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Abstract001

Intuitively, it is important for humans to lo-002
calize themselves by understanding their sur-003
roundings when navigating to a place, espe-004
cially when the trajectory is long and complex.005
Similarly, we believe that this kind of capa-006
bility, which we call situational awareness, is007
also crucial for developing better navigational008
agents. This work aims to evaluate the situa-009
tional awareness capability of current popular010
vision-language model (VLM) based naviga-011
tional agents. Inspired by the way of humans012
processing observations, we consider two types013
of visual inputs to the models: 360-degree014
panoramic images and egocentric navigational015
videos. Then we construct a new dataset, Situ-016
ational Awareness Dataset (SAD), comprised017
of around 100K such panoramic images and018
videos and corresponding instructions for this019
task. We then evaluate multiple prominent020
VLMs including OpenAI o1, GPT-4o, Gem-021
ini 2.0 Flash, Qwen2.5-VL, and their finetuned022
versions on SAD. Our results show that the023
situational awareness capability of these mod-024
els is far behind human performance, but can025
be significantly improved by further finetun-026
ing. Furthermore, our findings also suggest that027
fine-grained alignment between observations028
and instructions is very helpful to the vision-029
and-language navigation (VLN) task, which is030
somehow overlooked by the community now.031

1 Introduction032

Situational awareness is a broad concept referring033

to the capability of perception, comprehension, and034

projection of the elements in an environment (End-035

sley, 1995). This capability is crucial for effective036

decision-making in a variety of tasks, such as avi-037

ation and healthcare. Within the realm of vision-038

and-language navigation (VLN), we simplify this039

concept to denote an agent’s capability to under-040

stand its current position based on the observations041

in the navigation. This understanding is typically042

the initial step for navigation agents in assessing 043

their progress and making informed decisions. Al- 044

though fundamental, achieving situational aware- 045

ness still necessitates intricate spatial reasoning and 046

a nuanced language grounding capability. 047

Recent advancements in large-scale vision- 048

language models (VLMs) have demonstrated great 049

potential across various vision-and-language tasks. 050

Applying these models to the task of vision-and- 051

language navigation in continuous environments 052

(i.e., VLN-CE task; Krantz et al., 2020) using 053

zero-shot learning has been a burgeoning area of 054

research. Despite this interest, the performance 055

of VLMs in this domain still lags far behind the 056

methods that employ supervised learning. For in- 057

stance, the state-of-the-art VLM-based method, 058

AO-Planner (Chen et al., 2024a), achieves a 22.4% 059

success rate on the RxR-CE dataset (Ku et al., 060

2020), whereas the popular supervised learning 061

based method ETPNav (An et al., 2024) achieves 062

54.8%. Several factors contribute to this perfor- 063

mance gap, with the situational awareness capa- 064

bility of these models being a fundamental deter- 065

minant of their navigation performance. However, 066

research on this capability within the VLN field 067

remains limited. One major obstacle is the scarcity 068

of fine-grained annotated data that aligns naviga- 069

tion instructions with observations in ground-truth 070

trajectories. 071

To address this gap, we introduce a new dataset, 072

the Situational Awareness Dataset (SAD), which 073

encompasses around 200,000 observations paired 074

with instructions designed to evaluate situational 075

awareness capabilities. Inspired by how humans 076

localize themselves and navigate in a scene, we con- 077

sider both types of 360-degree panoramic images 078

and egocentric navigational videos as observation 079

input in the dataset. These two completely different 080

types of observations test situational awareness ca- 081

pability from different perspectives and pose differ- 082

ent challenges for the models. The corresponding 083
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Figure 1: An example for our situational awareness task. The navigation agent takes as input a 360-degree panoramic
image and the whole instruction. The agent is required to understand the surrounding observations and language
instructions, then predict which sentence in the instruction the current observation corresponds to.

instructions in the dataset are available in three ty-084

pologically diverse languages–English, Hindi, and085

Telugu–to facilitate the examination of capabilities086

within multilingual contexts.087

We conduct evaluations of several prominent088

commercial and open-source VLMs in both zero-089

shot and finetuned settings to assess their situa-090

tional awareness capability on SAD. The models091

tested include OpenAI o1, GPT-4o, Gemini 2.0092

Flash, and Qwen2.5-VL-7B/72B-Instruct. These093

models are good representatives of the current state-094

of-the-art in both commercial and open-source095

VLM fields. Our findings reveal that even the096

most advanced model, OpenAI o1 and Gemini 2.0097

Flash, perform very poorly in the zero-shot setting.098

But they can be significantly improved by more099

than 3 times through further finetuning, though still100

lagging a large gap behind human performance.101

Moreover, we further investigate whether the situ-102

ational awareness capability can be helpful to the103

VLN task. The experimental results show an agent104

with better situational awareness capability also105

performs better in the VLN task.106

2 Dataset and Evaluation Method107

In order to streamline the evaluation process, we108

concentrate on the alignment between instructions109

and observations at the sentence level. This focus110

means we only assess the correspondence between111

the end of each instruction sentence and its associ-112

ated observation.113

2.1 Dataset 114

We construct the Situational Awareness Dataset 115

(SAD) with the help of Habitat simulator and the 116

existing RxR-CE dataset. The details of the con- 117

struction process and the dataset can be found 118

in Appendix §A.1. SAD contains instructions 119

in three languages and the agent’s observations 120

corresponding to the end of each instruction. To 121

simplify the task further, we limit our focus to in- 122

structions containing a maximum of 10 sentences. 123

For each position, there are two types of obser- 124

vations: (1) a panoramic RGB image composed 125

of 12 RGB sub-images captured from 12 differ- 126

ent directions at equally spaced horizontal heading 127

angles: (0◦, 30◦, ..., 330◦); (2) a video recording 128

the agent’s egocentric observations 10 steps before 129

arriving at this position. We ensure that there are at 130

least 5 steps of difference between each video. 131

2.2 Evaluation Method 132

With the constructed dataset, we evaluate the sit- 133

uational awareness capability of agents through a 134

straightforward question-answering format. Given 135

an instruction and the corresponding panoramic im- 136

age or egocentric video observations, we pose the 137

following question to the agent: "Which sentence 138

in the instruction does this image/video correspond 139

to the end of?" The agent must predict the sentence 140

index that align with the observation (see Figure 1). 141

We utilize two metrics to assess the agent’s per- 142

formance on this task: (1) Instruction-Level Accu- 143
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ACC_INSTR ACC_SENT

Panoramic image observations 65.00 87.14
Egocentric video observations - 91.00

Table 1: Human performance (%) on the constructed
SAD dataset with two types of observations.

racy (ACC_INSTR): this metric measures the ac-144

curacy over the whole instruction level. Only if the145

predictions for all observations in an instruction are146

correct, the instruction-level predictions are con-147

sidered correct. We don’t report this metric for the148

egocentric video observations, as the video dataset149

may not contain the whole sentences for an instruc-150

tion in order to avoid large overlap between videos.151

(2) Sentence-Level Accuracy (ACC_SENT): this152

metric evaluates accuracy based on individual sen-153

tences in the instruction. Each correct prediction154

associated with an observation contributes to the155

overall accuracy.156

2.3 Human Performance157

To provide a human performance baseline on the158

SAD dataset, we randomly sample 200 instances159

from the dataset for both types of observations160

and have ten individuals perform the same sit-161

uational awareness task respectively (see details162

in Appendix §C). The results show an average163

instruction-level accuracy of 65% and a sentence-164

level accuracy of 87% with the panoramic image165

observations. The performance with the egocentric166

video observations is a little higher, suggesting that167

humans better situate themselves based on videos168

of observation history.169

3 Experiments170

3.1 Evaluation Settings171

Dataset We utilize our constructed SAD dataset172

for model evaluation. We test the models across all173

three language splits: English, Hindi, and Telugu.174

Each panorama sub-image and egocentric video is175

evaluated at a resolution of 224 × 224. Our pre-176

liminary experiments with GPT-4o indicate that177

higher resolutions do not significantly enhance per-178

formance while substantially increasing test time.179

Further details are provided in Appendix B.1.180

Test Models We evaluate the following mod-181

els on the SAD dataset in both zero-shot setting182

and finetuned setting: GPT-4o (gpt-4o-2024-08-183

06; OpenAI, 2024a), OpenAI o1 (o1-2024-12-184

17; OpenAI, 2024b), Gemini 2.0 Flash (DeepMind,185

2025), and Qwen2.5-VL-7B/72B-Instruct (Qwen- 186

Team, 2025). We run each model three times and 187

report the average performance in each evaluation 188

setting. For the zero-shot evaluation of panoramic 189

image observation setting, all models employ the 190

technique of structured outputs. Specifically, we 191

force the model’s output to include the reason- 192

ing steps for each image along with the final an- 193

swer, formatted in JSON. Further details about the 194

prompts we use are provided in Appendix B.2. For 195

the finetuned setting, we use GPT-4o and Qwen2.5- 196

VL-7B-Instruct models as the base models and fine- 197

tune them on the SAD train set1 for each type of 198

observation. 199

3.2 Evaluation Results 200

Table 2 presents the evaluation results of the tested 201

models with panoramic image observations on the 202

SAD dataset. The approximate accuracy estimates 203

for random guesses are 0.02% and 14.29%, re- 204

spectively.2 In terms of exact match instruction- 205

level accuracy (ACC_INSTR), all models perform 206

very poorly. Among them, OpenAI o1 emerges as 207

the leader, outperforming others by approximately 208

50%. GPT-4o and Gemini 2.0 Flash exhibit sim- 209

ilar performance levels, while the open-sourced 210

Qwen2.5-VL-7B/72B-Instruct models perform the 211

poorest. This suggests that the OpenAI o1 model 212

demonstrates a superior comprehensive reasoning 213

capability in understanding complete trajectories 214

compared to the other models. For sentence-level 215

accuracy (ACC_SENT), OpenAI o1 once again 216

achieves the highest performance, though Gem- 217

ini 2.0 Flash closely follows. The Qwen2.5-VL- 218

7B/72B-Instruct models still lag significantly be- 219

hind other models. Furthermore, the evaluation 220

across different language splits reveals no substan- 221

tial performance differences, suggesting consistent 222

model capabilities across various languages. In 223

addition, with only 10% of the training data, the 224

finetuned GPT-4o model achieves a quite large per- 225

formance boost, surpassing the zero-shot perfor- 226

mance of all other models. 227

Table 3 presents the results of sentence-level ac- 228

curacy with the egocentric video as visual input. 229

Gemini 2.0 Flash achieves the best performance, 230

even surpassing the finetuned Qwen2.5-VL-7B- 231

1We only use 10% training data for GPT-4o due to the 8GB
upload limitation of OpenAI APIs.

2These values are calculated as 1/7! × 100% ≈ 0.02%
and 1/7× 100% ≈ 14.29%, where 7 is the average number
of images per example.
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Models
English Hindi Telugu

ACC_INSTR ACC_SENT ACC_INSTR ACC_SENT ACC_INSTR ACC_SENT

GPT-4o 6.36 26.74 4.29 25.55 8.15 27.76
OpenAI o1 11.61 32.92 17.18 37.62 15.99 37.47

Gemini 2.0 Flash 6.99 32.13 9.51 35.79 7.71 32.17
Qwen2.5-VL-7B-Instruct 2.84 18.25 4.29 20.94 3.97 21.53
Qwen2.5-VL-72B-Instruct 3.68 20.49 5.52 24.61 5.34 22.58

GPT-4o-Finetuned 19.17 48.57 21.17 46.97 18.29 44.21
Qwen2.5-VL-7B-Instruct-Finetuned 15.26 30.28 18.32 40.10 12.45 35.68

Table 2: Evaluation results with panoramic images as visual input on the SAD dataset. ACC_INSTR and
ACC_SENT denote the instruction-level accuracy and sentence-level accuracy, respectively. All the results are
averaged over three runs and reported in percentage. All the model without “Finetuned” suffix are evaluated in the
zero-shot setting.

Models English Hindi Telugu

Gemini 2.0 Flash 43.00 47.58 39.31
Qwen2.5-VL-7B-Instruct 12.18 14.58 18.06
Qwen2.5-VL-72B-Instruct 26.80 25.63 20.64

Qwen2.5-VL-7B-Instruct-Finetuned 42.72 45.38 30.88

Table 3: Evaluation results with egocentric videos
as visual input on the SAD dataset. We only report
ACC_SENT here.

Instruct model. This suggests that the Gemini 2.0232

Flash model has a decent video understanding ca-233

pability. Compared with using panoramic images234

as visual input, the performance with egocentric235

videos is generally better across all models, indicat-236

ing that the models are more capable of situational237

awareness when provided with video observations.238

3.3 Can Situational Awareness Capability239

Help the VLN Task?240

Equipped with better situational awareness capabil-241

ity, can the model perform better in the VLN task?242

To answer this question, we conduct an experi-243

ment comparing the zero-shot performance of non-244

finetuned Qwen2.5-VL-7B-Instruct and the one245

finetuned through the situational awareness task246

with egocentric video observations for the VLN-247

CE task. We choose R2R-CE dataset for this ex-248

periment instead of RxR-CE to avoid the potential249

effects of training on RxR-CE dataset. Besides the250

current step’s observation, we use at most 10 recent251

historical images as input. As shown in Table 4,252

using the finetuned model as the agent is better253

than using the non-finetuned version. Though the254

performance is still quite low compared to current255

SOTA baselines, the significant improvements can256

still demonstrate the usefulness of training with257

situational awareness task to the VLN task.258

Agents SR SPL Path Length

Random 6.50 6.49 0.21
Qwen2.5-VL-7B-Instruct 8.21 7.72 2.37

Qwen2.5-VL-7B-Instruct-Finetuned 11.26 9.27 2.51

Table 4: Impact of finetuning with the situational aware-
ness tasks on the R2R-CE dataset.

4 Related Work 259

Situational Awareness The concept of situa- 260

tional awareness is extensively studied in the field 261

of cognitive science, psychology, human factors, 262

aviation, healthcare, and more (Munir et al., 2022; 263

Endsley, 2021; Stanton et al., 2001). Recently, 264

Berglund et al. (2023) studies the emergence of 265

situational awareness in large language models 266

(LLMs). We further specify this concept in the 267

context of VLN task in this work. 268

VLN with LLMs and VLMs The VLN task is a 269

representative research topic in the field of embod- 270

ied AI, and how to make use of LLMs and VLMs to 271

solve this task has attracted much attention (Zhou 272

et al., 2024; Chen et al., 2024b; Long et al., 2024; 273

Zhang et al., 2024; Lin et al., 2024; Chen et al., 274

2023; Cai et al., 2024; Chen et al., 2024a; Qiao 275

et al., 2024). However, little work studies the fun- 276

damental situational awareness capability of these 277

models. This work aims to study such capability. 278

5 Conclusion 279

This work presents the situational awareness task 280

and a corresponding dataset SAD with two types of 281

visual observations. Our findings based on evalua- 282

tions of multiple prominent VLMs suggest that the 283

situational awareness capability of these models 284

is still limited, and improving such capability can 285

benefit the performance in VLN tasks. 286
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6 Limitations287

Our work has several limitations. First, the format288

of the evaluation is a simple question-answering289

task, which may not fully capture the situational290

awareness capability of vision-and-language mod-291

els and may not be directly applied to evaluate the292

agents trained with supervised learning. Second,293

we show that the situational awareness capability is294

helpful to the VLN task, but we only study the zero-295

shot setting. Future work could explore enhancing296

the trained vision-language-action agents such as297

NaVid with the situational awareness capability in298

VLN-CE tasks.299

Use of AI Assistance We used AI assistant tools300

(ChatGPT and GitHub Copilot) to aid in rewrit-301

ing code and text. All AI-generated content was302

thoroughly reviewed and verified by the authors.303

AI was not used to generate new research ideas304

or original findings; rather, it served as a support305

tool to improve clarity, efficiency, and organization.306

In accordance with ACL guidelines, our use of AI307

aligns with permitted assistance categories, and we308

have transparently reported all relevant usage in309

this paper. While AI contributed to enhancing the310

quality of the work, no direct research outputs are311

the result of AI assistance.312
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A Dataset408

A.1 Dataset Construction409

We develop the Situational Awareness Dataset410

(SAD) using the Habitat simulator by leverag-411

ing the existing RxR-CE dataset. The RxR-CE412

dataset is a large-scale multilingual vision-and-413

language navigation resource featuring 126,000414

navigation instructions and demonstrations within415

Matterport3D (Chang et al., 2017) and Habitat en-416

vironments. To construct SAD, we utilize both the417

standard annotation task data and extended pose418

trace data from the RxR-CE dataset. The annota-419

tion task data includes essential components for420

vision-and-language navigation, such as naviga-421

tion instructions and reference paths. It also pro-422

vides a "timed_instruction" field, indicating the423

start and end times of words or phrases in align-424

ment with the recording. The extended pose trace425

data offers snapshots detailing the virtual camera426

parameters and field-of-view from the annotators’427

perspectives.428

We load this dataset into the Habitat simulator429

and calculate the camera poses and corresponding430

timestamps based on the supplied camera extrinsic431

matrix data. By extracting the timestamp of the432

concluding word in each instruction sentence from433

the "timed_instruction" data, we align these times-434

tamps with the camera pose data, thereby obtaining435

the corresponding observations within the Habitat436

simulator.437

For each position’s observation, we render a438

panoramic RGB image composed of 12 RGB439

sub-images captured from 12 different direc-440

tions at equally spaced horizontal heading angles:441

(0◦, 30◦, ..., 330◦). These sub-images are gener-442

ated in three resolutions: 224 × 224, 480 × 480,443

and 1024× 1024. To simplify the task further, we444

limit our focus to instructions containing a maxi-445

mum of 10 sentences. More detailed information446

about the dataset is provided in Table 5.447

A.2 Dataset Details448

The number of examples in the training, validation,449

and test splits of the SAD dataset is shown in Ta-450

ble 5. The dataset is divided into three language451

splits: English, Hindi, and Telugu.452

Languages
Panoramic image observation Egocentric video observation
Train Val Test Train Val Test

English 10,609 1,210 1,904 58,448 8,761 10,747
Hindi 1,642 202 381 8,509 1,023 1,818
Telugu 10,016 1,141 2,175 40,391 6,961 9,375

Table 5: Statistics of the SAD dataset. The dataset is
divided into three language splits. There are two types of
observations: panoramic images and egocentric videos.

B Experiments 453

B.1 Effects of Different Image Resolutions 454

We study the effects of different image resolutions 455

on the performance of GPT-4o on our proposed 456

SAD dataset. We evaluate the model on three dif- 457

ferent image resolutions: 224 × 224, 480 × 480, 458

and 1024 × 1024. The results are shown in Ta- 459

ble 6. We find that the higher resolutions do not 460

bring significant improvement in the performance 461

while significantly increasing the test time. There- 462

fore, we use the image resolution of 224× 224 for 463

evaluation in the main experiments.

Image Resolution ACC_Instr ACC_Sent Inf. Time

224× 224 6.36 26.74 30min
480× 480 7.36 26.78 52min
1024× 1024 6.93 26.85 20.5h

Table 6: Effects of image resolutions on the performance
of GPT-4o on our proposed SAD dataset.

464

B.2 Prompts 465

We present the prompts we use for the VLMs in 466

the following code snippet (see Listing 1 for the 467

panoramic image observations and Listing 2 for 468

the egocentric video observations). It contains the 469

system prompt and the user prompt. We also use 470

the technique of structured outputs to force the 471

model to output the reasoning steps and answers in 472

a json format. We use the same prompts for all the 473

models we evaluate in this work. 474

C Human Evaluation on the SAD Dataset 475

We conduct a human evaluation on the SAD dataset 476

in order to assess its quality and find potential prob- 477

lems during the automatic data generation process. 478

We randomly sample 200 English examples 479

from the test split of the dataset and send them 480

to 10 people who are fluent speakers of English 481

and have at least bachelor degrees. Each partici- 482

pant finished 120 examples in five days. We only 483
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send them the questions without giving them the484

answers. We make sure that every question is sent485

to three different people. After receiving their re-486

sults, we use a script to check their correctness and487

calculate the final results.488

For the IRB approval, no ethics review board ap-489

proval was sought for this study because the human490

evaluations were designed solely to collect anony-491

mous, non-identifiable responses, did not involve492

challenging psychological content, and imposed493

no obligations on participants - criteria that, under494

current guidelines, do not warrant formal ethical495

oversight.496

8



1 class SingleImageStep(pydantic.BaseModel): 497
2 explanation: str 498
3 answer: int 499
4 500
5 501
6 class SituationalAwarenessOutput(pydantic.BaseModel): 502
7 number_of_input_images: int 503
8 reasoning_steps: list[SingleImageStep] 504
9 answer: list[int] 505

10 506
11 SYSTEM_PROMPT = inspect.cleandoc( 507
12 """You are an agent navigating through a virtual environment according to 508
13 the given instruction. But now your task is not to navigate , but to predict 509
14 the positions of the given observation images in the corresponding 510
15 instruction. You would be given a set of images and an corresponding 511
16 instruction. The given images are the RGB {image_type} observation of your 512
17 current position. Each panoramic image is comprised of 12 513
18 sub -egocentric -images , where each sub -image corresponds to a different 514
19 direction. You need to think of where the position is in the instruction. 515
20 The entire instruction is comprised of multiple sub -instructions. Each 516
21 sub -instruction starts with '#' followed by a number , which is the index of 517
22 the sub -instruction. Each position is the end of each sub -instruction. So 518
23 your task is to predict at the end of which sub -instruction you could see 519
24 the current given image. Note that the number of input images are strictly 520
25 equal to the number of sub -instructions. Moreover , There will not be two 521
26 images corresponding to the same position. Your final answer should be a 522
27 list of integers , where each integer represents that image's positions in 523
28 the instruction. For example , "[2, 3, 1, 4]" means you would observe the 524
29 first input image at the end of the second sub -instruction , the second 525
30 input image corresponds to the end of the third sub -instruction , the third 526
31 input image corresponds to the end of the first sub -instruction , and the 527
32 fourth input image corresponds to the end of the fourth sub -instruction. 528
33 """ 529
34 ).replace("\n", " ") 530
35 531
36 USER_PROMPT = inspect.cleandoc( 532
37 """ Given the following {num_input_images} images , please predict their 533
38 observation positions in the instruction. The instruction is: 534
39 {instruction_with_index}""" 535
40 ).replace("\n", " ") 536
41 537
42 538
43 response = client.beta.chat.completions.parse( 539
44 model=test_model , 540
45 messages =[ 541
46 { 542
47 "role": "system", 543
48 "content": [ 544
49 { 545
50 "type": "text", 546
51 "text": SYSTEM_PROMPT.format(image_type=image_type), 547
52 } 548
53 ], 549
54 }, 550
55 { 551
56 "role": "user", 552
57 "content": [ 553
58 { 554
59 "type": "text", 555
60 "text": USER_PROMPT.format( 556
61 num_input_images=len(multiple_images_input), 557
62 instruction_with_index=instruction_with_index , 558
63 ), 559
64 } 560
65 ] 561
66 + multiple_images_input , 562
67 }, 563
68 ], 564
69 response_format=SituationalAwarenessOutput , 565
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70 )566

Listing 1: Prompts of OpenAI APIs for panoramic images as input.

1 USER_PROMPT = inspect.cleandoc(567
2 f"""568
3 <video >569
4 You are an agent navigating through a virtual environment according to570
5 the given instruction. But now your task is not to navigate , but to571
6 predict the positions of the given observation videos in the572
7 corresponding instruction. You would be given a video and an573
8 corresponding instruction. The given video are your most recent RGB574
9 observation while moving to your current position.575

10 You need to think of where your current position is in the576
11 instruction. The entire instruction is comprised of multiple577
12 sub -instructions. Each sub -instruction starts with '#' followed by a578
13 number , which is the index of the sub -instruction. Each position is579
14 the end of each sub -instruction. So your task is to predict at the end580
15 of which sub -instruction you are moving to in the given video.581
16 Your final answer should be an integer , which represents the582
17 sub -instruction index.583
18 The instruction is as follows:584
19 <INSTRUCTION > {instruction} </INSTRUCTION >585
20 Which instruction index is the answer?586
21 """587
22 ).replace("\n", " ")588
23589
24590
25 video_messages = [591
26 {"role": "system", "content": "You are a helpful assistant."},592
27 {593
28 "role": "user",594
29 "content": [595
30 {"type": "text", "text": USER_PROMPT},596
31 {597
32 "type": "video",598
33 "video": video_path ,599
34 "total_pixels": 20480 * 28 * 28,600
35 "min_pixels": 16 * 28 * 2,601
36 "fps": 1.0,602
37 },603
38 ],604
39 },605
40 ]606
41607
42 video_messages , video_kwargs = prepare_message_for_vllm(video_messages)608
43609
44 n_try_times = 1610
45 while True:611
46 try:612
47 chat_response = client.chat.completions.create(613
48 model=model_path ,614
49 messages=video_messages ,615
50 extra_body ={"mm_processor_kwargs": video_kwargs},616
51 )617
52 except Exception as e:618
53 logger.error(f"Error during vLLM prediction: {e}. Retrying ...")619
54 if n_try_times > 3:620
55 logger.error("Max retry attempts reached. Skipping this example.")621
56 break622
57 else:623
58 n_try_times += 1624
59 time.sleep (2)625
60 continue626
61 break627

Listing 2: Prompts of OpenAI APIs for videos as input.
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