
Improving the Worst-Case Bidirectional
Communication Complexity for Nonconvex

Distributed Optimization under Function Similarity

Kaja Gruntkowska
KAUST∗

Alexander Tyurin
KAUST∗, AIRI†, Skoltech‡

Peter Richtárik
KAUST∗

Abstract

Effective communication between the server and workers plays a key role in
distributed optimization. In this paper, we focus on optimizing communication,
uncovering inefficiencies in prevalent downlink compression approaches. Con-
sidering first the pure setup where the uplink communication costs are negligible,
we introduce MARINA-P, a novel method for downlink compression, employing
a collection of correlated compressors. Theoretical analysis demonstrates that
MARINA-P with permutation compressors can achieve a server-to-worker commu-
nication complexity improving with the number of workers, thus being provably
superior to existing algorithms. We further show that MARINA-P can serve as a
starting point for extensions such as methods supporting bidirectional compression:
we introduce M3, a method combining MARINA-P with uplink compression and a
momentum step, achieving bidirectional compression with provable improvements
in total communication complexity as the number of workers increases. Theoretical
findings align closely with empirical experiments, underscoring the efficiency of
the proposed algorithms.

1 Introduction

In federated learning (McMahan et al., 2017; Konečný et al., 2016) and large-scale machine learning
(Ramesh et al., 2021; OpenAI, 2023), a typical environment consists of multiple devices work-
ing together to train a model. Facilitating this collaborative process requires the transmission of
substantial information (e.g., gradients, current model) between these devices. In the centralized
framework, communication takes place via a server. As a result, practical challenges arise due to
the large size of machine learning models and network speed limitations, potentially creating a
communication bottleneck (Kairouz et al., 2021; Wang et al., 2023a). One possible strategy to reduce
this communication burden is to use lossy compression (Seide et al., 2014; Alistarh et al., 2017). Our
paper focuses on this research direction.

We consider the following nonconvex distributed optimization task:

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x)

}
, (1)

where x ∈ Rd is the vector of parameters of the model, n is the number of workers and fi : Rd →
R, i ∈ [n] := {1, . . . , n} are smooth nonconvex functions. We investigate the scenario where
the functions fi are stored on n distinct workers, each directly connected to the server via some

∗King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
†AIRI, Moscow, Russia
‡Skolkovo Institute of Science and Technology, Moscow, Russia

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



communication port (Kairouz et al., 2021). At present, we operate under the following generic
assumptions:
Assumption 1.1. The function f is L–smooth, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ ∀x, y ∈ Rd.

Assumption 1.2. There exists f∗ ∈ R such that f(x) ≥ f∗ ∀x ∈ Rd.

In the nonconvex world, our goal is to find a (possibly) random point x̄ such that E[∥∇f(x̄)∥2] ≤ ε.
We refer to such a point an ε–stationary point.

1.1 Related Work

Before we discuss more advanced optimization methods, let us consider the simplest baseline: the
gradient descent (GD) (Lan, 2020), which iteratively performs updates xt+1 = xt − γ∇f(xt) =
xt − γ/n

∑n
i=1 ∇fi(x

t). In the distributed setting, the method can be implemented as follows: each
worker calculates ∇fi(x

t) and sends it to the server where the gradients are aggregated, after which
the server takes the step and broadcasts xt+1 back to the workers. With step size γ = 1/L, GD finds
an ε–stationary point after O

(
δ0L/ε

)
steps, where δ0 := f(x0)− f∗ for a starting point x0. Since at

each step the workers and the server send Θ(d) coordinates/bits, the worker-to-server (w2s, uplink)
and server-to-worker (s2w, downlink) communication costs are

O
(

dδ0L
ε

)
. (2)

Definition 1.3. The worker-to-server (w2s) and server-to-worker (s2w) communication complexities
of a method are the expected number of coordinates/floats that a worker sends to the server and that
the server sends to a worker, respectively, to find an ε–solution. The total communication complexity
is the sum of these complexities.

Unbiased compressors. In this work, to perform lossy compression, we employ mappings from the
following family:
Definition 1.4. A stochastic mapping C : Rd → Rd is an unbiased compressor if there exists ω ≥ 0
such that

E [C(x)] = x, E
[
∥C(x)− x∥2

]
≤ ω ∥x∥2 ∀x ∈ Rd. (3)

We denote the family of such mappings by U(ω). A canonical example is the RandK ∈ U(d/K − 1)
sparsifier, which preserves K random coordinates of a vector scaled by d/K (Beznosikov et al., 2020).
More examples can be found in Wangni et al. (2018); Beznosikov et al. (2020); Szlendak et al. (2021);
Horváth et al. (2022). A larger family of compressors, called biased compressors, also exists (see
Section B). In this paper, we implicitly assume that compressors are mutually independent across
iterations of algorithms.

Worker-to-server compression scales with n. Many previous works ignore the s2w communication
costs and focus solely on w2s compression, assuming that broadcasting is free. For nonconvex
objective functions, the current state-of-the-art w2s communication complexities are achieved by the
MARINA and DASHA methods (Gorbunov et al., 2021; Szlendak et al., 2021; Tyurin and Richtárik,
2023b). Here, two additional assumptions are needed:

Assumption 1.5. The function fi is Li–smooth. We define L̂2 := 1
n

∑n
i=1 L

2
i and Lmax :=

maxi∈[n] Li.

Assumption 1.6. For all C ∈ U(ω), all calls of C are mutually independent.4

Under Assumptions 1.1, 1.2, 1.5, 1.6, and considering the RandK compressor with K ≤ d/
√
n as an

example, the w2s communication complexity of both methods is

K︸︷︷︸
# of sent coord.

×O
(

δ0

ε (L+ ω√
n
L̂)
)

︸ ︷︷ ︸
# of iterations

= O
(

dδ0L̂√
nε

)
, (4)

4This assumptions means that if an algorithm calls a compressor C at some points x1, . . . , xm, then
C(x1), . . . , C(xm) are i.i.d.

2



where we use the facts that L ≤ L̂ and ω = d/K − 1 for RandK. The key observation is that
when comparing (2) and (4), one sees that (4) can be

√
n times smaller if L̂ ≈ L. Consequently,

the communication complexity of MARINA/DASHA scales with the number of workers n, and can
provably improve the worker-to-server communication complexity O

(
dδ0L/ε

)
achieved by GD.

Server-to-worker compression does not scale with n. In certain applications, the significance of
s2w communication cannot be ignored. In 4G LTE and 5G networks, w2s and s2w communication
speeds can be almost the same (Huang et al., 2012) or differ by at most a factor of 10 (Narayanan et al.,
2021). Although important, this issue is often overlooked and that is why it is the s2w communication
that this work places a central emphasis on.

There exist many papers using communication compression techniques to reduce the s2w communi-
cation (Zheng et al., 2019; Liu et al., 2020; Philippenko and Dieuleveut, 2021; Fatkhullin et al., 2021;
Gruntkowska et al., 2023; Tyurin and Richtárik, 2023a). However, to the best of our knowledge, under
Assumptions 1.1, 1.2, 1.5, and 1.6, in the worst case, all previous theoretical s2w communication
guarantees are greater or equal to (2). As an example, let us consider the result from Gruntkowska
et al. (2023)[Theorem E.3]. If the server employs operators from U(ω) and we ignore w2s compres-
sion, the method from Gruntkowska et al. (2023) converges in O

(
(ω+1)δ0L/ε

)
iterations. Thus, with

RandK, the s2w communication complexity is O
(
K × (ω+1)δ0L/ε

)
= O

(
dδ0L/ε

)
. Another method,

called CORE, proposed by Yue et al. (2023), achieves s2w and w2s communication complexities
equal to O

(
r1(f)δ

0L/ε
)
, where r1(f) is a uniform upper bound of the trace of the Hessian. When

r1(f) ≤ dL, CORE can improve on GD. However, this complexity does not scale with n and requires
an additional assumption about the Hessian of f .

2 Contributions

In our work, we aim to investigate whether the server-to-worker and total communication
complexities (2) of the vanilla GD method can be improved. We make the following contributions:

1. We start by proving the impossibility of devising a method where the server communi-
cates with the workers using unbiased compressors U(ω) (or biased compressors from Section B)
and achieves an iteration rate faster than Ω

(
(ω+1)Lδ0/ε

)
(Theorem 3.1) under Assumptions 1.1,

1.2 and 1.6. This result provides a lower bound for any method that applies such compressors to
vectors sent from the server to the workers in every iteration. Moreover, we prove a more general
iteration lower bound of Ω

(
(ω+1)Lδ0/ε

)
for all methods where the server zeroes out a coordinate

with probability 1/(ω+1) (see Remark 3.2).

2. In view of this result, it is clear that an extra assumption is needed to break the lower
bound Ω

(
(ω+1)Lδ0/ε

)
. In response, we introduce a novel assumption termed “Functional (LA, LB)

Inequality” (see Assumption 4.2). We prove that this assumption is relatively weak and holds, for
instance, under the local smoothness of the functions fi (see Assumption 1.5).

3. We develop a new method for downlink compression, MARINA-P, and show that under
our new assumption, along with Assumptions 1.1 1.2, and 1.6, it can achieve the iteration rate of

O
(

δ0L
ε + δ0LA(ω+1)

ε + δ0LB(ω+1)√
nε

)
(see Theorem D.1 with p = 1/(ω+1) + Lemma A.5). Notably, when LA is small and n ≫ 1, this
complexity is provably superior to Θ((δ

0L(ω+1))/ε) and the complexities of the previous compressed
methods. In this context, LA serves as a measure of the similarity between the functions fi, and
can be bounded by the “variance” of the Hessians of the functions fi (see Theorem 4.8). Thus,
MARINA-P is the first method whose iteration complexity can provably improve with the number of
workers n.

4. Moreover, MARINA-P can achieve the s2w communication complexity of

O
(

dδ0L
nε + dδ0LA

ε

)
.

When LA is small and n ≫ 1, this communication complexity is provably superior to (2) and the
communication complexities of the previous compressed methods.

3



5. Our theoretical improvements can be combined with techniques enhancing the w2s com-
munication complexities. In particular, by combining MARINA-P with MARINA (Gorbunov et al.,
2021) and adding the crucial momentum step, we develop a new method, M3, that guarantees a total
communication complexity (s2w + w2s) of

O
(

dδ0Lmax

n1/3ε
+ dδ0LA

ε

)
.

When n ≫ 1 and in the close-to-homogeneous regime, i.e., when LA is small, this complexity is
better than (2) and the complexities of the previous bidirectionally compressed methods.

6. Our theoretical results are supported by numerical experiments (see Section F).

3 Lower Bound under Smoothness

Let us first investigate the possibility of improving the iteration complexity O
(
(ω+1)δ0L/ε

)
under As-

sumptions 1.1,1.2 and 1.6. In Section G, we consider a family of methods that include those proposed
in Zheng et al. (2019); Liu et al. (2020); Philippenko and Dieuleveut (2021); Fatkhullin et al. (2021);
Gruntkowska et al. (2023), where the server communicates with workers using unbiased/biased
compressors, and establish that
Theorem 3.1 (Slightly Less Formal Reformulation of Theorem G.5). Under Assumptions 1.1, 1.2
and 1.6, all methods in which the server communicates with clients using different and independent
unbiased compressors from U (ω) and sends one compressed vector to each worker cannot converge
before Ω

(
(ω+1)Lδ0/ε

)
iterations.

Remark 3.2. The theorem remains applicable to biased compressors B (α) (see Section B) with a
lower bound of Θ

(
Lδ0/αε

)
. This is because if C ∈ U(ω), then (ω + 1)−1C ∈ B

(
(ω + 1)−1

)
. We

also establish a more general result (Theorem G.4): “all methods in which the server zeroes out a
coordinate with probability ≤ p independently across iterations cannot converge before Ω

(
Lδ0/pε

)
iterations.”

This lower bound is tight up to a constant factor. For instance, under exactly the same assumptions,
the EF21-P mechanism from Gruntkowska et al. (2023) converges after Θ

(
(ω+1)Lδ0/ε

)
iterations.

Unlike (4), this convergence rate does not scale with n, and Theorem 3.1 leaves no room for
improvement. Consequently, breaking the lower bound requires an additional assumption about
the structure of the problem. Before presenting our candidate assumption, we first introduce the
ingredients needed to leverage it to the fullest extent: our novel downlink compression method and
the type of compressors we shall employ.

4 The MARINA-P Method

Let us first recall the MARINA method (Gorbunov et al., 2021; Szlendak et al., 2021):

xt+1 = xt − γgt, ct ∼ Bernoulli(p)

gt+1
i =

{
∇fi(x

t+1) if ct = 1,

gt + Ct
i (∇fi(x

t+1)−∇fi(x
t)) if ct = 0

for all i ∈ [n],

gt+1 =
1

n

n∑
i=1

gt+1
i ,

(5)

where g0 = ∇f(x0). Motivated by MARINA, we design its primal counterpart, MARINA-P (Algo-
rithm 1), operating in the primal space of the model parameters, as outlined in (6).

At each iteration of MARINA-P, the workers calculate ∇fi(w
t
i) and transmit it to the server. The server

then averages the gradients and updates the global model xt. Subsequently, with some (typically
small) probability p, the master sends the non-compressed vector xt+1 to all workers. Otherwise,
the ith worker receives a compressed vector Ct

i (x
t+1 − xt). Each worker then uses the received

message to compute wt+1
i locally. Importantly, Ct

1(x
t+1 − xt), . . . , Ct

n(x
t+1 − xt) can differ, and

this distinction will form the basis of our forthcoming advancements.

4



The MARINA-P Method:
Initialize vectors x0, w

0
1, . . . , w

0
n ∈ Rd, step size γ > 0, probability 0 < p ≤ 1 and

compressors Ct
1, . . . , Ct

n ∈ U(ωP ) for all t ≥ 0. The method iterates

gt =
1

n

n∑
i=1

∇fi(w
t
i),

xt+1 = xt − γgt,

ct ∼ Bernoulli(p),

wt+1
i =

{
xt+1 if ct = 1,

wt
i + Ct

i (x
t+1 − xt) if ct = 0

for all i ∈ [n].

(6)

We denote wt := 1/n
∑n

i=1 w
t
i . See the implementation in Algorithm 1.

Comparing (5) and (6), MARINA-P and MARINA are dual methods: both learn control variables (wt
i

and gti ), compress the differences (xt+1−xt and ∇fi(x
t+1)−∇fi(x

t)), and with some probability p
send non-compressed vectors (xt+1 and ∇fi(x

t+1)). However, unlike MARINA, which compresses
vectors sent from workers to server and operates in the dual space of gradients, MARINA-P compresses
messages sent from server to workers and operates in the primal space of arguments.

Let us take RandK ∈ U(d/K − 1) as an example. If we set p = (ω + 1)
−1

= K/d to balance
heavy communications of xt+1 and light communications of Ct

i in (6), MARINA-P averages sending
pd+ (1− p)K ≤ 2K coordinates per iteration. Then, the lower bound from Theorem G.4 implies
that at least Ω

(
(ω+1)δ0L/ε

)
iterations of the algorithm are needed.

At first glance, it seems that MARINA-P does not offer any extra benefits compared to previous
methods, and that is true – we could not expect to break the lower bound. However, as we shall soon
see, under an extra assumption, MARINA-P can achieve a communication complexity that improves
with n.

4.1 Three ways to compress

Existing algorithms performing s2w compression share a common characteristic: at each iteration,
the server broadcasts the same message to all workers (Zheng et al., 2019; Liu et al., 2020; Fatkhullin
et al., 2021; Gruntkowska et al., 2023; Tyurin and Richtárik, 2023a).5 In contrast, in w2s compression
methods, each worker sends to the server a different message, specific to the data stored on that
particular device. An analogous approach can be taken in the s2w communication: intuitively,
sending n distinct messages would convey more information, potentially leading to theoretical
improvements. This indeed proves to be the case. While the usual approach of the server broadcasting
the same vector to all clients does not lead to an improvement over (2), allowing these vectors to
differ enables a well-crafted method to achieve communication complexity that improves with n (see
Corollary D.4).

In Appendix A we provide a detailed discussion of the topic and compare the theoretical complexities
of MARINA-P when the server employs three different compression techniques: a) uses one compres-
sor and sends the same vector to all clients, b) uses a collection of independent compressors, or c)
uses a collection of correlated compressors. We now turn to presenting the technique that gives the
best theoretical s2w communication complexity out of these, namely the use of a set of correlated
compressors.

5A notable exception form this rule is the MCM method (Philippenko and Dieuleveut, 2021) - see Appendix A.

5



4.2 Recap: permutation compressors PermK

Szlendak et al. (2021) propose compressors that will play a key role in our new theory. For clarity of
presentation, we shall assume that d ≥ n and n|d.6

Definition 4.1 (PermK (for d ≥ n and n|d)). Assume that d ≥ n and d = qn, where q ∈ N>0. Let
π = (π1, . . . , πd) be a random permutation of {1, . . . , d}. For all x ∈ Rd and each i ∈ {1, 2, . . . , n},
we define

Ci(x) := n×
qi∑

j=q(i−1)+1

xπj
eπj

.

Unpacking this definition: when the server compresses a vector using a PermK compressor, it
randomly partitions its coordinates across the workers, so that each client receives a sparse vector
containing a random subset of entries of the input vector. Like RandK, PermK is also a sparsifier.
However, unlike RandK, it does not allow flexibility in choosing K, as it is fixed to d/n. Furthermore,
it can be shown (Lemma A.6) that Ci ∈ U(n− 1) for all i ∈ [n].

An appealing property of PermK is the fact that

1
n

n∑
i=1

Ci(x) = x (7)

for all x ∈ Rd deterministically. Here, it is important to note that by design, compressors Ci from
Definition 4.1 are correlated, and do not satisfy Assumption 1.6. This correlation proves advantageous
– Szlendak et al. (2021) show that MARINA with PermK compressors performs provably better than
with i.i.d. RandK compressors.

4.3 Warmup: homogeneous quadratics

We are finally ready to present our first result showing that the s2w communication complexity can
scale with the number of workers n. To explain the intuition behind our approach, let us consider the
simplest (and somewhat impractical) choice of functions fi – the homogeneous quadratics:

fi(x) =
1
2x

⊤Ax+ b⊤x+ c, i ∈ [n], (8)

where A ∈ Rd×d is a symmetric but not necessarily positive semidefinite matrix, b ∈ Rd and c ∈ R.
We now investigate the operation of MARINA-P with PermK compressors. With probability p, we
have wt+1 = xt+1. Otherwise wt+1 = wt + 1

n

∑n
i=1 Ct

i (x
t+1 − xt)

(7)
= xt+1 + (wt − xt). Hence, if

we initialize w0
i = x0 for all i ∈ [n], an inductive argument shows that wt = xt deterministically for

all t ≥ 0. Then, substituting the gradients of fi to (6), one gets

gt = 1
n

n∑
i=1

(Awt
i + b) = Awt + b = Axt + b = ∇f(xt)

for all t ≥ 0. Therefore, MARINA-P with PermK compressor in this setting is essentially a smart
implementation of vanilla GD! Indeed, for p ≤ 1/n, MARINA-P with PermK sends on average ≤ 2d/n
coordinates to each worker, so the s2w communication complexity is

2d
n ×O

(
δ0L
ε

)
︸ ︷︷ ︸

GD rate

= O
(

dδ0L
nε

)
,

which is n times smaller than in (2)!

4.4 Functional (LA, LB) Inequality

From the discussion in Section 3, we know that to improve (2), an extra assumption about the structure
of the problem is needed. Building on the example from Section 4.3, we introduce the Functional
(LA, LB) Inequality.

6The general definition of PermK for d mod n ̸= 0 is presented in (Szlendak et al., 2021)[App. I].

6



Table 1: The worst case communication complexities to find an ε–stationary point. For simplicity,
we compare the complexities with non-homogeneous quadratics: fi(x) = 1

2x
⊤Aix + b⊤i x + ci,

where Ai ∈ Rd×d is symmetric but not necessarily positive semidefinite, bi ∈ Rd and ci ∈ R for
i ∈ [n]. We denote A = 1

n

∑n
i=1 Ai.

Server-to-Workers Communication Complexities (s2w)

Method Complexity
GD

and other compressed methods(a) ≥ dδ0∥A∥
ε

CORE

(Yue et al., 2023)
δ0trA

ε

MARINA-P

with independent RandK(b)

(Corollary D.4)

dδ0 1
n

∑n
i=1∥Ai∥√
nε

+
dδ0 maxi∈[n]∥Ai−A∥

ε

MARINA-P with PermK(b)

(Corollary 4.7)
dδ0∥A∥

nε +
dδ0 maxi∈[n]∥Ai−A∥

ε

Total Communication Complexities (s2w + w2s)

Method Complexity
GD

and other compressed

methods(a)

≥ dδ0∥A∥
ε

CORE

(Yue et al., 2023)
δ0trA

ε

M3

with PermK and RandK(b)

(Theorem 5.1)

dδ0 max
i∈[n]

∥Ai∥

n1/3ε
+

dδ0 max
i∈[n]

∥Ai−A∥

ε

The complexities of MARINA-P and M3 with PermK are better when n > 1 and in close-to-homogeneous regimes, i.e., when maxi∈[n] ∥Ai − A∥ is small.
(a) including EF21-P (Gruntkowska et al., 2023), dist-EF-SGD (Zheng et al., 2019), DORE (Liu et al., 2020), MCM (Philippenko and Dieuleveut, 2021), and EF21-BC (Fatkhullin
et al., 2021).
(b) This table only showcases the results for RandK and PermK. A more general result for all compressors is provided in Sections D and E.

Assumption 4.2 (Functional (LA, LB) Inequality). There exist constants LA, LB ≥ 0 such that∥∥∥∥ 1
n

n∑
i=1

(∇fi(x+ ui)−∇fi(x))

∥∥∥∥2 ≤ L2
A

(
1
n

n∑
i=1

∥ui∥2
)
+ L2

B

∥∥∥∥ 1
n

n∑
i=1

ui

∥∥∥∥2 (9)

for all x, u1, . . . , un ∈ Rd.

Remark 4.3. A similar assumption, termed “Heterogeneity-driven Lipschitz Condition on Averaged
Gradients”, is proposed in Wang et al. (2023b). Our assumption aligns with theirs when LB = 0.
However, our formulation proves to be more powerful. The possibility that LB > 0 becomes
instrumental in driving the enhancements we introduce.

Assumption 4.2 is defined for all functions together, and intuitively, it tries to capture the similarities
between the functions fi. For n = 1, inequality (9) reduces to

∥∇f(x)−∇f(y)∥2 ≤
(
L2
A + L2

B

)
∥x− y∥2 ∀x, y ∈ Rd,

equivalent to standard L-smoothness (Assumption 1.1) with L2 = L2
A + L2

B . The Functional
(LA, LB) Inequality is reasonably weak also for n > 1, as the next theorem shows.

Theorem 4.4. For all i ∈ [n], assume that the functions fi are Li–smooth (Assumption 1.5). Then,
Assumption 4.2 holds with LA = Lmax and LB = 0.

Therefore, Assumption 4.2 holds whenever the functions fi are smooth, which is a standard assump-
tion in the literature. Now, returning to the example from Section 4.3,

Theorem 4.5. For all i ∈ [n], assume that the functions fi are homogeneous quadratics defined
in (8). Then, Assumption 4.2 holds with LA = 0 and LB = ∥A∥ .

Under Assumption 1.5, no information about the similarity of the functions fi is available, yielding
LB = 0 and LA > 0 in Theorem 4.4. However, once we have some information limiting heterogene-
ity, LA can decrease. Notably, LA = 0 for homogeneous quadratics. As we shall see in Section 4.5,
the values LA and LB significantly influence the s2w communication complexity of MARINA-P, with
lower LA values leading to greatly improved performance.

4.5 The Convergence Theory of MARINA-P with PermK

We are ready to present our main convergence result, focusing on the PermK compressor from
Section 4.2. This choice simplifies the presentation, but our approach generalizes to a much larger
class of compression operators. The full theoretical framework, covering all unbiased compressors, is
detailed in Appendix D.

7



Theorem 4.6. Let Assumptions 1.1, 1.2 and 4.2 be satisfied. Set w0
i = x0 for all i ∈ [n]. Take PermK

as Ct
i and γ =

(
L+LA

√
ωP (1/p − 1)

)−1
, where ωP = n− 1 (Lemma A.6). Then, MARINA-P finds

an ε–stationary point after

O
(

δ0

ε

(
L+ LA

√
ωP/p

))
iterations.
Corollary 4.7. Let p = K/d ≡ 1/n. Then, in the view of Theorem 4.6, the average s2w communication
complexity of MARINA-P with PermK compressor is

O
(

dδ0L
nε + dδ0LA

ε

)
. (10)

The key observation is that (10) is independent of LB , and only depends on LA. This particular
property is specific to correlated compressors with parameter θ = 0 (defined in Appendix A), such
as PermK. A similar result holds for independent RandK compressors (see Corollary D.4), but the
convergence rate is worse and depends on LB . Nevertheless, this dependence improves with n.

When LA = 0, which is the case for homogeneous quadratics, the step size bound from Theorem 4.6
simplifies to γ ≤ 1/L, the standard GD stepsize (recall that in this case our method reduces to GD).
Most importantly, (10) scales with the number of workers n! Even when LA > 0, for sufficiently big
n, (10) can improve (2) to O

(
dδ0LA/ε

)
.

Let us now investigate how the constants LA and LB change in the general case.

4.6 Estimating LA and LB in the General Case

It is clear from Corollary 4.7 that MARINA-P with PermK shines when LA is small. To gain further
insights into what values LA may take, we now provide an analysis based on the Hessians of the
functions fi.
Theorem 4.8. Assume that the functions fi are twice continuously differentiable, Li–smooth (As-
sumption 1.5), and that there exist Di ≥ 0 such that

sup
z1,...,zn∈Rd

∥∥∥∇2fi(zi)− 1
n

∑n
j=1 ∇2fj(zj)

∥∥∥ ≤ Di (11)

for all i ∈ [n]. Then, Assumption 4.2 holds with LA =
√
2maxi∈[n] Di ≤ 2

√
2maxi∈[n] Li and

LB =
√
2
(
1
n

∑n
i=1 Li

)
.

Intuitively, (11) measures the similarity between the functions fi. The above theorem yields a more
refined result than Theorem 4.4: it is always true that maxi∈[n] Di ≤ 2maxi∈[n] Li, and, in fact,
maxi∈[n] Di can be much smaller, as the next result shows.

Theorem 4.9. Assume that fi(x) = 1
2x

⊤Aix+ b⊤i x+ ci, where Ai ∈ Rd×d is symmetric but not
necessarily positive semidefinite, bi ∈ Rd and ci ∈ R for i ∈ [n]. Define A = 1

n

∑n
i=1 Ai. Then,

Assumption 4.2 holds with LA =
√
2maxi∈[n] ∥Ai −A∥ and LB =

√
2
(
1
n

∑n
i=1 ∥Ai∥

)
.

Thus, LA is less than or equal to
√
2maxi∈[n] ∥Ai −A∥ , which serves as a measure of similarity

between the matrices. The smaller the values of ∥Ai −A∥ (indicating greater similarity among the
functions fi), the smaller the LA value.

In the view of this theorem, the s2w communication complexity of MARINA-P with PermK on
non-homogeneous quadratics is

O
(

dδ0∥A∥
nε +

dδ0 maxi∈[n]∥Ai−A∥
ε

)
. (12)

Since the corresponding complexity of GD is

O
(

dδ0∥A∥
ε

)
, (13)

in the close-to-homogeneous regimes (i.e., when maxi∈[n] ∥Ai −A∥ is small), the complexity (12)
can be provably much smaller than (13). The same reasoning applies to the general case when the

8



The M3 Method
(M3 = MARINA-P + Momentum + MARINA):

Initialize vectors x0, w
0
i , g

0
i , z

0
i ∈ Rd for all i ∈ [n], step size γ > 0, probabilities 0 <

pP , pD ≤ 1 and compressors Ct
1, . . . , Ct

n ∈ U(ωP ) ∩ P(θ)a, Qt
1, . . . ,Qt

n ∈ U(ωD) for all
t ≥ 0. The method iterates

xt+1 = xt − γgt,

wt+1
i =

{
xt+1 with probability pP ,

wt
i + Ct

i (x
t+1 − xt) with probability 1− pP ,

zt+1
i = βwt+1

i + (1− β)zti (Momentum)

gt+1
i =

{
∇fi(z

t+1
i ) with probability pD,

gti +Qt
i(∇fi(z

t+1
i )−∇fi(z

t
i)) with probability 1− pD

for all i ∈ [n],

(14)

where the probabilistic decisions are the same for all i ∈ [n], i.e., one coin is tossed for
all workers (as in (5) and (6)), and the coins for the first and second probabilistic decisions
with pP and pD are independent. We denote wt := 1/n

∑n
i=1 w

t
i , g

t := 1/n
∑n

i=1 g
t
i ,

zt := 1/n
∑n

i=1 z
t
i . See the implementation in Algorithm 2.

aBy P(θ) we denote a family of correlated compressors (defined in Appendix A). It includes, among
others, PermK compressors.

functions fi are not quadratics: MARINA-P improves with the number of workers n in the regimes
when Di are small (see Theorem 4.8).

Let us note that there is another method, CORE, by Yue et al. (2023), that can also provably
outperform GD, achieving the s2w communication complexity of Ω

(
δ0trA/ε

)
on non-homogeneous

quadratics. Neither their method nor ours universally provides the best possible communication
guarantees. Our method excels in the close-to-homogeneous regimes: for example, if we take
Ai = LiI for all i ∈ [n], and define L = 1/n

∑n
i=1 Li, then the complexity of CORE is Ω

(
dδ0L/ε

)
,

while ours is O
(

dδ0L
nε +

dδ0 maxi∈[n]|Li−L|
ε

)
. Hence, our guarantees are superior in regimes where

maxi∈[n]|Li − L| ≪ L. One interesting research direction is to develop a universally better method
combining the benefits of both approaches.

5 M3: A New Bidirectional Method

In the previous sections, we introduce a new method that provably improves the server-to-worker
communication, but ignores the worker-to-server communication overhead. Our aim now is to treat
MARINA-P as a starting point for developing methods applicable to more practical scenarios, by
combining it with techniques that compress in the opposite direction. Since the theoretical state-of-
the-art w2s communication complexity is obtained by MARINA (see Section 1.1), our next research
step was to combine the two and analyze “MARINA + MARINA-P”, but this naive approach did
not yield communication complexity guarantees surpassing (2) in any regime. It became apparent
that some “buffer” step between these two techniques is needed, and this step turned out to be the
momentum. Our new method, M3 (Algorithm 2), is described in (14).

M3 combines (5), (6), and the momentum step zt+1
i = βwt+1

i + (1 − β)zti , which is the key to
our improvements. A similar technique is used to reduce the variance in Fatkhullin et al. (2023).
Let us explain how M3 works in practice. First, the server calculates xt+1. Depending on the first
probabilistic decision, it sends either xt+1 or Ct

i (x
t+1 − xt) to the workers, who then calculate wt+1

i

locally. Next, the workers compute zt+1
i , and depending on the second probabilistic decision, they

send either ∇fi(z
t+1
i ) or Qt

i(∇fi(z
t+1
i ) −∇fi(z

t
i)) back to the server. The server aggregates the

received vectors and calculates gt+1. As in MARINA, pP and pD are chosen in such a way that the

9



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
# bits / n (s-to-w) 1e5

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2 /
f(x

0 )
2

n=10
GD
EF21-P, Top30, 
MARINA-P, SameRand30, 
MARINA-P, Rand30, 
MARINA-P, Perm30, 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
# bits / n (s-to-w) 1e4

10 6

10 5

10 4

10 3

10 2

10 1

100
n=100

GD
EF21-P, Top3, 
MARINA-P, SameRand3, 
MARINA-P, Rand3, 
MARINA-P, Perm3, 

0.0 0.5 1.0 1.5
# bits / n (s-to-w) 1e4

10 6

10 5

10 4

10 3

10 2

10 1

100
n=1000

GD
EF21-P, Top1, 
MARINA-P, SameRand1, 
MARINA-P, Rand1, 
MARINA-P, Perm1, 

Figure 1: Experiments on the quadratic optimization problem from Section 6. We plot the norm of
the gradient w.r.t. # of coordinates sent from the server to the workers.

non-compressed communication does not negatively affect the communication complexity. Therefore,
the method predominantly transmits compressed information, with only a marginal probability of
sending uncompressed vectors.

5.1 The Convergence Theory of M3

For simplicity, we consider PermK in the role of Ct
i and RandK in the role of Qt

i. The general theory
for all unbiased compressors is presented in Section E.

Theorem 5.1. Let Assumptions 1.1, 1.2, 1.5 and 4.2 be satisfied. Take γ =
(
L +

34
(
nLA + n2/3LB + n2/3Lmax

) )−1
, pD = pP = 1/n, β = n−2/3, w0

i = z0i = x0 and
g0i = ∇fi(x

0) for all i ∈ [n]. Then MARINA-P with Ct
i =PermK and Qt

i = RandK with K = d/n

finds an ε–stationary point after O
(
δ0

ε

(
n2/3Lmax + nLA

) )
iterations. The total communication

complexity is

O
(

dδ0Lmax

n1/3ε
+ dδ0LA

ε

)
. (15)

Once again, we observe improvement with the number of workers n, and the obtained complexity (15)
can be provably smaller than (2). Indeed, in scenarios like federated learning, where the number of
workers (e.g., mobile phones) is typically large (Kairouz et al., 2021; Chowdhery et al., 2023), the
first term can be significantly smaller than dδ0L/ε. The second term can also be small in close-to-
homogeneous regimes (see Section 4).

6 Experimental Highlights

This section presents insights from the experiments, with further details and additional results in
Appendix F. The experiment aims to empirically test the theoretical results from Section 4. We
consider a quadratic optimization problem, where the functions fi are as defined in Theorem 4.9 and
Ai ∈ R300×300. We compare GD, MARINA-P sending the same message compressed using a single
RandK compressor to all workers (“SameRandK” from Appendix A), MARINA-P with independent
RandK compressors, MARINA-P with PermK compressors, and EF21-P with TopK compressor. We
consider n ∈ {10, 100, 1000} and fine-tune the step size for each algorithm. The results, presented
in Figure 1, align closely with the theory, with MARINA-P using PermK compressors consistently
performing best. Moreover, the convergence rate of MARINA-P with PermK and independent RandK
compressors improves with n. Since this is not the case for EF21-P, even though it outperforms
MARINA-P with independent RandK compressors for n = 10, it falls behind for n ∈ {100, 1000}.

10



Acknowledgments and Disclosure of Funding

The research reported in this publication was supported by funding from King Abdullah University of
Science and Technology (KAUST): i) KAUST Baseline Research Scheme, ii) Center of Excellence
for Generative AI, under award number 5940, iii) SDAIA-KAUST Center of Excellence in Artificial
Intelligence and Data Science. The work of A.T. was partially supported by the Analytical center
under the RF Government (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145
02.11.2021).

References
Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M. (2017). QSGD: Communication-

efficient SGD via gradient quantization and encoding. In Advances in Neural Information Process-
ing Systems (NIPS), pages 1709–1720.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J., Srebro, N., and Woodworth, B. (2022). Lower
bounds for non-convex stochastic optimization. Mathematical Programming, pages 1–50.

Beznosikov, A., Horváth, S., Richtárik, P., and Safaryan, M. (2020). On biased compression for
distributed learning. arXiv preprint arXiv:2002.12410.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. (2020). Lower bounds for finding stationary
points I. Mathematical Programming, 184(1):71–120.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H. W., Sutton, C., Gehrmann, S., et al. (2023). PaLM: Scaling language modeling with pathways.
Journal of Machine Learning Research, 24(240):1–113.

Fang, C., Li, C. J., Lin, Z., and Zhang, T. (2018). SPIDER: Near-optimal non-convex optimization
via stochastic path integrated differential estimator. In NeurIPS Information Processing Systems.

Fatkhullin, I., Sokolov, I., Gorbunov, E., Li, Z., and Richtárik, P. (2021). EF21 with bells & whistles:
Practical algorithmic extensions of modern error feedback. arXiv preprint arXiv:2110.03294.

Fatkhullin, I., Tyurin, A., and Richtárik, P. (2023). Momentum provably improves error feedback!
Advances in Neural Information Processing Systems.

Gorbunov, E., Burlachenko, K., Li, Z., and Richtárik, P. (2021). MARINA: Faster non-convex
distributed learning with compression. In 38th International Conference on Machine Learning.

Gruntkowska, K., Tyurin, A., and Richtárik, P. (2023). EF21-P and friends: Improved theoreti-
cal communication complexity for distributed optimization with bidirectional compression. In
International Conference on Machine Learning, pages 11761–11807. PMLR.

Horváth, S., Ho, C.-Y., Horvath, L., Sahu, A. N., Canini, M., and Richtárik, P. (2022). Natural
compression for distributed deep learning. In Mathematical and Scientific Machine Learning,
pages 129–141. PMLR.

Huang, J., Qian, F., Gerber, A., Mao, Z. M., Sen, S., and Spatscheck, O. (2012). A close examination
of performance and power characteristics of 4G LTE networks. In Proceedings of the 10th
international conference on Mobile systems, applications, and services, pages 225–238.

Huang, X., Chen, Y., Yin, W., and Yuan, K. (2022). Lower bounds and nearly optimal algorithms in
distributed learning with communication compression. arXiv preprint arXiv:2206.03665.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K.,
Charles, Z., Cormode, G., Cummings, R., et al. (2021). Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210.

Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D. (2016). Federated
learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.

Lan, G. (2020). First-order and stochastic optimization methods for machine learning. Springer.

11



LeCun, Y., Cortes, C., and Burges, C. (2010). MNIST handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2.

Li, Z., Bao, H., Zhang, X., and Richtárik, P. (2021). PAGE: A simple and optimal probabilistic
gradient estimator for nonconvex optimization. In International Conference on Machine Learning,
pages 6286–6295. PMLR.

Liu, X., Li, Y., Tang, J., and Yan, M. (2020). A double residual compression algorithm for efficient
distributed learning. In International Conference on Artificial Intelligence and Statistics, pages
133–143. PMLR.

Lu, Y. and De Sa, C. (2021). Optimal complexity in decentralized training. In International
Conference on Machine Learning, pages 7111–7123. PMLR.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics,
pages 1273–1282. PMLR.

Narayanan, A., Zhang, X., Zhu, R., Hassan, A., Jin, S., Zhu, X., Zhang, X., Rybkin, D., Yang, Z.,
Mao, Z. M., et al. (2021). A variegated look at 5G in the wild: performance, power, and QoE
implications. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, pages 610–625.

OpenAI (2023). GPT-4 technical report. ArXiv, abs/2303.08774.

Philippenko, C. and Dieuleveut, A. (2021). Preserved central model for faster bidirectional compres-
sion in distributed settings. Advances in Neural Information Processing Systems, 34:2387–2399.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever, I. (2021).
Zero-shot text-to-image generation. In International Conference on Machine Learning, pages
8821–8831. PMLR.

Richtárik, P., Sokolov, I., and Fatkhullin, I. (2021). EF21: A new, simpler, theoretically better, and
practically faster error feedback. In Neural Information Processing Systems, 2021.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. (2014). 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference
of the International Speech Communication Association.

Szlendak, R., Tyurin, A., and Richtárik, P. (2021). Permutation compressors for provably faster
distributed nonconvex optimization. In International Conference on Learning Representations.

Tyurin, A. and Richtárik, P. (2023a). 2Direction: Theoretically faster distributed training with
bidirectional communication compression. Advances in Neural Information Processing Systems.

Tyurin, A. and Richtárik, P. (2023b). DASHA: Distributed nonconvex optimization with communica-
tion compression, optimal oracle complexity, and no client synchronization. 11th International
Conference on Learning Representations (ICLR).

Tyurin, A. and Richtárik, P. (2023c). Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model. Advances in Neural Information Processing Systems.

Wang, J., Lu, Y., Yuan, B., Chen, B., Liang, P., De Sa, C., Re, C., and Zhang, C. (2023a). CocktailSGD:
Fine-tuning foundation models over 500Mbps networks. In International Conference on Machine
Learning, pages 36058–36076. PMLR.

Wang, J., Wang, S., Chen, R.-R., and Ji, M. (2023b). A new theoretical perspective on data hetero-
geneity in federated optimization. In Federated Learning and Analytics in Practice: Algorithms,
Systems, Applications, and Opportunities.

Wangni, J., Wang, J., Liu, J., and Zhang, T. (2018). Gradient sparsification for communication-
efficient distributed optimization. Advances in Neural Information Processing Systems, 31.

Yue, P., Zhao, H., Fang, C., He, D., Wang, L., Lin, Z., and Zhu, S.-c. (2023). CORE: Common
random reconstruction for distributed optimization with provable low communication complexity.
arXiv preprint arXiv:2309.13307.

Zheng, S., Huang, Z., and Kwok, J. (2019). Communication-efficient distributed blockwise momen-
tum SGD with error-feedback. Advances in Neural Information Processing Systems, 32.

12



Contents

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Contributions 3

3 Lower Bound under Smoothness 4

4 The MARINA-P Method 4

4.1 Three ways to compress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Recap: permutation compressors PermK . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Warmup: homogeneous quadratics . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.4 Functional (LA, LB) Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.5 The Convergence Theory of MARINA-P with PermK . . . . . . . . . . . . . . . . 7

4.6 Estimating LA and LB in the General Case . . . . . . . . . . . . . . . . . . . . . 8

5 M3: A New Bidirectional Method 9

5.1 The Convergence Theory of M3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Experimental Highlights 10

A Three unbiased ways to compress 15

B Biased Compressors 17

C Properties of LA and LB 18

D Convergence of MARINA-P in the General Case 21

D.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.3 Polyak-Łojasiewicz condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D.3.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D.3.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

E Convergence of M3 in the General Case 30

E.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

E.3 Polyak-Łojasiewicz condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

E.3.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

E.3.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

F Experiments 51

F.1 Experiments with M3 on quadratic optimization tasks . . . . . . . . . . . . . . . . 51

13



F.2 Experiments with an autoencoder and MNIST . . . . . . . . . . . . . . . . . . . . 51

F.3 Extra experiments with quadratic optimization tasks . . . . . . . . . . . . . . . . . 52

G Proof of the Lower Bounds 55

G.1 The “difficult” function from the nonconvex world . . . . . . . . . . . . . . . . . . 55

G.2 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

G.3 Compressed communication with independent compressors . . . . . . . . . . . . . 58

H Useful Identities and Inequalities 60

I Notation 61

14



A Three unbiased ways to compress

The main focus of this paper is handling the server-to-worker communication costs. To explain better
where the improvements outlined in the main part of this paper come from, let us first consider the
scenario where uplink communication cost is negligible but downilnk communication cost is not.
While we do no necessarily say that this is a realistic setup, examining it first enables us to understand
how downlink compression should be performed, capturing all the intricacies.

Existing algorithms with lossy s2w and w2s communication have a certain common feature. The
compression mechanism employed on the clients is very different from the one used on the server:
while each client transmits to the server a different message, specific to the data stored on each
device, the server broadcasts the same update to all clients. We want to question this algorithmic step
and suggest to the reader that if compression is applied multiple times and each worker receives its
individual update, then intuitively more information can be transmitted. A well-designed algorithm
should be able to take advantage of this.

One can depart from the usual approach of sending the same update to all workers in two ways:
a) compress the update n times independently, or b) produce n such updates in a correlated way.
Either way, the server broadcasts n different compressed messages rather than one, and sends a
different update to each worker. The key discovery here is that both a) and b) are mathematically
provably better than the prevalent approach of sending the same update to all clients.

This is a crucial improvement in a system where the above setup is a good approximation of reality.
And even if it is not, and the current model is not perfectly capturing the reality, we can accept it for
now, as it allows us to focus on the novel aspects of the approach. With that said, these considerations
can serve as a starting point for thinking about bidirectional compression: having focused on the
simplified setup and equipped with knowledge on how the compression on the master should be
performed, we employ this mechanism in more complex scenarios (see Section 5).

Let us now describe the three possible ways to perform compression on the server.

“Same” compressors. The prevalent approach in downlink compression is to transmit the same up-
date to all workers. To illustrate this, let us call a collection C1, . . . , Cn of compressors “SameRandK”
if for all i ∈ [n] we have Ci = C for some RandK compressor C. Now, consider one iteration t of
MARINA-P with SameRandK compressor. The server calculates Ct

i (x
t+1 − xt) for i ∈ [n], but in

this case, Ct
1(x

t+1 − xt) = . . . = Ct
n(x

t+1 − xt) = Ct(xt+1 − xt). Thus, applying a collection of
SameRandK compressors to some vector x ∈ Rd is equivalent to using a single RandK compression
operator and transmitting the same message C(x) to all workers.

Independent Compressors. Rather than setting Ci(x) = C(x) for all i ∈ [n], one can break the
dependency between the messages and allow the compressors to differ. For illustrational purposes,
suppose that Ci, i ∈ [n] are independent RandK compressors (Assumption 1.6). Then, applying such
a collection of mappings to the vector of interest x ∈ Rd, one obtains n distinct and independent
sparse vectors C1(x), . . . , Cn(x).
Remark A.1. We are aware of only one method that uses n distinct compressors in downlink
compression, Rand-MCM by Philippenko and Dieuleveut (2021). Given the absence of results in the
non-convex case, let us compare the communication complexities of Rand-MCM and M3 under the
Polyak-Łojasiewicz condition (Assumption D.9), which holds under strong convexity. In the strongly
convex case, the proved iteration complexity of Rand-MCM is

Ω

(
Lmax

µ

(
ω
3/2
P +

ωPω
1/2
D√
n

+
ωD

n

)
log

δ0

ε

)
.

Assuming for simplicity that the server and the workers use RandK compressors with K = d/n, this
gives the total communication complexity of

Ω

(
d

n
× Lmax

µ

(
ω
3/2
P +

ωPω
1/2
D√
n

+
ωD

n

)
log

δ0

ε

)
= Ω

(
d
√
nLmax

µ
log

δ0

ε

)
,

which is getting worse as the number of workers n increases. Meanwhile, by Corollary E.10, the total
communication complexity of M3 (where Ct

i are the PermK compressors and Qt
i are independent

15



RandK compressors, both with K = d/n) under the Polyak-Łojasiewicz condition is

O
((

dLmax

n1/3µ
+

dLA

µ
+ d

)
log

δ0

ε

)
.

Since n is typically large, the total communication complexity of M3 can be much better than that of
Rand-MCM.

Correlated Compressors. In their work, Szlendak et al. (2021) introduce an alternative class of
compressors, which satisfy the following condition:
Definition A.2 (AB-inequality (Szlendak et al., 2021)). There exist constants A,B ≥ 0 such that the
random operators C1, . . . Cn satisfy

E [Ci(x)] = x,

E

∥∥∥∥∥ 1n
n∑

i=1

Ci(xi)−
1

n

n∑
i=1

xi

∥∥∥∥∥
2
 ≤ A

1

n

n∑
i=1

∥xi∥2 −B

∥∥∥∥∥ 1n
n∑

i=1

xi

∥∥∥∥∥
2

(16)

for all x, x1, . . . , xn ∈ Rd. If these conditions hold, we write {Ci}ni=1 ∈ U(A,B).

Following on this idea, we introduce the concept of a collection of correlated compressors.
Definition A.3 (Collection of Correlated Compressors). There exists a constant θ ≥ 0 such that the
random operators C1, . . . Cn satisfy:

E [Ci(x)] = x

E

∥∥∥∥∥ 1n
n∑

i=1

Ci(x)− x

∥∥∥∥∥
2
 ≤ θ ∥x∥2 (17)

for all x ∈ Rd. If these conditions hold, we write {Ci}ni=1 ∈ P(θ).

Definition A.3 will play a key role in our upcoming advancements. But what makes this assumption
reasonable?

First, it is easy to note that condition (17) is weaker than (16). Indeed, if {Ci}ni=1 ∈ U(A,B), then
inequality (17) holds with θ := A−B. It turns out that it is in fact strictly weaker, as the following
example shows.
Example A.4. Let n = 2, d = 1. Let {ζx : x ∈ R} be a collection of independent Cauchy variables
indexed by real numbers. Define C1(u) = u+ ζu, and C2(u) = u− ζu. Then

1

2
(C1(u) + C2(u)) = u,

so C1(u) and C2(u) satisfy Definition A.3 with θ = 0. However, for u1 ̸= u2, by the properties of
Cauchy distribution we have

E

[(
1

2
(C1(u) + C2(u))−

1

2
(u1 + u2)

)2
]
= E

[(
1

2
(ζ1 + ζ2)

)2
]

=
1

4
E
[
ζ21 + ζ22 + 2ζ1ζ2

]
= ∞.

Thus, C1(u) and C2(u) do not satisfy Definition A.2.

In fact, the condition specified in Definition A.3 does not impose any restrictions on the compres-
sor class when working with unbiased compressors. This is because, for any set of compressors
C1, . . . , Cn ∈ U(ω), there exists θ ≥ 0 such that {Ci}ni=1 ∈ P(θ), as shown in the following lemma.
Lemma A.5.

1. Let C1, . . . , Cn be a collection of compressors such that Ci ∈ U(ω) for all i ∈ [n]. Then
{Ci}ni=1 ∈ P(ω).

16



2. Let us further assume that C1, . . . , Cn are independent (Assumption 1.6). Then {Ci}ni=1 ∈
P(ω/n).

Proof. 1. Jensen’s inequality gives

E

∥∥∥∥∥ 1n
n∑

i=1

Ci(u)− u

∥∥∥∥∥
2
 (50)

≤ 1

n

n∑
i=1

E
[
∥Ci(u)− u∥2

] Def.1.4
≤ 1

n

n∑
i=1

ω ∥u∥2 = ω ∥u∥2 ,

so θ = ω.

2. Using independence of compressors, we have

E

∥∥∥∥∥ 1n
n∑

i=1

Ci(u)− u

∥∥∥∥∥
2
 =

1

n2

n∑
i=1

E
[
∥Ci(u)− u∥2

] Def.1.4
≤ 1

n2

n∑
i=1

ω ∥u∥2 =
ω

n
∥u∥2 .

Thus θ = ω/n.

However, the true advantages of employing correlated compressors become apparent when the
definition holds with θ = 0, as in the case of PermK compressors.
Lemma A.6. Let C1, . . . , Cn be a collection of a) SameRandK, b) independent RandK, c) PermK
compressors. Then

a) {Ci}ni=1 ∈ P(ω) and Ci ∈ U(ω) where ω = d/K − 1 for all i ∈ [n],

b) {Ci}ni=1 ∈ P(ω/n) and Ci ∈ U(ω) where ω = d/K − 1 for all i ∈ [n],

c) {Ci}ni=1 ∈ P(0) and Ci ∈ U(ω) where ω = n− 1 for all i ∈ [n].

Proof. Unbiasedness follows easily from definitions of compressors (the proof for PermK com-
pressors can be found in Szlendak et al. (2021)). That RandK ∈ U(d/K − 1) (and hence trivially
SameRandK ∈ U(d/K − 1)) is a well-known fact. Next, the fact that a) {Ci}ni=1 ∈ P(ω) for
SameRandK compressors and b) {Ci}ni=1 ∈ P(ω/n) for independent RandK compressors follows
directly from Lemma A.5.

To compute ω for PermK compressor, first assume that d ≥ n. Then E
[
∥Ci(x)∥2

]
= n ∥x∥2

(Szlendak et al., 2021), so

E
[
∥Ci(x)− x∥2

]
(48)
= E

[
∥Ci(x)∥2

]
− ∥x∥2 = (n− 1) ∥x∥2 .

Similarly, suppose that d ≤ n, and write n as n = qd + r, where q ∈ N>0 and 0 ≤ r < d. Then
E
[
∥Ci(x)∥2

]
= n/q ∥x∥2 (Szlendak et al., 2021), and hence

E
[
∥Ci(x)− x∥2

]
(48)
= E

[
∥Ci(x)∥2

]
− ∥x∥2 =

(
n

q
− 1

)
∥x∥2 ≤ (n− 1) ∥x∥2 .

In both cases ω = n− 1.

Finally, by construction of PermK, we have 1
n

∑n
i=1 Ci(x) = x, implying θ = 0.

In what follows, when considering the PermK compressor, we shall assume for simplicity that d ≥ n.
The results for d < n are analogous.

B Biased Compressors

In addition to unbiased compressors (Definition 1.4), the literature of compressed methods distin-
guishes another class of mappings:

17



Algorithm 1 MARINA-P

1: Input: initial model x0 ∈ Rd (stored on the server), initial model shifts w0
1 = . . . = w0

n = x0

(stored on the workers), step size γ > 0, probability 0 < p ≤ 1, compressors Ct
1, . . . , Ct

n ∈ U(ωP )

2: for t = 0, . . . , T do
3: for i = 1, . . . , n in parallel do
4: Calculate ∇fi(w

t
i) and send it to the server Workers evaluate the gradients at the current model estimate

5: end for
On the server:

6: gt = 1
n

∑n
i=1 ∇fi(w

t
i) Server averages the messages received from the workers

7: xt+1 = xt − γgt Server takes a gradient-type step to update the global model

8: Sample ct ∼ Bernoulli(p)
9: if ct = 0 then

10: Send Ct
i (x

t+1 − xt) to worker i for i ∈ [n] Server sends compressed messages to all workers w.p. 1 − p

11: else
12: Send xt+1 to worker i for i ∈ [n] Server sends the same uncompressed message to all workers w.p. p

13: end if
On the workers:

14: for i = 1, . . . , n in parallel do

15: wt+1
i =

{
xt+1 if ct = 1,

wt
i + Ct

i (x
t+1 − xt) if ct = 0

Worker i updates its local model shift

16: end for
17: end for

Definition B.1. A stochastic mapping C : Rd → Rd is a biased compressor if there exists α ∈ (0, 1]
such that

E
[
∥C(x)− x∥2

]
≤ (1− α) ∥x∥2 ∀x ∈ Rd. (18)

The family of such compressors is denoted by B(α). It is well-known that if C ∈ U(ω), then
(ω+1)−1C ∈ B

(
(ω + 1)−1

)
, meaning that the family of biased compressors is broader. A canonical

example is the TopK ∈ B(K/d) compressor, which preserves the K largest in magnitude coordinates
of the input vector (Beznosikov et al., 2020).

C Properties of LA and LB

We first prove the results from Section 4, starting with calculating the constants LA and LB from
Assumption 4.2 in some special cases.
Theorem 4.4. For all i ∈ [n], assume that the functions fi are Li–smooth (Assumption 1.5). Then,
Assumption 4.2 holds with LA = Lmax and LB = 0.

Proof. From Assumption 1.5 it follows that∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x+ ui)−∇fi(x))

∥∥∥∥∥
2

(50)
≤ 1

n

n∑
i=1

∥∇fi(x+ ui)−∇fi(x)∥2

Ass.1.5
≤ 1

n

n∑
i=1

L2
i ∥ui∥2

≤ L2
max

(
1

n

n∑
i=1

∥ui∥2
)
,

so Assumption 4.2 holds with LA = Lmax and LB = 0.

Theorem 4.5. For all i ∈ [n], assume that the functions fi are homogeneous quadratics defined
in (8). Then, Assumption 4.2 holds with LA = 0 and LB = ∥A∥ .

18



Proof. It is easy to verify that∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x+ ui)−∇fi(x))

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

(A(x+ ui) + b− (Ax+ b))

∥∥∥∥∥
2

=

∥∥∥∥∥A
(
1

n

n∑
i=1

ui

)∥∥∥∥∥
2

≤ ∥A∥2
∥∥∥∥∥ 1n

n∑
i=1

ui

∥∥∥∥∥
2

,

meaning that Assumption 4.2 holds with LA = 0 and LB = ∥A∥.

Lemma C.1. Let Assumption 1.5 hold. Then, there exist constants LA, LB ≥ 0 such that Assump-
tion 4.2 holds and L2

A + L2
B ≤ L2

max.

Proof. Assumption 1.5 gives∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x+ ui)−∇fi(x))

∥∥∥∥∥
2

(50)
≤ 1

n

n∑
i=1

∥∇fi(x+ ui)−∇fi(x)∥2

Ass.1.5
≤ 1

n

n∑
i=1

L2
i ∥ui∥2

≤ L2
max

(
1

n

n∑
i=1

∥ui∥2
)
,

and hence Assumption 4.2 holds with L2
A = L2

max and L2
B = 0.

Remark C.2. Under Assumption 4.2 we have∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x+ ui)−∇fi(x))

∥∥∥∥∥
2

Ass.4.2
≤ L2

A

(
1

n

n∑
i=1

∥ui∥2
)

+ L2
B

∥∥∥∥∥ 1n
n∑

i=1

ui

∥∥∥∥∥
2

Ass.1.5
≤

(
L2
A + L2

B

)( 1

n

n∑
i=1

∥ui∥2
)
,

so, in principle, one could always set L2
B = 0. However, the bound could be tightened by decreas-

ing LA and increasing LB . The smaller LA, the better the performance of our algorithms (see
Corollaries D.4 and E.3).

Now, we proceed to prove the result that relates the values of LA and LB to the Hessians of the
functions fi.

Theorem 4.8. Assume that the functions fi are twice continuously differentiable, Li–smooth (As-
sumption 1.5), and that there exist Di ≥ 0 such that

sup
z1,...,zn∈Rd

∥∥∥∇2fi(zi)− 1
n

∑n
j=1 ∇2fj(zj)

∥∥∥ ≤ Di (11)

for all i ∈ [n]. Then, Assumption 4.2 holds with LA =
√
2maxi∈[n] Di ≤ 2

√
2maxi∈[n] Li and

LB =
√
2
(
1
n

∑n
i=1 Li

)
.

Proof. By the fundamental theorem of calculus,

∇fi(x+ ui)−∇fi(x) =

∫ 1

0

∇2fi(x+ tui)uidt =

(∫ 1

0

∇2fi(x+ tui)dt

)
ui = Qiui,

19



where Qi =
∫ 1

0
∇2fi(x+ tui)dt. Letting Q = 1

n

∑n
i=1 Qi, we can write∥∥∥∥∥ 1n

n∑
i=1

(∇fi(x+ ui)−∇fi(x))

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

Qiui

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

(Qi −Q)ui +Q

(
1

n

n∑
i=1

ui

)∥∥∥∥∥
2

(44)
≤ 2

∥∥∥∥∥ 1n
n∑

i=1

(Qi −Q)ui

∥∥∥∥∥
2

+ 2

∥∥∥∥∥Q
(
1

n

n∑
i=1

ui

)∥∥∥∥∥
2

(50)
≤ 2

1

n

n∑
i=1

∥(Qi −Q)ui∥2 + 2 ∥Q∥2
∥∥∥∥∥ 1n

n∑
i=1

ui

∥∥∥∥∥
2

≤ 2
1

n

n∑
i=1

∥Qi −Q∥2 ∥ui∥2 + 2 ∥Q∥2
∥∥∥∥∥ 1n

n∑
i=1

ui

∥∥∥∥∥
2

.

Further,

∥Qi −Q∥ =

∥∥∥∥∥∥
∫ 1

0

∇2fi(x+ tui)dt−
1

n

n∑
j=1

∫ 1

0

∇2fj(x+ tuj)dt

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫ 1

0

∇2fi(x+ tui)dt−
∫ 1

0

1

n

n∑
j=1

∇2fj(x+ tuj)dt

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫ 1

0

1

n

n∑
j=1

(
∇2fi(x+ tui)−∇2fj(x+ tuj)

)
dt

∥∥∥∥∥∥
≤
∫ 1

0

∥∥∥∥∥∥∇2fi(x+ tui)−
1

n

n∑
j=1

∇2fj(x+ tuj)

∥∥∥∥∥∥ dt
≤
∫ 1

0

Didt = Di,

and

∥Q∥ =

∥∥∥∥∥∥ 1n
n∑

j=1

∫ 1

0

∇2fj(x+ tuj)dt

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∫ 1

0

1

n

n∑
j=1

∇2fj(x+ tuj)dt

∥∥∥∥∥∥
≤
∫ 1

0

∥∥∥∥∥∥ 1n
n∑

j=1

∇2fj(x+ tuj)

∥∥∥∥∥∥ dt (50)
≤
∫ 1

0

1

n

n∑
j=1

∥∥∇2fj(x+ tuj)
∥∥ dt

≤
∫ 1

0

1

n

n∑
j=1

Ljdt =
1

n

n∑
j=1

Lj .

By combining the above, we get∥∥∥∥∥ 1n
n∑

i=1

(∇fi(x+ ui)−∇fi(x))

∥∥∥∥∥
2

≤ 2
1

n

n∑
i=1

D2
i ∥ui∥2 + 2

 1

n

n∑
j=1

Lj

2 ∥∥∥∥∥ 1n
n∑

i=1

ui

∥∥∥∥∥
2

≤ 2
(
max

i
D2

i

)
∥ui∥2 + 2

 1

n

n∑
j=1

Lj

2 ∥∥∥∥∥ 1n
n∑

i=1

ui

∥∥∥∥∥
2

,

which means that Assumption 4.2 holds with L2
A = 2(maxi D

2
i ) and L2

B = 2
(
1
n

∑n
i=1 Li

)2
.

20



Remark C.3. Clearly, if Assumption 1.5 holds, i.e., if there exists Li ≥ 0 such
that supzi∈Rd

∥∥∇2fi(zi)
∥∥ ≤ Li for all i ∈ [n], then there exists Di such that

supz1,...,zn∈Rd

∥∥∥∇2fi(zi)− 1
n

∑n
j=1 ∇2fj(zj)

∥∥∥ ≤ Di, which means that this latter condition is
not restrictive. Indeed,∥∥∥∥∥∥∇2fi(zi)−

1

n

n∑
j=1

∇2fj(zj)

∥∥∥∥∥∥ ≤
∥∥∇2fi(zi)

∥∥+
∥∥∥∥∥∥ 1n

n∑
j=1

∇2fj(zj)

∥∥∥∥∥∥
≤
∥∥∇2fi(zi)

∥∥+ 1

n

n∑
j=1

∥∥∇2fj(zj)
∥∥

≤ Li +
1

n

n∑
j=1

Lj .

However, Di can be small even if the constants {Li} are large, as the next theorem shows.

Theorem 4.9. Assume that fi(x) = 1
2x

⊤Aix+ b⊤i x+ ci, where Ai ∈ Rd×d is symmetric but not
necessarily positive semidefinite, bi ∈ Rd and ci ∈ R for i ∈ [n]. Define A = 1

n

∑n
i=1 Ai. Then,

Assumption 4.2 holds with LA =
√
2maxi∈[n] ∥Ai −A∥ and LB =

√
2
(
1
n

∑n
i=1 ∥Ai∥

)
.

Proof. In this case ∇2fi(zi) ≡ Ai, and the result easily follows from Theorem 4.8.

D Convergence of MARINA-P in the General Case

D.1 Main Results

As promised, we now present a result generalizing Theorem 4.6 to all unbiased compressors.

Theorem D.1. Let Assumptions 1.1, 1.2 and 4.2 be satisfied and suppose that {Ct
i}

n
i=1 ∈ P(θ)

(Def. A.3) and Ct
i ∈ U(ωP ) (Def. 1.4) for all i ∈ [n]. Let

0 < γ ≤ 1

L+

√
(L2

AωP + L2
Bθ)

(
1
p − 1

) .
Letting

Ψt = f(xt)− f∗ +
γL2

A

2p

1

n

n∑
i=1

∥∥wt
i − xt

∥∥2 + γL2
B

2p

∥∥wt − xt
∥∥2 ,

for each T ≥ 1 we have

T−1∑
t=0

1

T
E
[∥∥∇f(xt)

∥∥2] ≤ 2Ψ0

γT
.

Let us provide some important examples:

Theorem D.2. Let Assumptions 1.1, 1.2 and 4.2 be satisfied. Choose

γ =



(
L+

√
(L2

A + L2
B) ωP/p

)−1

for SameRandK compressors(
L+

√(
L2
A + L2

B/n
)
ωP/p

)−1

for independent RandK compressors(
L+ LA

√
ωP/p

)−1

for PermK compressors

21



and set w0
i = x0 for all i ∈ [n]. Then MARINA-P finds an ε–stationary point after

T̄ =



O

 δ0
(
L+

√
(L2

A+L2
B)ωP/p

)
ε

 for SameRandK compressors

O

 δ0
(
L+

√
(L2

A+L2
B/n)ωP/p

)
ε

 for independent RandK compressors

O
(

δ0
(
L+LA

√
ωP/p

)
ε

)
for PermK compressors

iterations.

Remark D.3.

• The result for PermK compressors proves Theorem 4.6.

• The above theorem demonstrates the complexities for a) SameRandK, b) independent
RandK and c) PermK compressors. However, the result applies to any families of
compressors such that for all t ≥ 0 we have a) Ct

1 = . . . = Ct
n = Ct ∈ U(ωP ), b)

Ct
1, . . . , Ct

n ∈ U(ωP ) are independent, and c) Ct
1, . . . , Ct

n ∈ U(ωP ) ∩ P(θ), respectively.

We now derive the communication complexities:

Corollary D.4. Let us take p = 1/n and set K = d/n (corresponding to the sparsification level of a
PermK compressor). Then, in the view of Theorem D.2, the average s2w communication complexity
of MARINA-P is

O
(

dδ0L
nε + dδ0

ε

√
L2
A + L2

B

)
for SameRandK compressors

O
(

dδ0L
nε + dδ0

ε

√
L2
A +

L2
B

n

)
for independent RandK compressors

O
(

dδ0L
nε + dδ0

ε LA

)
for PermK compressors

(19)

Remark D.5.

• The result for PermK compressors proves Corollary 4.7.

• The key observation from (19) is the dependence on LA and LB . In particular, if LA ≈ 0
(which is the case, e.g., for homogeneous quadratics), the above communication complexities
are 

O
(

δ0

ε d
(
L
n + LB

))
for SameRandK compressors,

O
(

δ0

ε d
(

L
n + LB√

n

))
for independent RandK compressors,

O
(

δ0

ε d
L
n

)
for PermK compressors.

Hence, only by sending different messages to different clients, one obtains complexities
improving with n. In particular, for PermK, the complexity scales linearly with the number
of workers.

D.2 Proofs

To prove the results from the previous section, we first establish several identities and inequalities
satisfied by the sequences {wt

1, . . . , w
t
n}t≥0. We start by studying the evolution of the quantity

∥wt
i − xt∥2. In what follows, Et [·] denotes the expectation conditioned on the first t iterations.

Lemma D.6. Let Ct
i ∈ U(ωP ) for all i ∈ [n]. Then

1

n

n∑
i=1

E
[∥∥wt+1

i − xt+1
∥∥2] ≤ (1− p)

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ (1− p)ωPE

[∥∥xt+1 − xt
∥∥2] .

22



Proof. In the view of definition of wt+1, we get

Et

[∥∥wt+1
i − xt+1

∥∥2]
= (1− p)Et

[∥∥wt
i + Ct

i (x
t+1 − xt)− xt+1

∥∥2]
(48)
= (1− p)Et

[∥∥Ct
i (x

t+1 − xt)− (xt+1 − xt)
∥∥2]+ (1− p)Et

[∥∥wt
i − xt

∥∥2]
Def.1.4
≤ (1− p)ωP

∥∥xt+1 − xt
∥∥2 + (1− p)

∥∥wt
i − xt

∥∥2 .
Averaging, taking expectation and using the tower property, we get the result.

This lemma is less powerful: it is not an identity, and hence some information is lost. Moreover,
it focuses on a single client i, and is therefore not able to take advantage of the correlation among
the compressors. On the other hand, it can be used in the convergence analysis without any need to
restrict the function class.

Next, we study the evolution of the quantity ∥wt − xt∥2.

Lemma D.7. Let {Ct
i}

n
i=1 ∈ P(θ). Then

E
[∥∥wt+1 − xt+1

∥∥2] ≤ (1− p)E
[∥∥wt − xt

∥∥2]+ (1− p)θE
[∥∥xt+1 − xt

∥∥2] .
Proof. In the view of definition of wt+1, we get

Et

[∥∥wt+1 − xt+1
∥∥2]

= Et

∥∥∥∥∥ 1n
n∑

i=1

wt+1
i − xt+1

∥∥∥∥∥
2


= (1− p)Et

∥∥∥∥∥ 1n
n∑

i=1

(wt
i + Ct

i (x
t+1 − xt))− xt+1

∥∥∥∥∥
2


= (1− p)Et

∥∥∥∥∥ 1n
n∑

i=1

Ct
i (x

t+1 − xt)− (xt+1 − xt)− xt + wt

∥∥∥∥∥
2


(48)
= (1− p)Et

∥∥∥∥∥ 1n
n∑

i=1

Ct
i (x

t+1 − xt)− (xt+1 − xt)

∥∥∥∥∥
2
+ (1− p)Et

[∥∥wt − xt
∥∥2]

Def.A.3
≤ (1− p)θ

∥∥xt+1 − xt
∥∥2 + (1− p)

∥∥wt − xt
∥∥2 .

Taking expectation and using the tower property, we get the result.

This lemma is more powerful since it is able to take advantage of the correlation among the compres-
sors. Indeed, if θ = 0 (as in the case of PermK compressors), then it becomes an identity:

E
[∥∥wt+1 − xt+1

∥∥2] = (1− p)E
[∥∥wt − xt

∥∥2] .
We now prove convergence of MARINA-P in the general case.

Theorem D.1. Let Assumptions 1.1, 1.2 and 4.2 be satisfied and suppose that {Ct
i}

n
i=1 ∈ P(θ)

(Def. A.3) and Ct
i ∈ U(ωP ) (Def. 1.4) for all i ∈ [n]. Let

0 < γ ≤ 1

L+

√
(L2

AωP + L2
Bθ)

(
1
p − 1

) .

23



Letting

Ψt = f(xt)− f∗ +
γL2

A

2p

1

n

n∑
i=1

∥∥wt
i − xt

∥∥2 + γL2
B

2p

∥∥wt − xt
∥∥2 ,

for each T ≥ 1 we have
T−1∑
t=0

1

T
E
[∥∥∇f(xt)

∥∥2] ≤ 2Ψ0

γT
.

Proof. First, combining the inequalities in Lemmas D.6 and D.7, we get

γL2
A

2p

1

n

n∑
i=1

E
[∥∥wt+1

i − xt+1
∥∥2]+ γL2

B

2p
E
[∥∥wt+1 − xt+1

∥∥2]
≤ γL2

A

2p
(1− p)

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ γL2

A

2p
(1− p)ωPE

[∥∥xt+1 − xt
∥∥2]

+
γL2

B

2p
(1− p)E

[∥∥wt − xt
∥∥2]+ γL2

B

2p
(1− p)θE

[∥∥xt+1 − xt
∥∥2]

=
γL2

A

2p
(1− p)

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ γL2

B

2p
(1− p)E

[∥∥wt − xt
∥∥2]

+
γ

2p

(
L2
AωP + L2

Bθ
)
(1− p)E

[∥∥xt+1 − xt
∥∥2] . (20)

Next, using Assumption 4.2, we have

E
[∥∥gt −∇f(xt)

∥∥2] = E

∥∥∥∥∥ 1n
n∑

i=1

(
∇fi(w

t
i)−∇fi(x

t)
)∥∥∥∥∥

2


Ass.4.2
≤ L2

A

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ L2

BE

∥∥∥∥∥ 1n
n∑

i=1

wt
i − xt

∥∥∥∥∥
2
 .

Combining the above inequality with Lemma H.1 gives

E
[
δt+1

]
≤ E

[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ γ

2
E
[∥∥gt −∇f(xt)

∥∥2]
≤ E

[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
+
γ

2

(
L2
A

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ L2

BE
[∥∥wt − xt

∥∥2]) . (21)

By adding inequalities (20) and (21), we get

E
[
Ψt+1

]
= E

[
δt+1

]
+

γL2
A

2p

1

n

n∑
i=1

E
[∥∥wt+1

i − xt+1
∥∥2]+ γL2

B

2p
E
[∥∥wt+1 − xt+1

∥∥2]
≤ E

[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
+
γ

2

(
L2
A

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ L2

BE
[∥∥wt − xt

∥∥2])

+
γL2

A

2p
(1− p)

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ γL2

B

2p
(1− p)E

[∥∥wt − xt
∥∥2]

+
γ

2p

(
L2
AωP + L2

Bθ
)
(1− p)E

[∥∥xt+1 − xt
∥∥2]

24



= E
[
Ψt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]
−
(

1

2γ
− L

2
− γ

2p

(
L2
AωP + L2

Bθ
)
(1− p)

)
E
[∥∥xt+1 − xt

∥∥2]
≤ E

[
Ψt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2] ,
where in the last line we use the assumption on the step size and Lemma H.2. Summing up the above
inequality for t = 0, 1, . . . , T − 1 and rearranging the terms, we get

1

T

T−1∑
t=0

E
[∥∥∇f(xt)

∥∥2] ≤ 2

γT

(
E
[
Ψ0
]
− E

[
ΨT
])

≤ 2Ψ0

γT
.

With the above result, we can establish the iteration and communication complexities of MARINA-P
for three different compression schemes described in Appendix A. First, let us prove a result when
independent compressors are used.

Theorem D.8. Let Assumptions 1.1, 1.2 and 4.2 be satisfied and suppose that Ct
1, . . . , Ct

n is a
collection of independent compressors (Assumption 1.6) such that Ct

i ∈ U(ω) for all i ∈ [n], t ∈ N.
Choose

γ =

(
L+

√(
L2
A + L2

B/n
)
ωP/p

)−1

and set w0
i = x0 for all i ∈ [n]. Then MARINA-P finds an ε–stationary point after

T̄ = O

δ0
(
L+

√(
L2
A + L2

B/n
)
ωP/p

)
ε


iterations.

Proof. In view of Theorem D.1, the step size satisfies the inequality

γ ≤ 1

L+

√
(L2

AωP + L2
Bθ)

(
1
p − 1

) .
Since by Lemma A.5, when the compressors are independent we have θ = ωP/n, the algorithm
converges in

T̄ =
Ψ0

ε

(
L+

√(
L2
AωP + L2

B

ωP

n

)(1

p
− 1

))

= O

(
Ψ0

ε

(
L+

√
ωP

p

(
L2
A +

L2
B

n

)))
(22)

iterations.

Theorem D.2. Let Assumptions 1.1, 1.2 and 4.2 be satisfied. Choose

γ =



(
L+

√
(L2

A + L2
B) ωP/p

)−1

for SameRandK compressors(
L+

√(
L2
A + L2

B/n
)
ωP/p

)−1

for independent RandK compressors(
L+ LA

√
ωP/p

)−1

for PermK compressors

25



and set w0
i = x0 for all i ∈ [n]. Then MARINA-P finds an ε–stationary point after

T̄ =



O

 δ0
(
L+

√
(L2

A+L2
B)ωP/p

)
ε

 for SameRandK compressors

O

 δ0
(
L+

√
(L2

A+L2
B/n)ωP/p

)
ε

 for independent RandK compressors

O
(

δ0
(
L+LA

√
ωP/p

)
ε

)
for PermK compressors

iterations.

Proof. In view of Theorem D.1, the step size is such that

γ ≤ 1

L+

√
(L2

AωP + L2
Bθ)

(
1
p − 1

) .
We now use Lemma A.6 and substitute the vales of θ specific to each compression type.

For SameRandK, we have θ = ωP , so the algorithm converges after

T̄ =
Ψ0

ε

(
L+

√
(L2

AωP + L2
BωP )

(
1

p
− 1

))
= O

(
Ψ0

ε

(
L+

√
ωP

p
(L2

A + L2
B)

))
(23)

iterations. Following the same reasoning as in the proof of Theorem D.8, for RandK we have

T̄ =
Ψ0

ε

(
L+

√(
L2
AωP + L2

B

ωP

n

)(1

p
− 1

))
= O

(
Ψ0

ε

(
L+

√
ωP

p

(
L2
A +

L2
B

n

)))
.

(24)

Finally, for PermK we have θ = 0, so

T̄ =
Ψ0

ε

(
L+

√
L2
AωP

(
1

p
− 1

))
= O

(
Ψ0

ε

(
L+ LA

√
ωP

p

))
. (25)

The result follows from the fact that w0
i = x0 for all i ∈ [n].

Corollary D.4. Let us take p = 1/n and set K = d/n (corresponding to the sparsification level of a
PermK compressor). Then, in the view of Theorem D.2, the average s2w communication complexity
of MARINA-P is

O
(

dδ0L
nε + dδ0

ε

√
L2
A + L2

B

)
for SameRandK compressors

O
(

dδ0L
nε + dδ0

ε

√
L2
A +

L2
B

n

)
for independent RandK compressors

O
(

dδ0L
nε + dδ0

ε LA

)
for PermK compressors

(19)

Proof. The expected number of floats a server is relaying to each client at each iteration of MARINA-P
is

pd+ (1− p)k =
d

n
+

n− 1

n
k ≤ 2d

n
.

Next, using the results from Lemma A.6, our choice of compressors and parameters gives ωP =
d/K − 1 = n− 1 in each of the three cases. Hence, substituting p = 1/n in (23), (24) and (25), we
obtain the following server-to-worker communication complexities:

26



1. for SameRandK compressors:

d

n
× δ0

ε

(
L+

√
ωP (L2

A + L2
B)

(
1

p
− 1

))
=

δ0

ε

(
d

n
L+

d

n

√
(L2

A + L2
B) (n− 1)2

)
= O

(
δ0

ε

(
d

n
L+ d

√
L2
A + L2

B

))
,

2. for RandK compressors:

d

n
× δ0

ε

(
L+

√
ωP

(
L2
A +

L2
B

n

)(
1

p
− 1

))
=

δ0

ε

(
d

n
L+

d

n

√(
L2
A +

L2
B

n

)
(n− 1)2

)

= O

(
δ0

ε

(
d

n
L+ d

√
L2
A +

L2
B

n

))
,

3. for PermK compressors:

d

n
× δ0

ε

(
L+

√
L2
AωP

(
1

p
− 1

))
=

δ0

ε

(
d

n
L+

d

n
LA

√
(n− 1)2

)
= O

(
δ0

ε

(
d

n
L+ dLA

))
.

D.3 Polyak-Łojasiewicz condition

D.3.1 Main Results

To complete the theory, we now establish a convergence result for MARINA-P under the Polyak-
Łojasiewicz assumption.
Assumption D.9 (Polyak-Łojasiewicz condition). The function f satisfies Polyak-Łojasiewicz (PŁ)
condition with parameter µ, i.e., for all x ∈ Rd there exists x∗ ∈ argminx∈Rd f(x) such that

2µ (f(x)− f(x∗)) ≤ ∥∇f(x)∥2 . (26)

Theorem D.10. Let Assumptions 1.1, 1.2, 4.2 and D.9 be satisfied and suppose that {Ct
i}

n
i=1 ∈ P(θ)

and Ct
i ∈ U(ωP ) for all i ∈ [n]. Take

0 < γ ≤ min


1

L+

√
2 (L2

AωP + L2
Bθ)

(
1
p − 1

) , p

2µ

 . (27)

Letting

Ψt = f(xt)− f∗ +
γL2

A

p

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ γL2

B

p
E

∥∥∥∥∥ 1n
n∑

i=1

wt
i − xt

∥∥∥∥∥
2
 , (28)

for each T ≥ 1 we have

E
[
ΨT
]
≤ (1− γµ)

T
Ψ0.

Corollary D.11. Let Ct
i ∈ P(0) for all i ∈ [n] (e.g. PermK), choose p = 1/(ωP + 1). Then, in the

view of Theorem D.10, Algorithm 1 ensures that E
[
f(xT )− f∗] ≤ ε after

O
(
max

{
L+ LAωP

µ
, ωP + 1

}
log

Ψ0

ε

)
iterations.

27



Corollary D.12. Let Ct
i be the PermK compressors (K = d/n). Then, in the view of Corollary D.11,

the s2w communication complexity of MARINA-P with PermK is

O
((

dL

nµ
+

dLA

µ
+ d

)
log

Ψ0

ε

)
.

D.3.2 Proofs

Theorem D.10. Let Assumptions 1.1, 1.2, 4.2 and D.9 be satisfied and suppose that {Ct
i}

n
i=1 ∈ P(θ)

and Ct
i ∈ U(ωP ) for all i ∈ [n]. Take

0 < γ ≤ min


1

L+

√
2 (L2

AωP + L2
Bθ)

(
1
p − 1

) , p

2µ

 . (27)

Letting

Ψt = f(xt)− f∗ +
γL2

A

p

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ γL2

B

p
E

∥∥∥∥∥ 1n
n∑

i=1

wt
i − xt

∥∥∥∥∥
2
 , (28)

for each T ≥ 1 we have

E
[
ΨT
]
≤ (1− γµ)

T
Ψ0.

Proof. We proceed similarly as in the proof of Theorem D.1. Combining the inequalities in Lem-
mas D.6 and D.7 gives

γL2
A

p

1

n

n∑
i=1

E
[∥∥wt+1

i − xt+1
∥∥2]+ γL2

B

p
E
[∥∥wt+1 − xt+1

∥∥2]
≤ γL2

A

p
(1− p)

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ γL2

A

p
(1− p)ωPE

[∥∥xt+1 − xt
∥∥2]

+
γL2

B

p
(1− p)E

[∥∥wt − xt
∥∥2]+ γL2

B

p
(1− p)θE

[∥∥xt+1 − xt
∥∥2]

=
γL2

A

p
(1− p)

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ γL2

B

p
(1− p)E

[∥∥wt − xt
∥∥2]

+
γ

p

(
L2
AωP + L2

Bθ
)
(1− p)E

[∥∥xt+1 − xt
∥∥2] . (29)

By adding inequalities (21) and (29), we get

E
[
Ψt+1

]
= E

[
δt+1

]
+

γL2
A

p

1

n

n∑
i=1

E
[∥∥wt+1

i − xt+1
∥∥2]+ γL2

B

p
E
[∥∥wt+1 − xt+1

∥∥2]
≤ E

[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
+
γ

2

(
L2
A

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ L2

BE
[∥∥wt − xt

∥∥2])

+
γL2

A

p
(1− p)

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ γL2

B

p
(1− p)E

[∥∥wt − xt
∥∥2]

+
γ

p

(
L2
AωP + L2

Bθ
)
(1− p)E

[∥∥xt+1 − xt
∥∥2]

= E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]
28



−
(

1

2γ
− L

2
− γ

p

(
L2
AωP + L2

Bθ
)
(1− p)

)
E
[∥∥xt+1 − xt

∥∥2]
+γL2

A

(
1

p
− 1

2

)
1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]+ γL2

B

(
1

p
− 1

2

)
E
[∥∥wt − xt

∥∥2]
Ass.D.9,(27)

≤ (1− γµ)E
[
δt
]
+

γL2
A

p
(1− γµ)

1

n

n∑
i=1

E
[∥∥wt

i − xt
∥∥2]

+
γL2

B

p
(1− γµ)E

[∥∥wt − xt
∥∥2]

= (1− γµ)E
[
Ψt
]
,

where the last inequality follows from the Polyak-Łojasiewicz condition, Lemma H.2 and our choice
of γ. Applying the above inequality iteratively, we finish the proof.

Corollary D.11. Let Ct
i ∈ P(0) for all i ∈ [n] (e.g. PermK), choose p = 1/(ωP + 1). Then, in the

view of Theorem D.10, Algorithm 1 ensures that E
[
f(xT )− f∗] ≤ ε after

O
(
max

{
L+ LAωP

µ
, ωP + 1

}
log

Ψ0

ε

)
iterations.

Proof. In view of Theorem D.10, the step size satisfies

γ ≤ min


1

L+

√
2 (L2

AωP + L2
Bθ)

(
1
p − 1

) , p

2µ

 .

Therefore, since θ = 0 and p = 1/(ωP + 1), the algorithm converges after

T̄ = max


L+

√
2 (L2

AωP + L2
Bθ)

(
1
p − 1

)
µ

,
2

p

 log
Ψ0

ε

= O
(
max

{
L+ LAωP

µ
, ωP + 1

}
log

Ψ0

ε

)
iterations.

Corollary D.12. Let Ct
i be the PermK compressors (K = d/n). Then, in the view of Corollary D.11,

the s2w communication complexity of MARINA-P with PermK is

O
((

dL

nµ
+

dLA

µ
+ d

)
log

Ψ0

ε

)
.

Proof. For PermK, ωP = n− 1. Therefore, the iteration complexity is

O
(
max

{
L+ LAn

µ
, n

}
log

Ψ0

ε

)
.

Since the expected number of floats the server is relaying to each client is

pd+ (1− p)k =
d

n
+

n− 1

n
k ≤ 2d

n
,

the server-to-worker communication complexity is

O

(
max

{
d
nL+ dLA

µ
, d

}
log

Ψ0

ε

)
.

29



E Convergence of M3 in the General Case

We now move on to the bidirectionally compressed method. Below is a generalization of Theorem 5.1
to all unbiased compressors.

E.1 Main Results

Theorem E.1. Let Assumptions 1.1, 1.2, 1.5 and 4.2 hold and suppose that the compressors Qt
i ∈

U(ωD) satisfy Assumption 1.6, {Ct
i}

n
i=1 ∈ P(θ) and Ct

i ∈ U(ωP ) for all i ∈ [n]. Let γ > 0 be such
that

γ ≤
(
L+

√
288

((
θ
pP

+ 1+θpP

β2

)
L2
B +

(
ωP

pP
+ 1+ωP pP

β2

)
L2
A +

(
ωDωP β
npD

+ ωD(1+ωP pP )
npD

)
L2
max

))−1

.

Letting

Ψt = δt + κ

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2

+ η
∥∥zt − wt

∥∥2 + ν
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2
+ ρ

∥∥wt − xt
∥∥2 + µ

1

n

n∑
i=1

∥∥wt
i − xt

∥∥2 ,
where κ = γ

pD
, η =

4γL2
B

β , ν =
4γL2

A

β +
6γωDβL2

max

npD
, ρ = 32γL2

B

(
1
pP

+ pP

β2

)
and µ =

32γL2
A

(
1
pP

+ pP

β2

)
+

48γωDL2
max

npD
(β + pP ), M3 ensures that

1

T

T−1∑
t=0

E
[∥∥∇f(xt)

∥∥2] = O
(
Ψ0

γT

)
.

We now simplify the above result by considering θ = 0.

Corollary E.2. Let Ct
i ∈ P(0) for all i ∈ [n] (e.g. PermK), choose pP = 1/(ωP + 1), pD =

1/(ωD + 1) and

β = min

{(
n

ωDωP (ωD + 1)

)1/3

, 1

}
.

Then, in the view of Theorem E.1, the iteration complexity is

O

(
Ψ0

ε

(
Lmax +

(
ωDωP (ωD + 1)

n

)1/3

Lmax +

√
ωD(ωD + 1)

n
Lmax +

√
ωP (ωP + 1)LA

))
.

We now give the bound for the total communication complexity of M3.

Corollary E.3. Let Ct
i be the PermK compressors and Qt

i be the independent (Assumption 1.6)
RandK compressors, both with K = d/n. Then, in the view of Corollary E.2, the iteration complexity
is

O
(
Ψ0

ε

(
n2/3Lmax + nLA

))
,

and the total communication complexity is

O
(
Ψ0

ε

(
dLmax

n1/3
+ dLA

))
.

Remark E.4. The above result proves the complexities from Theorem 5.1.

30



Algorithm 2 M3

1: Input: initial model x0 ∈ Rd (stored on the server), initial model shifts w0
i = z0i = x0,

i ∈ [n] (stored on the workers), initial gradient estimators g0 = ∇f(x0) (stored on the sever),
step size γ > 0, probabilities 0 < pP , pD ≤ 1, compressors Ct

1, . . . , Ct
n ∈ U(ωP ) ∩ P(θ),

Qt
1, . . . ,Qt

n ∈ U(ωD) for all t ≥ 0.
2: for t = 0, . . . , T do
3: xt+1 = xt − γgt Server takes a gradient-type step to update the global model

4: Sample ctP ∼ Bernoulli(pP ), ctD ∼ Bernoulli(pD)
5: For i ∈ [n], send Ct

i (x
t+1 − xt) to worker i if ctP = 0 and xt+1 otherwise

6: for i = 1, . . . , n in parallel do

7: wt+1
i =

{
xt+1 if ctP = 1,

wt
i + Ct

i (x
t+1 − xt) if ctP = 0,

Worker i updates its local model shift

8: zt+1
i = βwt+1

i + (1− β)zti Worker i takes the momentum step

9: Send Qt
i(∇fi(z

t+1
i )−∇fi(z

t
i)) to the server if ctD = 0 and ∇fi(z

t+1
i ) otherwise

10: end for
11: if ctD = 1 then
12: gt+1 = 1

n

∑n
i=1 fi(z

t+1
i )

13: else
14: gt+1 = gt + 1

n

∑n
i=1 Qt

i(∇fi(z
t+1
i )−∇fi(z

t
i))

15: end if
16: end for
(maintaining only the sequence gt in the implementation is sufficient; the sequences gti from (14) are
virtual)

E.2 Proofs

Similar to our approach from the previous section, we start by establishing several inequalities
satisfied by the sequences {wt

1, . . . , w
t
n}t≥0, {zt1, . . . , ztn}t≥0 and {gt1, . . . , gtn}t≥0.

Lemma E.5. Let Ct
i ∈ U(ωP ) for all i ∈ [n] and {Ct

i}
n
i=1 ∈ P(θ). Then

Et

[∥∥wt+1
i − zti

∥∥2] ≤ ∥∥(xt+1 − xt)− pP (w
t
i − xt) + (wt

i − zti)
∥∥2

+ pP
∥∥wt

i − xt
∥∥2 + ωP

∥∥xt+1 − xt
∥∥2

for all i ∈ [n], and

Et

[∥∥wt+1 − zt
∥∥2] ≤ ∥∥(xt+1 − xt)− pP (w

t − xt) + (wt − zt)
∥∥2

+ pP
∥∥wt − xt

∥∥2 + θ
∥∥xt+1 − xt

∥∥2 .
Proof. Using the definition of wt+1

i , we have

Et

[
wt+1

i

]
= xt+1 + (1− pP )(w

t
i − xt)

and hence

Et

[∥∥wt+1
i − zti

∥∥2] (48)
=
∥∥xt+1 + (1− pP )(w

t
i − xt)− zti

∥∥2
+Et

[∥∥wt+1
i − (xt+1 + (1− pP )(w

t
i − xt))

∥∥2]
=
∥∥(xt+1 − xt)− pP (w

t
i − xt) + (wt

i − zti)
∥∥2

+Et

[∥∥wt+1
i − (xt+1 + (1− pP )(w

t
i − xt))

∥∥2] .
Using the definition of wt+1

i again, we get

Et

[∥∥wt+1
i − zti

∥∥2]
31



=
∥∥(xt+1 − xt)− pP (w

t
i − xt) + (wt

i − zti)
∥∥2

+pP
∥∥xt+1 − (xt+1 + (1− pP )(w

t
i − xt))

∥∥2
+(1− pP )Et

[∥∥wt
i + Ct

i (x
t+1 − xt)− (xt+1 + (1− pP )(w

t
i − xt))

∥∥2]
=

∥∥(xt+1 − xt)− pP (w
t
i − xt) + (wt

i − zti)
∥∥2 + pP (1− pP )

2
∥∥wt

i − xt
∥∥2

+(1− pP )Et

[∥∥Ct
i (x

t+1 − xt)− (xt+1 − xt) + pP (w
t
i − xt)

∥∥2]
(48)
=

∥∥(xt+1 − xt)− pP (w
t
i − xt) + (wt

i − zti)
∥∥2 + pP (1− pP )

2
∥∥wt

i − xt
∥∥2

+(1− pP )p
2
P

∥∥wt
i − xt

∥∥2 + (1− pP )Et

[∥∥Ct
i (x

t+1 − xt)− (xt+1 − xt)
∥∥2]

Def.1.4
≤

∥∥(xt+1 − xt)− pP (w
t
i − xt) + (wt

i − zti)
∥∥2 + pP

∥∥wt
i − xt

∥∥2 + ωP

∥∥xt+1 − xt
∥∥2 .

Using the same reasoning, we now prove the second inequality:

Et

[∥∥wt+1 − zt
∥∥2]

(48)
=

∥∥xt+1 + (1− pP )(w
t − xt)− zt

∥∥2 + Et

[∥∥wt+1 − (xt+1 + (1− pP )(w
t − xt))

∥∥2]
=

∥∥(xt+1 − xt)− pP (w
t − xt) + (wt − zt)

∥∥2
+Et

[∥∥wt+1 − (xt+1 + (1− pP )(w
t − xt))

∥∥2]
=

∥∥(xt+1 − xt)− pP (w
t − xt) + (wt − zt)

∥∥2 + pP (1− pP )
2
∥∥wt − xt

∥∥2
+(1− pP )Et

∥∥∥∥∥wt +
1

n

n∑
i=1

Ct
i (x

t+1 − xt)− (xt+1 + (1− pP )(w
t − xt))

∥∥∥∥∥
2


=
∥∥(xt+1 − xt)− pP (w

t − xt) + (wt − zt)
∥∥2 + pP (1− pP )

2
∥∥wt − xt

∥∥2
+(1− pP )Et

∥∥∥∥∥ 1n
n∑

i=1

Ct
i (x

t+1 − xt)− (xt+1 − xt) + pP (w
t − xt)

∥∥∥∥∥
2


(48)
=

∥∥(xt+1 − xt)− pP (w
t − xt) + (wt − zt)

∥∥2 + pP (1− pP )
2
∥∥wt − xt

∥∥2
+(1− pP )Et

∥∥∥∥∥ 1n
n∑

i=1

Ct
i (x

t+1 − xt)− (xt+1 − xt)

∥∥∥∥∥
2
+ p2P (1− pP )

∥∥wt − xt
∥∥2

Def.A.3
≤

∥∥(xt+1 − xt)− pP (w
t − xt) + (wt − zt)

∥∥2 + pP
∥∥wt − xt

∥∥2 + θ
∥∥xt+1 − xt

∥∥2 .

Lemma E.6. Let Assumption 1.5 hold. Furthermore, suppose that the compressors Qt
i ∈ U(ωD)

satisfy Assumption 1.6 and that Ct
i ∈ U(ωP ) for i ∈ [n]. Then

E

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2


≤ ωDL2
max

n

(
4pPβ

2E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]+ 3β2E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]+ 3(ωP + 1)β2E
[∥∥xt+1 − xt

∥∥2])

+ (1− pD)E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
 .

32



Proof. First, from the definition of gt+1
i , we get

E

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2


= (1− pD)E

∥∥∥∥∥ 1n
n∑

i=1

(
gti +Qt

i(∇fi(z
t+1
i )−∇fi(z

t
i))−∇fi(z

t+1
i )

)∥∥∥∥∥
2


and hence

E

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2


(48)
= (1− pD)E

∥∥∥∥∥ 1n
n∑

i=1

Qt
i

(
∇fi(z

t+1
i )−∇fi(z

t
i)
)
− 1

n

n∑
i=1

(
∇fi(z

t+1
i )−∇fi(z

t
i)
)∥∥∥∥∥

2


+(1− pD)E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


Def.1.4,(1.6)
≤ ωD

n
E

[
1

n

n∑
i=1

∥∥∇fi(z
t+1
i )−∇fi(z

t
i)
∥∥2]+ (1− pD)E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


Ass.1.5
≤ ωDL2

max

n
E

[
1

n

n∑
i=1

∥∥zt+1
i − zti

∥∥2]+ (1− pD)E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
 . (30)

Let us consider the first term separately:

E

[
1

n

n∑
i=1

∥∥zt+1
i − zti

∥∥2] = E

[
1

n

n∑
i=1

∥∥βwt+1
i + (1− β)zti − zti

∥∥2]

= β2E

[
1

n

n∑
i=1

∥∥wt+1
i − zti

∥∥2] .
Using the result from Lemma E.5, we have

E

[
1

n

n∑
i=1

∥∥zt+1
i − zti

∥∥2]

≤ β2E

[
1

n

n∑
i=1

∥∥(xt+1 − xt)− pP (w
t
i − xt) + (wt

i − zti)
∥∥2]

+β2E

[
pP

1

n

n∑
i=1

∥∥wt
i − xt

∥∥2 + ωP

∥∥xt+1 − xt
∥∥2]

(45)
≤ β2E

[
3

n

n∑
i=1

∥∥wt
i − zti

∥∥2 + 4pP
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2 + (ωP + 3)
∥∥xt+1 − xt

∥∥2] ,
where in the last line we use the fact that pP ≤ 1. It remains to substitute the above inequality
in (30).

Lemma E.7. Let Ct
i ∈ U(ωP ) for all i ∈ [n] and {Ct

i}
n
i=1 ∈ P(θ). Then

E
[∥∥zt+1

i − wt+1
i

∥∥2] ≤ (1− β

2

)
E
[∥∥zti − wt

i

∥∥2]+ 4

(
1

β
+ ωP

)
E
[∥∥xt+1 − xt

∥∥2]
+ 4pP

(
1 +

pP
β

)
E
[∥∥wt

i − xt
∥∥2]

33



for all i ∈ [n], and

E
[∥∥zt+1 − wt+1

∥∥2] ≤ (1− β

2

)
E
[∥∥zt − wt

∥∥2]+ 4

(
1

β
+ θ

)
E
[∥∥xt+1 − xt

∥∥2]
+ 4pP

(
1 +

pP
β

)
E
[∥∥wt − xt

∥∥2] .
Proof. From the definition of zt+1

i , we get

E
[∥∥zt+1

i − wt+1
i

∥∥2] = E
[∥∥βwt+1

i + (1− β)zti − wt+1
i

∥∥2] = (1− β)2E
[∥∥wt+1

i − zti
∥∥2] .

Then, Lemma E.5 gives

E
[∥∥zt+1

i − wt+1
i

∥∥2]
≤ (1− β)2E

[∥∥(xt+1 − xt)− pP (w
t
i − xt) + (wt

i − zti)
∥∥2]

+(1− β)2E
[
pP
∥∥wt

i − xt
∥∥2 + ωP

∥∥xt+1 − xt
∥∥2]

(44),(46),(47)
≤

(
1− β

2

)
E
[∥∥wt

i − zti
∥∥2]+ 2

β
E
[∥∥(xt+1 − xt)− pP (w

t
i − xt)

∥∥2]
+E

[
pP
∥∥wt

i − xt
∥∥2 + ωP

∥∥xt+1 − xt
∥∥2]

(45)
≤

(
1− β

2

)
E
[∥∥wt

i − zti
∥∥2]+ 4

β
E
[∥∥xt+1 − xt

∥∥2]+ 4p2P
β

E
[∥∥wt

i − xt
∥∥2]

+E
[
pP
∥∥wt

i − xt
∥∥2 + ωP

∥∥xt+1 − xt
∥∥2]

≤
(
1− β

2

)
E
[∥∥wt

i − zti
∥∥2]+ 4

(
1

β
+ ωP

)
E
[∥∥xt+1 − xt

∥∥2]
+4pP

(
1 +

pP
β

)
E
[∥∥wt

i − xt
∥∥2] .

The second inequality is proved almost in the same way. First,

E
[∥∥zt+1 − wt+1

∥∥2] = (1− β)2E
[∥∥wt+1 − zt

∥∥2] ,
and using Lemma E.5, we obtain

E
[∥∥zt+1 − wt+1

∥∥2]
≤ (1− β)2E

[∥∥(xt+1 − xt)− pP (w
t − xt) + (wt − zt)

∥∥2 + pP
∥∥wt − xt

∥∥2 + θ
∥∥xt+1 − xt

∥∥2]
(44)
≤
(
1− β

2

)
E
[∥∥wt − zt

∥∥2]+ 2

β
E
[∥∥(xt+1 − xt)− pP (w

t − xt)
∥∥2]

+E
[
pP
∥∥wt − xt

∥∥2 + θ
∥∥xt+1 − xt

∥∥2]
(45)
≤
(
1− β

2

)
E
[∥∥wt − zt

∥∥2]+ 4

(
1

β
+ θ

)
E
[∥∥xt+1 − xt

∥∥2]
+
4p2P
β

E
[∥∥wt − xt

∥∥2]+ E
[
pP
∥∥wt − xt

∥∥2]
≤
(
1− β

2

)
E
[∥∥wt − zt

∥∥2]+ 4

(
1

β
+ θ

)
E
[∥∥xt+1 − xt

∥∥2]
+4pP

(
1 +

pP
β

)
E
[∥∥wt − xt

∥∥2] .

34



Theorem E.1. Let Assumptions 1.1, 1.2, 1.5 and 4.2 hold and suppose that the compressors Qt
i ∈

U(ωD) satisfy Assumption 1.6, {Ct
i}

n
i=1 ∈ P(θ) and Ct

i ∈ U(ωP ) for all i ∈ [n]. Let γ > 0 be such
that

γ ≤
(
L+

√
288

((
θ
pP

+ 1+θpP

β2

)
L2
B +

(
ωP

pP
+ 1+ωP pP

β2

)
L2
A +

(
ωDωP β
npD

+ ωD(1+ωP pP )
npD

)
L2
max

))−1

.

Letting

Ψt = δt + κ

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2

+ η
∥∥zt − wt

∥∥2 + ν
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2
+ ρ

∥∥wt − xt
∥∥2 + µ

1

n

n∑
i=1

∥∥wt
i − xt

∥∥2 ,
where κ = γ

pD
, η =

4γL2
B

β , ν =
4γL2

A

β +
6γωDβL2

max

npD
, ρ = 32γL2

B

(
1
pP

+ pP

β2

)
and µ =

32γL2
A

(
1
pP

+ pP

β2

)
+

48γωDL2
max

npD
(β + pP ), M3 ensures that

1

T

T−1∑
t=0

E
[∥∥∇f(xt)

∥∥2] = O
(
Ψ0

γT

)
.

Proof. Lemma H.1 gives

E
[
δt+1

]
≤ E

[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ γ

2
E
[∥∥gt −∇f(xt)

∥∥2]
(44)
≤ E

[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
+γE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
+ γE

∥∥∥∥∥ 1n
n∑

i=1

(
∇fi(z

t
i)−∇fi(x

t)
)∥∥∥∥∥

2


(4.2)
≤ E

[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
+γE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
+ γL2

A

1

n

n∑
i=1

E
[∥∥zti − xt

∥∥2]+ γL2
BE
[∥∥zt − xt

∥∥2]
(44)
≤ E

[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
+γE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
+ 2γL2

A

1

n

n∑
i=1

(
E
[∥∥zti − wt

i

∥∥2]+ E
[∥∥wt

i − xt
∥∥2])

+2γL2
B

(
E
[∥∥zt − wt

∥∥2]+ E
[∥∥wt − xt

∥∥2]) .
Let κ, η, ν, ρ, µ ≥ 0 be some non-negative numbers that we define later. Using Lemmas D.6, D.7,
E.6 and E.7, we get

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ µE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

35



≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ γE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


+ 2γL2
A

1

n

n∑
i=1

(
E
[∥∥zti − wt

i

∥∥2]+ E
[∥∥wt

i − xt
∥∥2])

+ 2γL2
B

(
E
[∥∥zt − wt

∥∥2]+ E
[∥∥wt − xt

∥∥2])
+ κ

(
ωDL2

max

n

(
4pPβ

2E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]+ 3β2E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+ 3(ωP + 1)β2E
[∥∥xt+1 − xt

∥∥2]))

+ κ(1− pD)E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


+ η

((
1− β

2

)
E
[∥∥zt − wt

∥∥2]+ 4

(
1

β
+ θ

)
E
[∥∥xt+1 − xt

∥∥2]
+ 4pP

(
1 +

pP
β

)
E
[∥∥wt − xt

∥∥2])

+ ν

((
1− β

2

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]+ 4

(
1

β
+ ωP

)
E
[∥∥xt+1 − xt

∥∥2]
+ 4pP

(
1 +

pP
β

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2])
+ ρ(1− pP )

(
E
[∥∥wt − xt

∥∥2]+ θE
[∥∥xt+1 − xt

∥∥2])
+ µ(1− pP )

(
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]+ ωPE
[∥∥xt+1 − xt

∥∥2]) .

Taking κ = γ
pD

and η =
4γL2

B

β , we get γ+κ(1− pD) = κ and 2γL2
B + η(1− β/2) = η, which gives

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ µE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ κE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


+ ηE
[∥∥zt − wt

∥∥2]+ 2γL2
A

1

n

n∑
i=1

(
E
[∥∥zti − wt

i

∥∥2]+ E
[∥∥wt

i − xt
∥∥2])+ 2γL2

BE
[∥∥wt − xt

∥∥2]
+

γ

pD

(
ωDL2

max

n

(
4pPβ

2E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]+ 3β2E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+ 3(ωP + 1)β2E
[∥∥xt+1 − xt

∥∥2]))

+
4γL2

B

β

(
4

(
1

β
+ θ

)
E
[∥∥xt+1 − xt

∥∥2]+ 4pP

(
1 +

pP
β

)
E
[∥∥wt − xt

∥∥2])

36



+ ν

((
1− β

2

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]+ 4

(
1

β
+ ωP

)
E
[∥∥xt+1 − xt

∥∥2]
+ 4pP

(
1 +

pP
β

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2])
+ ρ

(
(1− pP )E

[∥∥wt − xt
∥∥2]+ θE

[∥∥xt+1 − xt
∥∥2])

+ µ

(
(1− pP )E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]+ ωPE
[∥∥xt+1 − xt

∥∥2]) .

We rearrange the terms to obtain

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ µE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ κE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


+ ηE
[∥∥zt − wt

∥∥2]+ (ν (1− β

2

)
+ 2γL2

A +
3γωDβ2L2

max

npD

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+

(
3γωD(ωP + 1)β2L2

max

npD
+ ρθ +

16γL2
B

β

(
1

β
+ θ

)

+ 4ν

(
1

β
+ ωP

)
+ µωP

)
E
[∥∥xt+1 − xt

∥∥2]
+

(
ρ(1− pP ) + 2γL2

B +
16γL2

BpP
β

(
1 +

pP
β

))
E
[∥∥wt − xt

∥∥2]
+

(
µ(1− pP ) + 2γL2

A + 4νpP

(
1 +

pP
β

)
+

4γωDpPβ
2L2

max

npD

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2] .
We now consider the coefficient of the term E

[
∥wt − xt∥2

]
. Using the inequality xy ≤ x2+y2

2 for
all x, y ≥ 0, we get

ρ(1− pP ) + 2γL2
B +

16γL2
BpP

β

(
1 +

pP
β

)
≤ ρ(1− pP ) + 16γL2

B

(
1 +

pP
β

+
p2P
β2

)
≤ ρ(1− pP ) + 32γL2

B

(
1 +

p2P
β2

)
= ρ

for ρ = 32γL2
B

(
1
pP

+ pP

β2

)
. With this choice of ρ, we obtain

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ µE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ κE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


37



+ ηE
[∥∥zt − wt

∥∥2]+ ρE
[∥∥wt − xt

∥∥2]
+

(
ν

(
1− β

2

)
+ 2γL2

A +
3γωDβ2L2

max

npD

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+

(
3γωD(ωP + 1)β2L2

max

npD
+ 32γL2

B

(
1

pP
+

pP
β2

)
θ +

16γL2
B

β

(
1

β
+ θ

)

+ 4ν

(
1

β
+ ωP

)
+ µωP

)
E
[∥∥xt+1 − xt

∥∥2]
+

(
µ(1− pP ) + 2γL2

A + 4νpP

(
1 +

pP
β

)
+

4γωDpPβ
2L2

max

npD

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2] .
Next, taking ν =

4γL2
A

β +
6γωDβL2

max

npD
gives

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ µE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ κE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


+ ηE
[∥∥zt − wt

∥∥2]+ ρE
[∥∥wt − xt

∥∥2]+ νE

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+

(
3γωD(ωP + 1)β2L2

max

npD
+ 32γL2

B

(
1

pP
+

pP
β2

)
θ +

16γL2
B

β

(
1

β
+ θ

)

+ 4

(
4γL2

A

β
+

6γωDβL2
max

npD

)(
1

β
+ ωP

)
+ µωP

)
E
[∥∥xt+1 − xt

∥∥2]
+

(
µ(1− pP ) + 2γL2

A + 4

(
4γL2

A

β
+

6γωDβL2
max

npD

)
pP

(
1 +

pP
β

)

+
4γωDpPβ

2L2
max

npD

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2] .
Let us consider the last bracket:

µ(1− pP ) + 2γL2
A + 4

(
4γL2

A

β
+

6γωDβL2
max

npD

)
pP

(
1 +

pP
β

)
+

4γωDpPβ
2L2

max

npD

= µ(1− pP ) + 2γL2
A +

16γpPL
2
A

β
+

24γωDpPβL
2
max

npD
+

16γp2PL
2
A

β2

+
24γωDp2PL

2
max

npD
+

4γωDpPβ
2L2

max

npD

≤ µ(1− pP ) + 16γL2
A

(
1 +

pP
β

+
p2P
β2

)
+

24γωDpPL
2
max

npD

(
β + pP + β2

)
≤ µ(1− pP ) + 32γL2

A

(
1 +

p2P
β2

)
+

48γωDpPL
2
max

npD
(β + pP )

= µ

38



for µ = 32γL2
A

(
1
pP

+ pP

β2

)
+

48γωDL2
max

npD
(β + pP ) . For this choice, we get

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ µE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ κE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


+ ηE
[∥∥zt − wt

∥∥2]+ νE

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]+ ρE
[∥∥wt − xt

∥∥2]+ µE

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]

+

(
3γωD(ωP + 1)β2L2

max

npD
+ 32γL2

B

(
1

pP
+

pP
β2

)
θ +

16γL2
B

β

(
1

β
+ θ

)
+ 4

(
4γL2

A

β
+

6γωDβL2
max

npD

)(
1

β
+ ωP

)
+ 32γωPL

2
A

(
1

pP
+

pP
β2

)
+

48γωDωPL
2
max

npD
(β + pP )

)
E
[∥∥xt+1 − xt

∥∥2] .
(31)

Let us simplify the last bracket.

I :=
3γωD(ωP + 1)β2L2

max

npD
+ 32γL2

B

(
1

pP
+

pP
β2

)
θ +

16γL2
B

β

(
1

β
+ θ

)
+ 4

(
4γL2

A

β
+

6γωDβL2
max

npD

)(
1

β
+ ωP

)
+ 32γωPL

2
A

(
1

pP
+

pP
β2

)
+

48γωDωPL
2
max

npD
(β + pP )

≤
(
3γωD(ωP + 1)β2

npD
+

24γωD

npD
+

24γωDωPβ

npD
+

48γωDωPβ

npD
+

48γωDωP pP
npD

)
L2
max

+

(
16γ

β2
+

16γωP

β
+

32γωP

pP
+

32γωP pP
β2

)
L2
A +

(
32γθ

pP
+

32γpP θ

β2
+

16γ

β2
+

16γθ

β

)
L2
B .

(32)
We next consider the coefficients of L2

B , L2
A and L2

max. First, for L2
B , we have

32γθ

pP
+

32γpP θ

β2
+

16γ

β2
+

16γθ

β
≤ 32γ

(
θ

pP

(
1 +

pP
β

+
p2P
β2

)
+

1

β2

)
≤ 64γ

(
θ

pP
+

θpP
β2

+
1

β2

)
= 64γ

(
θ

pP
+

1 + θpP
β2

)
.

Next, the coefficient of L2
A can be bounded as

16γ

β2
+

16γωP

β
+

32γωP

pP
+

32γωP pP
β2

≤ 32γ

(
1

β2
+

ωP

pP

(
1 +

pP
β

+
p2P
β2

))
≤ 64γ

(
ωP

pP
+

ωP pP
β2

+
1

β2

)
≤ 64γ

(
ωP

pP
+

1 + ωP pP
β2

)
,

39



and for L2
max we obtain

3γωD(ωP + 1)β2

npD
+

24γωD

npD
+

24γωDωPβ

npD
+

48γωDωPβ

npD
+

48γωDωP pP
npD

≤ 72γωD

(
(ωP + 1)β2

npD
+

1

npD
+

ωPβ

npD
+

ωP pP
npD

)
≤ 144γωD

(
1

npD
+

ωPβ

npD
+

ωP pP
npD

)
= 144γ

(
ωDωPβ

npD
+

ωD(1 + ωP pP )

npD

)
since (ωP+1)β2

npD
≤ 1

npD
+ ωP β

npD
. Substituting these inequalities to (31) and (32), we get

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ µE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ κE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


+ ηE
[∥∥zt − wt

∥∥2]+ νE

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]+ ρE
[∥∥wt − xt

∥∥2]+ µE

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]

+ 144γ

((
θ

pP
+

1 + θpP
β2

)
L2
B +

(
ωP

pP
+

1 + ωP pP
β2

)
L2
A

+

(
ωDωPβ

npD
+

ωD(1 + ωP pP )

npD

)
L2
max

)
E
[∥∥xt+1 − xt

∥∥2] .
By collecting all the terms w.r.t. E

[∥∥xt+1 − xt
∥∥2] , using the step size γ from the theorem and

Lemma H.2, we obtain

E
[
Ψt+1

]
= E

[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]
+ µE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]+ κE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
+ ηE

[∥∥zt − wt
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]+ ρE
[∥∥wt − xt

∥∥2]+ µE

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]
= E

[
Ψt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2] .
It remains to rearrange and sum the last inequality for t = 0, . . . , T − 1.

40



Corollary E.2. Let Ct
i ∈ P(0) for all i ∈ [n] (e.g. PermK), choose pP = 1/(ωP + 1), pD =

1/(ωD + 1) and

β = min

{(
n

ωDωP (ωD + 1)

)1/3

, 1

}
.

Then, in the view of Theorem E.1, the iteration complexity is

O

(
Ψ0

ε

(
Lmax +

(
ωDωP (ωD + 1)

n

)1/3

Lmax +

√
ωD(ωD + 1)

n
Lmax +

√
ωP (ωP + 1)LA

))
.

Proof. By Theorem E.1, up to a constant factor, the algorithm converges after

T̄ :=
Ψ0

ε

(
L+

√(
θ

pP
+

1 + θpP
β2

)
L2
B +

(
ωP

pP
+

1 + ωP pP
β2

)
L2
A +

(
ωDωPβ

npD
+

ωD(1 + ωP pP )

npD

)
L2
max

)

=
Ψ0

ε

(
L+

√
1

β2
L2
B +

(
ωP

pP
+

1 + ωP pP
β2

)
L2
A +

(
ωDωPβ

npD
+

ωD(1 + ωP pP )

npD

)
L2
max

)

≤ Ψ0

ε

(
L+

√
L2
B

β2
+

(
ωP

pP
+

2

β2

)
L2
A +

(
ωDωPβ

npD
+

2ωD

npD

)
L2
max

)

≤ Ψ0

ε

(
L+

√
L2
B

β2
+

(
ωP (ωP + 1) +

2

β2

)
L2
A +

(
ωDωP (ωD + 1)β

n
+

2ωD(ωD + 1)

n

)
L2
max

)

≤ 2Ψ0

ε

L+

√
L2
A + L2

B

β2
+

ωDωP (ωD + 1)β

n
L2
max +

ωD(ωD + 1)

n
L2
max + ωP (ωP + 1)L2

A


iterations, where we use the choice of pP and pD. Using Lemma C.1, we have L2

A + L2
B ≤ L2

max
and hence

T̄ ≤ 2Ψ0

ε

(
L+

√(
1

β2
+

ωDωP (ωD + 1)β

n

)
L2
max +

ωD(ωD + 1)

n
L2
max + ωP (ωP + 1)L2

A

)

≤ 4Ψ0

ε

L+

√√√√(1 + (ωDωP (ωD + 1)

n

)2/3
)
L2
max +

ωD(ωD + 1)

n
L2
max + ωP (ωP + 1)L2

A


≤ 8Ψ0

ε

(
Lmax +

(
ωDωP (ωD + 1)

n

)1/3

Lmax +

√
ωD(ωD + 1)

n
Lmax +

√
ωP (ωP + 1)LA

)
,

where we substitute our choice of β.

Corollary E.3. Let Ct
i be the PermK compressors and Qt

i be the independent (Assumption 1.6)
RandK compressors, both with K = d/n. Then, in the view of Corollary E.2, the iteration complexity
is

O
(
Ψ0

ε

(
n2/3Lmax + nLA

))
,

and the total communication complexity is

O
(
Ψ0

ε

(
dLmax

n1/3
+ dLA

))
.

Proof. The choice of compressors and parameters ensures that ωP = ωD = n − 1 (Lemma A.6).
Thus, the iteration complexity is

O

(
Ψ0

ε

(
Lmax +

(
ωDωP (ωD + 1)

n

)1/3

Lmax +

√
ωD(ωD + 1)

n
Lmax +

√
ωP (ωP + 1)LA

))

41



= O
(
Ψ0

ε

(
Lmax + n2/3Lmax +

√
nLmax + nLA

))
= O

(
Ψ0

ε

(
n2/3Lmax + nLA

))
.

Since pP = pD = 1/n and K = d/n, on average, the algorithm sends ≤ 2d
n coordinates in both

directions. Therefore, the total communication complexity is

O
(
d

n
× Ψ0

ε

(
n2/3Lmax + nLA

))
= O

(
Ψ0

ε

(
d

n1/3
Lmax + dLA

))
.

E.3 Polyak-Łojasiewicz condition

E.3.1 Main Results

As with MARINA-P, we provide the analysis of M3 under the Polyak-Łojasiewicz condition.
Theorem E.8. Let Assumptions 1.1, 1.2, 1.5, 4.2 and D.9 be satisfied and suppose that the com-
pressors Qt

i ∈ U(ωD) satisfy Assumption 1.6, {Ct
i}

n
i=1 ∈ P(θ) and Ct

i ∈ U(ωP ) for all i ∈ [n]. Let
γ > 0 be such that

γ = min

{L+

√√√√1536

((
θ
pP

+ 1+θpP

β2

)
L2
B +

(
ωP

pP
+ 1+ωP pP

β2

)
L2
A +

(
ωDωP β
npD

+ ωD(1+ωP pP )
npD

)
L2
max

)−1

,

pP

2µ ,
pD

2µ ,
β
4µ

}
. (33)

Letting

Ψt = δt + κ

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2

+ η
∥∥zt − wt

∥∥2 + ν
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2
+ ρ

∥∥wt − xt
∥∥2 + τ

1

n

n∑
i=1

∥∥wt
i − xt

∥∥2 ,
where κ = 2γ

pD
, η =

8γL2
B

β , ν =
8γL2

A

β +
24γωDβL2

max

npD
, ρ = 128γL2

B

(
1
pP

+ pP

β2

)
and τ =

128γL2
A

(
1
pP

+ pP

β2

)
+

384γωDL2
max

npD
(β + pP ), M3 ensures that for each T ≥ 1

E
[
ΨT
]
≤ (1− γµ)

T
Ψ0.

Corollary E.9. Let Ct
i ∈ P(0) for all i ∈ [n] (e.g. PermK), choose pP = 1/(ωP + 1), pD =

1/(ωD + 1) and

β = min

{(
n

ωDωP (ωD + 1)

)1/3

, 1

}
.

Then, in the view of Theorem E.8, Algorithm 2 ensures that E
[
f(xT )− f∗] ≤ ε after

O

max


(
1+

(
ωDωP (ωD+1)

n

)1/3
+

√
ωD(ωD+1)

n

)
Lmax+

√
ωP (ωP+1)LA

µ , ωP + 1, ωD + 1,
(

ωDωP (ωD+1)
n

)1/3 log Ψ0

ε


iterations.

Corollary E.10. Let Ct
i be the PermK compressors and Qt

i be the independent (Assumption 1.6)
RandK compressors, both with K = d/n. Then, in the view of Corollary E.9, the total communication
complexity is

O
((

dLmax

n1/3µ
+

dLA

µ
+ d

)
log

Ψ0

ε

)
.

42



E.3.2 Proofs

Theorem E.8. Let Assumptions 1.1, 1.2, 1.5, 4.2 and D.9 be satisfied and suppose that the com-
pressors Qt

i ∈ U(ωD) satisfy Assumption 1.6, {Ct
i}

n
i=1 ∈ P(θ) and Ct

i ∈ U(ωP ) for all i ∈ [n]. Let
γ > 0 be such that

γ = min

{L+

√√√√1536

((
θ
pP

+ 1+θpP

β2

)
L2
B +

(
ωP

pP
+ 1+ωP pP

β2

)
L2
A +

(
ωDωP β
npD

+ ωD(1+ωP pP )
npD

)
L2
max

)−1

,

pP

2µ ,
pD

2µ ,
β
4µ

}
. (33)

Letting

Ψt = δt + κ

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2

+ η
∥∥zt − wt

∥∥2 + ν
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2
+ ρ

∥∥wt − xt
∥∥2 + τ

1

n

n∑
i=1

∥∥wt
i − xt

∥∥2 ,
where κ = 2γ

pD
, η =

8γL2
B

β , ν =
8γL2

A

β +
24γωDβL2

max

npD
, ρ = 128γL2

B

(
1
pP

+ pP

β2

)
and τ =

128γL2
A

(
1
pP

+ pP

β2

)
+

384γωDL2
max

npD
(β + pP ), M3 ensures that for each T ≥ 1

E
[
ΨT
]
≤ (1− γµ)

T
Ψ0.

Proof. Starting as in the proof of Theorem E.1, we have

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ τE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ γE

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


+ 2γL2
A

1

n

n∑
i=1

(
E
[∥∥zti − wt

i

∥∥2]+ E
[∥∥wt

i − xt
∥∥2])

+ 2γL2
B

(
E
[∥∥zt − wt

∥∥2]+ E
[∥∥wt − xt

∥∥2])
+ κ

(
ωDL2

max

n

(
4pPβ

2E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]+ 3β2E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+ 3(ωP + 1)β2E
[∥∥xt+1 − xt

∥∥2]))

+ κ(1− pD)E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


+ η

((
1− β

2

)
E
[∥∥zt − wt

∥∥2]+ 4

(
1

β
+ θ

)
E
[∥∥xt+1 − xt

∥∥2]+ 4pP

(
1 +

pP
β

)
E
[∥∥wt − xt

∥∥2])

+ ν

((
1− β

2

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]+ 4

(
1

β
+ ωP

)
E
[∥∥xt+1 − xt

∥∥2]

43



+ 4pP

(
1 +

pP
β

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2])
+ ρ(1− pP )

(
E
[∥∥wt − xt

∥∥2]+ θE
[∥∥xt+1 − xt

∥∥2])
+ τ(1− pP )

(
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]+ ωPE
[∥∥xt+1 − xt

∥∥2])

for some κ, η, ν, ρ, τ ≥ 0. This time, we let κ = 2γ
pD

and η =
8γL2

B

β , which gives γ + κ(1− pD) =

κ
(
1− pD

2

)
and 2γL2

B + η(1− β/2) = η
(
1− β

4

)
. Hence

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ τE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
+ κ

(
1− pD

2

)
E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
+ η

(
1− β

4

)
E
[∥∥zt − wt

∥∥2]

+ 2γL2
A

1

n

n∑
i=1

(
E
[∥∥zti − wt

i

∥∥2]+ E
[∥∥wt

i − xt
∥∥2])+ 2γL2

BE
[∥∥wt − xt

∥∥2]
+

2γ

pD

(
ωDL2

max

n

(
4pPβ

2E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]+ 3β2E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+ 3(ωP + 1)β2E
[∥∥xt+1 − xt

∥∥2]))

+
8γL2

B

β

(
4

(
1

β
+ θ

)
E
[∥∥xt+1 − xt

∥∥2]+ 4pP

(
1 +

pP
β

)
E
[∥∥wt − xt

∥∥2])
+ ν

((
1− β

2

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]+ 4

(
1

β
+ ωP

)
E
[∥∥xt+1 − xt

∥∥2]
+ 4pP

(
1 +

pP
β

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2])
+ ρ

(
(1− pP )E

[∥∥wt − xt
∥∥2]+ θE

[∥∥xt+1 − xt
∥∥2])

+ τ

(
(1− pP )E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]+ ωPE
[∥∥xt+1 − xt

∥∥2]) .

Rearranging the terms

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ τE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
44



+ κ
(
1− pD

2

)
E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
+ η

(
1− β

4

)
E
[∥∥zt − wt

∥∥2]

+

(
ν

(
1− β

2

)
+ 2γL2

A +
6γωDβ2L2

max

npD

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+

(
6γωD(ωP + 1)β2L2

max

npD
+ ρθ +

32γL2
B

β

(
1

β
+ θ

)
+ 4ν

(
1

β
+ ωP

)
+ τωP

)
E
[∥∥xt+1 − xt

∥∥2]
+

(
ρ(1− pP ) + 2γL2

B +
32γL2

BpP
β

(
1 +

pP
β

))
E
[∥∥wt − xt

∥∥2]
+

(
τ(1− pP ) + 2γL2

A + 4νpP

(
1 +

pP
β

)
+

8γωDpPβ
2L2

max

npD

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2] .
Considering the coefficient of E

[
∥wt − xt∥2

]
and using the inequality xy ≤ x2+y2

2 for all x, y ≥ 0,
we get

ρ(1− pP ) + 2γL2
B +

32γL2
BpP

β

(
1 +

pP
β

)
≤ ρ(1− pP ) + 32γL2

B

(
1 +

pP
β

+
p2P
β2

)
≤ ρ(1− pP ) + 64γL2

B

(
1 +

p2P
β2

)
= ρ

(
1− pP

2

)
,

where we define ρ = 128γL2
B

(
1
pP

+ pP

β2

)
. Substituting this choice of ρ, we obtain

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ τE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
+ κ

(
1− pD

2

)
E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
+ η

(
1− β

4

)
E
[∥∥zt − wt

∥∥2]

+ ρ
(
1− pP

2

)
E
[∥∥wt − xt

∥∥2]+ (ν (1− β

2

)
+ 2γL2

A +
6γωDβ2L2

max

npD

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+

(
6γωD(ωP + 1)β2L2

max

npD
+ 128γL2

B

(
1

pP
+

pP
β2

)
θ +

32γL2
B

β

(
1

β
+ θ

)

+ 4ν

(
1

β
+ ωP

)
+ τωP

)
E
[∥∥xt+1 − xt

∥∥2]
+

(
τ(1− pP ) + 2γL2

A + 4νpP

(
1 +

pP
β

)
+

8γωDpPβ
2L2

max

npD

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2] .
Similarly, taking ν =

8γL2
A

β +
24γωDβL2

max

npD
gives ν

(
1− β

2

)
+ 2γL2

A +
6γωDβ2L2

max

npD
= ν

(
1− β

4

)
,

so

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

45



+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ τE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
+ κ

(
1− pD

2

)
E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
+ η

(
1− β

4

)
E
[∥∥zt − wt

∥∥2]

+ ρ
(
1− pP

2

)
E
[∥∥wt − xt

∥∥2]+ ν

(
1− β

4

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+

(
6γωD(ωP + 1)β2L2

max

npD
+ 128γL2

B

(
1

pP
+

pP
β2

)
θ +

32γL2
B

β

(
1

β
+ θ

)

+ 4

(
8γL2

A

β
+

24γωDβL2
max

npD

)(
1

β
+ ωP

)
+ τωP

)
E
[∥∥xt+1 − xt

∥∥2]
+

(
τ(1− pP ) + 2γL2

A + 4

(
8γL2

A

β
+

24γωDβL2
max

npD

)
pP

(
1 +

pP
β

)

+
8γωDpPβ

2L2
max

npD

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2] .
Considering the last bracket, we have

τ(1− pP ) + 2γL2
A + 4

(
8γL2

A

β
+

24γωDβL2
max

npD

)
pP

(
1 +

pP
β

)
+

8γωDpPβ
2L2

max

npD

= τ(1− pP ) + 2γL2
A +

32γpPL
2
A

β
+

32γp2PL
2
A

β2
+

96γωDpPβL
2
max

npD
+

96γωDp2PL
2
max

npD

+
8γωDpPβ

2L2
max

npD

≤ τ(1− pP ) + 32γL2
A

(
1 +

pP
β

+
p2P
β2

)
+

96γωDpPL
2
max

npD

(
β + pP + β2

)
≤ τ(1− pP ) + 64γL2

A

(
1 +

p2P
β2

)
+

192γωDpPL
2
max

npD
(β + pP )

= τ
(
1− pP

2

)
for τ = 128γL2

A

(
1
pP

+ pP

β2

)
+

384γωDL2
max

npD
(β + pP ). Then

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ τE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
+ κ

(
1− pD

2

)
E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
+ η

(
1− β

4

)
E
[∥∥zt − wt

∥∥2]

+ ρ
(
1− pP

2

)
E
[∥∥wt − xt

∥∥2]+ ν

(
1− β

4

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

46



+ τ
(
1− pP

2

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]

+

(
6γωD(ωP + 1)β2L2

max

npD
+ 128γL2

B

(
1

pP
+

pP
β2

)
θ +

32γL2
B

β

(
1

β
+ θ

)
+ 4

(
8γL2

A

β
+

24γωDβL2
max

npD

)(
1

β
+ ωP

)
+ 128γωPL

2
A

(
1

pP
+

pP
β2

)
+

384γωDωPL
2
max

npD
(β + pP )

)
E
[∥∥xt+1 − xt

∥∥2] , (34)

where the last bracket can be bounded as

I :=
6γωD(ωP + 1)β2L2

max

npD
+ 128γL2

B

(
1

pP
+

pP
β2

)
θ +

32γL2
B

β

(
1

β
+ θ

)
+ 4

(
8γL2

A

β
+

24γωDβL2
max

npD

)(
1

β
+ ωP

)
+ 128γωPL

2
A

(
1

pP
+

pP
β2

)
+

384γωDωPL
2
max

npD
(β + pP )

=

(
6γωD(ωP + 1)β2

npD
+

96γωDβ

npD

(
1

β
+ ωP

)
+

384γωDωP

npD
(β + pP )

)
L2
max

+

(
32γ

β

(
1

β
+ ωP

)
+ 128γωP

(
1

pP
+

pP
β2

))
L2
A

+

(
128γ

(
1

pP
+

pP
β2

)
θ +

32γ

β

(
1

β
+ θ

))
L2
B

=

(
6γωD(ωP + 1)β2

npD
+

96γωD

npD
+

96γωDωPβ

npD
+

384γωDωPβ

npD
+

384γωDωP pP
npD

)
L2
max

+

(
32γ

β2
+

32γωP

β
+

128γωP

pP
+

128γωP pP
β2

)
L2
A

+

(
128γθ

pP
+

128γpP θ

β2
+

32γ

β2
+

32γθ

β

)
L2
B .

(35)
We next consider the coefficients of L2

B , L2
A and L2

max. First, for L2
B , we have

128γθ

pP
+

128γpP θ

β2
+

32γ

β2
+

32γθ

β
≤ 128γ

(
θ

pP

(
1 +

pP
β

+
p2P
β2

)
+

1

β2

)
≤ 256γ

(
θ

pP
+

θpP
β2

+
1

β2

)
= 256γ

(
θ

pP
+

1 + θpP
β2

)
.

Next, the coefficient of L2
A can be bounded as

32γ

β2
+

32γωP

β
+

128

pP
+

128γωP pP
β2

≤ 128γ

(
1

β2
+

ωP

pP

(
1 +

pP
β

+
p2P
β2

))
≤ 256γ

(
ωP

pP
+

ωP pP
β2

+
1

β2

)
≤ 256γ

(
ωP

pP
+

1 + ωP pP
β2

)
,

and for L2
max we obtain

6γωD(ωP + 1)β2

npD
+

96γωD

npD
+

96γωDωPβ

npD
+

384γωDωPβ

npD
+

384γωDωP pP
npD

47



≤ 384γωD

(
(ωP + 1)β2

npD
+

1

npD
+

ωPβ

npD
+

ωP pP
npD

)
≤ 768γωD

(
1

npD
+

ωPβ

npD
+

ωP pP
npD

)
= 768γ

(
ωDωPβ

npD
+

ωD(1 + ωP pP )

npD

)
since (ωP+1)β2

npD
≤ 1

npD
+ ωP β

npD
. Substituting these inequalities to (34) and (35), we get

E
[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]+ τE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]− ( 1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]
+ κ

(
1− pD

2

)
E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2
+ η

(
1− β

4

)
E
[∥∥zt − wt

∥∥2]

+ ρ
(
1− pP

2

)
E
[∥∥wt − xt

∥∥2]+ ν

(
1− β

4

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+ τ
(
1− pP

2

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]

+ 768γ

((
θ

pP
+

1 + θpP
β2

)
L2
B +

(
ωP

pP
+

1 + ωP pP
β2

)
L2
A

+

(
ωDωPβ

npD
+

ωD(1 + ωP pP )

npD

)
L2
max

)
E
[∥∥xt+1 − xt

∥∥2] .
By collecting all the terms w.r.t. E

[∥∥xt+1 − xt
∥∥2] , using the step size γ from the theorem and

Lemma H.2, we obtain

E
[
Ψt+1

]
= E

[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+ νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]
+ τE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]

≤ E
[
δt
]
− γ

2
E
[∥∥∇f(xt)

∥∥2]+ κ
(
1− pD

2

)
E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


+ η

(
1− β

4

)
E
[∥∥zt − wt

∥∥2]+ ρ
(
1− pP

2

)
E
[∥∥wt − xt

∥∥2]
+ ν

(
1− β

4

)
E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]+ τ
(
1− pP

2

)
E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2] .
48



Lastly, Assumption D.9 gives

E
[
Ψt+1

]
= E

[
δt+1

]
+ κE

∥∥∥∥∥gt+1 − 1

n

n∑
i=1

∇fi(z
t+1
i )

∥∥∥∥∥
2
+ ηE

[∥∥zt+1 − wt+1
∥∥2]

+νE

[
1

n

n∑
i=1

∥∥zt+1
i − wt+1

i

∥∥2]+ ρE
[∥∥wt+1 − xt+1

∥∥2]
+τE

[
1

n

n∑
i=1

∥∥wt+1
i − xt+1

∥∥2]
Ass.D.9,(33)

≤ (1− γµ)E
[
δt
]
+ κ (1− γµ)E

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(z
t
i)

∥∥∥∥∥
2


+η (1− γµ)E
[∥∥zt − wt

∥∥2]+ ν (1− γµ)E

[
1

n

n∑
i=1

∥∥zti − wt
i

∥∥2]

+ρ (1− γµ)E
[∥∥wt − xt

∥∥2]+ τ (1− γµ)E

[
1

n

n∑
i=1

∥∥wt
i − xt

∥∥2]
= (1− γµ)E

[
Ψt
]

It remains to apply the last inequality iteratively to finish the proof.

Corollary E.9. Let Ct
i ∈ P(0) for all i ∈ [n] (e.g. PermK), choose pP = 1/(ωP + 1), pD =

1/(ωD + 1) and

β = min

{(
n

ωDωP (ωD + 1)

)1/3

, 1

}
.

Then, in the view of Theorem E.8, Algorithm 2 ensures that E
[
f(xT )− f∗] ≤ ε after

O

max


(
1+

(
ωDωP (ωD+1)

n

)1/3
+

√
ωD(ωD+1)

n

)
Lmax+

√
ωP (ωP+1)LA

µ , ωP + 1, ωD + 1,
(

ωDωP (ωD+1)
n

)1/3 log Ψ0

ε


iterations.

Proof. Note that ΨT ≥ f(xT ) − f∗. In view of condition (33) from Theorem E.8, the step size
satisfies

γ = Θ

(
min


(
L+

√(
θ

pP
+

1 + θpP
β2

)
L2
B +

(
ωP

pP
+

1 + ωP pP
β2

)
L2
A +

(
ωDωPβ

npD
+

ωD(1 + ωP pP )

npD

)
L2
max

)−1

,

pP
2µ

,
pD
2µ

,
β

4µ

})
.

Therefore, since θ = 0, the algorithm converges after

T̄ = O

max

L+

√
1
β2 L2

B+
(

ωP
pP

+
1+ωP pP

β2

)
L2

A+
(

ωDωP β

npD
+

ωD(1+ωP pP )

npD

)
L2

max

µ , 1
pP

, 1
pD

, 1
β

 log Ψ0

ε


iterations. Using the choice of pP and pD, we have

T̄ = O

max

L+

√
1
β2 (L2

B+L2
A)+ωP (ωP+1)L2

A+
(

ωD(ωD+1)ωP β

n +
ωD(ωD+1)

n

)
L2

max

µ , ωP + 1, ωD + 1, 1
β

 log Ψ0

ε

 .

49



Due to Lemma C.1, we get

T̄ = O

max

L+

√
ωP (ωP+1)L2

A+
(

1
β2 +

ωD(ωD+1)ωP β

n +
ωD(ωD+1)

n

)
L2

max

µ , ωP + 1, ωD + 1, 1
β

 log Ψ0

ε

 .

Using the choice of β, we obtain the result of the theorem.

Corollary E.10. Let Ct
i be the PermK compressors and Qt

i be the independent (Assumption 1.6)
RandK compressors, both with K = d/n. Then, in the view of Corollary E.9, the total communication
complexity is

O
((

dLmax

n1/3µ
+

dLA

µ
+ d

)
log

Ψ0

ε

)
.

Proof. The choice of compressors and parameters ensures that ωP = ωD = n − 1 (Lemma A.6).
Thus, the iteration complexity is

O

(
max

{(
1 + n2/3 + n1/2

)
Lmax + nLA

µ
, n, n, n2/3

}
log

Ψ0

ε

)

= O
(
max

{
n2/3Lmax + nLA

µ
, n

}
log

Ψ0

ε

)
.

Since pP = pD = 1/n and K = d/n, on average, the algorithm sends ≤ 2d/n coordinates in both
directions. Therefore, the total communication complexity is

O
(
d

n
×max

{
n2/3Lmax + nLA

µ
, n

}
log

Ψ0

ε

)
= O

(
max

{
d

n1/3Lmax + dLA

µ
, d

}
log

Ψ0

ε

)
.

50



0 100000 200000 300000 400000 500000
#bits / n (s-to-w)

10 1

100

101

||
f(x

t )|
|

M3 (# of workers = 10)
M3 (# of workers = 100)
M3 (# of workers = 1000)
CORE (# of workers = 10)
CORE (# of workers = 100)

0 100000 200000 300000 400000 500000
#bits / n (w-to-s)

10 1

100

101

||
f(x

t )|
|

M3 (# of workers = 10)
M3 (# of workers = 100)
M3 (# of workers = 1000)
CORE (# of workers = 10)
CORE (# of workers = 100)

Figure 2: Experiments on the quadratic optimization problem from Section F.1. We plot the norm of
the gradient w.r.t. # of coordinates sent from the server (s-to-w) and from the workers (w-to-s).

0.0 0.5 1.0 1.5 2.0
#bits / n (s-to-w) 1e7

10 3

10 2

||
f(x

t )|
|

MARINA-P
EF21-P + DCGD
GD
M3
CORE

0.0 0.5 1.0 1.5 2.0
#bits / n (w-to-s) 1e7

10 3

10 2
||

f(x
t )|

|

MARINA-P
EF21-P + DCGD
GD
M3
CORE

Figure 3: Experiments on the autoencoder task from Section F.2. We plot the norm of the gradient
w.r.t. # of coordinates sent from the server (s-to-w) and from the workers (w-to-s).

F Experiments

The experiments were prepared in Python. The distributed environment was emulated on a machine
with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz and 64 cores.

F.1 Experiments with M3 on quadratic optimization tasks

We consider close-to-homogeneous quadratic optimization problem with Ai = (1 + ξi)Id, where
ξi ∼ N (0, 0.01) for all i ∈ [n], and d = 1000. We run two algorithms from Table 1, M3 and
CORE, and check whether theory matches practice. In M3, we use PermK followed by the natural
compressor Cnat (Horváth et al., 2022) (composition of two unbiased compressors) on the server’s
side, and RandK followed by Cnat on the workers’ side. We use K = ⌊d/n⌋ ∈ {1, 10, 100} for
n ∈ {1000, 100, 10}. In CORE, the number of communicated coordinates is set to 10. We run each
experiment 5 times with different seeds and plot the average to reduce the noise factor. Only the step
size is fine-tuned for each algorithm.

The results are presented in Figure 2. As expected, CORE does not change its behavior as the number
of workers increases from 10 to 100; this is expected since CORE does not depend on n. At the same
time, M3 does improve with n, which supports our findings from Theorem 5.1.

F.2 Experiments with an autoencoder and MNIST

We now compare MARINA-P, M3, CORE, EF21-P + DCGD, and GD on a non-convex autoencoder
problem. We train it on the MNIST dataset (LeCun et al., 2010) with objective function f(D,E) :=
1
m

∑m
i=1 ∥DEbi − bi∥2 + λ

2 ∥DE− I∥2F , where D ∈ Rd1×d2 , E ∈ Rd2×d1 , bi ∈ Rd1 are samples,

51



d1 = 784 is the number of features, d2 = 16 is the size of the encoding space, λ = 0.001 is a
regularizer, and m = 60 000 is the number of samples. The dimension of the problem is d = 25 088.
We randomly split the dataset among n = 100 workers. For MARINA-P and M3, we take PermK
followed by the natural compressor Cnat on the server’s side. On the workers’ side, M3 uses RandK
and Cnat. For EF21-P + DCGD, we take RandK with Cnat on both the workers’ and server’s sides. In
each case, K = ⌊d/n⌋ = 250. For CORE, we set the number of communicated coordinates to 100.
As in previous experiments, we only fine-tune the step size, repeat each experiment 5 times, and plot
the average results.

The results are presented in Figure 3. All methods with bidirectional compression: M3, CORE, and
EF21-P + DCGD, converge much faster than GD. MARINA-P converges fastest only in the first plot.
This is expected since it compresses only from the server to the workers. M3, CORE, and EF21-P +
DCGD have similar convergence rates in both metrics, with M3 performing better in the low accuracy
regime.

F.3 Extra experiments with quadratic optimization tasks

The aim of this set of experiments is to empirically test our results under Assumption 4.2. We consider
the problem of quadratic minimization with varying level of heterogeneity between the n functions
stored on the workers. The goal is to minimize the squared norm of the gradient of

∑n
i=1 fi, where

the functions fi are of form

fi(x) =
1

2
xTAix+ bTi x.

Here, Ai are d × d matrices generated following the procedure in Algorithm 3, and bi denotes
a standard normal vector in Rd. The constants LA and LB from Assumption 4.2 (in this case,
by Theorem 4.8 LA =

√
2maxi∈[n] ∥Ai −A∥ and LB =

√
2
(
1
n

∑n
i=1 ∥Ai∥

)
) are controlled by

parameters vi and σ2
i . In particular, for σ2

i = 0, all workers hold the same matrix Ai, and hence in
this case LA = 0.

We compare the following algorithms:

1. MARINA-P with PermK compressors,
2. MARINA-P with RandK compressors,
3. MARINA-P with SameRandK compressor,
4. EF21-P with TopK compressor,
5. GD.

In all compressed methods, we set K = d/n and use p = k/d in MARINA-P.

The step sizes are tuned from 2i, i ∈ Z multiples of the values predicted by the theory (indicated by
×1,×2, . . . in the plots). We fix d = 300 and generate optimization tasks with n ∈ {10, 100, 900}.
The results are presented in Figures 4, 5, 6.

The empirical results align well with the theory. Among the algorithms tested, MARINA-P with
PermK compressor exhibits the best performance, while MARINA-P with SameRandK converges the
slowest and comparable to GD. MARINA-P with RandK compressor and EF21-P achieve performance
levels somewhere in between. Notably, the differences between the runs of MARINA-P with different
compressors become more pronounced as the value of n increases. As anticipated, the performance
of MARINA-P with RandK and PermK compressors improves with an increase in the number of
workers, while the performance of EF21-P does not follow the same behaviour. Specifically, for
n = 10, EF21-P outperforms MARINA-P with RandK compressor, but this pattern reverses for both
n = 100 and n = 1000.

52



Algorithm 3 Heterogeneous quadratic problem generation

1: Parameters: v0, . . . , v4 ∈ R+, σ0, . . . , σ4 ∈ R≥0.
2: Let

X =
1

4


2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2

 ∈ R300×300,

3: for k = 0, . . . , 4 do
4: Generate ξi ∼ N (0, σ2

k) ∩ [−v0, v0] for i ∈ [n]
5: for l = 0, . . . , 4 do
6: Set Ak,l

i = (vl + ξi)X for i ∈ [n]

7: Sample bk,li ∼ N (0, Id) for i ∈ [n]
8: end for
9: Output: matrices Ak,l

i , vectors bk,li , i ∈ [n], k, l ∈ [4].
10: end for

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 0, L2

B = 100, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×0.5
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 0, L2

B = 1000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×0.5
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 0, L2

B = 10000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×0.5
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100
f(x

t )
2

f(x
0 )

2

L2
A = 0, L2

B = 100000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×0.5
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 100, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 1000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 10000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 100000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 100, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 1000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 10000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 100000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 100, n=10, d=300
GD, ×1
EF21-P, Top30, ×16
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×2
MARINA-P, Perm30, ×4

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 1000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×4

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 10000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

0 100000 200000 300000 400000 500000 600000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 100000, n=10, d=300
GD, ×1
EF21-P, Top30, ×8
MARINA-P, SameRand30, ×1
MARINA-P, Rand30, ×1
MARINA-P, Perm30, ×2

Figure 4: Experiments on the quadratic optimization problem from Section F.3 with n = 10 for
L2
A ∈ {0, 1, 10, 100} and L2

B ∈ {100, 1000, 10000, 100000}.

53



0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 0, L2

B = 100, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×2
MARINA-P, Perm3, ×2

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 0, L2

B = 1000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×2
MARINA-P, Perm3, ×2

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 0, L2

B = 10000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×1
MARINA-P, Perm3, ×2

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 0, L2

B = 100000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×2
MARINA-P, Perm3, ×2

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 100, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×2
MARINA-P, Perm3, ×8

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 1000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×2
MARINA-P, Perm3, ×4

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 10000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×1
MARINA-P, Perm3, ×2

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 100000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×2
MARINA-P, Perm3, ×2
DASHA-P, Rand3, ×4

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 100, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×4
MARINA-P, Perm3, ×16

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 1000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×2
MARINA-P, Perm3, ×8

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 10000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×1
MARINA-P, Perm3, ×4

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 100000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×1
MARINA-P, Perm3, ×2

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 100, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×16
MARINA-P, Perm3, ×32

0 10000 20000 30000 40000 50000 60000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 1000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×2
MARINA-P, Perm3, ×16

0 10000 20000 30000 40000 50000 60000 70000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 10000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×2
MARINA-P, Perm3, ×8

0 10000 20000 30000 40000 50000 60000 70000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 100000, n=100, d=300
GD, ×1
EF21-P, Top3, ×8
MARINA-P, SameRand3, ×0.5
MARINA-P, Rand3, ×1
MARINA-P, Perm3, ×4

Figure 5: Experiments on the quadratic optimization problem from Section F.3 with n = 100 for
L2
A ∈ {0, 1, 10, 100} and L2

B ∈ {100, 1000, 10000, 100000}.

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 0, L2

B = 100, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×4
MARINA-P, Perm1, ×2

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 0, L2

B = 1000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×4
MARINA-P, Perm1, ×2

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 0, L2

B = 10000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×4
MARINA-P, Perm1, ×2

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 0, L2

B = 100000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×4
MARINA-P, Perm1, ×2

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 100, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×2
MARINA-P, Perm1, ×32

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 1000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×2
MARINA-P, Perm1, ×8

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 10000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×2
MARINA-P, Perm1, ×4

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 1, L2

B = 100000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×2
MARINA-P, Perm1, ×2

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 100, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×4
MARINA-P, Perm1, ×64

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 1000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×4
MARINA-P, Perm1, ×16

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 10000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×4
MARINA-P, Perm1, ×8

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 10, L2

B = 100000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×4
MARINA-P, Perm1, ×4

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 100, n=900, d=300
GD, ×1
EF21-P, Top1, ×32
MARINA-P, SameRand1, ×1
MARINA-P, Rand1, ×64
MARINA-P, Perm1, ×64

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 1000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×16
MARINA-P, Perm1, ×32

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 10000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×4
MARINA-P, Perm1, ×16

0 5000 10000 15000 20000
Number of bits sent (s-to-w)

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
t )

2

f(x
0 )

2

L2
A = 100, L2

B = 100000, n=900, d=300
GD, ×1
EF21-P, Top1, ×16
MARINA-P, SameRand1, ×0.5
MARINA-P, Rand1, ×4
MARINA-P, Perm1, ×8

Figure 6: Experiments on the quadratic optimization problem from Section F.3 with n = 900 for
L2
A ∈ {0, 1, 10, 100} and L2

B ∈ {100, 1000, 10000, 100000}.

54



G Proof of the Lower Bounds

G.1 The “difficult” function from the nonconvex world

In our lower bound, we use the function from Carmon et al. (2020); Arjevani et al. (2022). For any
T ∈ N, let

FT (x) := −Ψ(1)Φ([x]1) +

T∑
i=2

(Ψ(−[x]i−1)Φ(−[x]i)−Ψ([x]i−1)Φ([x]i)) , (36)

where

Ψ(x) =

{
0, x ≤ 1/2,

exp
(
1− 1

(2x−1)2

)
, x ≥ 1/2,

and Φ(x) =
√
e

∫ x

−∞
e−

1
2 t

2

dt.

Carmon et al. (2020); Arjevani et al. (2022) also proved the following properties of the function:
Lemma G.1 (Carmon et al. (2020); Arjevani et al. (2022)). The function FT satisfies:

1. FT (0)− infx∈RT FT (x) ≤ ∆0T, where ∆0 = 12.

2. The function FT is l1–smooth, where l1 = 152.

3. For all x ∈ RT , ∥∇FT (x)∥∞ ≤ γ∞, where γ∞ = 23.

4. For all x ∈ RT , prog(∇FT (x)) ≤ prog(x) + 1.

5. For all x ∈ RT , if prog(x) < T, then ∥∇FT (x)∥ > 1,

where prog(x) := max{i ≥ 0 |xi ̸= 0} (x0 ≡ 1).

The function is a standard function that is used to establish lower bounds in the nonconvex world
(Carmon et al., 2020; Arjevani et al., 2022; Lu and De Sa, 2021; Tyurin and Richtárik, 2023c).

G.2 Theorems

Our lower bound applies to the family of methods with the following structure:

Protocol 4 Protocol
1: Input: functions f1, . . . , fn ∈ F , algorithm A, probability p
2: for k = 0, . . . ,∞ do
3: Server calculates a new point: xk = Bk

1 (g
1
1 , . . . , g

k
1 , . . . , g

1
n, . . . , g

k
n)

4: Server aggregates all available information: ski = Bk
2,i(g

1
1 , . . . , g

k
1 , . . . , g

1
n, . . . , g

k
n)

5: Server sends sparsified vectors s̄ki to the workers, where

[s̄ki ]j = [ski ]j × ηki,j ,

and ηki,j is a random variable such that P
(
ηki,j ̸= 0

)
≤ p for all j ∈ [d′] and for all i ∈ [n]. We

define d′ := dim(dom(f1)), and [·]j means the jth coordinate.
6: Workers aggregate all available local information and calculate gradients: gk+1

i =
Lk
i (s̄

0
i , . . . , s̄

k
i )

(Lk
i has access to the gradient oracle of fi and can call it as many times as it wants according

to the rules (37) and (38))
7: Workers send gk+1

i to the server
8: end for

We consider the following standard classes of functions and algorithms:
Definition G.2. Let the function f : Rd → R be differentiable, L-smooth (i.e.,
∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ for all x, y ∈ Rd), and f(0) − infx∈Rd f(x) ≤ δ0. We denote
the family of functions that satisfy these properties by Fδ0,L.

55



Definition G.3. Consider Protocol 4. A sequence of tuples of mappings A =
{(Bk

1 , B
k
2,1, . . . , B

k
2,n, L

k
1 , . . . , L

k
n)}∞k=0 is a zero-respecting algorithm, if,

1. Bk
1 : Rd × · · · × Rd︸ ︷︷ ︸

n×k times

→ Rd for all k ≥ 1, and B0
1 ∈ Rd.

2. Bk
2,i : Rd × · · · × Rd︸ ︷︷ ︸

n×k times

→ Rd for all k ≥ 1, and B0
2,i ∈ Rd for all i ∈ [n]

3. Lk
i : Rd × · · · × Rd︸ ︷︷ ︸

k+1 times

→ Rd for all k ≥ 0 and for all i ∈ [n].

4. supp
(
xk
)
⊆
⋃k

j=1

⋃n
i=1 supp

(
gji

)
, supp

(
ski
)
⊆
⋃k

j=1

⋃n
i=1 supp

(
gji

)
.

For all ĝk+1
i,1 , ĝk+1

i,2 , . . . such that

supp
(
ĝk+1
i,1

)
⊆

k⋃
j=0

supp
(
s̄ji

)
,

supp
(
ĝk+1
i,2

)
⊆

k⋃
j=0

supp
(
s̄ji

)⋃
supp(∇fi(ĝ

k+1
i,1 )),

supp
(
ĝk+1
i,3

)
⊆

k⋃
j=0

supp
(
s̄ji

)⋃
supp(∇fi(ĝ

k+1
i,1 ))

⋃
supp(∇fi(ĝ

k+1
i,2 )),

. . .

(37)

we have

supp
(
gk+1
i

)
⊆

∞⋃
j=1

supp
(
ĝk+1
i,j

)
, (38)

for all k ∈ N0 and for all i ∈ [n], where supp(x) := {i ∈ [d] |xi ̸= 0}.

We denote the set of all algorithms that satisfy these properties by Azr.

The first three properties define the domains of the mapping. The last property is a standard assumption
for a zero-respecting algorithm. Assumption (38) allows the mappings Lk

i to calculate gradients.
Theorem G.4. Consider Protocol 4. Assume that the sets {η0i,j}i∈[n],j∈[d′],
{η1i,j}i∈[n],j∈[d′], . . . , {ηki,j}i∈[n],j∈[d′], . . . are mutually independent (the variables within
one set can be dependent). Let p > 0, L, δ0, ε > 0, n ≥ 2 be any numbers such that c̄ε < Lδ0. Then,
for any algorithm A ∈ Azr, there exists a function f ∈ Fδ0,L and functions f1, . . . , fn such that

f = 1
n

∑n
i=1 fi and E

[∥∥∇f(xk)
∥∥2] > ε for all

k ≤ ĉ
Lδ0

pε
.

The quantities c̄ and ĉ are universal constants.

Proof. The proof is conceptually the same as in Arjevani et al. (2022); Lu and De Sa (2021); Huang
et al. (2022); Fang et al. (2018); Carmon et al. (2020); Tyurin and Richtárik (2023c). We fix λ > 0,
and consider the following function f : RT → R :

f(x) :=
Lλ2

l1
FT

(x
λ

)
.

One can show (Arjevani et al., 2022)[Theorem 1] that f ∈ Fδ0,L if

T =

⌊
δ0l1

Lλ2∆0

⌋
. (39)

56



Next, we define

Fi(x) :=

{
−Ψ(1)Φ([x]1) +

∑
2≤j≤T and (j−1) mod n=0 (Ψ(−[x]j−1)Φ(−[x]j)−Ψ([x]j−1)Φ([x]j)) , i = 1∑T

2≤j≤T and (j−1) mod n=i−1 (Ψ(−[x]j−1)Φ(−[x]j)−Ψ([x]j−1)Φ([x]j)) , i > 1

and

fi(x) :=
nLλ2

l1
Fi

(x
λ

)
.

The idea is that we take the first block from (36) to the first worker, the second block to the second
worker, . . . , (n+ 1)th block to the first worker, and so on. Then, one can show that

1

n

n∑
i=1

fi(x) = f(x).

Using Lemma G.1, we obtain

∥∇f(x)∥2 =
L2λ2

l21

∥∥∥∇FT

(x
λ

)∥∥∥2 >
L2λ2

l21
1[prog(x) < T ]. (40)

The functions fi are zero-chain (Arjevani et al., 2022): for all i ∈ [n], if prog(x) = j and (j mod n)+
1 = i, then prog(∇fi(x)) ≤ j + 1, and for all i ∈ [n], if prog(x) = j and (j mod n) + 1 ̸= i,
then prog(∇fi(x)) ≤ j. Using the zero-chain property and the fact that we consider the family of
zero-respecting algorithms:

1. The first non-zero coordinate can be discovered only by the first worker.

2. Assume that maxkj=1 maxni=1 prog
(
gji

)
= j ≥ 1. An algorithm can discover one new

non-zero coordinate in the (j + 1)th position only if the (j mod n + 1)th worker gets a
non-zero jth coordinate from the server. This is by the construction of the functions fi. Note
that for n ≥ 2, one worker cannot discover two consecutive coordinates.

Let us define

ξj =I[In the jth iteration, the coordinate with index p̄ ≡ k
max
j=1

n
max
i=1

prog
(
gji

)
is not zeroed out in Line 5

of Protocol 4 to the worker with index (p̄ mod n+ 1) AND T − 1 ≥ p̄ ≥ 1] (p̄ = 0 if k = 0).

Then, we have

P
(
prog(xk) ≥ T

)
≤ P

k−1∑
j=0

ξj ≥ T − 1

 .

Assume that Gj is the σ–algebra generated by all randomness up to the jth iteration (inclusive). Then,
ξj is Gj–measurable, and, by the construction of Line 5 of Protocol 4, P

(
ξj+1 = 1

∣∣Gj

)
≤ p, where

we also use the assumption of the theorem that the sets of random variables are mutually independent.
Using the standard approach with the Chernoff method (Arjevani et al., 2022; Lu and De Sa, 2021;
Huang et al., 2022), one can show that

P

k−1∑
j=0

ξj ≥ T − 1

 ≤ ρ

for all

k ≤
T − 1− log 1

ρ

2p

and ρ ∈ (0, 1]. Therefore, we get

P
(
prog(xk) ≥ T

)
≤ ρ (41)

57



for all

k ≤
T − 1− log 1

ρ

2p
.

Using (40), we have

E
[∥∥∇f(xk)

∥∥2] > 2εP
(∥∥∇f(xk)

∥∥2 > 2ε
)
≥ 2εP

(
L2λ2

l21
1[prog(x) < T ] ≥ 2ε

)
.

Let us take λ =
√
2εl1
L . Then

E
[∥∥∇f(xk)

∥∥2] > 2εP
(
L2λ2

l21
1[prog(x) < T ] ≥ 2ε

)
= 2εP (prog(x) < T ) . (42)

From (41) with ρ = 1
2 , we get

E
[∥∥∇f(xk)

∥∥2] > 2εP (prog(x) < T ) ≥ ε (43)

for all

k ≤ T − 1− log 2

2p
.

From (39), one can conclude that

T =

⌊
Lδ0l1
2εl21∆

0

⌋
.

By the theorem’s assumption, Lδ0 ≥ c̄ε. One can choose a universal constant c̄ such that (42) holds
for

k ≤ Θ

(
T

p

)
= Θ

(
Lδ0

εp

)
,

where Θ hides only a universal constant.

G.3 Compressed communication with independent compressors

Protocol 5 is exactly the same as Protocol 4 except for Line 5 and describes the family of methods
that send compressed vectors from the server to the workers.

Protocol 5 Protocol with Compressors

1: Input: functions f1, . . . , fn ∈ F , algorithm A, compressors C1, . . . , Cn
2: for k = 0, . . . ,∞ do
3: Server calculates a new point: xk = Bk

1 (g
1
1 , . . . , g

k
1 , . . . , g

1
n, . . . , g

k
n)

4: Server aggregates all available information: ski = Bk
2,i(g

1
1 , . . . , g

k
1 , . . . , g

1
n, . . . , g

k
n)

5: Server sends compressed vectors s̄ki = Ci(ski ) to the workers
6: Workers aggregate all available local information and calculate gradients: gk+1

i =
Lk
i (s̄

0
i , . . . , s̄

k
i )

(Lk
i has access to the gradient oracle of fi and can call it as many times as it wants according

to the rules (37) and (38))
7: Workers send gk+1

i to the server
8: end for

Theorem G.5. Consider Protocol 5. Let ω ≥ 0, L, δ0, ε > 0, n ≥ 2 be any numbers such that
c̄ε < Lδ0. Then for any algorithm A ∈ Azr, there exists a function f ∈ Fδ0,L, functions f1, . . . , fn
such that f = 1

n

∑n
i=1 fi, and i.i.d. compressors C1, . . . , Cn ∈ U(ω) such that E

[∥∥∇f(xk)
∥∥2] > ε

for all

k ≤ ĉ
(ω + 1)Lδ0

ε
.

The quantities c̄ and ĉ are universal constants.

58



Proof. We can use the result of Theorem G.4. It is sufficient to construct an appropriate compressor.
Let us define p := 1/ω+1. We define the following compressor:

[C(x)]j :=

{
1
pxj , j ∈ S,

0, j ̸∈ S,
∀j ∈ [T ],

where S is a random subset of [T ] and each element from [T ] appears with probability p independently.
Then, C is unbiased:

ES [[C(x)]j ] = xj ∀j ∈ RT

and

ES

[
∥C(x)∥2

]
= ES

 nT∑
j=1

1 [j ∈ S]
1

p2
x2
j

 =

nT∑
j=1

P (j ∈ S)
1

p2
x2
j =

nT∑
j=1

1

p
x2
j = (ω + 1) ∥x∥2 .

Therefore, we get C ∈ U(ω). Let Ci be i.i.d. instantiations of C for all i ∈ [n]. Since C is a sparsifier
as in Line 5 of Protocol 4, we can use Theorem G.4 with p = 1/ω+1 to finish the proof.

59



H Useful Identities and Inequalities

For all x, y, x1, . . . , xm ∈ Rd, s > 0 and α ∈ (0, 1], we have:

∥x+ y∥2 ≤ (1 + s) ∥x∥2 + (1 + s−1) ∥y∥2 , (44)∥∥∥∥∥
m∑
i=1

xi

∥∥∥∥∥
2

≤ m

(
m∑
i=1

∥xi∥2
)
, (45)

(1− α)
(
1 +

α

2

)
≤ 1− α

2
, (46)

(1− α)

(
1 +

2

α

)
≤ 2

α
. (47)

Variance decomposition: For any random vector X ∈ Rd and any non-random vector c ∈ Rd, we
have

E
[
∥X − c∥2

]
= E

[
∥X − E [X]∥2

]
+ ∥E [X]− c∥2 . (48)

Tower property: For any random variables X and Y , we have

E [E [X |Y ]] = E [X] . (49)

Jensen’s inequality: If f is a convex function and X is a random variable, then

E [f(X)] ≥ f (E [X]) . (50)

Lemma H.1 (Lemma 2 of Li et al. (2021)). Suppose that function f is L-smooth and let xt+1 =
xt − γgt. Then for any gt ∈ Rd and γ > 0, we have

f(xt+1) ≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − ( 1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

∥∥gt −∇f(xt)
∥∥2 .

Lemma H.2 (Lemma 5 of Richtárik et al. (2021)). Let a, b > 0. If 0 ≤ γ ≤ 1√
a+b

, then aγ2+bγ ≤ 1.

Moreover, the bound is tight up to the factor of 2 since 1√
a+b

≤ min
{

1√
a
, 1
b

}
≤ 2√

a+b
.

60



I Notation

Algorithms
n number of workers/nodes/clients/devices
γ stepsize

Ct
1, . . . Ct

n Server-to-workers (primal) compressors
Qt

1, . . .Qt
n Workers-to-server (dual) compressors

ωP , ωD Parameters of server-to-workers (primal) and workers-to-server (dual) compressors
θ Correlated compressors parameter (Definition A.3)
β Momentum parameter (see Algorithm 2)

Definitions
U(ω) The family of unbiased compressors with parameter ω (Definition 1.4)
P(θ) The family of correlated compressors with parameter θ (Definition A.3)
L Smoothness parameter of f (Assumption 1.1 )
Li Smoothness parameter of fi (Assumption 1.5)

LA, LB Parameters from Assumption 4.2
Notation

[k] = {1, . . . , k} for any positive integer k
Et [·] - expectation conditioned on the first t iterations
δt := f(xt)− f∗

L̂2 := 1
n

∑n
i=1 L

2
i , Lmax := maxi∈[n] Li

wt := 1/n
∑n

i=1 w
t
i

gt := 1/n
∑n

i=1 g
t
i

zt := 1/n
∑n

i=1 z
t
i

Table 2: Frequently used notation.

61



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Sections 3, 4, and 5

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Sections 4.6 and 5.1

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

62



Justification: The assumptions and the proofs are in Section 1.1 in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section F
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

63



Answer: [Yes]

Justification: In the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section F

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run experiments with different seeds and plot averages to reduce noise
factors (see the description in Sections F.1 and F.2).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

64

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section F

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the code of ethics, and we are confident that our paper is in
compliance with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work considers a mathematical problem from machine learning.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

65

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Section F

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

66

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: In the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

67


	Introduction
	Related Work

	Contributions
	Lower Bound under Smoothness
	The MARINA-P Method
	Three ways to compress
	Recap: permutation compressors PermK
	Warmup: homogeneous quadratics
	Functional (LA, LB) Inequality
	The Convergence Theory of MARINA-P with PermK
	Estimating LA and LB in the General Case

	M3: A New Bidirectional Method
	The Convergence Theory of M3

	Experimental Highlights
	Three unbiased ways to compress
	Biased Compressors
	Properties of LA and LB
	Convergence of MARINA-P in the General Case
	Main Results
	Proofs
	Polyak-Lojasiewicz condition
	Main Results
	Proofs


	Convergence of M3 in the General Case
	Main Results
	Proofs
	Polyak-Łojasiewicz condition
	Main Results
	Proofs


	Experiments
	Experiments with M3 on quadratic optimization tasks
	Experiments with an autoencoder and MNIST
	Extra experiments with quadratic optimization tasks

	Proof of the Lower Bounds
	The ``difficult'' function from the nonconvex world
	Theorems
	Compressed communication with independent compressors

	Useful Identities and Inequalities
	Notation

