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Abstract

Intuitively, it is important for humans to lo-
calize themselves by understanding their sur-
roundings when navigating to a place, espe-
cially when the trajectory is long and complex.
Similarly, we believe that this kind of capa-
bility, which we call situational awareness, is
also crucial for developing better navigational
agents. This work aims to evaluate the situa-
tional awareness capability of current popular
vision-language model (VLM) based naviga-
tional agents. Inspired by the way of humans
processing observations, we consider two types
of visual inputs to the models: 360-degree
panoramic images and egocentric navigational
videos. Then we construct a new dataset, Situ-
ational Awareness Dataset (SAD), comprised
of around 100K such panoramic images and
videos and corresponding instructions for this
task. We then evaluate multiple prominent
VLMs including OpenAl ol, GPT-40, Gem-
ini 2.0 Flash, Qwen2.5-VL, and their finetuned
versions on SAD. Our results show that the
situational awareness capability of these mod-
els is far behind human performance, but can
be significantly improved by further finetun-
ing. Furthermore, our findings also suggest that
fine-grained alignment between observations
and instructions is very helpful to the vision-
and-language navigation (VLN) task, which is
somehow overlooked by the community now.

1 Introduction

Situational awareness is a broad concept referring
to the capability of perception, comprehension, and
projection of the elements in an environment (End-
sley, 1995). This capability is crucial for effective
decision-making in a variety of tasks, such as avi-
ation and healthcare. Within the realm of vision-
and-language navigation (VLN), we simplify this
concept to denote an agent’s capability to under-
stand its current position based on the observations
in the navigation. This understanding is typically

the initial step for navigation agents in assessing
their progress and making informed decisions. Al-
though fundamental, achieving situational aware-
ness still necessitates intricate spatial reasoning and
a nuanced language grounding capability.

Recent advancements in large-scale vision-
language models (VLMs) have demonstrated great
potential across various vision-and-language tasks.
Applying these models to the task of vision-and-
language navigation in continuous environments
(i.e., VLN-CE task; Krantz et al., 2020) using
zero-shot learning has been a burgeoning area of
research. Despite this interest, the performance
of VLMs in this domain still lags far behind the
methods that employ supervised learning. For in-
stance, the state-of-the-art VLM-based method,
AO-Planner (Chen et al., 2024a), achieves a 22.4%
success rate on the RxR-CE dataset (Ku et al.,
2020), whereas the popular supervised learning
based method ETPNav (An et al., 2024) achieves
54.8%. Several factors contribute to this perfor-
mance gap, with the situational awareness capa-
bility of these models being a fundamental deter-
minant of their navigation performance. However,
research on this capability within the VLN field
remains limited. One major obstacle is the scarcity
of fine-grained annotated data that aligns naviga-
tion instructions with observations in ground-truth
trajectories.

To address this gap, we introduce a new dataset,
the Situational Awareness Dataset (SAD), which
encompasses around 200,000 observations paired
with instructions designed to evaluate situational
awareness capabilities. Inspired by how humans
localize themselves and navigate in a scene, we con-
sider both types of 360-degree panoramic images
and egocentric navigational videos as observation
input in the dataset. These two completely different
types of observations test situational awareness ca-
pability from different perspectives and pose differ-
ent challenges for the models. The corresponding



Where am |?
What | am seeing corresponds
to which instruction?

5. Turn Slightly left and you can
see a table with a computer on
it, move towards it.

7. Move towards the table and
this is your destination.

/

2. Turn slightly right and you
can see a staircase right in front
of you.

1. You are facing towards a
glass door, turn slightly right and
move forward.

Figure 1: An example for our situational awareness task. The navigation agent takes as input a 360-degree panoramic
image and the whole instruction. The agent is required to understand the surrounding observations and language
instructions, then predict which sentence in the instruction the current observation corresponds to.

instructions in the dataset are available in three ty-
pologically diverse languages—English, Hindi, and
Telugu-to facilitate the examination of capabilities
within multilingual contexts.

We conduct evaluations of several prominent
commercial and open-source VLMs in both zero-
shot and finetuned settings to assess their situa-
tional awareness capability on SAD. The models
tested include OpenAl ol, GPT-40, Gemini 2.0
Flash, and Qwen2.5-VL-7B/72B-Instruct. These
models are good representatives of the current state-
of-the-art in both commercial and open-source
VLM fields. Our findings reveal that even the
most advanced model, OpenAl ol and Gemini 2.0
Flash, perform very poorly in the zero-shot setting.
But they can be significantly improved by more
than 3 times through further finetuning, though still
lagging a large gap behind human performance.
Moreover, we further investigate whether the situ-
ational awareness capability can be helpful to the
VLN task. The experimental results show an agent
with better situational awareness capability also
performs better in the VLN task.

2 Dataset and Evaluation Method

In order to streamline the evaluation process, we
concentrate on the alignment between instructions
and observations at the sentence level. This focus
means we only assess the correspondence between
the end of each instruction sentence and its associ-
ated observation.

2.1 Dataset

We construct the Situational Awareness Dataset
(SAD) with the help of Habitat simulator and the
existing RxR-CE dataset. The details of the con-
struction process and the dataset can be found
in Appendix §A.1. SAD contains instructions
in three languages and the agent’s observations
corresponding to the end of each instruction. To
simplify the task further, we limit our focus to in-
structions containing a maximum of 10 sentences.
For each position, there are two types of obser-
vations: (1) a panoramic RGB image composed
of 12 RGB sub-images captured from 12 differ-
ent directions at equally spaced horizontal heading
angles: (0°,30°,...,330°); (2) a video recording
the agent’s egocentric observations 10 steps before
arriving at this position. We ensure that there are at
least 5 steps of difference between each video.

2.2 Evaluation Method

With the constructed dataset, we evaluate the sit-
uational awareness capability of agents through a
straightforward question-answering format. Given
an instruction and the corresponding panoramic im-
age or egocentric video observations, we pose the
following question to the agent: "Which sentence
in the instruction does this image/video correspond
to the end of 7" The agent must predict the sentence
index that align with the observation (see Figure 1).

We utilize two metrics to assess the agent’s per-
formance on this task: (1) Instruction-Level Accu-



| ACC_INSTR  ACC_SENT
65.00 87.14

Egocentric video observations ‘ - 91.00

Panoramic image observations ‘

Table 1: Human performance (%) on the constructed
SAD dataset with two types of observations.

racy (ACC_INSTR): this metric measures the ac-
curacy over the whole instruction level. Only if the
predictions for all observations in an instruction are
correct, the instruction-level predictions are con-
sidered correct. We don’t report this metric for the
egocentric video observations, as the video dataset
may not contain the whole sentences for an instruc-
tion in order to avoid large overlap between videos.
(2) Sentence-Level Accuracy (ACC_SENT): this
metric evaluates accuracy based on individual sen-
tences in the instruction. Each correct prediction
associated with an observation contributes to the
overall accuracy.

2.3 Human Performance

To provide a human performance baseline on the
SAD dataset, we randomly sample 200 instances
from the dataset for both types of observations
and have ten individuals perform the same sit-
uational awareness task respectively (see details
in Appendix §C). The results show an average
instruction-level accuracy of 65% and a sentence-
level accuracy of 87% with the panoramic image
observations. The performance with the egocentric
video observations is a little higher, suggesting that
humans better situate themselves based on videos
of observation history.

3 Experiments

3.1 Evaluation Settings

Dataset We utilize our constructed SAD dataset
for model evaluation. We test the models across all
three language splits: English, Hindi, and Telugu.
Each panorama sub-image and egocentric video is
evaluated at a resolution of 224 x 224. Our pre-
liminary experiments with GPT-4o indicate that
higher resolutions do not significantly enhance per-
formance while substantially increasing test time.
Further details are provided in Appendix B.1.

Test Models We evaluate the following mod-
els on the SAD dataset in both zero-shot setting
and finetuned setting: GPT-40 (gpt-40-2024-08-
06; OpenAl, 2024a), OpenAl ol (01-2024-12-
17; OpenAl, 2024b), Gemini 2.0 Flash (DeepMind,

2025), and Qwen2.5-VL-7B/72B-Instruct (Qwen-
Team, 2025). We run each model three times and
report the average performance in each evaluation
setting. For the zero-shot evaluation of panoramic
image observation setting, all models employ the
technique of structured outputs. Specifically, we
force the model’s output to include the reason-
ing steps for each image along with the final an-
swer, formatted in JSON. Further details about the
prompts we use are provided in Appendix B.2. For
the finetuned setting, we use GPT-40 and Qwen2.5-
VL-7B-Instruct models as the base models and fine-
tune them on the SAD train set' for each type of
observation.

3.2 Evaluation Results

Table 2 presents the evaluation results of the tested
models with panoramic image observations on the
SAD dataset. The approximate accuracy estimates
for random guesses are 0.02% and 14.29%, re-
spectively.? In terms of exact match instruction-
level accuracy (ACC_INSTR), all models perform
very poorly. Among them, OpenAl ol emerges as
the leader, outperforming others by approximately
50%. GPT-40 and Gemini 2.0 Flash exhibit sim-
ilar performance levels, while the open-sourced
Qwen2.5-VL-7B/72B-Instruct models perform the
poorest. This suggests that the OpenAl ol model
demonstrates a superior comprehensive reasoning
capability in understanding complete trajectories
compared to the other models. For sentence-level
accuracy (ACC_SENT), OpenAl ol once again
achieves the highest performance, though Gem-
ini 2.0 Flash closely follows. The Qwen2.5-VL-
7B/72B-Instruct models still lag significantly be-
hind other models. Furthermore, the evaluation
across different language splits reveals no substan-
tial performance differences, suggesting consistent
model capabilities across various languages. In
addition, with only 10% of the training data, the
finetuned GPT-40 model achieves a quite large per-
formance boost, surpassing the zero-shot perfor-
mance of all other models.

Table 3 presents the results of sentence-level ac-
curacy with the egocentric video as visual input.
Gemini 2.0 Flash achieves the best performance,
even surpassing the finetuned Qwen2.5-VL-7B-

'We only use 10% training data for GPT-4o due to the 8GB
upload limitation of OpenAl APIs.

These values are calculated as 1/7! x 100% ~ 0.02%
and 1/7 x 100% =~ 14.29%, where 7 is the average number
of images per example.



Models ‘ English Hindi Telugu
‘ ACC_INSTR ACC_SENT ACC_INSTR ACC_SENT ACC_INSTR ACC_SENT

GPT-40 6.36 26.74 4.29 25.55 8.15 27.76
OpenAl ol 11.61 32.92 17.18 37.62 15.99 37.47
Gemini 2.0 Flash 6.99 32.13 9.51 35.79 7.71 32.17
Qwen2.5-VL-7B-Instruct 2.84 18.25 4.29 20.94 3.97 21.53
Qwen2.5-VL-72B-Instruct 3.68 20.49 5.52 24.61 5.34 22.58
GPT-40-Finetuned 19.17 48.57 21.17 46.97 18.29 44.21
Qwen2.5-VL-7B-Instruct-Finetuned 15.26 30.28 18.32 40.10 12.45 35.68

Table 2: Evaluation results with panoramic images as visual input on the SAD dataset. ACC_INSTR and
ACC_SENT denote the instruction-level accuracy and sentence-level accuracy, respectively. All the results are
averaged over three runs and reported in percentage. All the model without “Finetuned” suffix are evaluated in the

zero-shot setting.

Models ‘ English Hindi Telugu Agents ‘ SR SPL Path Length
Gemini 2.0 Flash 43.00 47.58 39.31 Random 6.50 6.49 0.21
Qwen2.5-VL-7B-Instruct 12.18 14.58 18.06 Qwen2.5-VL-7B-Instruct 821 772 237
Qwen2.5-VL-72B-Instruct 26.80 25.63 20.64 Qwen?2.5-VL-7B-Instruct-Finetuned | 11.26 9.27 2.51
Qwen2.5-VL-7B-Instruct-Finetuned ‘ 42,72 4538 30.88

Table 3: Evaluation results with egocentric videos
as visual input on the SAD dataset. We only report
ACC_SENT here.

Instruct model. This suggests that the Gemini 2.0
Flash model has a decent video understanding ca-
pability. Compared with using panoramic images
as visual input, the performance with egocentric
videos is generally better across all models, indicat-
ing that the models are more capable of situational
awareness when provided with video observations.

3.3 Can Situational Awareness Capability
Help the VLN Task?

Equipped with better situational awareness capabil-
ity, can the model perform better in the VLN task?
To answer this question, we conduct an experi-
ment comparing the zero-shot performance of non-
finetuned Qwen2.5-VL-7B-Instruct and the one
finetuned through the situational awareness task
with egocentric video observations for the VLN-
CE task. We choose R2R-CE dataset for this ex-
periment instead of RxR-CE to avoid the potential
effects of training on RxR-CE dataset. Besides the
current step’s observation, we use at most 10 recent
historical images as input. As shown in Table 4,
using the finetuned model as the agent is better
than using the non-finetuned version. Though the
performance is still quite low compared to current
SOTA baselines, the significant improvements can
still demonstrate the usefulness of training with
situational awareness task to the VLN task.

Table 4: Impact of finetuning with the situational aware-
ness tasks on the R2R-CE dataset.

4 Related Work

Situational Awareness The concept of situa-
tional awareness is extensively studied in the field
of cognitive science, psychology, human factors,
aviation, healthcare, and more (Munir et al., 2022;
Endsley, 2021; Stanton et al., 2001). Recently,
Berglund et al. (2023) studies the emergence of
situational awareness in large language models
(LLMs). We further specify this concept in the
context of VLN task in this work.

VLN with LLMs and VLMs The VLN task is a
representative research topic in the field of embod-
ied Al and how to make use of LLMs and VLMs to
solve this task has attracted much attention (Zhou
et al., 2024; Chen et al., 2024b; Long et al., 2024;
Zhang et al., 2024; Lin et al., 2024; Chen et al.,
2023; Cai et al., 2024; Chen et al., 2024a; Qiao
et al., 2024). However, little work studies the fun-
damental situational awareness capability of these
models. This work aims to study such capability.

5 Conclusion

This work presents the situational awareness task
and a corresponding dataset SAD with two types of
visual observations. Our findings based on evalua-
tions of multiple prominent VLMs suggest that the
situational awareness capability of these models
is still limited, and improving such capability can
benefit the performance in VLN tasks.



6 Limitations

Our work has several limitations. First, the format
of the evaluation is a simple question-answering
task, which may not fully capture the situational
awareness capability of vision-and-language mod-
els and may not be directly applied to evaluate the
agents trained with supervised learning. Second,
we show that the situational awareness capability is
helpful to the VLN task, but we only study the zero-
shot setting. Future work could explore enhancing
the trained vision-language-action agents such as
NaVid with the situational awareness capability in
VLN-CE tasks.

Use of AI Assistance We used Al assistant tools
(ChatGPT and GitHub Copilot) to aid in rewrit-
ing code and text. All Al-generated content was
thoroughly reviewed and verified by the authors.
Al was not used to generate new research ideas
or original findings; rather, it served as a support
tool to improve clarity, efficiency, and organization.
In accordance with ACL guidelines, our use of Al
aligns with permitted assistance categories, and we
have transparently reported all relevant usage in
this paper. While Al contributed to enhancing the
quality of the work, no direct research outputs are
the result of Al assistance.
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A Dataset

A.1 Dataset Construction

We develop the Situational Awareness Dataset
(SAD) using the Habitat simulator by leverag-
ing the existing RxR-CE dataset. The RxR-CE
dataset is a large-scale multilingual vision-and-
language navigation resource featuring 126,000
navigation instructions and demonstrations within
Matterport3D (Chang et al., 2017) and Habitat en-
vironments. To construct SAD, we utilize both the
standard annotation task data and extended pose
trace data from the RxR-CE dataset. The annota-
tion task data includes essential components for
vision-and-language navigation, such as naviga-
tion instructions and reference paths. It also pro-
vides a "timed_instruction" field, indicating the
start and end times of words or phrases in align-
ment with the recording. The extended pose trace
data offers snapshots detailing the virtual camera
parameters and field-of-view from the annotators’
perspectives.

We load this dataset into the Habitat simulator
and calculate the camera poses and corresponding
timestamps based on the supplied camera extrinsic
matrix data. By extracting the timestamp of the
concluding word in each instruction sentence from
the "timed_instruction" data, we align these times-
tamps with the camera pose data, thereby obtaining
the corresponding observations within the Habitat
simulator.

For each position’s observation, we render a
panoramic RGB image composed of 12 RGB
sub-images captured from 12 different direc-
tions at equally spaced horizontal heading angles:
(0°,30°,...,330°). These sub-images are gener-
ated in three resolutions: 224 x 224, 480 x 480,
and 1024 x 1024. To simplify the task further, we
limit our focus to instructions containing a maxi-
mum of 10 sentences. More detailed information
about the dataset is provided in Table 5.

A.2 Dataset Details

The number of examples in the training, validation,
and test splits of the SAD dataset is shown in Ta-
ble 5. The dataset is divided into three language
splits: English, Hindi, and Telugu.

L Panoramic image observation | Egocentric video observation
ANEUAEES | Train Val Test Train Val Test
English | 10,609 1,210 1,904 58,448 8,761 10,747

Hindi 1,642 202 381 8,509 1,023 1,818
Telugu 10,016 1,141 2,175 40,391 6,961 9,375

Table 5: Statistics of the SAD dataset. The dataset is
divided into three language splits. There are two types of
observations: panoramic images and egocentric videos.

B Experiments

B.1 Effects of Different Image Resolutions

We study the effects of different image resolutions
on the performance of GPT-40 on our proposed
SAD dataset. We evaluate the model on three dif-
ferent image resolutions: 224 x 224, 480 x 480,
and 1024 x 1024. The results are shown in Ta-
ble 6. We find that the higher resolutions do not
bring significant improvement in the performance
while significantly increasing the test time. There-
fore, we use the image resolution of 224 x 224 for
evaluation in the main experiments.

Image Resolution ‘ ACC_Instr ACC_Sent Inf. Time

224 x 224 6.36 26.74 30min
480 x 480 7.36 26.78 52min
1024 x 1024 6.93 26.85 20.5h

Table 6: Effects of image resolutions on the performance
of GPT-40 on our proposed SAD dataset.

B.2 Prompts

We present the prompts we use for the VLMs in
the following code snippet (see Listing 1 for the
panoramic image observations and Listing 2 for
the egocentric video observations). It contains the
system prompt and the user prompt. We also use
the technique of structured outputs to force the
model to output the reasoning steps and answers in
a json format. We use the same prompts for all the
models we evaluate in this work.

C Human Evaluation on the SAD Dataset

We conduct a human evaluation on the SAD dataset
in order to assess its quality and find potential prob-
lems during the automatic data generation process.

We randomly sample 200 English examples
from the test split of the dataset and send them
to 10 people who are fluent speakers of English
and have at least bachelor degrees. Each partici-
pant finished 120 examples in five days. We only



send them the questions without giving them the
answers. We make sure that every question is sent
to three different people. After receiving their re-
sults, we use a script to check their correctness and
calculate the final results.

For the IRB approval, no ethics review board ap-
proval was sought for this study because the human
evaluations were designed solely to collect anony-
mous, non-identifiable responses, did not involve
challenging psychological content, and imposed
no obligations on participants - criteria that, under
current guidelines, do not warrant formal ethical
oversight.



class SingleImageStep(pydantic.BaseModel):

|

2 explanation: str

3 answer: int

4

5

6 class SituationalAwarenessOutput (pydantic.BaseModel):
7 number_of_input_images: int

8 reasoning_steps: list[SingleImageStep]

9 answer: list[int]

11 SYSTEM_PROMPT = inspect.cleandoc(

12 """You are an agent navigating through a virtual environment according to
13 the given instruction. But now your task is not to navigate, but to predict
14 the positions of the given observation images in the corresponding

15 instruction. You would be given a set of images and an corresponding

16 instruction. The given images are the RGB {image_type} observation of your
17 current position. Each panoramic image is comprised of 12

18 sub-egocentric-images, where each sub-image corresponds to a different

19 direction. You need to think of where the position is in the instruction.
20 The entire instruction is comprised of multiple sub-instructions. Each

21 sub-instruction starts with '#' followed by a number, which is the index of
22 the sub-instruction. Each position is the end of each sub-instruction. So
23 your task is to predict at the end of which sub-instruction you could see
24 the current given image. Note that the number of input images are strictly
25 equal to the number of sub-instructions. Moreover, There will not be two
26 images corresponding to the same position. Your final answer should be a
27 list of integers, where each integer represents that image's positions in
28 the instruction. For example, "[2, 3, 1, 41" means you would observe the
29 first input image at the end of the second sub-instruction, the second

30 input image corresponds to the end of the third sub-instruction, the third
31 input image corresponds to the end of the first sub-instruction, and the
32 fourth input image corresponds to the end of the fourth sub-instruction.

33 e

3 ).replace("\n", " ")

35

36 USER_PROMPT = inspect.cleandoc(

37 """Given the following {num_input_images} images, please predict their

38 observation positions in the instruction. The instruction is:

39 {instruction_with_index}"""

40 ).replace(”"\n", " ")

41

42

43 response = client.beta.chat.completions.parse(

44 model=test_model,

45 messages=[

46 {

47 "role”: "system”,

48 "content": [

49 {

50 "type": "text",

51 "text"”: SYSTEM_PROMPT.format(image_type=image_type),

52 }

53 1,

54 3,

55 {

56 "role": "user",

57 "content”: [

58 {

59 "type": "text",

60 "text"”: USER_PROMPT. format (

61 num_input_images=len(multiple_images_input),

62 instruction_with_index=instruction_with_index,

63 )7

64 3

65 1

66 + multiple_images_input,

67 }y

68 i

69 response_format=SituationalAwarenessOutput,



70 )

Listing 1: Prompts of OpenAl APIs for panoramic images as input.

USER_PROMPT = inspect.cleandoc(

Fon
<video>
You are an agent navigating through a virtual environment according to
the given instruction. But now your task is not to navigate, but to
predict the positions of the given observation videos in the
corresponding instruction. You would be given a video and an
corresponding instruction. The given video are your most recent RGB
observation while moving to your current position.
You need to think of where your current position is in the
instruction. The entire instruction is comprised of multiple
sub-instructions. Each sub-instruction starts with '#' followed by a
number , which is the index of the sub-instruction. Each position is
the end of each sub-instruction. So your task is to predict at the end
of which sub-instruction you are moving to in the given video.
Your final answer should be an integer, which represents the
sub-instruction index.
The instruction is as follows:
<INSTRUCTION> {instruction} </INSTRUCTION>
Which instruction index is the answer?

).replace("\n", " ")

video_messages = [
{"role"”: "system”, "content”: "You are a helpful assistant."},
{

"role": "user"”,
"content”: [
{"type": "text", "text"”: USER_PROMPT},
{
"type": "video”,

"video": video_path,
"total_pixels"”: 20480 * 28 *x 28,
"min_pixels"”: 16 x 28 * 2,

"fps": 1.0,
}7
]’
}’
video_messages, video_kwargs = prepare_message_for_vllm(video_messages)
n_try_times = 1
s while True:
try:
chat_response = client.chat.completions.create(
model=model _path,
messages=video_messages,
extra_body={"mm_processor_kwargs": video_kwargs},
)
except Exception as e:
logger.error(f"Error during vLLM prediction: {e}. Retrying ...")

if n_try_times > 3:

logger.error("Max retry attempts reached. Skipping this example.

break
else:
n_try_times += 1
time.sleep(2)
continue
break

Listing 2: Prompts of OpenAl APIs for videos as input.
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