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Abstract

As large language models (LLMs) are increasingly used as personalized user assis-
tants, effectively adapting to users’ evolving preferences is critical for delivering
high-quality personalized responses. While user preferences are often stable in
content, their relative strengths shift over time due to changing goals and contexts.
Therefore, modeling these dynamic preference strengths can enable finer-grained
personalization. However, current methods face two major challenges: (i) lim-
ited user feedback makes it difficult to estimate preference strengths accurately,
and (ii) natural language ambiguity limits the controllability of preference-guided
generation. To address these issues, we propose AdaPA-Agent, a LLM-agent
personalization framework that models dynamic preference strengths via Adap-
tive Preference Arithmetic. First, instead of requiring additional user feedback,
AdaPA-Agent employs an alignment-based strength estimation module to estimate
the strength of user preferences from the existing user-agent interaction. Then, it
guides controllable personalized generation by linearly combining next-token dis-
tributions, weighted by the estimated strengths of individual preferences. Exper-
iments on two personalization tasks-conversational recommendation and person-
alized web interaction-demonstrate that AdaPA-Agent better aligning with users’
changing intents, and has achieved over 18.9% and 14.2% improvements com-
pared to ReAct, the widely-used agent framework.

1 Introduction

Agents powered by large language models (LLMs) [1, 2] are increasingly being utilized as user as-
sistants [3], helping individuals with tasks such as information retrieval and decision-making. Given
that user needs are highly diverse and personalized, they often do not want assistants to provide
generic responses. Instead, users expect these user assistants to understand their unique needs better
and provide personalized services [4], such as travel planning [5], and shopping recommendations
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[6, 7]. Therefore, enhancing the ability of LLM agents to model users’ personalized needs has
become a key focus of current research [3].

Since user preferences fundamentally shape their personalized needs, recent approaches improve
personalization of LLM agents by modeling and leveraging these preferences [8]. These methods
can be divided into two categories: fine-tuning and training-free methods. Fine-tuning [9, 10] in-
volves adjusting the model’s parameters to fit personal preferences. However, this approach requires
gathering large amounts of individual data and model training, making it both resource-intensive
and costly. In contrast, training-free methods such as retrieval-augmented generation (RAG) and
prompt engineering provide more flexible alternatives. RAG [8, 11] enables agents to retrieve rele-
vant preference information in real-time, adapting responses without retraining the model. Prompt
engineering [12, 13, 14] inserts the prompts of preference content into prompt templates, which can
guide the model toward personalized outputs without modifying its underlying parameters.

Figure 1: Illustration of an agent responding to a
user’s food delivery request over time. The user’s
needs are shaped by two preferences (Pref-1 and
Pref-2), whose relative importance changes. To
respond effectively, the agent must recognize and
adapt to these shifts; otherwise, it may fail to meet
expectations.

In real-world scenarios, users often hold mul-
tiple coexisting preferences–such as favoring
both healthy meals and junk food–but the in-
fluence of each preference on user’s decision-
making is not equal and can vary over time [15].
We term this influence as preference strength.
As shown in Figure 1, without modeling this
dynamic variation in preference strength, LLM
agents may produce responses that fail to align
with the user’s current intent.

Although, existing methods make great
progress in personalization, they still face
two key challenges of modeling the dynamic
preference strengths for LLM agents: (i) Accu-
rately estimating preference strengths without
relying on explicit user feedback. Existing
methods such as ReAct [16] and Reflexion
[17] often require user feedback to help adjust
the strengths of preferences. Yet in real-world
scenarios, user feedback is often limited in
number, and frequent requests for feedback
will disrupt normal interactions and signifi-
cantly degrade user experience. (ii) Effectively
utilizing estimated strengths to guide content
generation. A common strategy is to input the preference strengths as text prompts to LLMs.
However, this prompt-based method is fundamentally limited by the inherent ambiguity of natural
language [18, 19], which may lead to misaligned personalized responses.

To address these challenges, we propose AdaPA-Agent, a framework that models and applies dy-
namic preference strengths through Adaptive Preference Arithmetic. AdaPA-Agent comprises two
key components. First, to estimate preference strengths without explicit user feedback (Challenge
(i)), we introduce Alignment-Based Strength Estimation, which combines dual-side augmenta-
tion with an LLM-based alignment scorer to measure how well each preference aligns with the
current user-agent interaction. Second, to utilize these estimated strengths in generation (Challenge
(ii)), we propose Controllable Personalized Generation. This component modulates the output
distribution of an LLM by linearly combining next-token distributions conditioned on individual
preferences and weighted by their inferred strengths. We validate AdaPA-Agent on two personal-
ized agent tasks: conversational recommendation and personalized web interaction. Experimental
results show that AdaPA-Agent consistently improves personalization quality over strong baselines,
enabling LLM agents to generate responses that better reflect users’ evolving intents and priorities.

Our key contributions can be summarized as follows:

• We identify two key challenges of modeling dynamic preference strengths for LLM-agent person-
alization: (i) accurately estimating preference strengths without relying on explicit user feedback,
and (ii) effectively utilizing these estimated strengths to guide content generation.
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• To address these challenges, we propose AdaPA-Agent that models dynamic preference strengths
for LLM agents through Adaptive Preference Arithmetic. AdaPA-Agent introduces two novel
components: Alignment-Based Strength Estimation for estimating preference strengths without
explicit feedback, and Controllable Personalized Generation, which controls the personalized
generation process by linearly combining next-token distributions of LLM based on the estimated
strengths.

• We validate AdaPA-Agent on conversational recommendation and personalized web interaction
tasks, achieving over 18.9% and 14.2% improvements compared to widely-used agent framework
ReAct, respectively, demonstrating its effectiveness in adapting to users’ dynamic preferences.

2 Related Work

2.1 LLM Agent

The emergence of LLMs has transformed autonomous agents, enabling them to perform tasks with
human-like intelligence through powerful reasoning and knowledge capabilities. These agents typ-
ically feature modules for profiling [4], memory [20], planning [21], and action [22]. Profiling
defines the agents role and personality [23, 24], while memory enables learning and adaptation [20].
Planning is enhanced by Chain-of-Thought (CoT) [25] and Tree of Thoughts (ToT) [26], which
break down complex tasks using sequential or tree-based reasoning. Action modules execute plans
by combining internal logic with external tools [27, 22]. Integrated reasoning and acting approaches,
like ReAct [16], enable dynamic decision-making, while Reflexion [17] improves adaptability via
self-reflection and feedback.

LLM agents are now widely used in domains like marketing [28], and software development [29].
As these agents become more capable, user demands have shifted from seeking general responses
to expecting interactions that are more aligned with their personalized needs. Enhancing the ability
of agents to provide tailored and personalized experiences has thus become a key focus of current
research.

2.2 LLM Personalization

Real-world applications like personalized web interaction [27] and conversational recommendation
[30] demand flexible models that adapt to evolving user needs. While traditional methods like
collaborative filtering [31] are common, they lack semantic understanding and rich interactions.
With LLMs, there’s a shift toward language-based agents, offering more personalized and responsive
experiences. LLM personalization mainly follows two approaches: fine-tuning and training-free
methods. Fine-tuning [9, 10, 32] adjusts model parameters using user-specific data for improved
alignment, though it requires significant resources. Training-free approaches like RAG and prompt
engineering offer lightweight alternatives. RAG [8, 11] retrieves external data in real time, while
prompt engineering [12, 13, 14, 33] adapts prompts to personalize outputs without modifying the
model. Recent works further explore controllable text generation guided by user preferences. For
instance, OPAD [34] and CoS [35] propose controllable generation methods that rely on explicit
preference instructions to guide LLM outputs. AMPLe [36] infers preferences through multiple
rounds of explicit user feedback.

However, current methods still struggle with modeling preference strengths and controlling gener-
ation when user feedback is sparse or inconsistent. Our work addresses these gaps by improving
preference modeling and guiding LLM agents to produce more personalized outputs.

3 Target Formulation

This paper focuses on personalization tasks where LLM-based agents generate responses tailored to
user preferences. This includes (i) conversational recommendation, where the agent interacts with
users to refine intent and recommend suitable items, and (ii) personalized web interaction, where
the agent performs context-aware actions such as search or comment generation based on inferred
preferences. Here, we formulate the personalization task of LLM agent as follows:
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Figure 2: Overall framework of AdaPA-Agent, which includes two components: (1) Alignment-
Based Strength Estimation, which computes alignment scores between structured preference
chains and augmented user-agent interactions to infer the relative importance of preferences. (2)
Controllable Personalized Generation, which combines next-token distributions from preference-
conditioned LLM outputs, weighted by their estimated strengths. Our method enables the agent to
generate responses that reflect the user’s evolving priorities without requiring explicit feedback.

Definition 3.1 Personalization Task of LLM Agent [27, 6]. Given a user u, his user-agent inter-
action and intent at current time t is Du

t and Iut , and historical interactions is Hu = {Du
i }

t−1
i=1 .

The intent Iut is influenced by the user’s preference set Pu = {pui }Mi=1, where M is the number of
preferences. Pu can be extracted fromHu, and each preference pui has a corresponding strength ωi.
The goal of the LLM agent is to infer the preference information from user-agent interactions and
use it to generate a response Ou

t that aligns with the user’s intent Iut .

4 Methodology

Existing personalization methods often encode user preferences as static prompts or memories, over-
looking how their relative strength evolves over time. However, modeling dynamic preference
strength is challenging due to limited user feedback and the ambiguity of natural language. To
address this, we propose AdaPA-Agent, a LLM-agent personalization framework that captures
preference dynamics via Adaptive Preference Arithmetic. As shown in Figure 2, it includes: (1)
Alignment-Based Strength Estimation (Section 4.1), and (2) Controllable Personalized Gener-
ation (Section 4.2). The first component estimates preference strengths adaptively without extra
feedback through a dual-side augmentation module and an LLM-based alignment scorer. These
strengths are then used in generation by combining next-token distributions conditioned on prefer-
ences in the second component. This allows the agent to adapt responses continuously based on
updated preference weights. The following sections detail each component.

4.1 Alignment-Based Strength Estimation

Finding an observed signal that correlate the strength of user preferences is important for estimation
without user feedback. Our key insight is that the stronger a preference, the more frequently it
manifests in user-agent interactions. Based on the insight, we reformulate strength estimation as
an alignment problem: for each preference, we measure how well it semantically aligns with the
user-agent interaction and treat this alignment score as a proxy for strength. A higher alignment
score indicates that the interaction provides stronger support for the preference, hence implying a
larger strength for that preference.

However, user expressions are often vague and diverse in practice, which makes alignment scoring
unreliable when using naïve methods such as keyword overlap or static embedding similarity. To
address this challenge, we incorporate two key techniques: (i) dual-side augmentation, which en-
riches both the preference (via preference chains) and interaction sides (via conversation-level para-
phrases) with more informative and semantically diverse representations; and (ii) an LLM-based
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scoring module, which assesses the alignment between each augmented preference-interaction pair
in a context-aware and interpretable manner.

4.1.1 Dual-Side Augmentation

Preference-side augmentation. We first extract the set of preferences Pu from historical interac-
tions Hu. However, user preferences often emerge at multiple semantic levels, i.e., from abstract
self-descriptions to concrete behavioral cues. To capture this spectrum, we construct a three-stage
preference chain for each preference pui using a CoT prompt:

Ci = CoT(pui ) =
[
prawi → prefi → pexpi

]
, (1)

where prawi is the original description of the preference extracted from pui , prefi is a context-aware
reformulation refining prawi , and pexpi enumerates concrete items or behaviors exemplifying prawi

and prefi . This three-level structure supplies coarse-to-fine preference information for the subsequent
alignment scoring. The complete prompt is provided in Appendix A, Prompt 1.

Interaction-side augmentation. Since user intent is typically implicit and linguistically diverse,
computing an alignment score from a single interaction can be highly biased. To reduce this variance,
we enrich the interaction side by paraphrasing the original user-agent interaction Du

t into multiple
semantically equivalent variants:

g(Du
t ) =

{
Du

t1 , D
u
t2 , . . . , D

u
tK

}
, (2)

where we employ an LLM as a generation function g(·) (Prompt 2, Appendix A), each synthetic
interaction Du

tk
(k = 1, 2, . . . ,K) preserves the same number of turns as Du

t but rewrites utterances
with alternative lexical and syntactic choices to enrich the expression of user intent. The augmented
set Au = g(Du

t ) ∪ Du
t forms a more complete pool of interaction variants for alignment scoring.

4.1.2 LLM-Based Alignment Scoring

Compared to static embeddings or keyword matching, LLMs offer a richer understanding of seman-
tics, enabling context-aware and fine-grained alignment. Therefore, we employ an LLM to assess
the alignment score of each preference-interaction pair. Specifically, given the structured prefer-
ence chains Ci and the augmented interaction set Au, we compute a alignment score si for each
preference pui as:

si =
1

|Au|
∑

D∈Au

f
(
Ci, D

)
, (3)

where f(·, ·) is an LLM-based scorer returning a fine-grained alignment score (1-10) for a preference-
interaction pair (Prompt 3, Appendix A). We then normalize the scores to obtain relative strength of
each preference:

ωi =
si∑M
j=1 sj

. (4)

Through this process, we can obtain and adaptively update relative strength of each preference with-
out requiring additional user feedback.

4.2 Controllable Personalized Generation

Once the set of preference strengths {ωi}Mi=1 is obtained, the remaining question is how to use
these weights to steer an LLM so that its response continuously reflects the user’s current intent.
Given the inherent ambiguity in natural language prompting, directly inserting numeric weights into
a text prompt is unreliable [18]. Recent work [19] has demonstrated that complex textual style
can be effectively generated by arithmetically combining the next-token distributions of language
models conditioned on different basic styles. This motivates the proposal of preference arithmetic,
a technique that combines multiple preference-conditioned distributions in a formulaic way, using
the dynamically estimated strengths ωi as weights. This allows for fine-grained control over the
influence of each preference pui on the generated response Ou

t .

Specifically, at each step of generating the response Ou
t , the LLM produces a next-token distribu-

tion. Let Popt(·) be the optimal personalized next-token distribution, which is conditioned on the
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user’s intent Iut . We model Popt(·) as a weighted combination of M individual next-token distri-
butions, where each individual distribution Ppu

i
(·) is conditioned on a specific preference pui from

the user’s preference set Pu. The overall next-token distribution for generating the current token wk

of the response Ou
t , given the partially generated response prefix Ou

t,<k and the current user-agent
interaction Du

t , is defined as:

Popt(wk|Ou
t,<k,Du

t , Iut ) =
M∑
i=1

ωi ·Ppu
i
(wk|Ou

t,<k,Du
t , p

u
i ), (5)

where each preference-conditioned distribution Ppu
i
(·) is generated by the LLM when prompted

with the specific preference pui in the context of the current interactionDu
t and the already generated

part of the response Ou
t,<k. For preference pui , we can use its augmented representation, the pref-

erence chain Ci (from Section 4.1.1), to construct a comprehensive prompt for the LLM. Thus, the
i-th preference-conditioned next-token distribution is:

Ppu
i
(wk|Ou

t,<k,Du
t , p

u
i ) = LLM((Ou

t,<k,Du
t , Ci)). (6)

This formulation enables a continuously steerable decoding process, where each preference influ-
ences generation proportionally to its weight. Equivalently, the combined distribution can be viewed
as the solution to a weighted KL minimization problem with closed-form optimum [19]:

P ⋆ = argmin
P

M∑
i=1

ωi DKL

(
P ∥Qi

)
, (7)

P ⋆(wk) = softmax
( M∑
i=1

ωi logQi(wk)
)
. (8)

Here, P ⋆(wk) represents the KL-optimal compromise among the preference-conditioned distri-
butions Qi, where stronger preferences (larger ωi) dominate while weaker yet relevant ones still
contribute to a balanced, intent-aligned generation.

To generate the full responseOu
t , tokens are sampled autoregressively. As illustrated in Algorithm 1,

at each generation step k, the corresponding token wk is sampled from the combined distribution:
wk ∼

∑M
i=1 ωi · LLM((Ou

t,<k,Du
t , Ci)), and extend the context as: Ou

t,<k+1 = [Ou
t,<k, wk]. This

process continues iteratively until the sampled token wk is the end-of-sequence token (EOS), ensur-
ing the generation of coherent and personalized responses.

5 Experiments

In this section, we evaluate our AdaPA-Agent2 on two typical LLM personalized agent tasks (con-
versational recommendation and personalized web interaction). Additionally, we validate the effec-
tiveness of our method design through a series of ablation experiments. In the following, we first
present the experimental setup and baselines, and then provide a detailed presentation and analysis
of the experimental results.

5.1 Experimental Setup

5.1.1 Baseline

The proposed AdaPA-Agent is compared with the following baselines: ReAct [16] combines reason-
ing and action generation to improve decision-making in interactive tasks, allowing models to adapt
dynamically to new information and user needs. Reflexion [17] uses verbal reinforcement learn-
ing for self-reflection and feedback, allowing language agents to continuously refine their actions
and reasoning, making them more adaptable to personalized interactions. SimToM [37] introduces
perspective-taking to improve theory-of-mind (ToM) capabilities, helping models better understand
and predict human intentions, thus tailoring responses based on individual user preferences. Rec-
Mind [38] leverages an LLM-powered autonomous recommender agent with a self-inspiring algo-
rithm, enabling zero-shot personalized recommendations by considering historical information and

2The code is available at: https://github.com/Sirius11311/AdaPA.
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Maximum
Steps

Method Long-Term Tasks Short-Term Tasks All Tasks
RSR AIR RSR AIR RSR AIR

3

ReAct [16] 30.27±9.78 2.81±0.09 30.19±7.73 2.89±0.04 30.20±5.20 2.85±0.05
Reflexion [17] 38.45±9.62 2.74±0.09 28.69±3.79 2.85±0.03 33.80±6.80 2.79±0.05
RecMind [38] 39.77±9.65 2.73±0.13 32.50±4.44 2.85±0.05 36.40±4.73 2.78±0.08
InteRec [39] 45.67±11.55 2.66±0.16 32.87±4.48 2.76±0.08 39.60±6.73 2.71±0.10
SimTom [37] 40.22±10.68 2.78±0.09 31.19±5.58 2.87±0.05 36.01±4.67 2.82±0.06
AdaPA-Agent 46.10±9.65 2.66±0.10 37.05±3.94 2.62±0.06 41.45±5.82 2.64±0.08

5

ReAct [16] 57.47±9.53 4.19±0.19 40.99±4.59 4.46±0.09 49.60±4.60 4.32±0.14
Reflexion [17] 67.88±7.80 3.81±0.24 51.40±6.30 4.24±0.18 60.20±4.80 4.01±0.19
RecMind [38] 66.58±9.29 3.77±0.30 58.92±4.72 4.00±0.18 62.82±5.88 3.88±0.19
InteRec [39] 70.28±10.35 3.67±0.38 61.83±6.44 3.88±0.15 66.36±5.91 3.77±0.23
SimTom [37] 66.20±9.71 3.88±0.30 52.58±7.46 4.17±0.17 59.45±4.37 4.02±0.17
AdaPA-Agent 71.27±9.37 3.64±0.30 63.04±4.84 3.83±0.19 67.24±4.41 3.73±0.23

7

ReAct [16] 73.50±7.77 5.06±0.39 51.92±3.31 5.59±0.21 63.40±4.60 5.31±0.27
Reflexion [17] 79.70±5.74 4.51±0.43 62.08±4.86 5.20±0.22 71.40±2.73 4.83±0.27
RecMind [38] 81.26±5.38 4.40±0.43 65.24±5.20 4.82±0.26 73.80±2.93 4.59±0.24
InteRec [39] 79.64±5.81 4.26±0.47 69.60±7.84 4.51±0.27 75.00±3.33 4.38±0.17
SimTom [37] 79.98±4.94 4.44±0.42 64.07±7.01 5.07±0.32 72.60±3.27 4.73±0.30
AdaPA-Agent 80.36±5.64 4.41±0.42 70.45±6.21 4.51±0.30 75.41±3.07 4.46±0.36

Table 1: Main results of the AdaPA-Agent method and baseline models on the conversational recom-
mendation task. The table presents recommendation successful rate (RSR) and average interaction
rounds (AIR) for long-term, short-term, and overall performance, evaluated under different maxi-
mum steps (3, 5, and 7).

previous states. InteRec [39] integrates long-term and short-term memory mechanisms to enhance
personalized recommendations, improving the understanding of user preferences and context for
more relevant interactions.

5.1.2 Implementation Details

For AdaPA-Agent, we use Llama-3.1-8B-Instruct [40] as the local LLM to generate the next-token
distribution. In the interaction-augmentation phase, we set K = 4 for the conversational recommen-
dation task and K = 2 for the personalized web interaction task. In the preference arithmetic phase,
we set M = 2 for both two tasks, i.e., we choose top 2 preferences to generate the personalized
next-token distribution. In the conversational recommendation task, GPT-4o [41] serves as the user
simulator, while DeepSeek V2.5 [42] supports all baselines and AdaPA-Agent. For the personalized
web interaction task, GPT-4o is used consistently across all baselines and AdaPA-Agent. To reduce
generation randomness, we set the LLM temperature to 0 during all evaluations.

5.2 Conversational Recommendation Task

5.2.1 Task Introduction

(1) Task Description: Conversational recommendation systems personalize suggestions through
real-time interactions. Users express needs via natural language, while the agent clarifies and recom-
mends accordingly. To provide recommendations that better align with the user’s intent, the agent
needs to be able to model the changes in the user’s preference strength. (2) Task Construction:
To evaluate how well our method models preference strength, we divide user movie preferences
into long-term and short-term types. Based on the Reddit-Movie dataset [6], we filter 984 unique
users with sufficient historical data. Then, we extract their stable preferences from historical data
as long-term and select unrelated movies to define short-term preferences. A dynamic simulation
environment is built using an LLM-based user simulator [43, 44], where each task randomly assigns
a dominant preference type to simulate the conversation. This setup allows controlled variation in
preference strength, enabling direct and systematic evaluation of our method. We introduce the
setup details of task settings and user simulator in Appendix C. (3) Evaluation Metrics: The task
is limited to T rounds. If the agent recommends the target movie within k rounds (k ̸= T ), it suc-
ceeds; otherwise, it fails. Performance is measured by: Recommendation Successful Rate (RSR) =
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Method Search Recommendation Review Overall
F. Acc R. Acc F. Acc R. Acc F. Acc R. Acc F. Acc R. Acc

Random Memory 0.974 0.640 0.296 0.018 0.996 0.442 0.745 0.357
Last Memory 0.937 0.626 0.432 0.028 1.000 0.442 0.782 0.357
Relevant Memory 0.928 0.622 0.492 0.030 1.000 0.443 0.800 0.356
ReAct [16] 0.903 0.605 0.560 0.027 0.996 0.444 0.815 0.350
RecMind [38] 0.981 0.645 0.226 0.017 0.990 0.442 0.721 0.359

AdaPA-Agent 0.987 0.654 0.592 0.027 1.000 0.457 0.851 0.367

Table 2: Main results of the AdaPA-Agent method and baseline models on the single-turn track
settings of personalized web interaction. The table shows the function accuracy (F. Acc.) and
response accuracy (R. Acc.) for the three web services: Search, Recommendation and Review.

Method Search Recommendation Review Overall
F. AccR. AccAvg. StepsF. AccR. AccAvg. StepsF. AccR. AccAvg. StepsF. AccR. AccAvg. Steps

Random Memory 0.999 0.680 4.193 0.703 0.042 4.474 1.000 0.448 2.007 0.896 0.380 3.564
Last Memory 0.996 0.676 4.229 0.708 0.045 4.252 1.000 0.449 2.007 0.897 0.381 3.597
Relevant Memory 0.996 0.686 4.233 0.715 0.042 4.564 0.999 0.448 2.008 0.899 0.383 3.609
ReAct [16] 0.996 0.674 4.657 0.218 0.013 5.468 0.974 0.448 2.129 0.718 0.369 4.198
Reflexion [17] 1.000 0.686 5.406 0.281 0.014 6.145 0.976 0.449 2.145 0.741 0.373 4.579
RecMind [38] 0.997 0.642 6.728 0.347 0.026 6.003 0.997 0.451 2.107 0.771 0.364 4.938
InteRec [39] 0.999 0.642 3.110 0.618 0.022 3.008 1.000 0.447 2.001 0.867 0.362 2.706

AdaPA-Agent 0.999 0.698 5.352 0.768 0.039 3.485 1.000 0.455 2.004 0.917 0.386 3.592

Table 3: Main results of the AdaPA-Agent method and baseline models on the multi-turn track set-
tings of personalized web interaction. The table shows the function accuracy (F. Acc.), response
accuracy (R. Acc.) and average steps (Avg. Steps) for the three web services: Search, Recommen-
dation and Review.

Ns

N × 100%, Average Interaction Rounds (AIR) =
∑N

i=1
ki

T , where N is the total tasks, Ns the
successful recommendations, and ki the interaction rounds in task i. Higher RSR and lower AIR
indicate better efficiency.

5.2.2 Results Analysis

The results in Table 1 compare AdaPA-Agent with baseline models under varying maximum steps
(3, 5, and 7) in the conversational recommendation task. AdaPA-Agent consistently outperforms
baseline methods in terms of RSR while maintaining competitive step efficiency. AdaPA-Agent
maintains a stable and robust performance across both long-term and short-term tasks, unlike some
baseline methods that exhibit imbalances. In contrast, baseline methods often show trade-offs. For
instance, RecMind performs well on short-term tasks but suffers on long-term preferences, while
Reflexion achieves moderate long-term results but lags on short-term tasks. These inconsistencies
suggest a lack of adaptive preference modeling. AdaPA-Agent addresses this gap by estimating
dynamic preference strengths and adjusting generation accordingly, leading to stable performance
across diverse user intents. Although InteRec has explicitly considered the long-term preference
and short-term preference, it still suffers the problem of modeling the preference strength and has
a lower performance than AdaPA-Agent. Furthermore, AdaPA-Agent strikes an optimal balance
between RSR and AIR, making it more efficient in real-time applications. At just 3 steps, it outper-
forms all baselines on overall RSR (41.45% vs. 38.60% by RecMind and 36.01% by SimTom), and
achieves the lowest AIR (2.64). This demonstrates that AdaPA-Agent can effectively estimate pref-
erence strengths with minimal feedback and provide accurate recommendations even within short
interactions, confirming its effectiveness in real-world conversational recommendation systems.

5.3 Personalized Web Interaction Task

5.3.1 Task Introduction

(1) Task Description: Personalized Web agents infer user preferences to enhance web services. We
use the PWABench benchmark [27], which includes tasks like personalized search, recommenda-
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Figure 3: Case study of AdaPA-Agent in a movie recommendation scenario. The model dynamically
adjusts preference strengths based on user-agent interactions and generates personalized responses.

tion, and review generation. These tasks require LLMs to select the right web function and param-
eters for personalized outputs. PWABench also provides three memory retrieval baselines–Random
Memory, Last Memory, and Relevant Memory–that sample different historical data to assist agents.
To better reflect real-world user behaviors, we do not restrict users to only two preferences as in
the conversational recommendation task. Instead, each user may have multiple active preferences
with diverse and dynamically shifting strengths, posing greater challenges for accurate modeling
and adaptation. (2) Evaluation Metrics: the evaluation metrics for the system include three key
components: (a) Function Accuracy (F. Acc): evaluates the agent’s ability to select the correct web
function and parameters, scoring 1 for correct selection and 0 otherwise; (b) Response Accuracy (R.
Acc): for search and recommendation tasks, this metric uses the rank r of the target product within
the returned product list as the performance indicator and is calculated as:

R. Acc =

{
1− r−1

10 , if r ≤ 10

0, if r > 10
; (9)

and (c) Average Steps (Avg. Steps): measures total actions needed to complete a task, where fewer
steps indicate higher efficiency.

5.3.2 Results Analysis

In the personalized web interaction task, accurately understanding user intent requires distinguish-
ing subtle differences in preference-driven behaviore.g., discerning whether a user prefers to search
for a product or directly receive a recommendation. This challenge is particularly pronounced in
single-turn interactions, where the agent lacks rich dialogue context. As shown in Table 2, AdaPA-
Agent achieves the best overall performance across all services, reaching the highest overall function
accuracy (F. Acc: 0.851) and response accuracy (R. Acc: 0.367). In particular, AdaPA-Agent signif-
icantly outperforms prior methods on recommendation-related interactions (F. Acc: 0.592), a setting
where user intent is often implicit and preference strength is most influential. Compared to RecMind
(0.226) and Random Memory (0.296), AdaPA-Agent improves recommendation accuracy by over
30 absolute points, showing its ability to infer the dominant preferences even with sparse interaction.

As shown in Table 3, in the multi-turn track, user feedback from multiple rounds is utilized to refine
the model’s personalized output, leading to performance improvements across all methods compared
to the single-turn track. However, AdaPA-Agent stands out not only in achieving higher function
accuracy and response accuracy than the baseline methods but also in maintaining relatively small
average steps. This highlights the efficient preference modeling capabilities of AdaPA-Agent, as it
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does not rely on excessive user feedback. While methods like Reflexion and ReAct, which depend
on user feedback to update their understanding of user preferences, require more steps on average.

These results affirm the core advantage of AdaPA-Agent: by modeling preference strengths adap-
tively, it delivers both more accurate and more efficient personalized servicesespecially in settings
where feedback is limited or user intent is ambiguous.

5.4 Case Study

We conduct a case study to examine how AdaPA-Agent dynamically adjusts to user preferences in
a conversational movie recommendation scenario with two competing preferences: light-hearted
comedy and emotional movies. As shown in Figure 3, across different user utterances, the pref-
erence weights inferred by AdaPA-Agent shift in a consistent and interpretable manner, accurately
reflecting subtle changes in user intent. For instance, when the user mentions wanting a story that
really moves me, the alignment score for the emotional preference sharply increases, prompting a
matching recommendation. In contrast, when the user seeks something fun, the model shifts weight
toward the light-hearted preference. This illustrates two key strengths of our approach: (1) the
ability to capture nuanced preference signals through alignment-based estimation without explicit
feedback, and (2) the controllability of generation via preference-weighted decoding, allowing the
agent to produce responses that align precisely with the user’s evolving priorities. This example
highlights how AdaPA-Agent enables fine-grained and interpretable adaptation in real-time person-
alized interactions.

5.5 Additional Experiments

The appendix provides extensive ablation studies (Appendix D) that further validate the effective-
ness of AdaPA-Agent in modeling dynamic preference strengths. These analyses demonstrate that
(1) dual-side augmentation substantially enhances robustness and fine-grained preference estimation
(Appendix D.1), (2) the proposed LLM-based alignment scorer more accurately captures semantic
alignment between user preferences and interactions compared to embedding-based methods (Ap-
pendix D.2), and (3) the continuous preference arithmetic formulation enables more expressive and
controllable generation than prompt-based methods (Appendix D.3).

6 Conclusion

We present AdaPA-Agent, a training-free framework for enhancing LLM-based agents through
dynamic preference modeling. AdaPA-Agent addresses two key challenges in personalization: (i)
estimating the relative strength of user preferences without relying on explicit user feedback, and
(ii) effectively incorporating these strengths into the generation process. To solve the first challenge,
we introduce Alignment-Based Strength Estimation, which leverages dual-side augmentation and an
LLM-based alignment scorer to infer fine-grained preference weights from implicit user behaviors.
To solve the second challenge, we propose Controllable Personalized Generation, which utilizes the
estimated strengths via preference arithmetic to control the personalized generation process. Our
experiments on two personalized agent tasks–conversational recommendation and personalized web
agent–demonstrate that AdaPA-Agent consistently improves alignment with users’ evolving intents
and priorities by modeling dynamic preferences.
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided an open link for our code and dataset.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided the details of our experimental setting in the main paper.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have provided an error bar for our results.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
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the experiments?
Answer: [Yes]
Justification: We have provided the details of experiments compute resources about GPU
using and training time.
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tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the code package.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: We have introduced the details of our new dataset and provided an open link
for our code and dataset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLMs for editing (e.g., grammar, spelling, word choice), data pro-
cessing/filtering, and writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Prompts for Alignment-Based Strength Estimation

The prompt 1 is used for preference-side augmentation, a key step in estimating dynamic preference
strengths. It constructs structured preference chains that represent user preferences across three
semantic levels: from abstract to concrete. The model is instructed to think step by step and output
the structured result strictly in JSON format.

Prompt 1: Reasoning Augmentation

Your goal is to help an AI agent better understand user preferences for personalized response
generation.
Given the following user preference description:
{USER_PREFERENCE_CONTEXT}

Your task is to construct a structured preference chain with three levels of semantic granularity.

Please think step by step and provide:
1. raw: the original or high-level form of the preference
2. refined: a context-aware, clearer reformulation of the raw preference
3. example: representative items, actions, or behaviors that reflect the preference

Output the result in the following JSON format:
{
"raw": "<fill in raw preference>",
"refined": "<fill in refined preference>",
"example": ["<item_1>", "<item_2>", "..."]
}

This prompt is used for interaction-side augmentation, a key step in estimating dynamic preference
strengths. It instructs the LLM to generate K paraphrased versions of a given user-agent interaction
Du

t , maintaining the same structure and intent but varying the surface-level expressions. This helps
expand the range of observable user behaviors, reduces scoring bias from any single expression, and
enables more robust alignment between user intent and preferences during strength estimation.

Prompt 2: Intuiton Augmentation

Please generate {K} semantically equivalent but lexically diverse conversations based on the following
user-agent interaction:
User-Agent Interaction:
{Du

t }

Instructions:
1. Return only the {K} generated interactions, each preserving the number of turns and speaker roles.
2. Keep the user’s underlying intent consistent with the original conversation.
3. Use varied wording and sentence structures to enhance linguistic diversity.

This prompt is designed for use in the alignment scoring stage of our framework, where an LLM is
asked to assess how well a given user-agent interaction reflects a specific user preference. The input
includes a structured preference chain (comprising raw, refined, and example-level descriptions)
and the current interaction between user and agent. The LLM is instructed to reason step-by-step,
interpret the semantics of the preference, and judge the degree of alignment exhibited in the dialogue.
It outputs a single numerical alignment score ranging from 0 to 10, where higher values indicate
stronger semantic alignment. This score serves as the foundation for computing the relative strength
of each preference in the final generation stage.
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Algorithm 1 Adaptive Preference Arithmetic (AdaPA-Agent)
Require: Accumulated user interaction data Du

t up to time t,
User preference set Pu = {pui }Mi=1,
Chain-of-thought generator CoT(·),
Interaction paraphraser g(·),
Alignment scorer f(·, ·)

Ensure: Personalized agent response Ou
t

1: ## 1: Alignment-Based Strength Estimation
2: Au ← g(Du

t ) ∪ {Du
t } # Interaction-side augmentation

3: for i = 1 to M do
4: Ci ← CoT(pui ) # Preference-side augmentation
5: si ← 1

|Au|
∑

D∈Au f(Ci,D) # Alignment scoring
6: end for
7: Normalize: ωi ← si∑M

j=1 sj
for i = 1:M # Strength weighting

8: ## 2: Controllable Personalized Generation
9: Initialize: Ou

t ← [ ] # Empty response buffer
10: while w ̸= EOS do
11: Pmix ←

∑M
i=1ωi · LLM

(
(Ou

t ,Du
t , Ci)

)
12: w ∼ Pmix ## Sample next token
13: Ou

t ← [Ou
t , w] ## Update response prefix

14: end while
15: return Ou

t

Prompt 3: Measuring Correlation Score

You are an alignment evaluator tasked with assessing how well a user-agent interaction aligns with a
given preference chain.

Given:
- User-Agent Interaction: {Du

t }
- Preference Chain: {Ci}, which includes a raw description, a refined version, and representative
examples of a specific user preference.

Instructions:
1. Think step by step.
2. Judge how strongly the interaction reflects the intent or semantics of the given preference.
3. Provide a single alignment score between 0 and 10:
- 10 = perfectly aligned (preference is clearly implied or reflected)
- 0 = completely unrelated
4. Only return the numerical score.

B Algorithm for AdaPA-Agent

Algorithm 1 presents the core procedure of Adaptive Preference Arithmetic (AdaPA-Agent),
which progressively adjusts the influence of user preferences based on the accumulated interaction
context to generate personalized responses. The algorithm operates in two stages that jointly enable
adaptive, context-aware preference control.

• 1. Alignment-Based Strength Estimation (Lines 1-7): At each interaction step t, the
agent updates its internal record of user interactions Du

t . To enrich contextual diversity,
it performs interaction-side augmentation by paraphrasing the interaction history via g(·),
forming an expanded set Au (Line 2). For each user preference pui ∈ Pu, the agent gen-
erates reasoning traces using a CoT generator (Line 4), then evaluates the semantic align-
ment between each preference trace and the augmented interaction set using the alignment
scorer f(·, ·) (Line 5). The resulting alignment scores {si} are normalized into preference
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weights {ωi} (Line 7), representing each preferences contextual relevance within the ongo-
ing dialogue. This ensures that the model adaptively reflects preference shifts as user intent
evolves over multiple turns.

• 2. Controllable Personalized Generation (Lines 8-15): Initialized with an empty output
prefix (Line 9), the agent generates a response token by token. At each step, it combines
next-token distributions weighted by the computed ωi across all preferences (Line 11),
samples the next token (Line 12), and appends it to the output (Line 13), repeating until the
end-of-sequence (EOS) token is reached.

By continually re-estimating preference strengths and integrating them into generation, AdaPA-
Agent achieves context-aware, progressive adaptation across interaction turns. This allows the agent
to maintain alignment with evolving user intent without requiring retraining or explicit feedback, re-
sulting in more personalized and consistent dialogue behavior.

Prompt 4: LLM-Based User Simulator for Conversational Recommendation

You will play the role of a user interacting with a conversational movie recommendation system. Your
task is to find a movie that matches your current taste, which is influenced by your preferences.
Role & Behavior Guidelines:

• Engage naturally with the agent by gradually revealing your preferences.

• Focus only on requesting or evaluating movie suggestions based on your preferences.

• Never mention the name of your target movie.

Task Information:
• In this task, your preference is: {prefer_info}.

• In this task, your target movie is: {target_item}.

Simulation Rules:
1. Start with vague intent (e.g., “I want to watch something meaningful”).

2. Reveal preference cues as the agent asks follow-up questions.

3. Accept recommendations if they match the target movie.

4. Politely reject unrelated ones and give vague but helpful feedback (e.g., “That’s not quite
what I’m looking for”).

5. Maintain a natural and preference-driven tone throughout.

IMPORTANT: Your role is to simulate a movie enthusiast who is exploring potential movie recom-
mendations, not to reveal the exact title of the target movie–{target_item}. Keep the conversation
natural and engaging, and always focus on requesting recommendations or giving feedback based on
the suggestions you receive.

C Details of Conversation Recommendation Task Construction

To carefully evaluate our method’s ability to model preference strength, we categorize user movie
preferences into two types: long-term and short-term. This distinction allows for controlled evalua-
tion of how well the method adapts to shifts in preference strength. The dataset of the task is based
on Reddit-Movie [6], and we extract stable preferences from user’s historical data as long-term pref-
erences and generate a corresponding movie list. We select several movies unrelated to long-term
preferences and regard their features as the user’s short-term preferences.

Furthermore, we create a dynamic simulation environment where the agent interacts with a LLM-
based user simulator. For each recommendation task, the user simulator randomly selects which
type of preference (long-term or short-term) will dominate the interaction, allowing us to control the
variation of preference strength. This enables us to directly manipulate and evaluate the model’s re-
sponse to dynamic shifts in user preferences, providing a clear validation framework for our method.
To ensure the reliability of this simulation setup, our user simulator design follows common prac-
tices in recent literature [43, 44, 45, 46]. Specifically, we inject user attributes and interaction rules
into prompt templates, and the LLM dynamically generates responses based on the accumulated
dialogue context, enabling evolving user behavior over turns. We construct the user simulator for
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the conversation recommendation task through the following prompt template (Prompt 4). To avoid
exposing the target movie, we insert the rule that the LLM should not mention the target movie
in the conversation. Besides, we use regular expressions in the code to detect and mask any acci-
dental exposure (replacing it with “*”) during the interaction between the LLM agent and the user
simulator. Although our simulator may not perfectly replicate real users, it provides a controlled,
consistent, and adaptive framework for evaluating the effectiveness of preference modeling strate-
gies. To reduce generation randomness, we set the LLM temperature to 0 during all evaluations.
For each reported result in Table 1, we ran 10 trials with different random seeds and computed the
standard deviation across these runs.

D Ablation Studies of AdaPA-Agent

D.1 Effectiveness of Dual-side Augmentation

Figure 4: Win rates of AdaPA-Agent on
using dual-side data augmentation (w/ D-
side), only preference-side augmentation
(w/ P-side) and without using any data
augmentation (w/o D-side) in preference
strengths estimation.

To assess the contribution of dual-side augmentation,
we compare three variants of AdaPA-Agent in pref-
erence strength estimation: using both preference-
and interaction-side augmentation (w/ D-side), using
only preference-side augmentation (w/ P-side), and
without any augmentation (w/o D-side). To vali-
date dual-side augmentation, we simplified the con-
versational recommendation and personalized web
interaction tasks. In the former, we use binary
classification to predict whether a user’s desired
movie aligns with long-term or short-term preferences.
In the latter, we use three-class classification to de-
termine if the required service relates to search, rec-
ommendation, or review. As shown in Figure 4,
the dual-side setup achieves the highest win rate
in both tasks77.3% in conversational recommenda-
tion and 63.8% in personalized web interactionsignif-
icantly outperforming the other variants. These re-
sults highlight that both augmentation dimensions are
critical: while preference-side augmentation improves
semantic richness, interaction-side augmentation en-
hances robustness against linguistic variability.

Relying solely on one side introduces bias or spar-
sity, whereas combining both provides more compre-
hensive signals for modeling fine-grained preference
strengths. By contrast, dual-side augmentation enables
AdaPA-Agent to capture both semantic intent and lin-
guistic variability, significantly improving the accu-
racy of preference strength estimation.

K Recall Precision F1-Score

0 25.32 70.21 37.22
1 43.73 66.70 52.83
2 56.27 72.43 63.34
3 68.79 75.86 72.15
4 87.50 90.32 88.89
5 78.13 80.64 79.35
6 71.88 71.88 71.88

Table 4: Effect of varying the number of
generated user-agent interactions (K) on
the binary classification results of the con-
versational recommendation task.

Building upon the experimental setup in Figure 4, we further investigate the effect of interaction-
side augmentation on dynamic preferences modeling. As shown in the Table 4, K represents the
amount of data augmentation, while recall, precision, and F1-score indicate the model’s performance
on binary classification for different levels of data augmentation. We observe that as K increases,
the recall significantly improves, showing that more augmentation helps identify relevant samples.
Similarly, precision and F1-score also increase, reaching their peak values at K = 4, after which
they start to decrease as K continues to rise. These results show that, the initial improvement
stems from the augmented interaction data providing useful preference information, but excessive
augmentation introduces noise which results in poor performance. The same phenomenon also
occurs in the personalized web interaction task.

D.2 Analysis of LLM-based Alignment Scorer

To evaluate the effectiveness of estimating preference-interaction alignment scores, we compare our
proposed LLM-based method with a traditional embedding-based baseline using Sentence-BERT.
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Maximum Steps Embedding-based LLM-based (ours)
3 35.39 41.45
5 58.56 70.45
7 67.58 75.41

Table 5: Recommendation success rate (RSR) of conversational recommendation using either an
embedding-based alignment scorer (Sentence-BERT) or our proposed LLM-based alignment scorer.
The LLM-based method consistently outperforms the embedding baseline across different maximum
step limits, indicating its superior ability to estimate alignment between user preferences and user-
agent interactions.

For the baseline, we encode both the preference description and the user-agent interaction with
Sentence-BERT and treat the cosine similarity of the two embeddings as the alignment score. As
shown in Table 5, the LLM-based alignment scorer consistently outperforms the embedding-based
method across varying maximum step limits in the conversational recommendation task. This per-
formance gap suggests that LLMs are better at capturing the nuanced alignment between user pref-
erences and interaction trajectories. Unlike static embedding models, LLMs can perform contextual
reasoning and infer implicit preference signals, leading to more reliable estimation of preference
strength and, ultimately, more accurate and intention-aligned recommendations.

Prompt 5: Prompt Engineering

Here are the user’s long-term and short-term preferences and their weights (0 to 1, where 0 means no
relevance and 1 means the highest relevance):
User’s long-term preference: {}
Long-term preference weight: {}
User’s short-term preference: {}
Short-term preference weight: {}
Please respond to the user’s query based on the long-term and short-term preferences and their weights.
User query: {}

D.3 Effectiveness of Preference Arithmetic

Figure 5: Performance comparison of the
preference arithmetic and prompting engi-
neering methods in generating personalized
responses based on varying pairs of (ωS , ωL).
The figure shows the alignment between gen-
erated content and ground truth generated by
GPT-4o.

Figure 5 demonstrates the effectiveness of the pref-
erence arithmetic method in generating personalized
responses based on varying strength combinations
(ωS , ωL) of short-term and long-term preferences ,
compared to the traditional prompting engineering
approach. Both preference arithmetic and prompt
engineering consider two type of preferences and
their weights, while the former uses weights as co-
efficients in arithmetic, the latter regards them as
prompts. We use Llama-2-7b-chat as the backbone
for these two method, while use GPT-4o to generate
the ground truth. The semantic similarity between
the generated content and the ground truth is calcu-
lated by Sentence-BERT. From the figure, it is ev-
ident that preference arithmetic consistently outper-
forms prompting engineering in terms of alignment
with the ground truth. This indicates that adjusting preference-conditioned next-token distributions
using preference strengths more effectively controls the influence of long- and short-term prefer-
ences on the generated content. Moreover, the preference arithmetic method is more accurate in
distinguishing between strength differences, particularly when the strengths of long- and short-term
preferences are close, such as in the (0.4, 0.6) strength pair. While the traditional prompting en-
gineering method struggles with this, likely due to the limitations of understanding of numerical
information in text. This ability allows preference arithmetic to generate more consistent personal-
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ized responses compared to prompting engineering. The prompt engineering template is designed
as follows (Prompt 5):

We further compare AdaPA-Agent with a baseline method, termed Semantic Strength Prompt-
ing (SSP), where the strengths of preferences are represented as five discrete textual descriptors
(weakest, weak, neutral, strong, strongest). We evaluate both methods on the Conversational Rec-
ommendation Task, using Recommendation Success Rate (RSR) and Average Interaction Rounds
(AIR) as metrics. As shown in Table D.3, AdaPA-Agent consistently outperforms the SSP base-
line across all interaction settings. Although such discrete verbal schemes may appear expressive,
they are inherently limited to a finite number of strength categories, leading to coarse control gran-
ularity. In contrast, AdaPA-Agent models preference strengths as continuous values within [0, 1],
enabling infinitely many combinations of strength settings. This formulation allows more nuanced
and personalized control over how preferences influence generation. Moreover, since verbal descrip-
tors like weak or strong can be semantically ambiguous and inconsistently interpreted by LLMs,
token-wise distribution mixing provides explicit and interpretable control by directly manipulating
strengths over next-token distributions, thereby reducing ambiguity and semantic drift. Therefore,
these results demonstrate that AdaPA-Agent achieves superior expressivity and controllability com-
pared to discrete strength prompting, enabling more robust and interpretable preference-conditioned
generation.

Max Steps Method RSR AIR

3 AdaPA-Agent 41.45 2.64
SSP 34.20 2.80

5 AdaPA-Agent 67.24 3.73
SSP 59.60 4.13

7 AdaPA-Agent 75.41 4.46
SSP 70.82 4.79

Table 6: Performance comparison between AdaPA-Agent and Semantic Strength Prompting (SSP)
on the conversational recommendation task.

E Experiments Compute Resources

In this work, all experiments are conducted on a machine with NVIDIA A6000*2 GPUs, each GPU
has 48G memory.

F Limitations

While our framework shows promising results, it has several limitations that open directions for fu-
ture work. First, our evaluation relies on simulated user interactions, which may not fully capture the
nuance of real-world behaviorfuture work could include human-in-the-loop or live deployment stud-
ies to validate robustness. Second, the use of multiple LLM calls for alignment scoring increases
computational costs, suggesting the need for more efficient approximation techniques. However,
given the ongoing decrease in API call costs, we believe the trade-off between API usage and per-
formance improvement in our method is worthwhile. Third, we focus on two domainsmovie recom-
mendation and web interactionwhile extending the approach to broader tasks (e.g., education, health
advice) remains unexplored.

G Broader Impacts

This work explores dynamic preference modeling for personalized LLM agents, which can enhance
user experience in recommendation, web assistance, and interactive applications. By adaptively
aligning with user intent without requiring explicit feedback, the proposed method supports more
natural and efficient human-AI interactions. However, personalization systems must be carefully
designed to avoid reinforcing user biases, exposing sensitive preferences, or leading to over-reliance
on AI decisions. Future work should consider fairness, privacy, and user control in the deployment
of adaptive preference-aware agents.
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