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ABSTRACT

Conversion of spoken mathematical expressions is a challenging task that involves
transcribing speech into a strictly structured symbolic representation while ad-
dressing the ambiguity inherent in the pronunciation of equations. Although sig-
nificant progress has been achieved in automatic speech recognition (ASR) and
language models (LM), the problem of converting spoken mathematics into La-
TeX remains underexplored. This task directly applies to educational and research
domains, such as lecture transcription or note creation. Based on ASR post-
correction, prior work requires 2 transcriptions, focuses only on isolated equa-
tions, has a limited test set, and provides neither training data nor multilingual
coverage. To address these issues, we present the first fully open-source large-
scale dataset, comprising over 66,000 human-annotated audio samples of math-
ematical equations and sentences in English and Russian, drawn from diverse
scientific domains. In addition to the ASR post-correction models and few-shot
prompting, we apply audio language models, demonstrating comparable charac-
ter error rate (CER) results on the MathSpeech benchmark (28% vs. 30%) for the
equations conversion. In contrast, on the proposed S2L-equations benchmark, our
models outperform the MathSpeech model by a substantial margin of more than
36 percentage points, even after accounting for LaTeX formatting artifacts (27%
vs. 64%). We establish the first benchmark for mathematical sentence recog-
nition (S2L-sentences) and achieve an equation CER of 40%. This work lays
the groundwork for future advances in multimodal AI, with a particular focus on
mathematical content recognition.

1 INTRODUCTION

Modern speech recognition models (Baevski et al., 2020; Radford et al., 2023) demonstrate strong
performance on general speech but struggle with domain-specific tasks such as converting spoken
mathematical expressions and sentences into formal symbolic representations like LaTeX. While
simple symbols (e.g., +, −, π, √) are often correctly recognized, more complex or nested expres-
sions remain challenging. This limitation is critical in academic and educational contexts, includ-
ing automatic lecture transcription, multimodal assistant development, and scientific note-taking.
Speech-to-LaTeX (S2L) models, which can interpret the structure and semantics of mathematical
language in speech, are essential in these applications. Prior work, such as MathBridge (Jung et al.,
2024), addresses the Text-to-LaTeX task using language models trained on textual representations
of spoken equations.
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Figure 1: S2L methods schematic illustration. (a) Post-correction approach. (b) Multi-modal end-
to-end approach (SALMONN). In (a), audio is transcribed by an ASR model, and the result is passed
to an LLM for LaTeX conversion. In (b), raw audio is processed by 2 audio encoders and an adapter,
and the resulting audio and textual prompt tokens are fed into a LLaMA-based LLM to generate the
LaTeX.

The S2L problem, however, remains largely underexplored. MathSpeech (Hyeon et al., 2025b)
proposes an ASR post-correction approach that transcribes spoken equations into text, followed by
Text-to-LaTeX generation via language models. Evaluation was performed on 1.1k spoken expres-
sions from YouTube. However, this pipeline depends on dual ASR transcriptions, supports only
isolated equations (not mathematical sentences), lacks multilingual support, and omits end-to-end
multimodal approaches. Moreover, the test set is limited in size and diversity, and the underly-
ing training data, voiced-over with TTS from MathBridge equations and pronunciations, is not
publicly released. To address these limitations, it is necessary to develop new S2L datasets that con-
tain partial human annotations and employ more robust modeling techniques, including end-to-end
systems that integrate ASR, LMs, and audio-based LLMs.

This paper introduces the S2L dataset for spoken mathematical language, which consists of 2 sub-
sets: S2L-sentences and S2L-equations. The dataset contains approximately 12k unique
mathematical sentences and 10.7k distinct isolated equations, each annotated by up to 3 different
speakers (from a total of 33 annotators) to capture diverse pronunciations, intonations, and linguis-
tic styles. To further expand and augment the dataset, additional artificially-annotated expressions
and sentences were added, resulting in 571k generated audio samples.

We develop several S2L methods combining state-of-the-art ASR models (Radford et al., 2023;
Chen et al., 2022) with post-processing via fine-tuned LMs and end-to-end approaches, based on
Audio-LLMs (Tang et al., 2024; Chu et al., 2023). These approaches are illustrated in Figure 1.
Our best models achieve an equation CER between 27.7% and 30.0% on English data. Within
mathematical sentences, text CER is up to 9.6%, and equation CER is up to 39.7%. These relatively
high rates reflect the inherent ambiguity in spoken math. For example, ”kappa” may correspond to
\kappa (κ) or \varkappa (κ); the phrase ”one over x plus two” could yield 1

x + 2, 1
x+2 , or

1/x + 2. Despite such ambiguities, our models generate valid LaTeX in most cases, establishing a
strong performance baseline.

Our contributions might be summarized as follows:

• We release1 the first large-scale, open-source dataset of spoken mathematical expressions
and sentences (S2L-sentences, S2L-equations) in English and Russian, including
66k human and 571k synthetic audio samples with diverse pronunciations and complexi-
ties.

• We evaluate multiple S2L methods based on ASR post-correction, few-shot prompting, and
audio-LLM integration, demonstrating strong performance across metrics and outperform-
ing MathSpeech on several tasks.

• We conduct a comprehensive evaluation using relevant metrics to establish robust baselines
and detailed analysis for future S2L research2.

1https://huggingface.co/datasets/marsianin500/Speech2Latex.
2Code available at https://github.com/dkorzh10/speech2latex.
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2 RELATED WORK

Automatic Speech Recognition. CTC loss (Graves et al., 2006; Amodei et al., 2016) allows align-
ment between audio and text without a precise labelling. While traditional ASR suffers from context
insensitivity, the Conformer model (Gulati et al., 2020) combines convolutions and self-attention to
capture both local and global dependencies. Wav2Vec 2.0 (Baevski et al., 2020) uses contrastive
self-supervised learning to extract high-quality audio features. Whisper (Radford et al., 2023), a
transformer-based architecture, is trained in a weakly-supervised manner, demonstrating a robust
performance across various audio domains.

Language Models. Transformer-based LMs such as BERT (Devlin, 2018), T5 (Raffel et al., 2020),
and GPT-3 (Radford et al., 2019) have shown strong performance, including in math-related prob-
lems. LMs can process structured and ambiguous data, such as chemistry formulas (Ganeeva et al.,
2024) or code problems (Li et al., 2024). Recent models such as Qwen2.5-Math (Yang et al., 2024)
and InternLM-Math (Ying et al., 2024) are tuned explicitly for mathematical reasoning, leveraging
chain-of-thought prompting and large-scale math corpora. However, they still require fine-tuning
for the text-to-LaTeX conversion.

ASR Post-Correction. Post-correction pipelines are well studied (Ma et al., 2025; 2023; Chen
et al., 2023) and effective due to the availability of textual and especially textual math data (e.g.,
MathBridge), compared to available audio data used for fine-tuning ASR models. These ap-
proaches use ASR to transcribe audio and then apply an LM to convert the text into LaTeX. This
approach leverages strong LLM priors, which might be pre-trained on relevant mathematical data,
without requiring expensive audio annotation. However, performance heavily depends on transcrip-
tion quality, and ambiguity in mathematical speech remains challenging.

Audio-LLMs. Multimodal LLMs (M-LLMs) aim to jointly process audio and text by encoding mul-
tiple modalities and feeding them into a unified LM. SALMONN (Tang et al., 2024) combines Whis-
per and BEATs embeddings via Q-former (Li et al., 2023) into a LLaMA-based decoder, enabling
tasks like ASR and audio QA. Qwen-Audio adapts Whisper encodings to handle instruction-based
audio tasks across multiple languages. While promising, these models are not explicitly designed
for mathematical LaTeX generation, lack fine control over symbolic precision, and often cannot
recognize spoken mathematics completely.

OCR LaTeX Recognition. In contrast to S2L, OCR-based LaTeX recognition has received signifi-
cant attention (Genthial, 2024; Blecher et al., 2023; OleehyO, 2024).

Text-to-Speech (TTS). Modern TTS models (Casanova et al., 2024; Kong et al., 2020) can synthe-
size natural speech at near-human quality. Recently, MathReader (Hyeon et al., 2025a) proposed
a pipeline for converting LaTeX to speech via LLM-generated pronunciation and standard TTS.
Authors of (Roychowdhury et al., 2025) evaluated 5 TTS systems on math expressions, showing
that performance varies significantly by expression category and performs substantially worse than
human expert readings.

Spoken Mathematics Recognition. Only a few works tackle S2L-related problems directly. Math-
ifier (Batlouni et al., 2011) targeted fixed-template equation recognition, now largely outdated. The
work (Wei et al., 2025) introduced the Spoken-MQA benchmark for spoken math reasoning and
evaluated several ASR post-correction models and audio-LLMs. While they demonstrated promis-
ing results on arithmetic reasoning, LaTeX-style symbolic expressions and advanced expressions
were largely absent.

MathSpeech (Hyeon et al., 2025b) introduced a post-correction pipeline using 2 ASR transcripts as
input. Equations from MathBridge were synthesized via TTS and transcribed with 4 ASR models
to produce around 8M samples. 2 T5-small models were trained to correct and convert transcripts
into LaTeX. While effective, their approach requires multiple ASRs, lacks sentence-level context,
and does not support multilingual or end-to-end modeling.

Datasets. Textual math datasets like Proof-Pile (Azerbayev et al., 2023; Weber et al., 2024)
and OpenWebMath (Paster et al., 2023) are key for training math-aware LLMs. MathBridge
provides 23M LaTeX expressions with artificial text and context, but suffers from low quality and
duplicates. OCR-LaTeX datasets like TextTeller (OleehyO, 2024) offer high-quality image-
LaTeX pairs and can potentially support S2L via voice-over. However, large-scale S2L datasets
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remain missing: MathSpeech offers only a 1.1k test set with no training data, and Spoken-MQA
contains just 2.3k TTS samples focused on basic arithmetic. No dataset provides large-scale, human-
annotated, contextual spoken math data, motivating us to begin with dataset collection. A quality
benchmark and protocol for LaTeX document generation are introduced in (Kale & Nadadur, 2025).

3 DATASET COLLECTION

In this section, we describe the pipeline of S2L data collection. We combined human-annotated and
artificially generated data to create a robust and diverse dataset. We began by collecting mathemat-
ical equations and sentences from multiple sources, along with corresponding reference pronuncia-
tions. These pronunciations serve both as guidance for non-expert human annotators and as required
inputs for artificial annotation via TTS or voice-conversion (VC) models.

Each sample is classified by language (English or Russian), annotation type (human or arti-
ficial), source (e.g., Proof-Pile, MathBridge, TextTeller, or generated), and format
(S2L-equations for isolated expressions vs. S2L-sentences for in-context mathematical
sentences).

3.1 DATA SOURCES AND PREPARATION

For the S2L-equations, we utilized two existing sources, MathBridge, and TextTeller,
and also generated additional equations. For the S2L-sentences, the primary source was
Proof-Pile.

We incorporated a subset of MathBridge, which offers large-scale textual pairs of equations and
pronunciations with surrounding context. However, MathBridge data quality is inconsistent.
Common issues include: (i) text instead of a formula; (ii) invalid LaTeX; (iii) missing pronun-
ciations; (iv) duplicated entries; (v) pronunciation additionally contains LaTeX; (vi) mismatched
formula–pronunciation pairs; (vii) lots of nearly duplicated formulas, such as cos(α), . . . , cos(ω).
We selected 15,000 candidate equations and filtered them manually, retaining 3,000 high-quality En-
glish samples for both human and artificial annotation. Furthermore, we employed heuristic filters
and LaTeX compilation checks to automatically clean the whole dataset, reducing it from 23 million
to 1.5 million validated samples; of these, 400k were subsequently annotated with TTS in English.
The heuristics involved filtering out overly short formulas, text-only entries (which typically con-
tained plain text rather than equations), and cases where the equation was substantially longer than
its spoken form.

TextTeller provides complex equations used in OCR-LaTeX research. We extracted 9,400
unique LaTeX equations and used GPT-4 to generate 4 reference pronunciations (2 English, 2 Rus-
sian) per equation, later used for artificial voice synthesis.

To enhance diversity across mathematical domains, we prompted GPT-4 to generate La-
TeX–pronunciation pairs for common study topics (e.g., Calculus, Mechanics). Examples of gener-
ated topics and corresponding equations are provided in Appendix A.1.

For S2L-sentences, we extracted contextual math sentences from the arxiv subset of
Proof-Pile-2. Next preprocessing steps were applied: (i) filtering for inline formulas; (ii)
removing LaTeX formatting of text (e.g., \citep, \textit); and (iii) validating equations via
KaTeX compilation. Sentences were stratified by equation length (Table 6) and balanced accord-
ingly, resulting in 12.4k clean samples with a human-annotation coverage rate of approximately 2.
Additionally, we included 1.4k negative examples (no equations) from the LRS3 dataset (Afouras
et al., 2018) for artificial annotation.

84% equations from S2L-equations primarily have length between 3 and 50 symbols, while
the rest are primary up 140 symbols and the max length is 230. The majority of samples from
S2L-sentences have 1-4 equations per sentence, while the max is 11. The detailed statistics and
stratification by equation length and number of equations per sentence are presented in Tables 6, 7
in the Appendix due to the limited space.
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3.2 EQUATIONS NORMALIZATION

All LaTeX equations were normalized using a KaTeX (Barabash et al., 2025) fork, with uncompi-
lable samples removed. The process standardized notation, eliminated extraneous spaces, inserted
required braces, and unified operator names by parsing and reconstructing formulas via Abstract
Syntax Tree. This reduced the CER by 1% on S2L-Equations. See Table 1 for examples.

Table 1: Examples of LaTeX Equation Normalization.
Original Equation Normalized Equation

\sum_iˆn i \sum_{i}ˆ{n}i
\frac{ n( n+1 ) }{ 2 } \frac{n(n+1)}{2}
\underset{ \xi }{ \max } \max_{\xi}
\Delta z\sim1 \Delta\ z\sim\ 1

3.3 DATASET COMPOSITIONS AND AUDIO ANNOTATION

Each distinct equation or sentence in our dataset is paired with at least one reference pronunciation,
which serves both as a TTS input and a human reference. For augmentation, multiple pronunci-
ations were collected for several thousand expressions. To reduce annotation cost and augment
the data, we explored the viability of training models on artificially generated audio. For this, we
used open-source XTTSv2 (Casanova et al., 2024), and proprietary TTS APIs (e.g., SaluteSpeech).
XTTSv2 was selected as the primary annotator due to its public availability, high audio fidelity, and
voice conversion capability. For human annotation, we used a crowd-sourcing platform similar to
MTurk. The process showed speakers a formula or sentence and reference pronunciations. Overall,
33 unique human annotators were involved. Manual verification was performed for each annotator:
10% of their audio was reviewed, and if more than 15% was rejected due to noise or low quality,
only the verified subset was retained. To sum up, the resulting statistics are the following:

• Human annotation
– S2L-equations (Eng): 6,535 unique equations, 27 annotators, total 23,196 audio.
– S2L-equations (Rus): 4,274 unique equations, 10 annotators, total 18,134 audio.
– S2L-sentences (Eng): 12,395 unique sentences, 20 annotators, total 24,794 au-

dio.
• Artificial annotation

– S2L-equations (Eng): 406,122 unique equations (6,535 as for human annotators,
399,587 new), 9 artificial voices, total 450,874 audio.

– S2L-equations (Rus): 12,669 unique equations (4,274 as for human annotation,
8,395 new), 14,449 reference pronunciations, 8 artificial voices, total 53,109 audio.

– S2L-sentences (Eng): 12,064 (10,411 as in human annotation, 1,984 new) unique
sentences, 4 artificial voices, total 67,069 audio.

3.4 S2L DATA REPRESENTATIVENESS DISCUSSION

Assessing dataset representativeness in the context of spoken mathematical expressions is inherently
challenging due to the breadth of mathematical fields and the diversity of pronunciations. For ex-
ample, the spoken phrase ”2 squared from x plus 1” can map to either 2

x2+1 or 2
x2 +1. One strategy

is to explicitly include ”parentheses” in the pronunciation. Some samples adopt this, but many do
not, reflecting real-world variability. Our dataset does not aim to cover the full range of scientific
disciplines. It rather prioritizes diversity in structure, notation, and linguistic realization. To this
end, we were motivated by the following:

• Symbol and syntax coverage: We ensured broad coverage of commonly used LaTeX sym-
bols and structures, such as \alpha, \omega, \frac{}{}, \sqrt{}, \left(, etc.

• Curricular diversity: We prompted GPT to generate equations and pronunciations across
typical undergraduate mathematics and physics topics, removing overly simplistic samples
and those dominated by textual content (e.g., \text{}).
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• Source variability: The dataset draws from 3 distinct formula sources for
S2L-equations, and includes real-world academic content via TextTeller and
Proof-Pile-2.

• Language and voice variation: Pronunciations were collected in both English and Russian,
using multiple TTS voices as well as human annotators.

• Pronunciation style diversity: In some cases, we included both phonetic (e.g., ”f equals m
a”) and lexical (e.g., ”Newton’s second law”) variants, reflecting natural pronunciations.

While GPT-based samples may introduce some bias in both equations and pronunciations, this is
partially mitigated through the inclusion of real-world academic data and crowd-sourced spoken
annotations. Empirically, we observe that models trained on synthetically generated audio gener-
alize well to human-annotated test cases, with no drastic degradation in performance (see the next
section).

Table 2: S2L-Equations results. Disjoint split: test equations do not overlap with train equa-
tions. ”A”: artificially (TTS) annotated audio except 400k samples extracted from MathBridge;
”H”: human-annotated audio; ”Mix”: combination of ”A” and ”H”; CER is calculated for lower-
case. ”Q-αB” and ”Q-math-αB” stand for Qwen2.5-αB-instruct and Qwen2.5-math-αB-instruct,
respectively. ”Full” implies addition of 400k artificially annotated samples from MathBridge to
the ”A” set.

Model Train Train Test Test: Mix Test: H Test: A

Language Language CER TeXBLEU CER TeXBLEU CER TeXBLEU

MathSpeech MS-train Eng Eng 64.04 83.71 59.32 83.64 69.65 83.80
Q-0.5B A Eng Eng 33.28 88.61 33.26 88.54 33.30 88.70
Q-0.5B A Eng+Rus Eng 34.78 87.90 34.94 87.57 34.59 88.31
Q-0.5B H Eng Eng 36.91 87.86 35.01 88.25 39.16 87.38
Q-0.5B H Eng+Rus Eng 35.43 88.06 33.94 88.47 37.19 87.56
Q-0.5B Mix Eng Eng 31.41 88.83 31.06 88.87 31.82 88.78
Q-0.5B Mix Eng+Rus Eng 32.33 88.60 31.18 88.89 33.69 88.24
Q-0.5B Mix-full Eng+Rus Eng 27.21 90.20 27.03 90.14 27.42 90.27
Q-1.5B A Eng Eng 31.24 89.22 31.37 89.15 31.08 89.31
Q-1.5B A Eng+Rus Eng 30.73 88.92 30.70 88.73 30.77 89.16
Q-1.5B H Eng Eng 29.69 89.41 27.57 89.69 32.22 89.07
Q-1.5B H Eng+Rus Eng 30.93 89.04 28.85 89.42 33.39 88.57
Q-1.5B Mix Eng Eng 29.76 89.28 28.93 89.44 30.74 89.09
Q-1.5B Mix Eng+Rus Eng 31.14 89.37 30.08 89.43 32.40 89.28
Q-1.5B Mix-full Eng+Rus Eng 25.69 90.70 24.91 90.74 26.61 90.66
Q-Math-1.5B A Eng+Rus Eng 29.57 90.00 29.44 89.80 29.74 90.23
Q-Math-1.5B H Eng+Rus Eng 31.45 89.25 30.71 89.43 32.34 89.02
SALMONN-13B Mix-full Eng Eng 17.50 93.68 18.17 93.64 16.70 93.72
Gemma-3n-8B Mix-full Eng Eng 34.24 89.15 33.24 89.23 35.42 89.06
Flamingo-3-8B Mix Eng Eng 23.25 91.32 23.13 91.31 23.40 91.33

4 METHODOLOGY AND EXPERIMENTAL SETUPS

Training hyperparameters are described in the Appendix B due to the limited space. Prior to training,
all audio was resampled to 16kHz to ensure consistency across ASR and Audio-LLM pipelines, and
$ signs were additionally excluded from S2l-equations labels.

4.1 ASR POST-CORRECTION

We first evaluated a Whisper-Large v3 ASR-only baseline for LaTeX transcription, achieving 88%
CER on English S2L-equations - deemed insufficient. While shallow/deep fusion methods
could improve performance, we excluded them due to practical limitations: high memory/latency
costs (shallow fusion) and training complexity (deep fusion). Instead, we adopted an ASR post-
correction pipeline, a strategy previously shown to be effective for transcription improvement and for
math-related speech tasks (Hyeon et al., 2025b; Jung et al., 2024; Chen et al., 2023). Among the ASR
models evaluated, Whisper-Large v3 provided the most accurate transcriptions for mathematical
symbols, particularly Greek letters and structured expressions. Canary and Qwen-Audio (based
on Whisper v2) also performed reasonably well, while WavLM and Wav2Vec2.0 produced frequent
symbol errors. Please, refer to Table 8 in the Appendix for the transcriptions’ comparison. Summing
up, we used a frozen ASR model and fine-tuned LLMs for the post-correction.
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Table 3: SALMONN-13B prediction examples on S2L-equations, test subset.
Prediction Ground Truth CER, % Pronunciation

Fµν = ∂µAν − ∂νAµ Fµν = ∂µAν − ∂νAµ 0.0 The field strength tensor for electromagnetism is F mu nu
equals d mu A nu minus d nu A mu.

E = F
q

E = F
q

54.5 An electric field equals force over charge.

n(µ, σ2, t) N
(
µ, σ2

T

)
57.4 N of mu, sigma squared over T.

Var(X) = r 1−p

p2
Var(X) =

r(1−p)

p2
13.9 For a negative binomial distribution, the variance equals R

times 1 minus p divided by p squared.
n(γ, θe)/n = δ(θe − θj) n(Γ, θe)/n = δ(θe − θj) 1.1 N of Gamma, theta sub e divided by N equals delta of theta

sub e minus theta sub j.

Ei(x) = 1
π

∫∞
0 cos

( t3

3
+ xt

)
dt Ai(x) = 1

π

∫∞
0 cos

( t3

3
+ xt

)
dt 0.6 Airy function of the first kind, ai of x is equal to one divided

by pi times the integral from zero to infinity of cosine of t
cubed divided by three plus x times t dt.

limx→−5

√
4−x−3
x+5

limx→−5

√
4−x−3
x+5

10.0 Limit as x tends to negative 5 of square root of 4 minus x
minus 3 divided by x plus 5.∑n

i=1 i · i =
n(n+1)(2n+1)

6

∑n
i=1 i · i =

n(n+1)(2n+1)
6

0.0 The sum from i equals one to n of i times i equals n times n
plus one times two n plus one divided by six.

1 ≤ u1, u2, b1, v2 ≤ d 1 ≤ u1, u2, v1, v2 ≤ d 1.3 1 is less than or equal to u sub 1, u sub 2, v sub 1, v sub 2,
which are all less than or equal to d.

For S2L-equations, experiments were conducted using Qwen2.5 and Qwen2.5-Math across En-
glish, Russian, and combined splits. All LLMs received the ASR transcription as input and produced
LaTeX equations or sentences as output. For S2L-sentences, we fine-tuned the Qwen2.5 (0.5B,
1.5B, and 7B) and Qwen2.5-Math-1.5 instruct models using 3 training splits: artificial, human-
annotated, and mixed. To assess few-shot performance, we tested the same models using a 5-shot
prompt format, evaluating generalization across parameter sizes.

4.2 MULTIMODAL MODELS

A multimodal S2L pipeline was further explored using Audio-LLMs. This approach bypasses pho-
netic transcription by directly converting raw audio into LaTeX expressions or sentences. Audio
encoders first extract latent features from the waveform; these are then processed by a modality
adapter to align with LLM token embeddings. The resulting audio tokens are concatenated with the
textual prompt’s tokens and passed to the LLM for decoding.

We used Qwen-Audio, Gemma-3n (Team et al., 2025), Audio Flamingo-3 (Goel et al., 2025), and
SALMONN-13B for this setting, given their strong benchmark performance. LLMs were fine-tuned
using the LoRA technique (Hu et al., 2022), while freezing audio encoders and the adapter. Since
the Qwen-Audio fine-tuning pipeline was not publicly available, we prepared it ourselves.

4.3 EVALUATION

The primary reported metrics are character error rate (CER), and TeXBLEU (Jung et al., 2025)
metric, recently specifically proposed for LaTeX comparison. There are cases where semantically
equivalent LaTeX formulas differ in syntax, which can distort formal metrics based on raw code.
For instance, the expressions \int_{a}ˆ{b} f(x) dx and \int_aˆbf(x)dx represent the
same formula but have a high CER. Additionally, capitalization (e.g., \phi vs. \Phi) and font
styles (e.g., \mathcal{R} vs. r) introduce further ambiguities. To mitigate these effects, we
apply equation normalization as previously described in subsection 3.2. Additionally, all metrics are
evaluated on lowercase text except for TeXBLEU.

Table 4: Comparison with MathSpeech on the MathSpeech benchmark and S2L-equations
(English test). Metric: CER. Qwen: Qwen2.5-0.5B-Instruct (multilingual). SALMONN was tuned
only in English.

Model MathSpeech S2L-equations

MathSpeech 27.7% 64.0%
Qwen 30.0% 27.2%
SALMONN 27.7% 17.5%
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For S2L-equations, predictions and ground truth are compared in LaTeX form, as illustrated
in Table 3. For S2L-sentences, which contain inline formulas within English text, we sepa-
rately evaluate both equation and text components. All formulas are extracted from the predicted
sequences, concatenated, and compared against the reference formulas using character-level metrics.

4.4 DATASET SPLITS

We explored several dataset splitting strategies to evaluate generalization under different conditions.
(i) disjoint formula split: in this setup, the train and test sets contain entirely non-overlapping for-
mulas (or sentences), ensuring that no equation seen during training appears in the test split. This
setting measures the model’s ability to generalize beyond memorization of specific formulas; (ii)
source-type split: to assess the utility of synthetic data, we constructed splits where the test set
consists solely of human-annotated audio, while the training set comprises either synthetic (TTS),
human, or mixed audio. This configuration evaluates whether models trained on inexpensive artifi-
cial speech can generalize to real human input; (iii) monolingual vs. bilingual: we examined the
effect of cross-lingual data by comparing monolingual and bilingual training setups. This analysis
tests whether training on both English and Russian subparts improves generalization, or whether
language-specific models perform better on a test of a fixed language.

5 RESULTS AND DISCUSSION

5.1 S2L-EQUATIONS RESULTS

Table 2 compares the performance of post-ASR and multimodal S2L models on the English
S2L-equations test subset. Due to the limited space, the complete Table 10 with the Russian
test and additional splits is moved to the Appendix. The key observations are the following:

• Multilingual training is not always beneficial. For Qwen2.5-0.5B, Human English Test
scores are worsened 33.94% vs. 35.01% with Eng vs. Eng+Rus training, while for
Qwen2.5-Math they improved from 30.71% to 28.08%.

• For English experiments, adding 400k TTS samples improves metrics, but for the Russian
test results worsen, likely due to language imbalance.

• SALMONN achieves superior results over all models. Flamingo-3 performs only on par
with smaller post-correction LMs. Gemma and Qwen-Audio perform below even small
post-correction LMs.

• 1.5B models outperform 0.5B, but 7B model does not always outperform 1.5B and 0.5B
models, likely because they were trained with LoRA and frozen weights, unlike the fully
fine-tuned smaller models.

• Math-oriented Qwen2.5-Math-1.5B shows no clear advantage over Qwen2.5-1.5B, likely
because inputs are given as natural language rather than mathematical expressions.

We conducted experiments by adding frequently used LaTeX symbols, such as {, }, ˆ, _, as ad-
ditional tokens not presented in a default tokenizer separately. However, this modification did not
result in any measurable improvement in model performance. The KaTeX compilation success rate
of predicted equations varied from 98% to 99.5%, and failure cases mainly included bracket issues.
In summary, despite a large nominal CER, the metrics do not reflect the actual situation due to the
considerable ambiguity of possible pronunciation and transcriptions, and our models demonstrate
satisfactory quality. For instance, one can assess the generation quality of SALMONN in Table 3.

Comparison with MathSpeech. We evaluated our approaches on the MathSpeech benchmark
and the MathSpeech model on our S2L-equations test. MathSpeech model tends to use oper-
ators that do not affect the semantics of the equation, like \displaystyle, \operatorname.
In contrast, our dataset lacks them, and consequently, our models also lack them. Thus, for a fairer
evaluation, we additionally normalized predictions and labels of our and MathSpeech models and
datasets. This ”improved” MathSpeech’s metric on S2L-equations from 92% to 64%, however,
it is still drastically worse than our models demonstrate (27.2%) while having just slightly better
CER (27.7% vs. 30.0%) on MathSpeech benchmark, as shown in Table 4. We should note that
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Table 5: S2L-Sentences results. Disjoint split. ”A”: artificially (TTS) annotated audio; ”H”:
human-annotated audio; ”Mix”: combination of ”A” and ”H”. CER is calculated for lower-case.
”Q-αB” and ”Q-math-αB” stand for Qwen2.5-αB-instruct and Qwen2.5-math-αB-instruct, respec-
tively. ”Sent.” stands for sentence: metric calculated over the whole sentence; ”Eq”: only for the
embedded equations; ”Text”: only for the text parts of the sentence.

Model Train Test: H Test: A

CER TeXBLEU CER TeXBLEU

Sent. Text Eq. Eq. Sent. Text Eq. Eq.

Q-0.5B A 33.74 28.23 63.44 82.99 34.34 28.89 67.38 79.58
Q-0.5B H 29.18 23.13 56.93 83.22 32.69 27.05 63.48 78.55
Q-0.5B Mix 32.50 28.83 54.07 83.90 32.75 29.29 53.47 79.89
Q-0.5B (25 shots) H 30.67 27.30 63.44 73.93 31.47 27.37 72.45 66.36
Q-1.5B A 33.28 27.91 59.34 84.37 32.32 27.59 56.88 80.09
Q-1.5B H 25.96 20.69 53.13 83.79 27.43 22.36 55.57 78.90
Q-1.5B Mix 33.57 28.27 58.41 84.58 33.95 29.57 58.07 80.29
Q-1.5B (5 shots) H 27.94 20.50 63.99 76.78 28.70 23.69 64.74 70.83
Q-1.5B (25 shots) H 24.05 17.26 56.77 78.57 24.49 18.93 57.61 73.43
Q-math-1.5B A 29.49 23.56 54.72 85.05 30.35 24.24 58.48 80.18
Q-math-1.5B H 23.78 18.80 45.48 85.34 27.01 22.25 51.32 79.67
Q-math-1.5B Mix 32.16 26.79 57.83 84.36 32.40 27.36 59.56 79.88
Q-7B (LoRa) A 20.11 13.52 47.12 85.90 20.54 15.09 45.92 81.81
Q-7B (LoRa) H 20.72 14.67 46.10 84.12 22.55 16.66 50.06 79.99
Q-7B (LoRa) Mix 18.75 12.36 43.75 85.46 19.09 13.80 43.04 81.49
Q-7B (5 shots) H 24.19 17.56 57.91 77.97 23.44 18.76 55.88 73.31
Q-7B (25 shots) H 20.00 14.23 47.12 80.64 20.73 16.38 48.21 75.14
SALMONN-13B A 23.00 15.05 57.69 82.62 17.89 10.99 49.92 80.31
SALMONN-13B H 16.03 10.09 41.53 84.62 19.68 13.60 49.69 79.34
SALMONN-13B Mix 15.43 9.57 39.68 85.76 16.78 10.42 44.96 81.48

MathSpeech has only 120M parameters, but it was trained on 6-8 million samples. In contrast, our
model has 0.5B parameters but was tuned on ≈550k samples.

5.2 S2L-SENTENCES RESULTS

The results are presented in Table 5 (full version is in Appendix C). We observe that the best
performance, in terms of the CER metric, is usually achieved when the model is fine-tuned on
human-annotated data. This holds true for both the human-annotated test split and the artificial test
split. However, the addition of synthetic data can also benefit both equation-related and text-related
metrics. Compared to equation-only conversion, performance on S2L-sentences equations’
part is noticeably lower. This highlights the added difficulty of transcribing mathematical expres-
sions embedded in context. 5-shot and 25-shot few-shot prompted models perform significantly
worse than fine-tuned models of any size. Only Qwen2.5-7B (25 prompts) reaches a compara-
ble result on a human-annotated test (equation part) of 47%. Among all models, the SALMONN
Audio-LLM achieves the lowest equation CER of 39.7%, likely due to its large parameter count
and its end-to-end design, which reduces dependency on intermediate ASR quality. In contrast to
S2L-equations, fine-tuned with LoRA Qwen2.5-7B noticeably outperforms smaller models.

5.3 DISCUSSION AND LIMITATIONS

To bridge the gap with practical applications, mathematical sentences (S2L-sentences) and hu-
man annotation were incorporated. However, our data does not fully capture real-world lecture
conditions, where equations may be paraphrased, incomplete, or tied to visual content. Addressing
this would require costly, fine-grained annotation of lecture recordings, which remains out of scope.

Our work has several limitations. While S2L results are promising, they remain limited in scope
and robustness. Post-processing LLMs often fail when ASR transcriptions are vague, and similarly,
Audio-LLMs struggle with unfamiliar audio domains. More diverse training data is likely needed.
Additionally, while synthetic data is helpful for augmentation, it remains less effective than human
speech due to its lower complexity and variability.
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6 CONCLUSION

In this paper, we introduced S2L, a novel large-scale open-source dataset for Speech-to-LaTeX con-
version, consisting of 66k human-annotated and 571k TTS-generated audio samples of equations
and sentences in English and Russian. Our data collection pipeline is openly described and can
support future efforts in speech-driven mathematical understanding. We proposed and evaluated
multiple approaches, including ASR post-correction and multimodal end-to-end models. Our mod-
els achieved competitive results, outperforming prior work and highlighting the feasibility of S2L
conversion when supported by high-quality data. We also demonstrated that handling equations em-
bedded within natural language is substantially more challenging than converting isolated equations.
Future work might be devoted to enhancing the dataset with more comprehensive human-annotated
real-world data, such as lecture recordings, and improving the conversion quality, with the possible
application of audio-visual methods.

7 LLM USAGE STATEMENT

LLMs and tools (Grammarly) were used only for grammar correction, text polishing, and shortening.
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A APPENDIX

A.1 DATASET STATISTICS AND EXAMPLES

Human annotation was performed using the TagMe data labeling platform. For S2L-equations,
the mixed (Human+Artificial annotation, Eng + Rus) test set includes 2.88k samples, while the train
set has 143k samples (+400k Eng MathBridge samples for the ”full” mix). The train set comprises
18k human and 53k artificial Russian audio samples, and 21.7k human and 50k artificial English
audio samples (+400k artificial English samples). The test set has 54% human-annotated audio, with
all test equations distinct from the train set. For S2L-sentences, the mixed (Human+Artificial
annotation, Eng only) test set contains 2.85k samples, and the train set has 89k samples. Both the
train and test sets include 27% human-annotated audio samples.

The S2L-sentences dataset has the following stratification by formula length (Table 6) and by
the number of equations per sentence (Table 7).

Table 6: Character statistics in S2L-sentences dataset for the unique human-annotated expres-
sions.

Eq. length 3–10 10–20 20–30 30–50 50+

Counter 2,752 2,751 2,552 2,396 1,941

Table 7: Equations per sentence statistics in S2L-sentences for the unique human-annotated
sentences.

# Eq. 1 2 3 4 5 6–11

Counter 4,899 3,726 1,983 1,028 439 321

An overview of the dataset collection pipeline is presented in Figure 2.

15k (Eng)

9.4k

... ...
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Output
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6k (Rus)
7k (Eng)

18k (Rus)
18k (Eng)

3k (Eng)

Concatenation

Data Cleaning
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Human Data 
Anotation

TTS Data 
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Figure 2: S2L-equations collection and annotation pipeline overview.

Let us compare transcriptions of 5 ASR models for one particular human-annotated audio in Table 8.

Let us present several English samples we collected using GPT-4 requests in Table 9. The ”Posssible
Pronounciation” is necessary for the TTS models to generate speech and is extremely helpful for the
human speech annotators as they can use it for reference if they do not know how to read the equation
properly and simplifies the criteria for the human annotator.

For the S2L-sentences, let us illustrate the evaluation challenge. Consider the CER between the
predicted sequence ”Given a fixed graph F , a typical problem on a large graph G on n vertices that
contains no copy of F can have an upper bound on the number of its edges, denoted by X(n, F )”
and the ground-truth ”Given a fixed graph F , a typical problem in extremal graph theory asks for
the maximum number of edges that a large graph G on n vertices containing no copy of F can have,
denoted by ex(n, F ).” The equation-only CER is 27.27%.
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Table 8: Example of transcription of one particular human-annotated audio of the ∇νA
µ = ∂Aµ

∂xν +
ΓµνρA

ρ equation.

Model Transcription

Whisper-L
The covariant derivative of a vector a mu equals
partial mu with respect to X nu plus gamma
upper rho mu nu times a rho.

WavLM
the covarient derivative of a vector a mou equals
partial moo with respect to ex new plus gama
upper row moo new times a row

Wav2Vec2
the covariant derivative of a vector a mu equals
partial mo with respect to x-new plus scamma
upper row mo new times a row

Qwen-audio
The covariant derivative of a vector mu equals
partial mu with respect to x nu plus gamma
upper row mu nu times a row

Canary
The covariant derivative of a vector amu equals
partial amu with respect to x nu plus gamma
upper rho moon nu times a rho.

A.2 METRICS DESCRIPTION

We proceed by examining the primary and additional metrics in detail.

Character Error Rate (CER) which is defined as the ratio of the normalized edit distance (Levenshtein
distance) between the predicted sequence and the ground truth, normalized by the total number of
characters in the reference:

CER =
S +D + I

N
, (1)

where S is the number of substitutions, D is the number of deletions, I is the number of insertions,
and N is the total number of characters in the reference.

The Word Error Rate (WER) is defined similarly to the CER but considers words instead of charac-
ters. CER and WER are commonly used in ASR tasks.

ROUGE-1 calculates the unigram recall between the predicted output and the reference text.

ROUGE-1 =

∑
unigram∈ref min(count(unigram), count(unigram pred))∑

unigram∈ref count(unigram)
(2)

This metric is widely used for summarization and transcription tasks to evaluate the lexical overlap
between predicted and reference outputs.

BLEU and sacreBLEU evaluate n-gram precision by comparing the predicted output against the
reference. BLEU is computed as:

BLEU = BP · exp

(
N∑
n=1

wn log pn

)
(3)

where BP is the brevity penalty, pn is the precision of n-grams, and wn are weights. SacreBLEU ap-
plies different tokenization (Papineni et al., 2002; Post, 2018). TeXBLEU is a variant of the BLEU
score adapted to evaluate LaTeX string generation tasks, particularly mathematical expressions. It
penalizes syntactic mistakes and helps measure the quality of generated LaTeX code.

chrF and chrF++ are character-based F-scores metrics that compute a balance between precision and
recall at the character level:

chrFβ = (1 + β2) · chrP · chrR
β2 · chrP + chrR

, (4)

Where chrP and chrR represent the arithmetic mean of character n-gram precision and recall across
all n-grams; chrP is the percentage of character n-grams in the hypothesis that also appear in the
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Table 9: Example of the dataset samples for further annotation by speaker and TTS models.
Topic Possible Pronunciation Equation

Calculus. Integrals Integral: integral of x cubed dx
equals x to the fourth over 4 plus
constant

∫
x3 dx = x4

4 + C

Basic Geometry the distance between two points
(x1, y1) and (x2, y2) is the square
root of (x2 minus x1) squared plus
(y2 minus y1) squared

d =
√

(x2 − x1)2 + (y2 − y1)2

Basic Functions f of x is equal to x minus 3 divided
by x squared minus 9

f(x) = x−3
x2−9

Partial Derivatives The partial derivative of f with
respect to x and then y equals d
squared f divided by d x d y

∂2f
∂x∂y

Linear Algebra the cross product of vectors a and
b is a vector perpendicular to both

a× b

Differential Equations the solution to d y over d x equals
negative k y is y equals c e to the
negative k x

dy
dx = −ky is y = Ce−kx

Field Theory the electromagnetic field tensor is
given by F mu nu equals partial
mu A nu minus partial nu A mu

Fµν = ∂µAν − ∂νAµ

Quantum Mechanics the Schrödinger equation for a
free particle is i h bar d psi over d t
equals minus h bar squared over 2
m d squared psi over d x squared

iℏdψdt = − ℏ2

2m
d2ψ
dx2

QFT the Lagrangian density for the
gauge field is minus one over four
F mu nu F mu nu

L = − 1
4FµνF

µν

Particle Physics the mass of the Z boson is
approximately 91.2 GeV/c
squared

mZ ≈ 91.2GeV/c2

General Physics Period of a pendulum: two pi
times square root of length divided
by gravitational acceleration

T = 2π
√

L
g

Mathematical Physics Bessel function of the first kind of
order zero, j sub zero is equal to
the sum from m equals zero to
infinity, of minus one to the power
m, divided by m factorial squared,
times x divided by two to the
power of 2 m

J0(x) =
∑∞
m=0

(−1)m

(m!)2

(
x
2

)2m

Trigonometry Euler’s formula, e to the power i
times pi plus one equals zero

eiπ + 1 = 0

Thermodynamics Gibbs free energy, G equals H
minus TS

G = H − TS

reference, and chrR is the percentage of character n-grams in the reference that are also found in the
hypothesis. chrF++ is chrF for n = 2.

16



Published as a conference paper at ICLR 2026

TeXBleu is relatively insensitive to the significant errors.

B TRAINING HYPERPARAMETERES

The default loss function was cross-entropy, and the default optimizer was AdamW (Loshchilov
et al., 2017). Qwen models for S2L-Equations experiments were trained on 1 A100 GPUs for
1 epoch, and batch size was set to 16 samples per batch. AdamW optimizer was used with weight
decay of 0.01 with a learning rate 1e− 4 and linear learning rate scheduler.

For S2L-Sentences experiments, Qwen models were trained on a single A100 GPU for 1 epoch,
and the batch size was set to 16 samples per batch. AdamW optimizer was used with weight decay
of 0.01 with learning rate 1e− 4 and linear learning rate scheduler.

For the Qwen2.5-7B experiments, we applied LoRA with a rank r = 8 and a scaling parameter
α = 32. The adapters were integrated solely into the attention projection matrices.

For the Qwen2-Audio-7B experiments, we used following LoRA configuration (r = 8, α = 16)
targeting the attention projection matrices of the large language model (LLM) and audio encoder
backbone and also LLM LMHead.

SALMONN was trained with the LoRA technique on Llama. Target modules were set to attention
layers, rank was 8, alpha parameter was 32, and dropout was set to 10%. Whisper and Beats models
were frozen. The model was trained on Nvidia H100-80Gb 2 GPUs for 6 epochs. The learning rate
was set to 3e-5 with a warm-up for 3000 steps and cosine decay. Gradient accumulation was set to 3
iterations. The batch size was set to 12 samples per batch. Automated mixed precision with float16
was used.

For the few-shot experiments, we employed the pre-trained Qwen2.5-7B Instruct checkpoint without
any further fine-tuning.

C ADDITIONAL RESULTS

C.1 ADDITIONAL RESULTS FOR THE MAIN TEXT TABLES

Full version of the Table 2 from the main text for S2L-equations results is Table 10. Additional
few-show results for the S2L-sentences (Table 5) are presented in Table 11.

The few-shot experiments were conducted using pretrained models in instruction mode (in other
words, with open-source weights that were not fine-tuned on our dataset by us).

One can notice, that although large end-to-end models demonstrate better perforance, smaller ASR
post-sorrection models offer a practical alternative for the resource-constrained environments.

C.2 ADDITIONAL MODELS

We also evaluated InternLM, ProofGPT, and FlanT5 on the subsets of S2L-equations on addi-
tional experiments with different splits. Results are presented in Table 12. ProofGPT-1.3B demon-
strated good performance, except for the Russian language. In the setting when train and test data
both have a mix of genuine and artificial audio, and the test set equations have no overlapping with
the equations from the train, SALMONN-13B demonstrates the best metrics except CER on all
languages, while Qwen2.5 has a slight edge over SALMONN regarding CER. For instance, on
the English subset, SALMONN leads with the highest Rouge-1 (83.88), sBLEU (60.68), and chrF
(71.04) scores. However, its CER (42.42) is slightly higher than Qwen2.5-Math-1.5B, which has
the lowest CER (39.54) and ranks second in Rouge-1 (81.43) and chrF (68.34). The Qwen-Audio
performs worse than other methods, probably due to re-implementation nuances. The second part of
the table compares Qwen2-0.5B and Qwen2.5-0.5B for English and Russian languages for the ran-
dom and disjoint (test equations do not overlap train ones) splits. For both languages, Qwen2.5-0.5B
consistently outperforms Qwen2-0.5B in terms of Rouge-1 and sBLEU. Interestingly, in the case
of the combined English and Russian datasets, the 2 models exhibit very close performance, with
Qwen2.5-0.5B showing marginal improvements in accuracy metrics while having a slightly higher
CER.
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Table 10: S2L-equations results. Disjoint split: test equations do not overlap with train equa-
tions. ”A”: artificially (TTS) annotated audio except 400k samples extracted from MathBridge;
”H”: human-annotated audio; ”Mix”: combination of ”A” and ”H”; CER is calculated for lower-
case. ”Q-αB” and ”Q-math-αB” stand for Qwen2.5-αB-instruct and Qwen2.5-math-αB-instruct,
respectively. ”Full” implies addition of 400k artificially annotated samples from MathBridge to
the ”A” set.

Model Train Train Test Test: Mix Test: H Test: A

Language Language CER TeXBLEU CER TeXBLEU CER TeXBLEU

MathSpeech MS-train Eng Eng 64.04 83.71 59.32 83.64 69.65 83.80
Q-0.5B A Eng Eng 33.28 88.61 33.26 88.54 33.30 88.70
Q-0.5B A Eng+Rus Eng 34.78 87.90 34.94 87.57 34.59 88.31
Q-0.5B H Eng Eng 36.91 87.86 35.01 88.25 39.16 87.38
Q-0.5B H Eng+Rus Eng 35.43 88.06 33.94 88.47 37.19 87.56
Q-0.5B Mix Eng Eng 31.41 88.83 31.06 88.87 31.82 88.78
Q-0.5B Mix Eng+Rus Eng 32.33 88.60 31.18 88.89 33.69 88.24
Q-0.5B Mix-full Eng+Rus Eng 27.21 90.20 27.03 90.14 27.42 90.27
Q-1.5B A Eng Eng 31.24 89.22 31.37 89.15 31.08 89.31
Q-1.5B A Eng+Rus Eng 30.73 88.92 30.70 88.73 30.77 89.16
Q-1.5B H Eng Eng 29.69 89.41 27.57 89.69 32.22 89.07
Q-1.5B H Eng+Rus Eng 30.93 89.04 28.85 89.42 33.39 88.57
Q-1.5B Mix Eng Eng 29.76 89.28 28.93 89.44 30.74 89.09
Q-1.5B Mix Eng+Rus Eng 31.14 89.37 30.08 89.43 32.40 89.28
Q-1.5B Mix-full Eng+Rus Eng 25.69 90.70 24.91 90.74 26.61 90.66
Q-math-1.5B A Eng Eng 29.44 89.61 30.00 89.33 28.77 89.96
Q-math-1.5B A Eng+Rus Eng 29.57 90.00 29.44 89.80 29.74 90.23
Q-math-1.5B H Eng Eng 30.16 89.83 28.97 90.13 31.58 89.46
Q-math-1.5B H Eng+Rus Eng 31.45 89.25 30.71 89.43 32.34 89.02
Q-math-1.5B Mix Eng Eng 28.53 89.97 28.08 90.13 29.05 89.76
Q-math-1.5B Mix Eng+Rus Eng 27.75 89.85 27.54 89.89 28.01 89.79
Q-math-1.5B Mix-full Eng+Rus Eng 25.01 90.90 25.05 90.90 24.97 90.89
Q-7B A Eng Eng 28.15 90.10 28.07 89.96 28.25 90.26
Q-7B A Eng+Rus Eng 27.32 90.12 26.16 90.20 28.70 90.03
Q-7B H Eng Eng 27.97 89.99 26.93 90.29 29.20 89.62
Q-7B H Eng+Rus Eng 26.89 90.18 26.43 90.36 27.44 89.95
Q-7B Mix Eng Eng 26.10 90.58 25.80 90.68 26.46 90.45
Q-7B Mix Eng+Rus Eng 27.78 90.11 26.55 90.37 29.24 89.78
Q-7B Mix-full Eng+Rus Eng 26.17 90.50 25.96 90.51 26.43 90.48
Qwen-Audio Mix Eng Eng 71.67 83.55 104.19 78.45 33.06 89.84
SALMONN Mix-full Eng Eng 17.50 93.68 18.17 93.64 16.70 93.72
Gemma 3n Mix-full Eng Eng 34.24 89.15 33.24 89.23 35.42 89.06

Q-0.5B A Rus Rus 32.06 91.73 40.95 94.13 27.62 90.53
Q-0.5B A Eng+Rus Rus 9.63 95.14 17.78 96.34 5.56 94.54
Q-0.5B H Rus Rus 15.24 96.97 15.87 96.76 14.92 97.08
Q-0.5B H Eng+Rus Rus 6.77 97.74 13.97 97.20 3.17 98.01
Q-0.5B Mix Rus Rus 15.34 98.50 15.24 97.21 15.40 99.14
Q-0.5B Mix Eng+Rus Rus 13.02 97.32 14.60 96.78 12.22 97.59
Q-0.5B Mix-full Eng+Rus Rus 8.15 97.03 15.56 96.68 4.44 97.21
Q-1.5B A Rus Rus 10.05 96.77 19.37 96.60 5.40 96.85
Q-1.5B A Eng+Rus Rus 6.14 96.62 14.60 96.74 1.90 96.56
Q-1.5B H Rus Rus 4.66 99.38 8.25 99.49 2.86 99.33
Q-1.5B H Eng+Rus Rus 14.50 97.38 14.60 96.67 14.44 97.73
Q-1.5B Mix Rus Rus 14.60 95.90 10.79 98.00 16.51 94.85
Q-1.5B Mix Eng+Rus Rus 4.02 99.20 11.75 97.68 0.16 99.96
Q-1.5B Mix-full Eng+Rus Rus 4.55 98.89 13.33 96.74 0.16 99.96
Q-math-1.5B A Rus Rus 6.03 98.94 17.14 97.02 0.48 99.89
Q-math-1.5B A Eng+Rus Rus 11.01 98.04 13.33 97.08 9.84 98.52
Q-math-1.5B H Rus Rus 13.23 96.51 2.86 99.36 18.41 95.08
Q-math-1.5B H Eng+Rus Rus 12.49 97.45 11.75 97.78 12.86 97.28
Q-math-1.5B Mix Eng+Rus Rus 5.50 98.90 13.65 97.39 1.43 99.66
Q-math-1.5B Mix Rus Rus 17.25 97.24 12.70 97.70 19.52 97.01
Q-math-1.5B Mix-full Eng+Rus Rus 13.33 97.86 14.29 96.72 12.86 98.43
Q-7B A Rus Rus 3.70 99.19 10.79 97.66 0.16 99.96
Q-7B A Eng+Rus Rus 6.14 98.39 16.83 96.46 0.79 99.35
Q-7B H Rus Rus 5.40 99.29 6.98 99.33 4.60 99.27
Q-7B H Eng+Rus Rus 21.59 96.73 14.92 97.00 24.92 96.60
Q-7B Mix Rus Rus 1.59 99.57 4.44 98.78 0.16 99.96
Q-7B Mix Eng+Rus Rus 4.66 99.09 13.65 97.36 0.16 99.96
Q-7B Mix-full Eng+Rus Rus 7.94 97.74 14.92 96.87 4.44 98.17
Flamingo 3 Mix Rus Rus 2.01 99.88 0.00 100.00 3.02 99.82
SALMONN Mix-full Rus Rus 9.38 97.73 6.51 99.55 10.81 96.82
Gemma 3n Mix-full Rus Rus 15.30 97.70 11.26 98.17 17.33 94.48

C.3 REST OF THE METRICS

We tried to train LLM with pronunciations from all 5 ASR systems from Table 8 to make it an
ASR-agnostic model, but the model’s accuracy was worth more than just with Whisper. For results
see Table 13.
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Table 11: S2L-sentences results for Few-Shot experiments. Disjoint split: test sentences do not
overlap with train sentences. ”A”: artificially (TTS) annotated audio; ”H”: human-annotated audio;
”Mix”: combination of ”A” and ”H”. CER is calculated for lower-case. ”Q-αB” and ”Q-math-
αB” stand for Qwen2.5-αB-instruct and Qwen2.5-math-αB-instruct, respectively. ”Sent.” stands
for sentence: metric calculated over the whole sentence; ”Eq”: only for the embedded equations;
”Text”: only for the text parts of the sentence.

Model Train Test: H Test: A

CER TeXBLEU CER TeXBLEU

Sent. Text Eq. Eq. Sent. Text Eq. Eq.
5-shot
Q-0.5B A 35.80 35.76 66.22 66.87 34.21 34.20 68.30 60.41
Q-0.5B H 32.09 29.69 71.95 65.31 31.83 30.16 73.71 58.47
Q-1.5B A 26.16 20.62 58.78 76.84 26.64 22.26 60.47 70.64
Q-1.5B H 27.94 20.50 63.99 76.78 28.70 23.69 64.74 70.83
Q-math-1.5B A 35.94 35.99 62.73 71.66 41.90 43.85 65.75 64.53
Q-math-1.5B H 42.52 42.16 73.36 68.23 44.63 45.15 78.05 61.07
Q-7B A 23.83 18.44 56.25 77.88 23.63 19.57 56.03 72.64
Q-7B H 24.19 17.56 57.91 77.97 23.44 18.76 55.88 73.31

25-shot
Q-0.5B A 28.74 25.97 61.87 73.77 28.15 25.89 65.14 66.53
Q-0.5B H 30.67 27.30 63.44 73.93 31.47 27.37 72.45 66.36
Q-1.5B A 23.65 17.55 56.84 78.42 24.10 18.82 58.77 72.39
Q-1.5B H 24.05 17.26 56.77 78.57 24.49 18.93 57.61 73.43
Q-math-1.5B A 37.65 29.11 88.22 75.14 36.74 27.56 95.89 69.09
Q-math-1.5B H 30.58 24.43 67.93 75.67 31.26 27.51 67.43 68.44
Q-7B A 21.22 15.85 50.43 79.88 21.65 16.97 51.97 74.65
Q-7B H 20.00 14.23 47.12 80.64 20.73 16.38 48.21 75.14

We measured case-sensitive performance (for example, ϕ and Φ mean different symbols). Results
are presented in Tables 14 and 15. As we can see, the performance drop is not as severe. This gen-
erally means that models were trained well and that data regarding capitalized and non-capitalized
symbols was labelled well. The rest of the metrics from the Table 12 are represented in Table 16 as
an addition with the lower-cased metrics for the S2L-eqautions part.

C.4 CROSS-LANGUAGE LEARNING.

One of the advantages of fine-tuning multilingual language models is the ability to extract in-
formation from one language that is not available in another. For example, LaTeX special sym-
bols \simeq and \hat are not presented in the Russian part of the equations dataset but in En-
glish. Qwen2.5, trained in English and Russian, can transcribe ”approximately equal” in Russian to
\simeq (≃). Another observation is that the models are primarily English-oriented, so Qwen2.5-
Math-1.5B and Qwen2-0.5B trained in Russian can generate only simple formulas in English. The
reverse situation works worse - Qwen2.5-0.5B, trained in English, cannot perform post-correction
in Russian.

C.5 ADDITIONAL ERROR ANALYSIS

Let us present error analysis on S2L-equations test. Among 2.8k equations, around 1.8k predic-
tions are not exactly identical to the LaTeX reference, but more than half of these mismatches have
a character overlap above 0.8, indicating that the majority of errors are local rather than structural.

• The main part of errors is based on symbol substitutions or index errors. Some of the issues
arise from ASR errors. For example:

– pred y_{1},y_{2},y_{3} = (i,s,1),
true (y_{1},y_{2},y_{3}) = (\phi,\psi,1)
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Table 12: S2L-equations (subset) results. SALMONN represent end-to-end Audio-LLMs,
while all other models use ASR post-correction via fine-tuned LLMs. ”A” denotes artificially
(TTS) annotated audio, ”H” refers to human-annotated audio, and ”Mix” indicates a combination
of both. ”Rand” indicates a random split where equation-pronunciation-speaker/voice triplets are
non-overlapping across train, validation, and test sets. ”Disj” specifies a disjoint split where test
equations do not appear in the training set.

Model Lang Train Test Split CER↓ Rouge-1↑ sBLEU↑ chrF↑
Qwen2.5-0.5B Eng Mix Mix Disj 43.87 77.78 53.33 64.48
Qwen2.5-Math-1.5B Eng Mix Mix Disj 39.54 81.43 57.86 68.34
ProofGPT-1.3B Eng Mix Mix Disj 41.60 78.04 52.31 64.30
InternLM2-1.8B Eng Mix Mix Disj 49.23 78.12 61.00 64.24
Flan-T5 Eng Mix Mix Disj 64.92 53.47 11.98 28.78
SALMONN-13B Eng Mix Mix Disj 42.42 83.88 60.68 71.04

Qwen2.5-0.5B Rus Mix Mix Disj 13.19 89.71 72.78 86.09
Qwen2.5-Math-1.5B Rus Mix Mix Disj 10.49 90.66 74.25 88.11
ProofGPT-1.3B Rus Mix Mix Disj 16.48 87.82 70.82 84.04
SALMONN-13B Rus Mix Mix Disj 10.45 93.59 76.63 91.63

Qwen2.5-0.5B Eng+Rus Mix Mix Disj 22.70 86.22 67.14 79.87
ProofGPT-1.3B Eng+Rus Mix Mix Disj 23.93 84.85 65.33 78.18
SALMONN-13B Eng+Rus Mix Mix Disj 24.27 89.93 69.62 84.10

Qwen2-0.5B Eng A H Rand 25.05 86.56 70.39 76.91
Qwen2.5-0.5B Eng A H Rand 23.56 86.92 71.37 77.88

Qwen2-0.5B Rus A H Rand 7.09 94.44 79.59 92.79
Qwen2.5-0.5B Rus A H Rand 7.49 94.58 79.88 92.73

Qwen2-0.5B Eng+Rus A H Disj 30.36 83.52 61.72 72.20
Qwen2.5-0.5B Eng+Rus A H Disj 31.13 83.60 61.73 72.22

Table 13: S2L-equations (subset). Metrics results (%) for Qwen trained with 5 ASR models.
Model CER↓ Rouge-1↑ sBLEU↑ chrF↑ WER↓ METEOR↑ BLEU↑ chrF++↑

Qwen2.5-0.5B 43.21 78.49 50.06 60.35 75.33 57.21 47.06 58.88

Table 14: S2L-equations (subset). Case-sensitive metrics (%) for different Language Mod-
els. ”Mix” means a combination of human-annotated and TTS. Lang means the language of the
train/validation/test splits.

Model Lang Train Test Split CER↓ Rouge-1↑ sBLEU↑ chrF↑
Qwen2.5-0.5B Eng Mix Mix Disj 45.79 77.78 50.46 61.06
Qwen2.5-Math-1.5B Eng Mix Mix Disj 44.39 79.29 51.02 61.67
SALMONN-13B Eng Mix Mix Disj 44.47 83.88 56.76 66.70
Flan-T5 Eng Mix Mix Disj 67.52 53.47 10.43 26.01
Qwen-Audio Eng Mix Mix Disj 54.64 76.63 54.79 57.61

Qwen2.5-0.5B Rus Mix Mix Disj 13.45 89.71 72.67 85.47
SALMONN-13B Rus Mix Mix Disj 10.59 93.59 76.52 91.38

Qwen2.5-0.5B Eng+Rus Mix Mix Disj 23.39 86.22 66.26 78.74
SALMONN-13B Eng+Rus Mix Mix Disj 24.99 89.93 68.69 82.82

– pred \frac{\partial\mathcal L}{\partial\phi},
true \frac{\partial\L}{\partial\phi} .

• A significant part of errors involves missing or ambiguous \text{...} blocks.

– pred: f(x)=\lambda eˆ{-\lambda x}, x\ge 0,
true: f(x)=\lambda eˆ{-\lambda x}\text{for }x\ge 0.
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Table 15: S2L-equations (subset). Remaining case-sensitive metrics (%) for different Lan-
guage Models. ”Mix” means combination of Human annotated and TTS. Lang means language of
train/validation/test splits

Model Lang Train Test Split WER↓ METEOR↑ BLEU↑ chrF++↑
Qwen2.5-0.5B Eng Mix Mix Disj 79.60 56.89 47.16 59.44
Qwen2.5-Math-1.5B Eng Mix Mix Disj 76.78 57.52 47.85 60.24
SALMONN-13B Eng Mix Mix Disj 72.20 61.91 53.08 65.06
Flan-T5 Eng Mix Mix Disj 111.83 20.47 6.19 24.84
Qwen-Audio Eng Mix Mix Disj 102.91 53.67 42.53 55.89

Qwen2.5-0.5B Rus Mix Mix Disj 28.14 80.78 70.55 83.68
SALMONN-13B Rus Mix Mix Disj 18.13 84.91 74.95 90.09

Qwen2.5-0.5B Eng+Rus Mix Mix Disj 42.46 73.63 63.80 78.18
SALMONN-13B Eng+Rus Mix Mix Disj 40.02 77.24 66.77 81.38

Table 16: S2L-equations (subset). Remaining results of lower-case metrics (%) for different
models. SALMONN represents the Multimodal approach, while the rest of the models represent
ASR post-correction. ”A” stands for artificially annotated audio (TTS), ”H” – human annotated
audio, ”Mix” – the combination of both ”A” and ”H”. ”Disj” split means that test equations do not
intersect with the train equations, and ”Rand” split means that train-test split was made randomly
over generated pairs and equations from train might occur in the test but should be pronounced with
different speakers or TTS models.

Model Lang Train Test Split WER↓ METEOR↑ BLEU↑ chrF++↑
Qwen2.5-0.5B Eng Mix Mix Disj 76.85 56.89 50.42 62.71
Qwen2.5-Math-1.5B Eng Mix Mix Disj 69.16 60.33 55.57 66.77
ProofGPT-1.3B Eng Mix Mix Disj 69.64 55.86 49.73 62.50
SALMONN-13B Eng Mix Mix Disj 68.90 61.91 57.55 69.20
InternLM2-1.8B Eng Mix Mix Disj 81.01 57.30 50.65 62.55
Flan-T5 Eng Mix Mix Disj 109.26 20.47 7.69 27.53

Qwen2.5-0.5B Rus Mix Mix Disj 27.14 80.78 70.64 84.34
Qwen2.5-Math-1.5B Rus Mix Mix Disj 23.80 81.65 72.03 86.47
ProofGPT-1.3B Rus Mix Mix Disj 32.14 79.10 68.51 82.22
SALMONN-13B Rus Mix Mix Disj 17.94 84.91 75.05 90.36

Qwen2.5-0.5B Eng+Rus Mix Mix Disj 41.47 73.63 64.75 78.18
ProofGPT-1.3B Eng+Rus Mix Mix Disj 43.26 72.20 62.94 76.37
SALMONN -13B Eng+Rus Mix Mix Disj 38.80 77.24 67.85 82.62

Qwen2-0.5B Rus A H Rand 14.82 86.74 78.46 91.87
Qwen2.5-0.5B Rus A H Rand 13.91 86.77 78.77 91.92

Qwen2-0.5B Eng A H Rand 40.37 73.88 68.60 76.53
Qwen2.5-0.5B Eng A H Rand 38.54 74.59 69.71 76.53

Qwen2-0.5B Eng+Rus A H Disj 57.02 68.83 58.82 70.78
Qwen2.5-0.5B Eng+Rus A H Disj 58.27 68.56 58.60 70.85

– pred: (Pˆ{e})ˆ{\theta},
true: (pˆ{e})ˆ{\text{th}}.

– pred: \sin(x) \quad\Rightarrow\quad y...,
true: \sin(x) \text{ is } y = ...

• Fractions and nested fractions.

– pred: \frac{\delta\mathcal{L}}{\delta(\partial_\mu\phi)} = 0,
true: frac{\partial\L}{\partial(d\phi/dxˆ{\mu})} = 0.
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Overall, the majority of differences between predictions and labels are small lexical or index-level
discrepancies, as well as occasional text–math boundary issues. Structural failures, such as incorrect
integrals or deeply nested fraction constructions, are uncommon.
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