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Abstract
In this study, we propose a method for estimating the test loss in binary classification model

with minimal labeling of the test data. The central idea of the proposed method is to reduce the
problem of test loss estimation to the problem of level set estimation for the loss function. This
reduction allows us to achieve sequential test loss estimation through iterative labeling using active
learning methods for level set estimation. Through multiple dataset experiments, we confirmed that
the proposed method is effective for evaluating binary classification models and allows for test loss
estimation with fewer labeled samples compared to existing methods.
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1. Introduction

Labeling cost is an essential problem for effective supervised learning. In supervised learning
problems, there are two phases where labeled data is required: the learning phase and the testing
phase. For the learning phase, various approaches have been proposed to mitigate the labeling
cost, such as active learning (Settles, 2009; Ren et al., 2021) which reduces labeling costs by
actively selecting data for labeling, as well as self-supervised learning (Liu et al., 2021), and weakly
supervised learning (Sugiyama et al., 2022). On the other hand, the problem of the labeling
cost for the testing phase is not fully explored, except for a few seminal studies on active model
evaluation (Sawade et al., 2010; Kossen et al., 2021).

The purpose of the testing phase is to estimate the test loss of the model trained in the learning
phase. Active model evaluation (Sawade et al., 2010; Kossen et al., 2021) reduces the labeling cost in
the testing phase by actively selecting the test data to be labeled. An important question here is how
to select the effective test data as the labeling target. Sawade et al. (2010) proposed to sample the test
data to be labeled from a probability distribution so that the asymptotic variance of the estimated test
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loss is minimized. Kossen et al. (2021) proposed using an unbiased estimator (Farquhar et al., 2021)
of the test loss and sampling the test data from a probability distribution so that the variance of the
estimated loss is minimized. Although these sampling-based strategies are designed to minimize
the variance of the estimate test loss, they sometimes show inefficient behavior in actual problems
because they assign non-zero selection probabilities even to ineffective data, i.e., some of the labeling
costs can be wasted.

In this study, we consider the problem of estimating the misclassification rate in binary classifi-
cation problems under the limited labeling budget. To avoid ineffective labeling, we propose to use
level set estimation (LSE) (Gotovos, 2013). Level set estimation partitions the set of input points
to two subsets, namely the superlevel set and the sublevel set. The superlevel set and the sublevel
set contains input points with their corresponding function values above or below of a prescribed
threshold, respectively. Level set estimation attains this goal by using an appropriately designed
acquisition function to select a fraction of input points and by observing their function values. In this
study, we show that the estimation of the binary misclassification rate can be reduced to the problem
of level set estimation. By this reduction, we can use the existing acquisition function for level set
estimation to the problem of estimating the binary misclassification rate with a small number of
labeling, enabling us to avoid ineffective labeling.

2. Level Set Estimation

In this section, we review the level set estimation which constitutes the basis of the proposed method.

Suppose that a set of 𝑑-dimensional points X𝑁 = {x𝑖}𝑁𝑖=1 is given. For an unknown black-box
function 𝑓 and a prescribed threshold 𝜃, the goal of level set estimation is to partition X𝑁 to the
superlevel set Xup and the sublevel set Xlow given below.

Xup ≡ {x ∈ X𝑁 | 𝑓 (x) > 𝜃}, Xlow ≡ {x ∈ X𝑁 | 𝑓 (x) ≤ 𝜃}. (1)

If we can observe the function values 𝑦𝑖 = 𝑓 (x𝑖), 𝑖 = 1, . . . , 𝑁 of all the points, this problem can
be solved immediately. However, when the evaluation of the function value 𝑦𝑖 = 𝑓 (x𝑖) is expensive,
we are allowed to observe the function values only on a fraction of the points in X𝑁 (Hozumi et al.,
2023). In order to estimate the level set accurately using a limited amount of function evaluations,
Gotovos (2013) proposed an active learning algorithm by introducing a Gaussian process prior on
the black-box function 𝑓 . In each step of the algorithm, an input point is selected for function
evaluation using an appropriately designed acquisition function, and the Gaussian process prior is
updated in a Bayesian manner using the new observation.

2.1 Gaussian Process Models and Level Set Classification Rules

Suppose that a black box function 𝑓 follows a Gaussian process model (Rasmussen and Williams,
2006) with the mean function 𝜇(x) and kernel function 𝑘 (x,x′), 𝑓 ∼ GP(𝜇, 𝑘). Let D𝑛 =

{(x𝑖 , 𝑦𝑖)}𝑛𝑖=1 be the set of data points whose function value 𝑦𝑖 = 𝑓 (𝑥𝑖) has been observed. Under
these conditions, the predictive mean 𝜇𝑛 (x∗) and predictive variance 𝜎2

𝑛 (x∗) of the unobserved
point x∗ given D𝑛 can be expressed as 𝜇𝑛 (x∗) = k⊤

∗ K
−1𝑦 and 𝜎2

𝑛 (x∗) = 𝑘∗∗ − k⊤
∗ K

−1k∗, where
K = [𝑘 (x𝑖 ,x 𝑗)]𝑛𝑖, 𝑗=1, k∗ = (𝑘 (x∗,x1), 𝑘 (x∗,x2), . . . , 𝑘 (x∗,x𝑛))⊤, and 𝑘∗∗ = 𝑘 (x∗,x∗).
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The most simple rule for classifying the superleve and sublevel set is to apply the threshold 𝜃 to
the predictive mean 𝜇𝑛 (x𝑖) as follows.

X̂up ≡ {x ∈ X𝑁 | 𝜇𝑛 (x) > 𝜃}, X̂low ≡ {x ∈ X𝑁 | 𝜇𝑛 (x) ≤ 𝜃}. (2)

2.2 Acquisition Function

In level set estimation, an input point is selected for function evaluation using an acquisition function.
The popular acquisition functions are the uncertainty-based functions (Bryan et al., 2005; Gotovos,
2013) and the improvement-based functions (Zanette et al., 2019). In this study, we focus on the
uncertainty-based Straddle function (Bryan et al., 2005) defined below,

𝛼Straddle(x) = 𝛽1/2𝜎𝑛 (x) − |𝜇𝑛 (x) − 𝜃 |, (3)

where the parameter 𝛽 > 0 balances the two terms. In each step of the algorithm, a point x with
the largest 𝛼Straddle(x) is selected for function evaluation. Here, 𝛼Straddle(x) selects a point whose
function value 𝑓 (x) is expected to be close to the threshold 𝜃 (the second term of (3)) and the
uncertainty of the estimated 𝑓 is large (the first term of (3)).

In this study, we use the following 𝜀-greedy version of the Straddle function as the acquisition
function.

𝛼 =

{
𝛼Straddle w.p. 𝜀,
𝜎2
𝑛 w.p. 1 − 𝜀.

(4)

In this 𝜀-greedy Straddle function, the predictive variance 𝜎2
𝑛 (x) is selected as the acquisition

function with probability 1 − 𝜀. In such a situation, a point x that will minimizes the uncertainty
of the estimated 𝑓BB is selected for function evaluation, which will help improving the estimation
accuracy of the level set.

In summary, the active learning algorithm for level set estimation in this study can be expressed
as the repitition of the following three steps: (i) select the acquisition function 𝛼 following (4), (ii)
select 𝑥 = arg max𝑥∈X𝑁

𝛼(𝑥), observe its function value 𝑦 = 𝑓 (𝑥), and add (𝑥, 𝑦) to D𝑛, (iii) update
the Gaussian process prior using D𝑛.

3. Proposed Method

In this section, we show that the estimation of the binary misclassification rate can be reduced to
the problem of level set estimation. By this reduction, we can use the existing acquisition function
for level set estimation to the problem of estimating the binary misclassification rate with a small
number of labeling, enabling us to avoid ineffective labeling.

3.1 Problem Formulation

We first formalize the estimation problem of the misclassification rate for the binary classification
problem 𝑦 ∈ {0, 1}. We consider a binary classification model ℎ that outputs the probability
of the class 1 so that ℎ(x) = Pr[x is class 1] ∈ [0, 1]. Suppose that the unlabeled test data
𝐷test = {x𝑖}𝑁𝑖=1 is given. If we know the true label 𝑦𝑖 for each x𝑖 , we can compute the 0-1 loss as
L01(ℎ(x), 𝑦) = I[𝑦 ≠ I[ℎ(x) > 1

2 ]], where I is the indicator function. The misclassification rate is
then given by 𝑅̂ = 1

𝑁

∑𝑁
𝑖=1 L01(ℎ(x𝑖), 𝑦𝑖).
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Problem 1 (Active Misclassifiation Rate Estimation) Estimate the binary misclassification rate
𝑅̂ by labeling only on the subset of 𝐷test so that we can reduce the labeling cost.

3.2 Active Misclassification Rate Estimation Using Level Set Estimation

We now show that the problem of estimating the the binary misclassification rate 𝑅̂ can be reduced
to the problem of level set estimation. For this purpose, we focus on the relationship between
the cross-entropy loss and the 0-1 loss. We first recall that the cross-entropy loss is given as
LCE(ℎ(x), 𝑦) = −𝑦 log ℎ(x) − (1 − 𝑦) log(1 − ℎ(x)). Suppose that when the true class is 𝑦 = 0, we
have, LCE(ℎ(x), 0) = − log(1 − ℎ(x)). If ℎ(𝑥) ≤ 0.5 and the predicted class is 0, LCE(ℎ(x), 0) =
− log(1 − ℎ(x)) ≤ log 2 holds. If ℎ(𝑥) > 0.5 and the predicted class is 1, LCE(ℎ(x), 0) =

− log(1− ℎ(x)) > log 2 holds. By the similar argument for the case when the true class is 1, we can
see that the following relationship holds.{

L01(ℎ(x), 𝑦) = 0 ⇔ LCE(ℎ(x), 𝑦) ≤ log 2,
L01(ℎ(x), 𝑦) = 1 ⇔ LCE(ℎ(x), 𝑦) > log 2.

By using the relationship above, we can rewrite the binary misclassification rate as

𝑅̂ =
1
𝑁

𝑁∑︁
𝑖=1
I [LCE(ℎ(x𝑖), 𝑦𝑖) > log 2] . (5)

Here, we define the superlevel set and the sublevel set as follows,

Xup ≡ {x ∈ 𝐷test | LCE(ℎ(x), 𝑦) > log 2}, Xlow ≡ {x ∈ 𝐷test | LCE(ℎ(x), 𝑦) ≤ log 2}. (6)

The problem of estimating the the binary misclassification rate 𝑅̂ can then be reduced to the problem
of estimating the size of the superlevel set Xup because 𝑅̂ = 1

𝑁
|Xup |. Thus, we can estimate 𝑅̂ by

solving the level set estimation problem with LCE(ℎ(x), 𝑦) being a black-box function (because 𝑦 is
unknown) and the threshold 𝜃 = log 2.

4. Experiment

In this section, we examine the efficacy of the proposed method for active misclassification rate
estimation.

4.1 Experimental Setup

Datasets We used three binary classification datasets, which are artificial data, Breast Cancer
Wisconsin (Original) (Wolberg, 1992), and Diabetes Schulz et al. (2006). The latter two datasets
are obtained from the UCI Machine Learning Repository and the LIBSVM data sets.

We created the artificial dataset as follows. The input 𝑥 is one-dimensional and it distributes
uniformly in the interval [0, 𝜋/2]. If sin 𝑥 ≥ 0.5, its corresponding outcome 𝑦 = 1, and 𝑦 = 0
otherwise. We used 10 pairs of (𝑥, 𝑦) for training a classifier ℎ, and another 40 inputs as the
unlabeled test data 𝐷test.

Breast Cancer and Diabetes are real-world datasets with nine-dimensional input and 683 data
points, and eight-dimensional inputs and 768 data points, respectively. In real-world problems,
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Active Testing I.I.D. Acquisition LSE (proposed)
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(a) Artificial Data
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(b) Breast Cancer
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(c) Diabetes

Figure 1: Result: The solid line represents the average result of each method, and the colored shadow
represents the standard deviation of the results.

it is typically the case that the training and testing data follow different distributions, i.e., there
is a distribution shift. To simulate such a realistic scenario, we intentionally added distribution
shifts for these two datasets. For Breast Cancer, we selected the data points with the features
Clump Thickness ≤ median for the training data, and the remaining data as the testing data. As
the result, 372 and 311 data points are selected for the training and testing data, respectively. For
Diabetes, we selected the data points with the features Glucose ≥ median for the training data, and
the remaining data as the testing data. As the result, 388 and 380 data points are selected for the
training and testing data, respectively.

Binary Classification Model We adopted linear logistic regression as the binary classification
model ℎ to be evaluated. The misclassification rate in the test data were 0.24, 0.09, and 0.16 for
artificial data, Breast Cancer, and Diabetes, respectively.

Level Set Estimation Setup For level set estimation, we used the logarithm of the cross-entropy
loss as the black-box function 𝑓 = logLCE. This is because, while the cross-entropy loss takes a
value close to zero for most of correctly classified data, it takes a large value for incorrect data. If we
use the cross-entropy loss as it is as the black-box function, it tends to be a less smooth function with
large bumps near the classification boundary. Such a less smooth functions are difficult to be fit by
the Gaussian process. The use of logarithm makes the black-box function more smoother, enabling
effective fitting by the Gaussian process.

Baseline Methods We compared the proposed method with the following two methods, I.I.D.
Acquisition and Active Testing (Kossen et al., 2021). I.I.D. Acquisition selects the next point to be
labeled uniformly at random from the unlabeled test points. The misclassification rate is estimated
as the simple average of the 0-1 loss computed on labeled test points. Active Testing selects the next
point to be labeled with probability proportional to its estimated 0-1 loss. The misclassification rate
is estimated using the unbiased estimator of Farquhar et al. (2021).

4.2 Result

For each dataset, we ran each method 100 times with different random seeds. Figure 1 shows the
difference of the true missclassification rate and the estimated one over different numbers of labeled
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test points. We can find three important observations from the figure. First, I.I.D Acquisition and
Active Testing provides unbiased estimate of the true misclassification rate, while the proposed
method provide biased estimate particularly when the number of acquired points is small. Second,
although the proposed method is biased, it almost converges to the true misclassification rate after
a certain number of labels. Third, while I.I.D Acquisition and Active Testing tends to incur large
variance, the variance of the proposed method is considerably small. From these observations, we
can conclude that the proposed method can provide a better estimate of the misclassification with
small variance a certain number of labels, compared to the baseline methods.

Table 1: The average number of labels (± std.) required for estimating
the misclassification rate up to 0.1% tolerance.

Active Testing I.I.D. Acquisition LSE (proposed)

Artificial 37.4 ± 2.8 39.0 ± 0.0 14.3 ± 1.3
Breast Cancer 280.8 ± 30.0 307.4 ± 0.9 214.5 ± 0.5

Diabetes 375.4 ± 6.1 377.3 ± 0.5 307.5 ± 5.6

Table 1 shows the av-
erage number of labels (±
std.) required for estimating
the misclassification rate up
to 0.1% tolerance. It is evi-
dent from the table that the
proposed method required
the smallest number of la-
bels on average for accurate
estimation. In particular, on artificial data and Breast Cancer, the proposed method required around
three times less number of labels, showing the significant improvement over the baseline methods.
On Diabetes, although the improvement is marginal, the proposed method attained the smallest
number on average.

5. Conclution

In this study, we proposed a method for estimating the binary misclassification rate with a small
amount of labeling. In the proposed method, we reduced the problem to the level set estimation
problem by utilizing the relationship between the cross entropy loss and 0-1 loss. By this reduction,
we can apply the existing acquisition function for level set estimation to the problem of estimating
the binary misclassification rate with a small number of labeling, enabling us to avoid ineffective
labeling.

The experiment results confirm the effectiveness of the proposed method. The results show that,
although the proposed method provides a biased estimate of the misclassification rate, the estimate
almost converges to the true misclassification after a certain number of labels, which is typically far
smaller than the existing methods.
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