require clean model?

— Epoch 1 Epoch 2 Epoch 3 Epoch 1 Epoch 2 Epoch 3 (Practicality (Req. 1))

Ours

MMStar 37.78 52.53 50.71 54.34 41.82 48.89 50.71

No ✓
MMStar_P 69.29 44.24 37.58 38.18 33.33 37.37 36.97
∆ +31.51 –8.29 –13.13 –16.16 –8.49 –11.52 –13.74

Success? ✓ ✓ ✓ ✓ ✓ ✓ ✓

CircularEval

MMStar 37.78 52.53 50.71 54.34 41.82 48.89 50.71

Yes ✗
MMStar_C 26.06 29.09 45.66 55.56 25.86 22.83 22.02
∆ -11.72 -23.44 -5.05 +1.22 -15.96 -26.06 -28.69

Success? – ✓ ✗ ✗ ✓ ✓ ✓

Choice Confusion

MMStar 37.78 52.53 50.71 54.34 41.82 48.89 50.71

No ✓
MMStar_G 71.92 53.54 65.66 69.09 62.83 66.26 62.83
∆ +34.14 +1.01 +14.95 +14.75 +21.01 +17.37 +12.12

Success? ✓ ✗ ✗ ✗ ✗ ✗ ✗

Multi-modal Leakage
MMStar_to 19.39 26.67 29.70 30.51 19.80 26.87 8.69

Yes ✗∆ – +7.28 +10.31 +11.12 +0.41 +7.48 -10.70

Success? – ✓ ✓ ✓ ✓ ✓ ✗

Method Metric Qwen2-VL-7B (clean) LoRA (contaminated) LLM only (contaminated) Require clean model?

— Epoch 1 Epoch 2 Epoch 3 Epoch 1 Epoch 2 Epoch 3 (Practicality (Req. 1))

Ours

MMStar 62.02 78.38 94.14 95.96 89.90 97.98 98.99

No ✓
MMStar_P 78.18 71.31 65.25 63.64 60.40 54.95 55.96
∆ +16.16 –7.07 –28.89 –32.32 –29.50 –43.03 –43.03

Success? ✓ ✓ ✓ ✓ ✓ ✓ ✓

CircularEval

MMStar 62.02 78.38 94.14 95.96 89.90 97.98 98.99

Yes ✗
MMStar_C 55.96 54.95 55.56 55.76 82.63 91.92 92.73
∆ -6.06 -23.43 -38.58 -40.20 -7.27 -6.06 -6.26

Success? – ✓ ✓ ✓ ✓ ✗ ✓

Choice Confusion

MMStar 62.02 78.38 94.14 95.96 89.90 97.98 98.99

No ✓
MMStar_G 94.34 94.34 93.13 93.13 96.77 96.77 97.78
∆ +32.32 +15.96 -1.01 -2.83 +6.87 -1.21 -1.21

Success? ✓ ✗ ✓ ✓ ✗ ✓ ✓

Multi-modal Leakage
MMStar_to 22.83 27.07 28.48 28.08 44.24 51.31 52.73

Yes ✗∆ – +4.24 +5.65 +5.25 +21.41 +28.48 +29.90

Success? – ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Performance of LLaVA-v1.5-7B (top) and Qwen2-VL-7B (bottom) on the MMStar dataset
(Corresponding RealWorldQA results are in the Appendix 12). We compare to “Multi-modal Leakage”
Chen et al. (2024a), CircularEval (Liu et al., 2024b), and “Choice Confusion” Yao et al. (2024). Clean
models perform better on our perturbed dataset – confirming that the perturbed questions are indeed
of equal or lower difficulty. In contrast, all contaminated models perform worse, enabling reliable
detection by our method via a simple check for performance drops. "_P" denotes the semantically
perturbed version; "to" denotes text-only performance; "_C" denotes evaluation using circular options;
"_G" denotes evaluation using choice confusion; ∆ denotes the difference in performance, with
positive values indicating gains. "Success?" indicates whether the method detected contamination.
"Require clean model?" indicates whether the method requires access to a clean model as a baseline.
If a clean model is required as reference, the method cannot be used to detect the reference models
themselves, so the entry is marked as “–”. For full results, refer to Appendix E.1.

between the original and generalized versions. Clean models gain substantially on generalized
benchmarks – up to +34.04 on MMStar and +21.30 on RQA – confirming their generalization ability.
By contrast, contaminated variants show much smaller gains or even losses. This failure to benefit
from semantically irrelevant but easier choices reflects classic memorization-based contamination.
As a detection method, choice confusion meets Practicality (Req. 1) since the method detects models
that perform worse on the generalized benchmark, but its sensitivity varies across fine-tuning regimes.
Choice confusion fails to detect LLaVA-v1.5-7B regardless of its training strategy or the number
of epochs, and for LLaVA-v1.5-7B trained with LoRA, the model shows improved performance as
the number of training epochs increases. Hence the method fails to satisfy Reliability (Req. 2) while
Consistency (Req. 3) is partially observed in other training strategies.

Importantly, unlike other approaches, our method requires no dataset-specific thresholds or prior
knowledge of leaked data, satisfying Practicality (Req. 1). Moreover, the performance drop
scales with contamination degree, satisfying Consistency (Req. 3), and persists across all train-
ing regimes—standard fine-tuning, LoRA, and full parameter unfreezing, satisfying Reliability
(Req. 2).
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6 ANALYSIS OF MULTI-MODAL SEMANTIC PERTURBATION

Filtered images form a representative subsample. Since manual filtering removes a substantial
portion of the original data, a natural concern is whether the filtered sets remain representative. To
test this, we first compare model performance on the full and filtered datasets and find that the results
closely align (Table 3). This confirms that the filtering step does not introduce systematic bias, and
the remaining subsets preserve the distributional properties of the original benchmarks.

Model RQA (765 imgs) RQA_filtered (440 imgs) MMStar (1500 imgs) MMStar_filtered (495 imgs)

LLaVA-v1.5-7B 49.01% 52.05% 32.87% 37.78%
Qwen2-VL-7B 70.33% 70.45% 59.80% 61.62%

Table 3: Performance of clean models on RealWorldQA (RQA) and MMStar before and after filtering.

Why perturbations yield a generalized benchmark. Our core assumption is that by preserving the
original question and only altering the answer choice, the question difficulty remains comparable,
and that clean models that answer the original question correctly will solve the variant. In addition,
we often observe that the perturbation highlights salient visual cues more clearly than the original
images (Fig. 3), collectively yielding an alternate benchmark that is similar or easier. We validate this
empirically: clean models consistently achieve higher accuracy on perturbed benchmarks (Table 2).

Question What does the text on the traffic sign say? A. Student B. Children C. Police

(a) Original (b) After multi-modal semantic perturbation

Figure 3: Example where the perturbed variant is easier to solve than the original. In the original
image, the traffic sign is small and the text barely legible; after perturbation, the sign is enlarged and
clearly visible.

Providing the question-answer pair in caption generation is critical. As described in Sec. 4,
conditioning the caption generation on both the original question, original answer and the new answer
is critical to creating a generalized benchmark. One natural approach is to create a variant of the
original image from simply conditioning the generated caption on the question and the new correct
answer. When we evaluated clean models on images generated from this version of the prompt,
the clean model performance was much lower compared to both the original dataset and our final
perturbed dataset, with invalid perturbations appearing much more frequently, for example, due to
critical component of the image being left out so the question is ambiguous or no longer solvable.
Intuitively, the captioning model first reasons about which parts of the image need to change to make
the new answer correct, and produces a detailed caption emphasizing those changes. Flux+ControlNet
then focuses on rendering these components exactly. Finally, changing the answer is necessary to
delineate contaminated models’ behavior from simply memorizing the answer.

Failure modes of multi-modal semantic perturbation. There are cases where multi-modal per-
turbation fails to reveal contamination. The perturbed image may differ in its visual details that it
no longer closely resembles the original. In such cases, contaminated models may answer both the
original and perturbed questions correctly as shown in Figure 4, hiding the contamination of the
model. To ensure that such failure cases are rare, we manually inspected the perturbed datasets and
verified that only 8 out of 440 images (∼1.8%) from perturbed RealWorldQA and 17 out of 495
images (∼3.4%) from perturbed MMStar deviate from the original question’s visual details.

Limitations of multi-modal semantic perturbation framework. For semantic perturbation to be
valid, questions must enforce visual dependence. If a question can be answered without visual input,
perturbing the image is meaningless, and altering only the answer invalidates the task. As such, we
restricted our study to RealWorldQA and MMStar, which are VQA benchmarks with strict visual
grounding. This constraint highlights an important boundary: our method is only effective when
visual semantics directly determines the correct answer.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Question Which vehicle is closer to us, the school bus or the black SUV?
A. School bus B. Black SUV C. They are at the same distance.

(a) Original (b) After multi-modal semantic perturbation

Figure 4: Example where a contaminated model answers both the original and perturbed questions
correctly. This may occur when visual details change significantly that the perturbed image no longer
closely resembles the original.

Both RealWorldQA and MMStar are multiple-choice benchmarks. Although the multiple-choice
format simplifies evaluation, our framework is not inherently tied to this setting. Once visual evidence
is perturbed, evaluation can be adapted to free-form tasks using string matching, likelihood-based
scoring, or LLM-as-a-judge approaches. This principle extends naturally beyond multi-choice VQA.

Finally, manual filtering is required only because of current limitations of diffusion models. As
generative models improve, we expect manual filtering to become unnecessary, further strengthening
the scalability of our approach.

7 ABLATION STUDIES

We next validate that the core idea—testing for memorization via mutli-modal semantic perturba-
tions—is robust to design choices. Specifically, we show our method is not tied to synthetic edits,
scales to larger models and alternate contamination regimes, and works without GPT-4o or manual
filtering.

Real-world Counterfactuals: NaturalBench. NaturalBench (Li et al., 2024) provides real coun-
terfactual pairs – photos of the same scene under altered conditions – serving as a natural analogue
to our synthetic variants. We fine-tune on one variant and evaluate its paired counterfactual with
the same question. Contaminated models drop sharply (up to 45.95%), while clean models remain
comparatively stable (Table 6), showing our detector generalizes beyond synthetic perturbations3.
Thus, any reliable semantic variation – natural, procedural, or synthetic – fits our framework.

Contamination with paraphrased data. A simple but effective contamination is paraphrasing the
data the model is contaminated on. To test whether models contaminated with paraphrased data can be
detected, we paraphrase the questions using GPT-4o with minimal n-gram overlap. The contaminated
models are then evaluated on the original benchmark and its perturbed variant. Table 4 and 5 show that
contaminated models show inflated performance on original benchmarks with lowered performance
on perturbed benchmarks, proving our detection method is robust against paraphrasing.

Method Epoch RQA RQA_P ∆

Contamination with paraphrased RealWorldQA

LLaVA-v1.5-7B (clean) — 52.05 56.36 +4.31

LoRA (contaminated)
1 52.03 40.00 -12.03
2 55.91 40.00 -15.91
3 59.09 38.86 -20.23

LLM+MLP (contaminated)
1 56.14 53.41 -2.73
2 61.36 48.64 -12.72
3 63.64 49.77 -13.87

Table 4: Performance of LLaVA-v1.5-7B and
contaminated variants on RealWorldQA when
trained on the paraphrased benchmark. “_P”
denotes the semantically perturbed version.
For full results, refer to Appendix E.5.

Method Epoch MMStar MMStar_P ∆

Contamination with paraphrased MMStar

LLaVA-v1.5-7B (clean) — 37.78 68.29 +31.51

LoRA (contaminated)
1 51.52 43.64 -7.88
2 59.60 41.82 -17.78
3 62.22 40.81 -21.41

LLM+MLP (contaminated)
1 47.27 46.06 -1.13
2 57.60 53.54 -3.06
3 62.42 57.98 -4.44

Table 5: Performance of LLaVA-v1.5-7B and con-
taminated variants on MMStar when trained on the
paraphrased benchmark. “_P” denotes the seman-
tically perturbed version. For full results, refer to
Appendix E.5.

3Note that because counterfactuals are not guaranteed to be easier, clean-model deltas need not be positive.
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Model Scale: LLaVA-13B. To assess scalability, we repeat the RealWorldQA experiment with
LLaVA-v1.5-13B. Table 7 shows our detector remains effective at this scale. Given that larger models
are more prone to memorization, these findings indicate the approach is suitable for stronger VLMs.

Method Epoch Train Set (%) Test Set (%) ∆

Contamination with NaturalBench

LLaVA-v1.5-7B (clean) — 65.63 65.89 +0.26

LoRA (contaminated)
1 81.53 61.37 –20.16
2 89.79 57.16 –32.63
3 91.11 57.32 –33.79

LLM+MLP (contaminated)
1 79.95 58.79 –21.16
2 97.05 54.32 –42.74
3 98.63 53.05 –45.58

Table 6: Performance of clean and contaminated mod-
els on NaturalBench. While clean model shows com-
parable performance on the test set, contaminated
models fail to generalize, with performance drop upto
-45.58%. For full results, refer to Appendix E.2.

Method Epoch RQA RQA_P ∆

Contamination with RealWorldQA

LLaVA-v1.5-13B (clean) — 51.14 57.27 +6.13

LoRA (contaminated)
1 74.32 38.18 –36.14
2 73.18 32.73 –40.45
3 77.05 34.77 –42.28

LLM+MLP (contaminated)
1 56.59 37.50 –19.09
2 71.59 38.86 –32.73
3 75.45 37.27 –38.18

Table 7: Performance of clean and contami-
nated LLaVA-v1.5-13B on RealWorldQA af-
ter multi-modal semantic perturbation. The
result satisfies all three requirements. For
full results, refer to Appendix E.2.

Test-set leakage during Pretraining. We simulate pretraining leakage by mixing RealWorldQA into
the 665K instruction-following pretraining corpus and training LLaVA-v1.5-7B for one epoch (Table
8). Using the same 440 filtered images, our method flags contamination, demonstrating applicability
beyond fine-tuning-only settings.

Model RQA RQA_P ∆

LLaVA-v1.5-7B (clean) 52.05 56.36 +4.31
Pretrain (contaminated) 51.82 50.00 –1.82

Table 8: Performance of clean vs. pretrained-contaminated models on RealWorldQA (440 images).

In addition, we test our perturbation pipeline under a more realistic contamination scenario: a mixture
of other benchmarks. We fine-tune the models with popular multi-modal benchmarks: MathVista Lu
et al. (2024b), MMMU Yue et al. (2024), MMBench Liu et al. (2024b) and CV-Bench Tong et al.
(2024), resulting in 11,280 image-question pairs, with RealWorldQA and MMStar now consisting
only of ∼6.7% and ∼13.3%, respectively. Results are in Appendix E.6 due to limited space.

We still observe a clean and consistent detection across all contamianted models, demonstrating
that our perturbation pipeline can reliably detect contaminated models even when the contamination
signal is weaker, which has been shown in Table 8 as well.

Finally, we ablate two key components of our pipeline to show modularity.

Automation of filtering Process. We replace manual validation with the o3 model to filter generated
image–question pairs. The automatic pass removes 471 items and retains 294, of which 253 overlap
with the manually kept set, indicating high agreement (Table 9). The exact prompt is provided in
Appendix B.

Caption generation with Molmo-7B-D. To decouple the pipeline from GPT-4o, we substitute
captioning with the lightweight open-source Molmo-7B-D Deitke et al. (2024) while keeping Flux
ControlNet for image generation. After manual filtering, this variant yields 398 valid pairs and
preserves the same detection trends, underscoring the flexibility of our approach (Table 10).

8 RELATED WORK

Data Contamination in LLMs. Brown et al. (2020) was among the first to highlight the problem
of data contamination when training models on internet-scale corpora, proposing an n-gram over-
lap–based decontamination technique that was later adopted in Bai et al. (2023). Building on this,
several detection methods exploit verbatim memorization to identify leaked test-set examples (Oren
et al., 2023; Golchin & Surdeanu, 2024; Xu et al., 2024). More specifically, Xu et al. (2024); Golchin
& Surdeanu (2024) test whether the model can accurately reconstruct masked spans of test questions,
while Oren et al. (2023) measure the log-probability of the original ordering of multiple-choice
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Method Epoch RQA RQA_P ∆

Contamination with RealWorldQA

LLaVA-v1.5-7B (clean) — 50.68 59.86 +9.18

LoRA (contaminated)
1 50.34 44.90 –5.44
2 66.33 46.60 –19.73
3 77.21 47.28 –29.93

LLM+MLP (contaminated)
1 60.54 54.42 –6.12
2 63.95 55.10 –8.85
3 64.63 53.40 –11.23

Table 9: Performance after filtering with the o3
model, resulting in 294 valid image–question
pairs. Results satisfy all requirements. For full
results, refer to Appendix E.3.

Method Epoch RQA RQA_P ∆

Contamination with RealWorldQA

LLaVA-v1.5-7B (clean) — 44.22 52.01 +7.79

LoRA (contaminated)
1 44.97 35.93 –9.04
2 55.78 32.66 –23.12
3 70.35 32.91 –37.44

LLM+MLP (contaminated)
1 56.53 39.95 –16.58
2 60.80 39.45 –21.35
3 61.56 39.95 –21.61

Table 10: Performance after generating and fil-
tering images with captions from Molmo-7B-D,
resulting in 398 valid image–question pairs. Re-
sults satisfy all requirements. For full results,
refer to Appendix E.4.

options. Choi et al. (2025) instead examine embedding divergence after fine-tuning, exploiting the
observation that embeddings of unseen samples change more substantially than those of memorized
ones. However, these methods face key limitations: Oren et al. (2023); Golchin & Surdeanu (2024);
Xu et al. (2024) perform poorly on contaminated VLMs, while Choi et al. (2025) requires ground-truth
clean model behavior to establish a detection threshold, reducing its practicality.

Generalized Benchmarks for Detecting Contamination. Yao et al. (2024) address these limitations
by testing for generalization rather than memorization. They construct trivial variants of benchmark
questions by replacing incorrect multiple-choice options with irrelevant answers. Contaminated
models often fail on the easier variants, exposing strong memorization. However, their setup involves
training for 36 epochs on a single benchmark – an unrealistic scenario for modern large-scale training.
In a similar spirit, GSM-Symbolic and MATH-Perturb (Mirzadeh et al., 2024; Huang et al., 2025)
introduce perturbation-based approaches, measuring performance drops on variant questions as
contamination signals.

Contamination Detection in VLMs. VLMs differ from LLMs due to their multi-modal inputs
and multi-stage alignment training, which yield distinct contamination dynamics. Lu et al. (2024a)
proposed shuffling BGR color channels to mitigate spurious cues, while Song et al. (2025) introduced
image masking and option shuffling to test robustness. Yet these approaches struggle to reliably
detect contaminated VLMs, as observed performance drops may arise from confounding factors
such as visual artifacts or biased sampling rather than true memorization. In contrast, our framework
provides consistent detection across diverse fine-tuning regimes, requires no access to leaked data,
and yields performance drops that correlate strongly with the degree of contamination.

9 CONCLUSION

Recent advances in Vision-Language Models (VLMs) have raised concerns about inflated benchmark
performance due to test-set leakage from large-scale, proprietary training corpora. To overcome
the limitations of existing detection methods, we introduce a novel approach based on multi-modal
semantic perturbation. By deliberately contaminating open-source VLMs and evaluating their
generalization behavior, we show that our method consistently identifies contamination where prior
approaches either fail or yield inconsistent signals. These results establish multi-modal semantic
perturbation as a simple and reliable framework for detecting test-set leakage in VLMs.

Broader Impacts. Our multi-modal semantic perturbation method aims to uncover and quantify the
degree of data contamination in VLMs, promoting cleaner training pipelines and more trustworthy
models. By systematically characterizing contamination behaviors, it lays the groundwork for robust
model evaluation and contamination detection. While these insights could inform adversaries seeking
subtler contamination schemes, we believe this work will foster the development of stronger defenses
and decontamination strategies.

Reproducibility Statement. We will publicly release our code, models and data upon the paper’s
acceptance.

LLM Usage. Gemini and ChatGPT were used to polish some of the paper’s writing.
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APPENDIX

A EXPERIMENT SETTINGS

In this section, we detail all hyperparameter settings for contaminating models and for multi-modal
semantic perturbation of benchmarks.
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A.1 MODEL TRAINING

We contaminate LLaVA-v1.5-7B by following the official repository 4 and Qwen2-VL-7B using
LLaMA-Factory. All settings remain identical except for the learning rates, which were tuned over
the ranges shown in Table 11.

LLaVA-v1.5-7B Qwen2-VL-7B-Instruct

Hyperparameter Standard LoRA Standard LoRA

Learning rate 5e−6, 1e−5, 2e−5 2e−4, 1e−4 1e−5, 2e−5, 5e−6 1e−4, 1e−3

Adapter LR 5e−6 2e−5 1e−6 1e−6

Effective batch size* 128 128 16 64
LoRA rank — 8 — 8

Table 11: Hyperparameter settings for LLaVA-v1.5-7B and Qwen2-VL-7B-Instruct under standard
fine-tuning and LoRA. ∗Effective batch size accounts for gradient accumulation across 8 GPUs.

We perform continual fine-tuning of the model weights on 8 NVIDIA A6000 GPUs. Notice Qwen2-
VL models are trained with much smaller batch sizes due to heavier GPU VRAM requirements.

A.2 MULTI-MODAL SEMANTIC PERTURBATION

Multi-modal semantic perturbation is a two-stage process. In the first process where we
obtain prompts that will be provided to Flux Controlnet model is generated by using GPT-
4o with api-version=2024-08-01-preview. We set temperature=0.3 and limit
max_tokens=800.

In the second stage where we create a perturbed version of the original image based on the caption
generated in the first stage, we utilize Controlnet trained with Flux diffusion model 5. We follow the
default hyperparameter settings in the repository, except that we enforce the generated images to have
the same resolution as the original images. All images are generated with 25 steps.

A.3 COST OF MULTI-MODAL SEMANTIC PERTURBATION

First, we note that our semantic perturbation pipeline only needs to be run once to constructed the
perturbed benchmark. We also note that the cost scales linearly with the size of the dataset. We list
below the cost and hardware requirements of each stage of our pipeline.

Caption Generation. Using GPT-4o as the captioning model required on average ∼75 input tokens
and ∼125 output tokens per image. This means that generating 1,000 captions would cost less
than $1.50 (USD). This stage also does not require proprietary models: it can be replaced with
Molmo-7B-D (Table 10, 22, 23), which fits on a single 24GB GPU.

Flux+ControlNet. Flux+ControlNet generation runs on a single 40GB GPU. With 25 sampling steps,
each image takes around 15 20 seconds to generate, and this can be further reduced by decreasing the
number of steps. This stage is trivially parallelizable across multiple GPUs or machines if higher
throughput is needed.

Automated Filtering with o3. Automated filtering required on average ∼ input tokens and ∼200
output tokens per image. Generating 1,000 filtering decisions costs less than $2.00 (USD).

Overall, the total cost to construct the perturbed benchmark is cheap with modest hardware require-
ments. Our approach scales linearly with dataset size, making our approach practical and scalable
even for reasonably large benchmarks. Finally, when real-world counterfactuals are already available
as part of the benchmark design (e.g., NaturalBench in Table 6, 19), we do not need to generate
perturbations at all.

4The default training script can be found here: https://github.com/haotian-liu/LLaVA.
5Code can be accessed here: https://github.com/XLabs-AI/x-flux
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B SYSTEM PROMPTS TO GPT-4O AND O3

To generate the semantically perturbed question, we utilize GPT-4o OpenAI (2024) and Flux diffusion
model Labs (2024) trained on ControlNet Zhang et al. (2023). We generate a detailed caption about
the image using GPT-4o along with the original question, original answer and the new correct answer
with the following system prompt:

Your job is to generate a text-to-image prompt that can be used with a diffusion model.
Based on the question and answer, write a detailed caption so that all necessary details
are included and the question remains solvable.

Additionally, modify the image so that the correct answer changes. For example, if the
question asks “How many people are in the image?”, change the image to have more
people.

In Section 7, we demonstrated that the manual filtering process can be automated with o3 model
which is a powerful reasoning model. We utilize the following system prompt to generate model
responses that can be used to filter the invalid perturbed images.

You will be given a question and an image pair, along with the answer. Your job is to
critically analyze the image-question pair to verify that the question can be correctly
answered.

In particular, ensure that one can deduce the correct answer choice and that choice only.
If there is any ambiguity, you must reject this question. When finalizing your decision, do

NOT take into consideration the quality of the image. As long as the question remains
solvable, you should keep it. Provide your answer in the following format: "Answer:

ANSWER" and answer with KEEP or REJECT.

C DETECTING CONTAMINATED MODELS WITH MULTI-MODAL SEMANTIC
PERTURBATION ON REALWORLDQA

Table 12 reports results for RealWorldQA. Similar to results on MMStar, we find that (i) clean models
consistently outperform contaminated ones, confirming that perturbed questions are not harder;
(ii) in contrast, contaminated models show clear performance drops, enabling reliable detection
without thresholds or prior knowledge (Requirement 1). The drop scales with contamination level
(Requirement 3) and holds across training strategies (Requirement 2).

D EXTENDED EVALUATION ON ADDITIONAL OPEN-SOURCE AND
PROPRIETARY MODELS

We further apply our pipeline to GPT-4o (OpenAI, 2024), Gemini-2.0-Flash (Gemini Team, 2024),
Phi-3.5-V (Abdin et al., 2024b), and InternVL-2.5 (Chen et al., 2025). We do not contaminate these
models. Although we cannot guarantee that these models have never encountered our evaluation
data, we assume they are uncontaminated. Under this assumption, if our framework is sound, their
performance should remain consistent across original and perturbed datasets. Indeed, our results
in Table 13 confirm this expectation. Across all models, perturbed performance exceeds original
performance, reinforcing that clean models generalize while contaminated ones fail. Notably, Phi-
3.5-V exhibits the largest gain, while InternVL-2.5-8B remains relatively flat, demonstrating that our
metric is robust across architectures. This consistency underscores the effectiveness of multi-modal
semantic perturbation as a detection framework.

E FULL EXPERIMENT RESULTS

In this section, we provide the full experiment results of multi-modal semantic perturbation across
four training strategies that were omitted due to limited space.
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Method Metric LLaVA-v1.5-7B (clean) LoRA (contaminated) LLM+MLP (contaminated) Require clean model?

— Epoch 1 Epoch 2 Epoch 3 Epoch 1 Epoch 2 Epoch 3 (Practicality (Req. 1))

Ours

RQA 52.05 62.73 70.00 79.55 56.36 64.55 70.68

No ✓
RQA_P 56.36 51.36 52.73 44.77 52.95 50.45 51.82
∆ +4.31 –11.37 –17.27 –34.78 –3.41 –14.10 –18.86

Success? ✓ ✓ ✓ ✓ ✓ ✓ ✓

CircularEval

RQA 52.05 62.73 70.00 79.55 56.36 64.55 70.68

Yes ✗
RQA_C 36.59 17.95 45.23 57.50 33.18 37.05 43.40
∆ -15.46 -44.78 -24.77 -22.05 -23.18 -27.50 -27.28

Success? – ✓ ✓ ✓ ✓ ✓ ✓

Choice Confusion

RQA 52.05 62.73 70.00 79.55 56.36 64.55 70.68

No ✓
RQA_G 66.59 41.36 59.09 66.14 62.95 62.50 63.64
∆ +14.54 -21.37 -10.91 -13.41 +6.59 -2.05 -7.04

Success? ✓ ✓ ✓ ✓ ✗ ✓ ✓

Multi-modal Leakage
RQA_to 34.77 37.27 47.05 48.41 37.73 40.68 45.00

Yes ✗∆ – +2.50 +12.28 +13.64 +2.96 +5.91 +10.23

Success? – ✓ ✓ ✓ ✓ ✓ ✓

Method Metric Qwen2-VL-7B (clean) LoRA (contaminated) LLM only (contaminated) Require clean model?

— Epoch 1 Epoch 2 Epoch 3 Epoch 1 Epoch 2 Epoch 3 (Practicality (Req. 1))

Ours

RQA 70.45 79.32 87.50 88.86 74.77 78.64 85.23

No ✓
RQA_P 71.36 65.00 64.55 61.59 46.82 50.45 46.59
∆ +0.91 –14.32 –22.95 –27.27 –27.95 –28.19 –38.64

Success? ✓ ✓ ✓ ✓ ✓ ✓ ✓

CircularEval

RQA 70.45 79.32 87.50 88.86 74.77 78.64 85.23

Yes ✗
RQA_C 63.64 65.00 65.91 67.05 65.23 66.59 77.73
∆ -6.81 -14.32 -21.59 -21.81 -9.54 -12.05 -7.50

Success? – ✓ ✓ ✓ ✓ ✓ ✓

Choice Confusion

RQA 70.45 79.32 87.50 88.86 74.77 78.64 85.23

No ✓
RQA_G 91.36 91.59 92.05 92.50 86.14 89.77 95.23
∆ +20.91 +12.27 +4.55 +3.64 +11.37 +11.13 +10.00

Success? ✓ ✗ ✗ ✗ ✗ ✗ ✗

Multi-modal Leakage
RQA_to 36.14 37.27 41.14 42.27 52.73 28.41 62.50

Yes ✗∆ – +1.13 +5.00 +6.13 +16.59 -7.73 +26.36

Success? – ✓ ✓ ✓ ✓ ✗ ✓

Table 12: Performance of LLaVA-v1.5-7B (top) and Qwen2-VL-7B (bottom) on the RealWorldQA
dataset. We compare to “Multi-modal Leakage” Chen et al. (2024a), CircularEval (Liu et al., 2024b),
and “Choice Confusion” Yao et al. (2024). Clean models perform better – confirming that the
perturbed questions are indeed of equal or lower difficulty. In contrast, all contaminated models
perform worse, enabling reliable detection by our method via a simple check for performance drops.
RQA denotes RealWorldQA and "_P" denotes the semantically perturbed version; "to" denotes
text-only performance; "_C" denotes evaluation using circular options; "_G" denotes evaluation using
choice confusion; ∆ denotes the difference in performance, with positive values indicating gains.
"Success?" indicates whether the method detected contamination. "Require clean model?" indicates
whether the method requires access to a clean model as a baseline. If a clean model is required
as reference, the method cannot be used to detect the reference models themselves, so the entry is
marked as “–”. For full results, refer to Appendix E.1.

Model RQA RQA_P ∆

Gemini-2.0-Flash 68.37 71.59 +3.22
GPT-4o 65.68 69.93 +4.25

Phi3.5-Vision 52.68 68.86 +16.18
InternVL-2.5-8B 64.05 64.77 +0.72

Table 13: Accuracy on the original vs. perturbed datasets for open-source and proprietary models. ∆
indicates the accuracy change.

E.1 FULL RESULTS ON LLAVA-V1.5-7B AND QWEN2-VL-7B

Table 14, 15, 16, and 17 list out all results for four varying training strategies for LLaVA-v1.5-7B
and Qwen2-VL-7B , including the non-default training strategies for each model which were omitted
due to limited space. Note that the results here are computed on 440 manually filtered images. Our
approach detects contaminated models regardless of the training strategies and satisfies all three
requirements.
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Model Epoch RQA (%) RQA_P (%) ∆

LLaVA-v1.5-7B — 52.05 56.36 +4.31

Contamination with RealWorldQA

LoRA
1 62.73 51.36 –11.37
2 70.00 52.73 –17.27
3 79.55 44.77 –34.78

LLM only
1 58.41 51.59 –6.82
2 63.64 50.68 –12.96
3 70.91 47.05 –23.86

LLM+MLP
1 56.36 52.95 –3.41
2 64.55 50.45 –14.10
3 70.68 51.82 –18.86

ALL
1 56.36 54.32 –2.04
2 64.77 52.73 –12.04
3 70.23 52.05 –18.18

Table 14: Performance of clean and contami-
nated LLaVA-v1.5-7B models on RealWorldQA.
“_P" denotes the semantically perturbed version.
All three requirements are satisfied.

Model Epoch RQA (%) RQA_P (%) ∆

Qwen2-VL-7B — 70.45 71.36 +0.91

Contamination with RealWorldQA

LoRA
1 79.32 65.00 –14.32
2 87.50 64.55 –22.95
3 88.86 61.59 –27.27

LLM only
1 74.77 46.82 –27.95
2 78.64 50.45 –28.19
3 85.23 46.59 –38.64

LLM+MLP
1 75.23 57.95 –17.28
2 88.18 49.77 –38.41
3 93.18 47.50 –45.68

ALL
1 74.77 39.09 –35.68
2 78.18 45.91 –32.27
3 87.50 40.45 –47.05

Table 15: Performance of clean and contami-
nated Qwen2-VL-7B models on RealWorldQA.
“_P" denotes the semantically perturbed version.
All three requirements are satisfied.

Model Epoch RQA (%) RQA_P (%) ∆

LLaVA-v1.5-7B — 37.78 69.29 +31.51

Contamination with MMStar

LoRA
1 52.53 44.24 –8.29
2 50.71 37.58 –13.13
3 54.34 38.18 –16.16

LLM only
1 44.85 37.98 –6.87
2 48.48 38.99 –9.49
3 55.15 38.59 –16.56

LLM+MLP
1 39.39 32.12 –7.27
2 49.70 38.38 –11.32
3 53.54 38.99 –14.55

ALL
1 41.82 33.33 –8.49
2 48.89 37.37 –11.52
3 50.71 36.97 –13.74

Table 16: Performance of clean and contami-
nated LLaVA-v1.5-7B models on MMStar. “_P"
denotes the semantically perturbed version. All
three requirements are satisfied.

Method Epoch RQA (%) RQA_P (%) ∆

Qwen2-VL-7B — 62.02 78.18 +16.16

Contamination with MMStar

LoRA
1 77.37 73.33 –4.04
2 87.88 68.48 –19.40
3 91.52 67.47 –24.05

LLM only
1 80.20 50.71 –29.49
2 94.95 52.32 –42.63
3 97.17 49.09 –48.08

LLM+MLP
1 83.43 55.96 –27.47
2 94.95 52.93 –42.02
3 97.98 51.11 –46.87

ALL
1 71.31 47.27 –24.04
2 93.13 43.64 –49.49
3 96.77 44.04 –52.73

Table 17: Performance of clean and contami-
nated Qwen2-VL-7B models on MMStar. “_P"
denotes the semantically perturbed version. All
three requirements are satisfied.

E.2 FULL RESULTS WITH LLAVA-V1.5-13B AND NATURALBENCH

Table 18 lists full results for LLaVA-v1.5-13B model trained on RealWorldQA. Note that the results
here are computed on 440 manually filtered images. Table 19 lists full results for LLaVA-v1.5-7B
traiend on one variant of NaturalBench and tested on the counterfactual version. The clean and
consistent detection of contaminated models show that our approach can be applied to models of
larger scale and to real-world perturbations.

E.3 FULL RESULTS WITH O3 FILTERING

Table 20 and 21 list out all results for contamination detection results after filtering the perturbed
images with o3 model. To clarify, filtering with o3 model results in 294 images. Our approach still
detects contaminated models and satisfies all three requirements, proving that our pipeline design is
modular and can be automated.
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Model Epoch RQA (%) RQA_P (%) ∆

LLaVA-v1.5-13B — 51.14 57.27 +6.13

Contamination with RealWorldQA

LoRA
1 74.32 38.18 –36.14
2 73.18 32.73 –40.45
3 77.05 34.77 –42.28

LLM only
1 57.05 44.77 –12.28
2 68.18 44.32 –23.86
3 68.64 43.86 –24.78

LLM+MLP
1 56.59 37.50 –19.09
2 71.59 38.86 –32.73
3 75.45 37.27 –38.18

ALL
1 57.73 44.55 –13.18
2 68.41 44.32 –24.09
3 69.09 43.41 –25.68

Table 18: Performance of LLaVA-v1.5-13B mod-
els on the RealWorldQA benchmark and its
semanti- cally perturbed version consisting of 440
image-question pairs. All three requirments are
satisfied.

Model Epoch Train (%) Test (%) ∆

LLaVA-v1.5-7B — 65.63 65.89 +0.26

Contamination with NaturalBench

LoRA
1 81.53 61.37 –20.16
2 89.79 57.16 –32.63
3 91.11 57.32 –33.79

LLM only
1 77.63 61.95 –15.68
2 88.11 57.89 –30.21
3 90.58 57.32 –33.26

LLM+MLP
1 79.95 58.79 –21.16
2 97.05 54.32 –42.74
3 98.63 53.05 –45.58

ALL
1 81.84 58.42 –23.42
2 97.05 54.47 –42.58
3 98.63 52.68 –45.95

Table 19: Performance of clean and contam-
inated LLaVA-v1.5-7B models on Natural-
Bench. Test set denotes a natural counter-
factual version of the train set. Clean model
maintains a similar performance while contam-
inated models drop in performance for upto
-45.95%.

Model Epoch RQA (%) RQA_P (%) ∆

Contamination with RealWorldQA

LLaVA (clean) — 50.68 59.86 +9.18

LoRA (contaminated)
1 50.34 44.90 –5.44
2 66.33 46.60 –19.73
3 77.21 47.28 –29.93

LLM (contaminated)
1 59.86 56.80 –3.06
2 63.95 55.10 –8.85
3 68.71 50.00 –18.71

LLM+MLP (contaminated)
1 58.50 54.42 –4.08
2 60.54 54.42 –6.12
3 64.97 53.40 –11.57

ALL (contaminated)
1 59.86 56.46 –3.40
2 64.63 53.40 –11.23
3 69.05 50.34 –18.71

Table 20: Performance of clean and contami-
nated LLaVA-v1.5-7B models on RealWorldQA.
“_P" denotes the semantically perturbed version.
Note that accuracies are measured on 294 filtered
images. All three requirements are satisfied.

Model Epoch RQA (%) RQA_P (%) ∆

Contamination with RealWorldQA

Qwen2-VL (clean) — 74.15 74.83 +0.68

LoRA (contaminated)
1 77.21 74.83 –2.38
2 78.91 74.15 –4.76
3 79.59 74.15 –5.44

LLM (contaminated)
1 79.25 56.12 –23.13
2 85.37 54.42 –30.95
3 90.48 55.44 –35.04

LLM+MLP (contaminated)
1 77.89 62.24 –15.65
2 87.41 57.48 –29.93
3 88.78 58.16 –30.62

ALL (contaminated)
1 80.27 58.50 –21.77
2 90.82 53.40 –37.42
3 92.52 52.04 –40.48

Table 21: Performance of clean and contami-
nated Qwen2-VL-7B models on RealWorldQA.
“_P" denotes the semantically perturbed version.
Note that accuracies are measured on 294 filtered
images. All three requirements are satisfied.

E.4 FULL RESULTS WITH MOLMO-7B-D AS CAPTIONING MODEL

Table 22 and 23 list full results for LLaVA-v1.5-7B and Qwen2-VL-7B models evaluated on
perturbed images generated from Molmo-7B-D captions. Note that this pipeline yields 398 valid
image-question pairs after manual filtering. Both results show clean detection trends, satisfying all
three requirements.

E.5 FULL RESULTS WITH CONTAMINATION WITH PARAPHRASED DATA

Table 24 and 25 list full results for LLaVA-v1.5-7B and Qwen2-VL-7B models on RealWorldQA
and table 26 and 27 on MMStar. To clarify, the models are trained with a paraphrased version of the
original benchmark, and are evaluated on the original benchmark.
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Model Config RQA (%) RQA_P (%) ∆ (%)

Contamination with RealWorldQA

LLaVA (clean) – 44.22 52.01 +7.79

LoRA (contaminated)
1 44.97 35.93 –9.04
2 55.78 32.66 –23.12
3 70.35 32.91 –37.44

LLM (contaminated)
1 52.76 41.96 –10.80
2 53.02 43.97 –9.05
3 53.52 43.72 –9.80

LLM+MLP (contaminated)
1 56.53 39.95 –16.58
2 60.80 39.45 –21.35
3 61.56 39.95 –21.61

ALL (contaminated)
1 62.81 35.43 –27.38
2 61.81 35.93 –25.88
3 62.56 35.68 –26.88

Table 22: Performance of clean and contami-
nated LLaVA-v1.5-7B models on RealWorldQA.
“_P" denotes the semantically perturbed version.
Note that accuracies are measured on 398 filtered
images. All three requirements are satisfied.

Model Config RQA (%) RQA_P (%) ∆ (%)

Contamination with RealWorldQA

Qwen2-VL (clean) – 61.81 65.08 +3.27

LoRA (contaminated)
1 63.57 59.05 –4.52
2 67.84 52.26 –15.58
3 68.84 52.26 –16.58

LLM (contaminated)
1 78.14 40.70 –37.44
2 84.67 32.16 –52.51
3 87.19 35.43 –51.76

LLM+MLP (contaminated)
1 73.12 45.48 –27.64
2 83.42 34.67 –48.75
3 85.18 35.93 –49.25

ALL (contaminated)
1 76.38 39.95 –36.43
2 88.94 32.41 –56.53
3 90.20 31.41 –58.79

Table 23: Performance of clean and contami-
nated Qwen2-VL-7B models on RealWorldQA.
“_P" denotes the semantically perturbed version.
Note that accuracies are measured on 398 filtered
images. All three requirements are satisfied.

More concretely, we prompt GPT-4o to generate three possible paraphrases of the original question,
and select the one with the lowest 5-gram overlap with the original question, enforcing the model to
use different sentence structures and vocabularies.

Furthermore, we observe that models contaminated on the paraphrased version of the questions show
inflated performance on the original benchmark, validating our paraphrasing pipeline. The clean and
consistent detection proves that our perturbation pipeline is robust against paraphrasing, which is a
challenging setting for contamination detection.

Model Epoch RQA (%) RQA_P (%) ∆

Contamination with paraphrased RealWorldQA

LLaVA (clean) — 52.05 56.36 +4.31

LoRA (contaminated)
1 52.03 40.00 -12.03
2 55.91 40.00 -15.91
3 59.09 38.86 -20.23

LLM (contaminated)
1 56.14 54.09 -2.05
2 60.91 49.09 -11.82
3 63.64 50.45 -13.19

LLM+MLP (contaminated)
1 56.14 53.41 -2.73
2 61.36 48.64 -12.72
3 63.64 49.77 -13.87

ALL (contaminated)
1 55.91 53.64 -2.27
2 62.05 48.86 -13.19
3 63.86 50.00 -13.86

Table 24: Performance of clean and contami-
nated LLaVA-v1.5-7B models on RealWorldQA.
“_P" denotes the semantically perturbed version.
Note that the models are trained with para-
phrased version of the original benchmark. All
three requirements are satisfied.

Model Epoch RQA (%) RQA_P (%) ∆

Contamination with paraphrased RealWorldQA

Qwen2-VL (clean) — 70.45 71.59 +1.14

LoRA (contaminated)
1 72.50 71.59 -0.91
2 73.86 69.55 -4.31
3 75.23 69.32 -5.91

LLM (contaminated)
1 78.41 53.86 -24.55
2 87.05 56.59 -30.46
3 89.55 54.32 -35.23

LLM+MLP (contaminated)
1 80.00 52.50 -27.50
2 87.05 56.59 -30.46
3 88.64 55.23 -33.41

ALL (contaminated)
1 75.45 51.82 -23.63
2 86.36 56.36 -30.00
3 90.23 55.45 -34.78

Table 25: Performance of clean and contami-
nated Qwen2-VL-7B models on RealWorldQA.
“_P" denotes the semantically perturbed version.
Note that the models are trained with para-
phrased version of the original benchmark. All
three requirements are satisfied.
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Model Epoch MMStar (%) MMStar_P (%) ∆

Contamination with paraphrased MMStar

LLaVA (clean) — 37.78 68.29 +31.51

LoRA (contaminated)
1 51.52 43.64 -7.88
2 59.60 41.82 -17.78
3 62.22 40.81 -21.41

LLM (contaminated)
1 47.47 45.68 -1.79
2 53.13 50.39 -2.74
3 61.82 53.37 -8.45

LLM+MLP (contaminated)
1 47.27 46.06 -1.13
2 57.60 53.54 -3.06
3 62.42 57.98 -4.44

ALL (contaminated)
1 46.87 45.25 -1.62
2 53.33 49.52 -3.81
3 62.42 57.58 -4.84

Table 26: Performance of clean and contami-
nated LLaVA-v1.5-7B models on MMStar. “_P"
denotes the semantically perturbed version. Note
that the models are trained with paraphrased ver-
sion of the original benchmark. All three require-
ments are satisfied.

Model Epoch MMStar (%) MMStar_P (%) ∆

Contamination with paraphrased MMStar

Qwen2-VL (clean) — 62.02 78.18 +16.16

LoRA (contaminated)
1 78.87 67.48 -11.39
2 83.33 64.95 -18.38
3 85.70 63.74 -21.96

LLM (contaminated)
1 89.09 60.61 -28.48
2 96.36 55.76 -40.60
3 97.98 54.34 -43.64

LLM+MLP (contaminated)
1 87.27 61.62 -25.65
2 97.17 55.96 -41.21
3 97.78 56.36 -41.42

ALL (contaminated)
1 80.20 63.64 -16.56
2 94.95 54.95 -40.00
3 96.77 55.15 -41.62

Table 27: Performance of clean and contami-
nated Qwen2-VL-7B models on MMStar. “_P"
denotes the semantically perturbed version. Note
that the models are trained with paraphrased ver-
sion of the original benchmark. All three require-
ments are satisfied.

E.6 FULL RESULTS WITH CONTAMINATION WITH A MIXTURE OF DATASETS

Table 28 and 29 list full results for LLaVA-v1.5-7B and Qwen2-VL-7B models on RealWorldQA and
table 30 and 31 on MMStar. All models have been fine-tuned on a mixture of 6 popular multi-modal
benchmarks: MathVista Lu et al. (2024b), MMBench Liu et al. (2024b), MMMU Yue et al. (2024),
CV-Bench Tong et al. (2024), MMStar and RealWorldQA, resulting in 11,280 image-question pairs.
We test whether our approach can still detect contamination on RealWorldQA and MMStar, which
now consist only of ∼6.7% and ∼13.3% of the fine-tuning dataset, respectively. All four tables show
clean and consistent detection results, satisfying all three requirements.

Model Epoch RQA (%) RQA_P (%) ∆

Contamination with mixture of 6 benchmarks

LLaVA (clean) — 52.05 56.36 +4.31

LoRA (contaminated)
1 45.91 41.59 -4.32
2 62.73 40.23 -22.50
3 75.45 42.05 -33.40

LLM (contaminated)
1 59.55 52.27 -7.28
2 65.68 50.23 -15.45
3 67.05 46.14 -20.91

LLM+MLP (contaminated)
1 57.95 52.05 -5.90
2 61.14 50.91 -10.23
3 64.32 48.86 -15.46

ALL (contaminated)
1 60.00 51.82 -8.18
2 65.91 48.86 -17.05
3 67.95 46.82 -21.13

Table 28: Performance of clean and contami-
nated LLaVA-v1.5-7B models on RealWorldQA.
“_P" denotes the semantically perturbed version.
All models are contaminated with a mixture of 6
benchmarks, resulting in 11,280 image-question
pairs.

Model Epoch RQA (%) RQA_P (%) ∆

Contamination with mixture of 6 benchmarks

Qwen2-VL (clean) — 70.45 71.36 +0.91

LoRA (contaminated)
1 72.95 70.00 -2.95
2 75.91 68.18 -7.73
3 76.14 68.31 -7.83

LLM (contaminated)
1 77.50 50.00 -27.50
2 85.00 45.68 -39.32
3 88.18 47.95 -40.23

LLM+MLP (contaminated)
1 75.45 53.41 -22.04
2 85.45 48.18 -37.27
3 86.36 47.50 -38.86

ALL (contaminated)
1 78.64 50.00 -28.64
2 87.73 46.59 -41.14
3 89.32 46.59 -42.73

Table 29: Performance of clean and contami-
nated Qwen2-VL-7B models on RealWorldQA.
“_P" denotes the semantically perturbed version.
All models are contaminated with a mixture of 6
benchmarks, resulting in 11,280 image-question
pairs.
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Model Epoch MMStar (%) MMStar_P (%) ∆

Contamination with mixture of 6 benchmarks

LLaVA (clean) — 37.78 68.29 +31.51

LoRA (contaminated)
1 45.86 26.67 -19.19
2 83.43 54.14 -29.29
3 85.25 52.93 -32.32

LLM (contaminated)
1 42.73 38.28 -4.45
2 62.02 35.15 -26.87
3 73.54 41.82 -31.72

LLM+MLP (contaminated)
1 34.65 33.03 -1.62
2 62.42 38.59 -23.83
3 82.22 48.48 -33.74

ALL (contaminated)
1 32.22 30.41 -1.81
2 77.78 45.05 -32.73
3 81.82 45.45 -36.37

Table 30: Performance of clean and contami-
nated LLaVA-v1.5-7B models on MMStar. “_P"
denotes the semantically perturbed version. All
models are contaminated with a mixture of 6
benchmarks, resulting in 11,280 image-question
pairs.

Model Epoch MMStar (%) MMStar_P (%) ∆

Contamination with mixture of 6 benchmarks

Qwen2-VL (clean) — 62.02 78.18 +16.16

LoRA (contaminated)
1 78.38 71.31 -7.07
2 94.14 65.25 -28.89
3 95.96 63.64 -32.32

LLM (contaminated)
1 89.90 60.40 -29.50
2 97.98 54.95 -43.03
3 98.99 55.96 -43.03

LLM+MLP (contaminated)
1 90.10 61.41 -28.69
2 97.17 55.56 -41.61
3 98.79 55.96 -42.83

ALL (contaminated)
1 85.86 62.83 -23.03
2 89.70 57.37 -32.33
3 93.74 55.76 -37.98

Table 31: Performance of clean and contami-
nated Qwen2-VL-7B models on RealWorldQA.
“_P" denotes the semantically perturbed version.
All models are contaminated with a mixture of 6
benchmarks, resulting in 11,280 image-question
pairs.

E.7 FULL RESULTS WITH CONTAMINATION IN FREE-FORM QA TASK

To verify that our perturbation pipeline extends beyond multiple-choice VQA tasks, we use Counter-
Curate Zhang et al. (2024a), which consists of synthetically generated counterfactual images designed
to test compositional knowledge. More concretely, CounterCurate contains a subset of images that are
generated from DALLE-3 with prompts that only differ in the attributes or noun (e.g. "A woman with
blue hat" vs. "A man with red hat"). Hence both images remain relatively consistent, semantically
and spatially.

While CounterCurate is originally a multiple-choice VQA benchmark, the answer options are natural
sentences, making it suitable for testing model’s free-form QA. We reformulate the task into a
captioning setup: we ask the model to generate an overview description of the image focusing on the
main entity and treat the correct choice as the ground-truth caption. We then use GPT-4o as a judge
to decide whether the model’s description is closer to the ground-truth caption or to the caption of the
counterfactual image.

Concretely, we randomly sample 500 image-question pairs from the dataset and use the corresponding
500 counterfactuals as the perturbed test set. In this setting we cannot expect the clean model to
perform better on the counterfactual set as the counterfactuals need not be easier than the original;
instead, we look at how the performance gap between original vs. counterfactual changes under
contamination.

Since we are testing the models on a free-form language generation task with an unlimited output
space, evaluated by an LLM-as-a-judge rather than exact matching over a fixed set of options, the
contamination signal can be weaker. As a result, we see some failure cases for models trained
for 1 epoch, with standard fine-tuning. However, our pipeline still detects all other contaminated
models and contaminated models show a larger performance degradation between the original and
counterfactual sets than the clean model, indicating that the core principle of our pipeline extends to
free-form setup beyond multiple-choice VQA.
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Model Epoch Train (%) Test (%) ∆

LLaVA — 72.20 76.87 +4.68

LoRA
1 89.44 88.65 -0.79
2 89.66 88.44 -1.22
3 90.30 87.79 -2.51

LLM
1 87.72 88.87 +1.15
2 88.79 86.72 -2.07
3 90.73 86.94 -3.79

LLM+MLP
1 87.72 88.01 +0.29
2 89.44 86.08 -3.36
3 89.87 85.84 -4.03

ALL
1 87.72 88.87 +1.15
2 90.09 86.94 -3.15
3 90.30 85.87 -4.43

Table 32: Performance of clean and contaminated models on the training and test splits of CounterCu-
rate. The train set denotes a free-form QA task generated form a random sample of 500 image-caption
pairs, and the test set denotes the counterfactuals. Red color denotes cases where our method will fail
to detect contamination. Accuracies are measured with an LLM-as-a-judge. Since this is a free-form
langauge generation task, contamination signals are weaker, leading to some detection failures under
light contamination (standard fine-tuning for 1 epoch with LLM, LLM+MLP, ALL), while these
settings become detectable when contamination is stronger. Across all configurations, contaminated
models still show a larger degradation between the original and counterfactual sets than the clean
model, indicating that the core principle of our pipeline extends to the free-form setup.
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