
Under review as a conference paper at ICLR 2021

UNIFORM MANIFOLD APPROXIMATION WITH
TWO-PHASE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a dimensionality reduction algorithm called Uniform Manifold Ap-
proximation with Two-phase Optimization (UMATO) which produces less biased
global structures in the embedding results and is robust over diverse initialization
methods than previous methods such as t-SNE and UMAP. We divide the opti-
mization into two phases to alleviate the bias by establishing the global structure
early using the representatives of the high-dimensional structures. The phases are
1) global optimization to obtain the overall skeleton of data and 2) local optimiza-
tion to identify the regional characteristics of local areas. In our experiments with
one synthetic and three real-world datasets, UMATO outperformed widely-used
baseline algorithms, such as PCA, Isomap, t-SNE, UMAP, topological autoen-
coders and Anchor t-SNE, in terms of quality metrics and 2D projection results.

1 INTRODUCTION

We present a novel dimensionality reduction method, Uniform Manifold Approximation with Two-
phase Optimization (UMATO) to obtain less biased and robust embedding over diverse initialization
methods. One effective way of understanding high-dimensional data in various domains is to reduce
its dimensionality and investigate the projection in a lower-dimensional space. The limitation of
previous approaches such as t-Stochastic Neighbor Embedding (t-SNE, Maaten & Hinton (2008))
and Uniform Manifold Approximation and Projection (UMAP, McInnes et al. (2018)) is that they are
susceptible to different initialization methods, generating considerably different embedding results
(Section 5.5).

t-SNE adopts Kullback-Leibler (KL) divergence as its loss function. The fundamental limitation
of the KL divergence is that the penalty for the points that are distant in the original space being
close in the projected space is too little (Appendix B). This results in only the local manifolds being
captured, while clusters that are far apart change their relative locations from run to run. Meanwhile,
UMAP leverages the cross-entropy loss function, which is known to charge a penalty for points that
are distant in the original space being close in the projection space and for points that are close in the
original space being distant in the projection space (Appendix B). UMAP considers all points in the
optimization at once with diverse sampling techniques (i.e., negative sampling and edge sampling).
Although the approximation technique in UMAP optimization makes the computation much faster,
this raises another problem that the clusters in the embedding become dispersed as the number of
epochs increases (Appendix K), which can lead to misinterpretation. UMAP tried to alleviate this by
using a fixed number (e.g., 200), which is ad hoc, and by applying a learning rate decay. However,
the optimal number of epochs and decay schedule for each initialization method needs to be found
in practice.

To solve the aforementioned problems, we avoid using approximation during the optimization pro-
cess, which normally would result in greatly increased computational cost. Instead, we first run
optimization only with a small number of points that represent the data (i.e., hub points). Finding
the optimal projection for a small number of points using a cross-entropy function is relatively easy
and robust, making the additional techniques employed in UMAP unnecessary. Furthermore, it is
less sensitive to the initialization method used (Section 5.5). After capturing the overall skeleton
of the high-dimensional structure, we gradually append the rest of the points in subsequent phases.
Although the same approximation technique as UMAP is used for these points, as we have already
embedded the hub points and use them as anchors, the projections become more robust and unbi-
ased. The gradual addition of points can in fact be done in a single phase; we found additional phases

1

Under review as a conference paper at ICLR 2021

do not result in meaningful improvements in the performance but only in the increased computation
time (Section 4.5). Therefore, we used only two phases in UMAP: global optimization to capture the
global structures (i.e., the pairwise distances in a high-dimensional space) and local optimization to
retain the local structures (i.e., the relationships between neighboring points in a high-dimensional
space) of the data.

We compared UMATO with popular dimensionality reduction techniques including PCA,
Isomap (Tenenbaum et al. (2000)), t-SNE, UMAP, topological autoencoders (Moor et al. (2020))
and At-SNE (Fu et al. (2019)). We used one synthetic (101-dimensional spheres) and three real-
world (MNIST, Fashion MNIST, and Kuzushiji MNIST) datasets and analyzed the projection re-
sults with several quality metrics. In conclusion, UMATO demonstrated better performance than
the baseline techniques in all datasets in terms of KLσ with different σ values, meaning that it
reasonably preserved the density of data over diverse length scales. Finally, we presented the 2D
projections of each dataset, including the replication of an experiment using the synthetic Spheres
dataset introduced by Moor et al. (2020) where data points locally constitute multiple small balls
globally contained in a larger sphere. Here, we demonstrate that UMATO can better preserve both
structures compared to the baseline algorithms (Figure 3).

2 RELATED WORK

Dimensionality reduction. Most previous dimensionality reduction algorithms focused on pre-
serving the data’s local structures. For example, Maaten & Hinton (2008) proposed t-SNE, focus-
ing on the crowding problem with which the previous attempts (Hinton & Roweis (2002); Cook
et al. (2007)) have struggled, to visualize high-dimensional data through projection produced by
performing stochastic gradient descent on the KL divergence between two density functions in the
original and projection spaces. Van Der Maaten (2014) accelerated t-SNE developing a variant of
the Barnes-Hut algorithm (Barnes & Hut (1986)) and reduced the computational complexity from
O(N2) into O(N logN). After that, grounded in Riemannian geometry and algebraic topology,
McInnes et al. (2018) introduced UMAP as an alternative to t-SNE. Leveraging the cross-entropy
function as its loss function, UMAP reduced the computation time by employing negative sampling
from Word2Vec (Mikolov et al. (2013)) and edge sampling from LargeVis (Tang et al. (2015; 2016))
(Table 1). Moreover, they showed that UMAP can generate stable projection results compared to
t-SNE over repetition.

On the other hand, there also exist algorithms that aim to capture the global structures of data.
Isomap (Tenenbaum et al. (2000)) was proposed to approximate the geodesic distance of high-
dimensional data and embed it onto the lower dimension. Global t-SNE (Zhou & Sharpee (2018))
converted the joint probability distribution, P , in the high-dimensional space from Gaussian to
Student’s-t distribution, and proposed a variant of KL divergence. By adding it with the original
loss function of t-SNE, Global t-SNE assigns a relatively large penalty for a pair of distant data
points in high-dimensional space being close in the projection space. Another example is topolog-
ical autoencoders (Moor et al. (2020)), a deep-learning approach that uses a generative model to
make the latent space resemble the high-dimensional space by appending a topological loss to the
original reconstruction loss of autoencoders. However, they required a huge amount of time for
hyperparameter exploration and training for a dataset, and only focused on the global aspect of data.
Unlike other techniques that presented a variation of loss functions in a single pipeline, UMATO
is novel as it preserves both structures by dividing the optimization into two phases; this makes it
outperform the baselines with respect to quality metrics in our experiments.

Hubs, landmarks, and anchors. Many dimensionality reduction techniques have tried to draw
sample points to better model the original space; these points are usually called hubs, landmarks, or
anchors. Silva & Tenenbaum (2003) proposed Landmark Isomap, a landmark version of classical
multidimensional scaling (MDS) to alleviate its computation cost. Based on the Landmark Isomap,
Yan et al. (2018) tried to retain the topological structures (i.e., homology) of high-dimensional data
by approximating the geodesic distances of all data points. However, both techniques have the
limitation that landmarks were chosen randomly without considering their importance. UMATO
uses a k-nearest neighbor graph to extract significant hubs that can represent the overall skeleton of
high-dimensional data. The most similar work to ours is At-SNE (Fu et al. (2019)), which optimized
the anchor points and all other points with two different loss functions. However, since the anchors
wander during the optimization and the KL divergence does not care about distant points, it hardly

2

Under review as a conference paper at ICLR 2021

captures the global structure. UMATO separates the optimization process into two phases so that
the hubs barely moves but guides other points so that the subareas manifest the shape of the high-
dimensional manifold in the projection. Applying different cross-entropy functions to each phase
also helps preserve both structures.

3 UMAP

Since UMATO shares the overall pipeline of UMAP (McInnes et al. (2018)), we briefly introduce
UMAP in this section. Although UMAP is grounded in a sophisticated mathematical foundation,
its computation can be simply divided into two steps, graph construction and layout optimization, a
configuration similar to t-SNE. In this section, we succinctly explain the computation in an abstract
manner. For more details about UMAP, please consult the original paper (McInnes et al. (2018)).

Graph Construction. UMAP starts by generating a weighted k-nearest neighbor graph that repre-
sents the distances between data points in the high-dimensional space. Given an input dataset X =
{x1, . . . , xn}, the number of neighbors to consider k and a distance metric d : X × X → [0,∞),
UMAP first computes Ni, the k-nearest neighbors of xi with respect to d. Then, UMAP computes
two parameters, ρi and σi, for each data point xi to identify its local metric space. ρi is a nonzero
distance from xi to its nearest neighbor:

ρi = min
j∈Ni

{d(xi, xj) | d(xi, xj) > 0}. (1)

Using binary search, UMAP finds σi that satisfies:∑
j∈Ni

exp(−max(0, d(xi, xj)− ρi)/σi) = log2(k). (2)

Next, UMAP computes:

vj|i = exp(−max(0, d(xi, xj)− ρi)/σi), (3)

the weight of the edge from a point xi to another point xj . To make it symmetric, UMAP computes
vij = vj|i + vi|j − vj|i · vi|j , a single edge with combined weight using vj|i and vi|j . Note that
vij indicates the similarity between points xi and xj in the original space. Let yi be the projection
of xi in a low-dimensional projection space. The similarity between two projected points yi and yj
is wij = (1 + a||yi − yj ||2b2)−1, where a and b are positive constants defined by the user. Setting
both a and b to 1 is identical to using Student’s t-distribution to measure the similarity between two
points in the projection space as in t-SNE (Maaten & Hinton (2008)).

Layout Optimization. The goal of layout optimization is to find the yi that minimizes the difference
(or loss) between vij and wij . Unlike t-SNE, UMAP employs the cross entropy:

CUMAP =
∑
i 6=j

[vij · log(vij/wij)− (1− vij) · log((1− vij)/(1− wij))], (4)

between vij andwij as the loss function. UMAP initializes yi through spectral embedding (Belkin &
Niyogi (2002)) and iteratively optimize its position to minimize CUMAP . Given the output weight
wij as 1/(1 + ad2bij), the attractive gradient is:

CUMAP

yi

+

=
−2abd2(b−1)ij

1 + ad2bij
vij(yi − yj), (5)

and the repulsive gradient is:

CUMAP

yi

−
=

2b

(ε+ d2ij)(1 + ad2bij)
(1− vij)(yi − yj), (6)

where ε is a small value added to prevent division by zero and dij is a Euclidean distance be-
tween yi and yj . For efficient optimization, UMAP leverages the negative sampling technique from
Word2Vec (Mikolov et al. (2013)). After choosing a target point and its negative samples, the posi-
tion of the target is updated with the attractive gradient, while the positions of the latter do so with

3

Under review as a conference paper at ICLR 2021

the repulsive gradient. Moreover, UMAP utilizes edge sampling (Tang et al. (2015; 2016)) to ac-
celerate and simplify the optimization process (Table 1). In other words, UMAP randomly samples
edges with a probability proportional to their weights, and subsequently treats the selected ones as
binary edges. Considering the previous sampling techniques, the modified objective function is:

O =
∑

(i,j)∈E

vij(log(wij) +

M∑
k=1

Ejk∼Pn(j)γ log(1− wijk)). (7)

Here, vij and wij are the similarities in the high and low-dimensional spaces respectively, M is
the number of negative samples and Ejk∼Pn(j) indicates that jk is sampled according to a noisy
distribution, Pn(j), from Word2Vec (Mikolov et al. (2013)).

4 UMATO

Figure 2 illustrates the computation pipeline of UMATO, which delineates the two-phase optimiza-
tion (see Figure 9 for a detailed illustration of the overall pipeline). As a novel approach, we split
the optimization into global and local so that it could generate a low-dimensional projection keeping
both structures well-maintained. We present the pseudocode of UMATO in Appendix A, and made
the source codes of it publicly available1.

4.1 POINTS CLASSIFICATION

Figure 1: Points classifica-
tion using Spheres dataset.
Each point is classified
into a hub (red circles), an
expanded nearest neighbor
(green squares), or an outlier
(blue triangles). Best viewed
in color.

In the big picture, UMATO follows the pipeline of UMAP. We first
find the k-nearest neighbors in the same way as UMAP, by assum-
ing the local connectivity constraint, i.e., no single point is isolated
and each point is connected to at least a user-defined number of
points. After calculating ρ (Equation 1) and σ (Equation 2) for each
point, we obtain the pairwise similarity for every pair of points.
Once the k-nearest neighbor indices are established, we unfold it
and check the frequency of each point to sort them into descending
order so that the index of the popular points come to the front.

Then, we build a k-nearest neighbor graph by repeating the fol-
lowing steps until no points remain unconnected: 1) choose the
most frequent point as a hub among points that are not already
connected, 2) retrieve the k-nearest neighbors of the chosen point
(i.e., hub), and the points selected from steps 1 and 2 will become
a connected component. The gist is that we divide the points into
three disjoint sets: hubs, expanded nearest neighbors, and outliers
(Figure 1). Thanks to the sorted indices, the most popular point
in each iteration—but not too densely located—becomes the hub
point. Once the hub points are determined, we recursively seek out
their nearest neighbors and again look for the nearest neighbors of
those neighbors, until there are no points to be newly appended. In
other words, we find all connected points that are expanded from the original hub points, which, in
turn, is called the expanded nearest neighbors. Any remaining point that is neither a hub point nor
a part of any expanded nearest neighbors is classified as an outlier. The main reason to rule out the
outliers is, similar to the previous approach (Gong et al. (2012)), to achieve the robustness of the
practical manifold learning algorithm. As the characteristics of these classes differ significantly, we
take a different approach for each class of points to obtain both structures. That is, we run global
optimization for the hub points (Section 4.2), local optimization for the expanded nearest neighbors
(Section 4.3), and no optimization for the outliers (Section 4.4). In the next section we explain each
in detail.

4.2 GLOBAL OPTIMIZATION

After identifying hub points, we run the global optimization to retrieve the skeletal layout of the data.
First, we initialize the positions of hub points using PCA, which makes the optimization process

1https://www.github.com/anonymous-author/anonymous-repo

4

Under review as a conference paper at ICLR 2021

Figure 2: An illustration of UMATO pipeline using 10,000 data points (101 dimensions) of the
Spheres. (A) UMATO first initializes hub points using PCA, (B) then optimize their positions using
the cross entropy function. (C) Next, we embed the expanded nearest neighbors to the projection
and optimize their positions using sampling techniques for acceleration. (D) Lastly, we append the
outliers and achieve the final projection result. Best viewed in color.

faster and more stable than using random initial positions. Next, we optimize the positions of hub
points by minimizing the cross-entropy function (Equation 4). Let f(X) = {f(xi, xj)|xi, xj ∈
X} and g(Y) = {g(yi, yj)|yi, yj ∈ Y } be two adjacency matrices in high- and low-dimensional
spaces. If Xh represents a set of points selected as hubs in high-dimensional space, and Yh is a set
of corresponding points in the projection, we minimize the cross entropy—CE(f(Xh)||g(Yh))—
between f(Xh) and g(Yh).

Table 1: The runtime for
each algorithm using MNIST
dataset. UMAP and UMATO take
much less time than MulticoreT-
SNE (Ulyanov (2016)) when tested
on a Linux server with 40-core
Intel Xeon Silver 4210 CPUs. The
runtimes are averaged over 10 runs.
Isomap (Tenenbaum et al. (2000))
took more than 3 hours to get the
embedding result.

Algorithm Runtime (s)

Isomap 3 hours >
t-SNE 374.85 ± 11.38
UMAP 26.10 ± 3.97

UMATO 73.32 ± 8.39

UMAP computes the cross-entropy between all existing
points using two sampling techniques, edge sampling and
negative sampling, for speed (Table 1). However, this often
ends up capturing only the local properties of data because of
the sampling biases and thus it cannot be used for cases that
require a comprehensive understanding of the data. On the
other hand, in its first phase, UMATO only optimizes for rep-
resentatives (i.e., the hub points) of data, which takes much
less time but can still approximate the manifold effectively.

4.3 LOCAL OPTIMIZATION

In the second phase, UMATO embeds the expanded nearest
neighbors to the projection that is computed using only the
hub points from the first phase. For each point in the expanded
nearest neighbors, we retrieve its nearest m (e.g., 10) hubs in
the original high-dimensional space and set its initial position
in the projection to the average positions of the hubs in the
projection with small random perturbations. We follow a similar optimization process as UMAP in
the local optimization with small differences. As explained in Section 3, UMAP first constructs the
graph structure; we perform the same task but only with the hubs and expanded nearest neighbors.
While doing this, since some points are excluded as outliers, we need to update the k-nearest neigh-
bor indices. This is fast because we recycle the already-built k-nearest neighbor indices by updating
the outliers to the new nearest neighbor.

Once we compute the similarity between points (Equation 3), to optimize the positions of points,
similar to UMAP, we use the cross-entropy loss function with edge sampling and negative sampling
(Equation 7). Here, we try to avoid moving the hubs as much as possible since they have already
formed the global structure. Thus, we only sample a point p among the expanded nearest neigh-
bors as one end of an edge, while the point q at the other end of the edge can be chosen from all
points except outliers. In UMAP implementation, when q pulls in p, p also drags q to facilitate the
optimization (Equation 5). When updating the position of q, we only give a penalty to this (e.g.,
0.1), if q is a hub point, not letting its position excessively be affected by p. In addition, because the
repulsive force can disperse the local attachment, making the point veer off for each epoch and even-
tually destroying the well-shaped global layout, we multiply a penalty (e.g., 0.1) when calculating
the repulsive gradient (Equation 6) for the points selected as negative samples.

5

Under review as a conference paper at ICLR 2021

4.4 OUTLIERS ARRANGEMENT

Since the isolated points, which we call outliers, mostly have the same distance to all the other data
points in high-dimensional space, due to the curse of dimensionality, they both sabotage the global
structure we have already made and try to mingle with all other points, thus distorting the overall
projection. We do not optimize these points but instead simply append them using the already-
projected points (e.g., hubs or expanded nearest neighbors), that belong to each outlier’s connected
component of the nearest neighbor graph. That is, if xi ∈ Cn where xi is the target outlier and Cn
is the connected component to which xi belongs, we find xj ∈ Cn that has already been projected
and is closest to xi. We arrange yi which corresponds to xi in low-dimensional space using the
position of yj in the same component offset by a random noise. In this way, we can benefit from
the comprehensive composition of the projection that we have already optimized when arranging
the outliers. We can ensure that all outliers can find a point as its neighbor since we picked hubs
from each connected component of the nearest neighbor graph and thus at least one point is already
located and has an optimized position (Section 4.2).

4.5 MULTI-PHASE OPTIMIZATION

The optimization of UMATO can be easily expanded to multiple phases (e.g., three or more phases).
Since we have a recursive procedure to expand the nearest neighbors, we can insert the optimization
process each time we expand the neighbors to create a multi-phase algorithm. However, our experi-
ment with three- and four-phase optimization with the Fashion MNIST dataset showed that there is
no big difference between two-phase optimization and that with more than two phases. Appendix C
contains the quantitative and qualitative results of the experiment for multi-phase optimization.

5 EXPERIMENTS

We conducted experiments to evaluate UMATO’s ability to capture the global and local structures of
high-dimensional data. We compared UMATO with six baseline algorithms, PCA, Isomap, t-SNE,
UMAP, topological autoencoders, and At-SNE in terms of global (i.e., DTM and KLσ) and local
(i.e., trustworthiness, continuity, and MRREs) quality metrics.

5.1 DATASETS

We used four datasets for the experiments: Spheres, MNIST (LeCun & Cortes (2010)), Fashion
MNIST (Xiao et al. (2017)), and Kuzushiji MNIST (Clanuwat et al. (2018)). Spheres is a synthetic
dataset that has 10,000 rows of 101 dimensions. It has a high-dimensional structure in which ten
small spheres are contained in a larger sphere. Specifically, the dataset’s first 5,000 rows are the
points sampled from a sphere of radius 25 and 500 points are sampled for each of the ten smaller
spheres of radius 5 shifted to a random direction from the origin. This dataset is the one used for the
original experiment with topological autoencoders (Moor et al. (2020)). Other datasets are images
of digits, fashion items, and Japanese characters, each of which consists of 60,000 784-dimensional
(28 × 28) images from 10 classes.

5.2 EXPERIMENTAL SETTING

Evaluation Metrics. To assess how well projections preserve the global structures of high-
dimensional data, we computed the density estimates (Chazal et al. (2011; 2017)), the so-called
Distance To a Measure (DTM), between the original data and the projections. Moor et al. (2020)
adopted the Kullback-Leibler divergence between density estimates with different scales (KLσ) to
evaluate the global structure preservation. To follow the original experimental setup by Moor et al.
(2020), we found the projections with the lowest KL0.1 from all algorithms by adjusting their hy-
perparameters. Next, to evaluate the local structure preservation of projections, we used the mean
relative rank errors (MRREs, Lee & Verleysen (2007)), trustworthiness, and continuity (Venna &
Kaski (2001)). All of these local quality metrics estimate how well the nearest neighbors in one
space (e.g., high- or low-dimensional space) are preserved in the other space. For more information
on the quality metrics, we refer readers to Appendix E.

Baselines. We set the most widely used dimensionality reduction techniques as our base-
lines, including PCA, Isomap (Tenenbaum et al. (2000)), t-SNE (Maaten & Hinton (2008)),

6

Under review as a conference paper at ICLR 2021

Table 2: Quantitative results of UMATO and six baseline algorithms. The hyperparameters
of the algorithms are chosen to minimize KL0.1. The best one is in bold and underlined, and the
runner-up is in bold. Only first four digits are shown for conciseness.

Global quality metrics Local quality metrics

Dataset Method DTM KL0.01 KL0.1 KL1 Cont Trust MRREX MRREZ

Spheres

PCA 0.9950 0.7568 0.6525 0.0153 0.7983 0.6088 0.7985 0.6078
Isomap 0.7784 0.4492 0.4267 0.0095 0.9041 0.6266 0.9039 0.6268
t-SNE 0.9116 0.6070 0.5365 0.0128 0.8903 0.7073 0.9032 0.7261
UMAP 0.9209 0.6100 0.5383 0.0134 0.8760 0.6499 0.8805 0.6494
TopoAE 0.6890 0.2063 0.3340 0.0076 0.8317 0.6339 0.8317 0.6326
At-SNE 0.9448 0.6584 0.5712 0.0138 0.8721 0.6433 0.8768 0.6424
UMATO 0.3888 0.1341 0.1434 0.0014 0.7884 0.6558 0.7887 0.6557

Fashion
MNIST

PCA 0.2315 0.6929 0.0454 0.0006 0.9843 0.9117 0.9853 0.9115
Isomap 0.2272 0.6668 0.0446 0.0010 0.9865 0.9195 0.9872 0.9196
t-SNE 0.2768 0.8079 0.0663 0.0017 0.9899 0.9949 0.9919 0.9955
UMAP 0.2755 0.8396 0.0641 0.0016 0.9950 0.9584 0.9955 0.9584
TopoAE 0.2329 0.7301 0.0446 0.0008 0.9908 0.9591 0.9913 0.9590
At-SNE 0.2973 0.8389 0.0702 0.0017 0.9826 0.9847 0.9849 0.9848
UMATO 0.2035 0.6852 0.0342 0.0008 0.9911 0.9500 0.9919 0.9502

MNIST

PCA 0.4104 1.4981 0.1349 0.0014 0.9573 0.7340 0.9605 0.7342
Isomap 0.3358 1.0361 0.0857 0.0012 0.9743 0.7527 0.976 0.7528
t-SNE 0.4263 1.4964 0.1523 0.0024 0.9833 0.9954 0.9869 0.9963
UMAP 0.4172 1.5734 0.1430 0.0026 0.9891 0.9547 0.9907 0.9547
TopoAE 0.3686 1.3818 0.1048 0.0011 0.9716 0.9429 0.9732 0.9429
At-SNE 0.4328 1.5623 0.1482 0.0018 0.9768 0.9765 0.9830 0.9777
UMATO 0.3525 1.2785 0.1017 0.0014 0.9792 0.8421 0.9813 0.8422

Kuzushiji
MNIST

PCA 0.4215 0.1710 0.1317 0.0014 0.9380 0.7213 0.9420 0.7211
Isomap 0.3458 0.2171 0.0906 0.0012 0.9573 0.7638 0.9589 0.7635
t-SNE 0.4254 0.0483 0.1369 0.0025 0.9843 0.9688 0.9871 0.9693
UMAP 0.3873 0.0417 0.1148 0.0026 0.9893 0.9563 0.9908 0.9564
TopoAE 0.3730 0.1495 0.1027 0.0011 0.9755 0.9442 0.9768 0.9440
At-SNE 0.3505 0.0807 0.0978 0.0013 0.9786 0.9671 0.9824 0.9676
UMATO 0.3231 0.1365 0.0815 0.0016 0.9865 0.8888 0.9881 0.8895

UMAP (McInnes et al. (2018)), and At-SNE (Fu et al. (2019)). In the case of t-SNE, we lever-
aged Multicore t-SNE (Ulyanov (2016)) for fast computation. To initialize the points’ position, we
used PCA for t-SNE, following the recommendation in the previous work (Linderman et al. (2019)),
and spectral embedding for UMAP which was set to default. In addition, we compared with topo-
logical autoencoders (Moor et al. (2020)) that were developed to capture the global properties of
the data using a deep learning-based generative model. Following the convention of visualization in
dimensionality reduction, we determined our result projected onto 2D space. We tuned the hyper-
parameters of each technique to minimize the KL0.1. Appendix F further describes the details of the
hyperparameters settings.

5.3 QUANTITATIVE RESULTS

Table 2 displays the experiment results. In most cases, UMATO was the only method that has shown
performance both in the global and local quality metrics in most datasets. For local metrics, t-SNE,
At-SNE, and UMAP generally had the upper-hand, but UMATO showed comparable MRREX and
continuity in Spheres, Fashion MNIST, and Kuzushiji MNIST datasets. Meanwhile, Isomap and
topological autoencoders were mostly good at global quality metrics, although UMATO had the
lowest (best) KL0.1 and DTM except for the MNIST dataset.

5.4 QUALITATIVE RESULTS

Among the five algorithms, only UMATO could preserve both the global and local structure of the
Spheres dataset. If we look at the figure made by UMATO, the outer sphere encircles the inner
spheres in a circular form, which is the most intuitive to understand the relationship among different
classes and the local linkage in detail. In the results from Isomap, t-SNE, UMAP, and At-SNE,

7

Under review as a conference paper at ICLR 2021

Figure 3: 2D projections produced by UMATO and six baseline algorithms. t-SNE, At-SNE,
and UMAP showed as if the points from a surrounding sphere were attached to inner spheres, not
reflecting the data’s global structures. PCA, Isomap and topological autoencoders attempted to pre-
serve the global structures, but failed to manifest the complicated hierarchical structures. UMATO
was the only algorithm to capture both the global and local structures among all different sphere
classes; this is best viewed in color.

the points representing the surrounding giant sphere mix with those representing the other small
inner spheres, thus failing to capture the nested relationships among different classes. Meanwhile,
topological autoencoders are able to realize the global relationship between classes in an incomplete
manner; the points for the outer sphere are too spread out, thus losing the local characteristics of
the class. From this result, we can acknowledge how UMATO can work with high-dimensional
data effectively to reveal both global and local structures. 2D visualization results on other datasets
(MNIST, Fashion MNIST, Kuzushiji MNIST) can be found in Appendix H. Lastly, we report an
additional experiment on the mouse neocortex dataset (Tasic et al. (2018)) in Appendix N which
shows the relationship between classes much better than the baseline algorithms like t-SNE and
UMAP.

5.5 PROJECTION ROBUSTNESS OVER DIVERSE INITIALIZATION METHODS

We experimented with the robustness of each dimensionality reduction technique with different
initialization methods such as PCA, spectral embedding, random position, and class-wise separation.
In class-wise separation, we initialized each class with a non-overlapping random position in 2-
dimensional space, adding random Gaussian noise. In our results, UMATO embeddings were almost
the same on the real-world datasets, while the UMAP and t-SNE results relied highly upon the
initialization method. We report this in Table 3 with a quantitative comparison using Procrustes
distance. Specifically, given two datasets X = {x1, x2, . . . , xn} and Y = {y′1, y′2, . . . , y′n} where
y′i corresponds to xi, the Procrustes distance is defined as

dP (X,Y) =

√√√√ N∑
i=1

(xi − y′i). (8)

For all cases, we ran optimal translation, uniform scaling, and rotation to minimize the Procrustes
distance between the two distributions. In the case of the Spheres dataset, as defined in Appendix G,
the clusters were equidistant from each other. The embedding results have to be different due to the
limitation of the 2-dimensional space since there is no way to express this relationship. However,
as we report in Figure 4, the global and local structures of the Spheres data are manifested with
UMATO with all different initialization methods.

Table 3: The average value of normalized Procrustes distance between diverse dimensionality
reduction techniques over four datasets. In all real-world datasets, UMATO has shown the most
robust embedding results over different initialization methods. Although the UMATO results in
the highest normalized Procrustes distance in the Spheres dataset, the embedding results look quite
similar (Figure 4). The winner is in bold.

Sample (%) Spheres MNIST FMNIST KMNIST

t-SNE 0.7878 0.8665 0.8284 0.8668
UMAP 0.7726 0.7767 0.7793 0.8213

UMATO 0.9504 0.4808 0.0120 0.2037

8

Under review as a conference paper at ICLR 2021

Figure 4: UMATO results on the Spheres dataset using different initialization methods. Al-
though the average value of the normalized Procrustes distance of UMATO results is higher than the
baselines because of the equidistant clusters of inner spheres, both global and local structures are
well-captured with all different initialization methods. Best viewed in color.

6 CONCLUSION

We present a two-phase dimensionality reduction algorithm called UMATO that can effectively
preserve the global and local properties of high-dimensional data. In our experiments with diverse
datasets, we have proven that UMATO can outperform previous widely used baselines (e.g., t-SNE
and UMAP) both quantitatively and qualitatively. As future work, we plan to accelerate UMATO,
as in previous attempts with other dimensionality reduction techniques (Pezzotti et al. (2019); Nolet
et al. (2020)), by implementing it on a heterogeneous system (e.g., GPU) for speedups.

REFERENCES

Josh Barnes and Piet Hut. A hierarchical o (n log n) force-calculation algorithm. nature, 324(6096):
446–449, 1986.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Advances in neural information processing systems, pp. 585–591, 2002.

Tess Brodie, Elena Brenna, and Federica Sallusto. Omip-018: Chemokine receptor expression on
human t helper cells. Cytometry Part A, 83(6):530–532, 2013.

Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for probability
measures. Foundations of Computational Mathematics, 11(6):733–751, 2011.

Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, Alessandro
Rinaldo, and Larry Wasserman. Robust topological inference: Distance to a measure and kernel
distance. The Journal of Machine Learning Research, 18(1):5845–5884, 2017.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature, 2018.

James Cook, Ilya Sutskever, Andriy Mnih, and Geoffrey Hinton. Visualizing similarity data with a
mixture of maps. In Artificial Intelligence and Statistics, pp. 67–74, 2007.

Cong Fu, Yonghui Zhang, Deng Cai, and Xiang Ren. Atsne: Efficient and robust visualization on
gpu through hierarchical optimization. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 176–186, 2019.

Dian Gong, Xuemei Zhao, and Gerard Medioni. Robust multiple manifolds structure learning. In
Proceedings of the 29th International Conference on Machine Learning, pp. 25–32, 2012.

Carmen Bravo González-Blas, Liesbeth Minnoye, Dafni Papasokrati, Sara Aibar, Gert Hulselmans,
Valerie Christiaens, Kristofer Davie, Jasper Wouters, and Stein Aerts. cistopic: cis-regulatory
topic modeling on single-cell atac-seq data. Nature methods, 16(5):397–400, 2019.

9

Under review as a conference paper at ICLR 2021

Antonio Gracia, Santiago González, Victor Robles, and Ernestina Menasalvas. A methodology to
compare dimensionality reduction algorithms in terms of loss of quality. Information Sciences,
270:1–27, 2014.

Tim Head, MechCoder, Gilles Louppe, Iaroslav Shcherbatyi, fcharras, Zé Vinı́cius, cmmalone,
Christopher Schröder, nel215, Nuno Campos, Todd Young, Stefano Cereda, Thomas Fan, rene
rex, Kejia (KJ) Shi, Justus Schwabedal, carlosdanielcsantos, Hvass-Labs, Mikhail Pak, So-
ManyUsernamesTaken, Fred Callaway, Loı̈c Estève, Lilian Besson, Mehdi Cherti, Karlson
Pfannschmidt, Fabian Linzberger, Christophe Cauet, Anna Gut, Andreas Mueller, and Alexan-
der Fabisch. scikit-optimize/scikit-optimize: v0.5.2, March 2018. URL https://doi.org/
10.5281/zenodo.1207017.

Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Advances in neural informa-
tion processing systems, 15:857–864, 2002.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

John A Lee and Michel Verleysen. Nonlinear dimensionality reduction. Springer Science & Busi-
ness Media, 2007.

John A Lee and Michel Verleysen. Quality assessment of dimensionality reduction: Rank-based
criteria. Neurocomputing, 72(7-9):1431–1443, 2009.

George C Linderman, Manas Rachh, Jeremy G Hoskins, Stefan Steinerberger, and Yuval Kluger.
Fast interpolation-based t-sne for improved visualization of single-cell rna-seq data. Nature meth-
ods, 16(3):243–245, 2019.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information pro-
cessing systems, pp. 3111–3119, 2013.

Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoencoders. In
Proceedings of the 37th International Conference on Machine Learning (ICML), Proceedings of
Machine Learning Research. PMLR, 2020.

Corey J Nolet, Victor Lafargue, Edward Raff, Thejaswi Nanditale, Tim Oates, John Zedlewski, and
Joshua Patterson. Bringing umap closer to the speed of light with gpu acceleration. arXiv preprint
arXiv:2008.00325, 2020.

Nicola Pezzotti, Julian Thijssen, Alexander Mordvintsev, Thomas Höllt, Baldur Van Lew,
Boudewijn PF Lelieveldt, Elmar Eisemann, and Anna Vilanova. Gpgpu linear complexity t-
sne optimization. IEEE transactions on visualization and computer graphics, 26(1):1172–1181,
2019.

Vin D Silva and Joshua B Tenenbaum. Global versus local methods in nonlinear dimensionality
reduction. In Advances in neural information processing systems, pp. 721–728, 2003.

Josef Spidlen, Karin Breuer, Chad Rosenberg, Nikesh Kotecha, and Ryan R Brinkman. Flowreposi-
tory: A resource of annotated flow cytometry datasets associated with peer-reviewed publications.
Cytometry Part A, 81(9):727–731, 2012.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

10

https://doi.org/10.5281/zenodo.1207017
https://doi.org/10.5281/zenodo.1207017
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Under review as a conference paper at ICLR 2021

Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-scale and high-
dimensional data. In Proceedings of the 25th international conference on world wide web, pp.
287–297, 2016.

Bosiljka Tasic, Zizhen Yao, Lucas T Graybuck, Kimberly A Smith, Thuc Nghi Nguyen, Darren
Bertagnolli, Jeff Goldy, Emma Garren, Michael N Economo, Sarada Viswanathan, et al. Shared
and distinct transcriptomic cell types across neocortical areas. Nature, 563(7729):72–78, 2018.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Dmitry Ulyanov. Multicore-tsne. https://github.com/DmitryUlyanov/
Multicore-TSNE, 2016.

Koen Van den Berge, Hector Roux De Bezieux, Kelly Street, Wouter Saelens, Robrecht Cannoodt,
Yvan Saeys, Sandrine Dudoit, and Lieven Clement. Trajectory-based differential expression anal-
ysis for single-cell sequencing data. Nature communications, 11(1):1–13, 2020.

Laurens Van Der Maaten. Accelerating t-sne using tree-based algorithms. The Journal of Machine
Learning Research, 15(1):3221–3245, 2014.

Jarkko Venna and Samuel Kaski. Neighborhood preservation in nonlinear projection methods: An
experimental study. In International Conference on Artificial Neural Networks, pp. 485–491.
Springer, 2001.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Lin Yan, Yaodong Zhao, Paul Rosen, Carlos Scheidegger, and Bei Wang. Homology-preserving
dimensionality reduction via manifold landmarking and tearing. In Visualization in Data Science
(VDS), 2018. URL https://arxiv.org/abs/1806.08460.

Yuansheng Zhou and Tatyana O Sharpee. Using global t-sne to preserve inter-cluster data structure.
bioRxiv, 2018. doi: 10.1101/331611.

11

https://github.com/DmitryUlyanov/Multicore-TSNE
https://github.com/DmitryUlyanov/Multicore-TSNE
https://arxiv.org/abs/1806.08460

Under review as a conference paper at ICLR 2021

A UMATO ALGORITHM PSEUDOCODE

The pseudocode of UMATO is as below:

Algorithm 1 Uniform Manifold Approximation with Two-phase Optimization
1: procedure UMATO(X , kX , d, min dist, nh, eg , el)

Input: High-dimensional data X , number of nearest neighbors k, projection dimension d, minimum distance
in projection result min dist, number of hub points nh, epochs for global and local optimization eg , el

Output: Low-dimensional projection Y
2: Compute k-nearest neighbors of X
3: Obtain sorted list using indices’ frequency of k-nearest neighbors
4: Build k-nearest neighbor graph structure
5: Classify points into hubs, expanded nearest neighbors, and outliers
6: Optimize CE(f(Xh)||g(Yh)) to preserve global configuration (Equation 4)
7: Initialize expanded nearest neighbors using hub locations
8: Update k-nearest neighbors & compute weights (Equation 3)
9: Optimize CE(f(X)||g(Y)) to preserve local configuration (Equation 7)

10: Position outliers
11: return Y
12: end procedure

B THE MEANING OF USING DIFFERENT LOSS FUNCTIONS IN
DIMENSIONALITY REDUCTION

Following the notations from above, we set the similarity between points in high-dimensional space
xi and xj as vij and the low-dimensional space yi and yj as wij . Then we can write the KL
divergence and cross entropy loss function as:

KL =
∑
i6=j

vij · log(vij/wij), (9)

CE =
∑
i 6=j

vij · log(vij/wij)−
∑
i 6=j

(1− vij) · log((1− vij)/(1− wij)). (10)

Table 4: Analysis of the KL divergence and cross-entropy loss function for imposing penalties
when updating the positions of points in low-dimensional space. (Upper table) The KL diver-
gence and the first term of the cross-entropy function impose a big penalty when wij is small but vij
is large. (Lower table) In contrast, the second term of cross-entropy function imposes a big penalty
when vij is small but wij is large.

Low d
Large wij Small wij

High d
Large vij a. Small penalty b. Big penalty (preserves local structures)

Small vij c. Small penalty (ignores global structures) d. Small penalty

Low d
Large wij Small wij

High d
Large vij e. Small penalty f. Small penalty (ignores local structures)

Small vij g. Big penalty (preserves global structures) h. Small penalty

If we use the same probability distributions, vij and wij , the KL divergence and the first term of
cross-entropy are exactly the same. If vij and wij are both large (Table 4 a.) or both small (Table 4
d.), this means that the relationship between points in high-dimensional space is well-retained in the
projection. Thus, the positions of points in the low-dimensional space do not have to move. As vij
and wij are similar, log(vij/wij) becomes zero, producing a small cost in the end.

12

Under review as a conference paper at ICLR 2021

However, we need to modify the position of wij if there exists a gap between vij and wij . The
KL divergence imposes a big penalty when vij is large but wij is small (Table 4 b.). That is, if
the neighboring points in high-dimensional space are not captured well in the projection, the KL
divergence imposes a high penalty to move the point (vij) into the right position. Thus, we can
understand why t-SNE is able to capture the local characteristics of high-dimensional space, but
not the global ones. However, the second term of cross-entropy imposes a big penalty when vij is
small but wij is large (Table 4 g.). Therefore, it moves points that are close together in the high-
dimensional space but far apart in the projection.

C MULTI-PHASE OPTIMIZATION

We report the result of multi-phase optimization (e.g., three and four-phase) using the Fashion
MNIST dataset both quantitatively (Table 5) and qualitatively (Figure 5). As in Figure 5, we were
unable to find any significant differences between the 2D projections, although some outliers were
located in different places. Moreover, the quality metrics were almost the same for all three results.
The original UMATO was the winner in DTM, KL0.1, KL1, continuity, and MRREZ but came last in
other quality metrics. In addition, the gap in metrics between UMATO and the multi-phase optimiza-
tions indicated a trivial difference. Thus, we concluded that developing a multi-phase optimization
for UMATO does not bring about any notable improvement in the projection result.

Table 5: Quantitative evaluation of UMATO and UMATO with multi-phase optimizations.
Although the optimization process of UMATO can be simply expandable for multiple phases, no
apparent distinctions are found in the the results with different numbers of optimization phases. The
winner is in bold.

Dataset Method DTM KL0.01 KL0.1 KL1 Cont Trust MRREX MRREZ

Fashion
MNIST

UMATO 0.2035 0.6852 0.0342 0.0008 0.9911 0.9500 0.9919 0.9502
3-Phases 0.2058 0.6546 0.0343 0.0008 0.9900 0.9556 0.9909 0.9561
4-Phases 0.2095 0.6533 0.0359 0.0008 0.9895 0.9532 0.9904 0.9536

Figure 5: 2D projections of the Fashion MNIST dataset using UMATO and UMATO with
multi-phase optimizations. Although there was a small difference such as the locations of outliers,
we observed that the projection results were quite similar to each other.

D PROJECTION STABILITY

Table 6 denotes the results of our experiment on the projection stability of UMATO and other di-
mensionality reduction techniques. When the data size grows, we want to sample a portion of it to
speed up the visualization. However, the concern is whether the projection run with the sampled
indices is consistent with the part of the projection result with indices selected from the full dataset.
If the algorithm can generate stable and consistent results, the two projections should contain the
least bias possible. To compute the projection stability of dimensionality reduction techniques, we

13

Under review as a conference paper at ICLR 2021

used the normalized Procrustes distance (Equation 8) to measure the distance between two compa-
rable distributions. To replicate the experiment by McInnes et al. (2018), we used the same Flow
Cytometry dataset (Spidlen et al. (2012); Brodie et al. (2013)), and ran optimal translation, uniform
scaling, and rotation to minimize the Procrustes distance between the two distributions. As we can
see in Table 6, UMATO outperformed t-SNE and At-SNE for all sub-sample sizes. Moreover, al-
though UMAP is known as stable among existing algorithms, UMATO showed even better (lower)
Procrustes distance except for one sub-sample size (60%). From this result, we can acknowledge
that UMATO can generate the more stable and consistent results regardless of sub-sample size than
many other dimensionality reduction techniques.

Table 6: The normalized Procrustes distance between two projection results by the percentage
of sub-samples. From four dimensionality reduction techniques, we measured the normalized Pro-
crustes distance to check the projection stability using the Flow Cytometry dataset. The winner is in
bold.

Sample (%) 1 2 5 10 20 30 50 60 80 100

t-SNE 0.9835 0.9944 0.9544 0.9736 0.9824 0.9924 0.9959 0.9819 0.9944 0.9765
UMAP 0.4002 0.3319 0.2341 0.1324 0.1327 0.1577 0.1109 0.0713 0.0951 0.0597
At-SNE 0.8958 0.9510 0.7593 0.7980 0.9062 0.9376 0.9999 0.9460 0.9599 0.9999
UMATO 0.3153 0.1528 0.1206 0.0988 0.0520 0.1411 0.0526 0.1732 0.0529 0.0535

E QUALITY METRICS

As UMATO presents a dimensionality reduction technique that can capture both the global and
local structures of high-dimensional data, we used several quality metrics to evaluate each aspect
respectively. We have referred to some review papers (Gracia et al. (2014); Lee & Verleysen (2009))
for the best use and implementation. Among many quality metrics, we leveraged 1) Distance To a
Measure (DTM, Chazal et al. (2011; 2017)), 2) KL divergence between two density functions, 3)
trustworthiness and continuity (Venna & Kaski (2001)), and 4) mean relative rank errors (MRREs,
Lee & Verleysen (2007)). The first two metrics are used to test the preservation of global structures
and the last two metrics are suggested for the preservation of the local structures.

Distance To a Measure considers the dispersion of high- and low-dimensional data, where it is
defined for a given point as fXσ (x) :=

∑
y∈X exp (−dist(x, y)2/σ). By summing up the element-

wise absolute values between two distributions,
∑
x∈X,z∈Z f

X
σ (x)− fZσ (z) where x is the point

in high-dimensional space X and the z is the corresponding projected point in low-dimensional
space Z, we can examines the similarity of two datasets. In our experiments, we used the Euclidean
distance and the values were normalized between 0 and 1. The σ ∈ R>0, which represents the
length scale parameter, was set to 0.1. Moor et al. (2020) proposed the KL divergence of two
probability distributions, KLσ := KL(fXσ ||fZσ), a variation of DTM. Changing σ as a normalizing
factor of the distribution, the authors investigated if the algorithms can preserve the global structure
of the high-dimensional data. Following the same notion as the experiment in the paper (Moor et al.
(2020)), we used three σ values, 1.0, 0.1, and 0.01, to test whether each algorithm can capture the
global aspect with respect to diverse density estimates.

Trustworthiness and continuity measure how much the nearest neighbors are preserved in a space
(i.e., high- or low-dimensional space) compared to the other space by analyzing the ranks of k-
nearest neighbors in both spaces. The difference between trustworthiness and continuity comes from
which space is held as the base space. Specifically, we first need to find the k-nearest neighbors in
both high- and low-dimensional space. Then, we compute the trustworthiness by checking whether
the ranks of nearest neighbors in low-dimensional space resemble those of high-dimensional space.
If so, we can achieve a high score in trustworthiness. Meanwhile, we achieve a high score in conti-
nuity if the ranks of nearest neighbors in high-dimensional space resemble those of low-dimensional
space. MRREs take a similar approach to trustworthiness and continuity as it calculates and com-
pares the ranks of the k-nearest neighbors in both spaces, but the normalizing factor is slightly
different. Originally, it was better if MRREs had lower values. However, for the ease of comparing

14

Under review as a conference paper at ICLR 2021

local quality metrics, we defined it as MRREs := 1 −MRREs, so higher MRREs mean that they
have better retained the k-nearest neighbors like trustworthiness and continuity.

F HYPERPARAMETER SETTING

As explained in Section 5.2, we generated projections for each dimensionality reduction algorithm
that had the lowest KL0.1 measure. To tune each algorithm’s hyperparameters, we employed the
grid search for t-SNE, UMAP, and At-SNE. For t-SNE and At-SNE, we changed the perplexity
from 5 to 50 with an interval of 5, and the learning rate from 0.1 to 1.0 with a log-uniform scale. In
the case of UMAP, we changed the number of nearest neighbors from 5 to 50 with an interval of 5,
and the minimum distance between points in the projection from 0.1 to 1.0 with an interval of 0.1.
We used the Python library scikit-optimize (Head et al. (2018)) to find the best hyperparameters for
topological autoencoders. UMATO has several hyperparameters such as the number of hub points,
the number of epochs, and the learning rate for global and local optimization. In our experiments,
we configured everything except the number of hub points to the same setting for UMATO. We used
200 hub points for the Spheres dataset and had 300 hubs for others. We used fewer hub points for
the Spheres since it has only 10,000 data points in total, while the other datasets have 60,000 data
points. We set the number of epochs to 100 for global optimization and to 50 for local optimization.
Lastly, the global learning rate was set to 0.0065, and the local learning rate was set to 0.01.

G SYNTHETIC SPHERES DATASET

We leveraged the same Spheres dataset that Moor et al. (2020) used in their experiments of topo-
logical antoencoders. The Spheres dataset contains eleven high-dimensional spheres which reside
in 101-dimensional space. We first generated ten spheres of radius of 5, and shifted each sphere
by adding the same Gaussian noise to a random direction. For this aim, we created d-dimensional
Gaussian vectors X ∼ N(0, I(10/

√
d)), where d is 101. As to embed an interesting geometrical

structure to the dataset, the ten spheres of relatively small radii of 5 were enclosed by another larger
sphere of radius of 25.

H MORE EXPERIMENTS ON SYNTHETIC DATASETS

Figure 6: 2D projections produced by UMATO and four baseline algorithms. 3-dimensional
S-curve and Swiss roll datasets are used for five different algorithms. While PCA and UMATO can
capture both the global and local structures of original datasets, other algorithms such as Isomap,
t-SNE, and UMAP can only preserve the local manifolds of original datasets.

We leveraged the 3-dimensional S-curve and Swiss roll datasets to test whether UMATO can pre-
serve both the global and local structures of original datasets. As the visualization shows (Figure 6),

15

Under review as a conference paper at ICLR 2021

only PCA and UMATO were able to capture the global and local structures of original datasets.
Isomap, t-SNE and UMAP could capture the local manifolds of original datasets, but high-level
manifolds of the original datasets were not reflected to the embedding.

I LOCAL QUALITY METRICS WITH DIFFERENT VALUES OF
HYPERPARAMETER

We report the result of local quality metrics with diverse hyperparameters (Table 7). We changed
the number of nearest neighbors (k) from 5 to 15 with an interval of 5. As we have already reported
when the k = 5 (Table 2), below are the cases where k = 10, 15. As we can check from the result,
while the values fluctuate a little bit, the ranks are mostly robust over diverse k values.

Table 7: Local quality metrics of UMATO and the baseline algorithms. Although the values
are changing a little bit depending on the number of nearest neighbors, when comparing the result
of k = 10 and k = 15, the ranks barely change. The winner is in bold and underlined, and the
runner-up in bold.

Dataset Method Cont Trust MRREX MRREZ Dataset Method Cont Trust MRREX MRREZ

Spheres
k = 10

PCA 0.7965 0.6111 0.7976 0.6089

MNIST
k = 10

PCA 0.9519 0.7341 0.9574 0.7342
Isomap 0.8847 0.6268 0.8953 0.6267 Isomap 0.9713 0.7531 0.9743 0.7530
t-SNE 0.8752 0.6803 0.8944 0.7082 t-SNE 0.9779 0.9930 0.9838 0.9951
UMAP 0.8688 0.6508 0.8764 0.6497 UMAP 0.9858 0.9543 0.9889 0.9545
TopoAE 0.8309 0.6354 0.8312 0.6335 TopoAE 0.9686 0.9429 0.9716 0.9429
At-SNE 0.8645 0.6453 0.8724 0.6434 At-SNE 0.9688 0.9734 0.9782 0.9761
UMATO 0.7875 0.6564 0.7881 0.6559 UMATO 0.9753 0.8422 0.9792 0.8422

Spheres
k = 15

PCA 0.7952 0.6120 0.7969 0.6094

MNIST
k = 15

PCA 0.9481 0.7341 0.9555 0.7342
Isomap 0.8774 0.6282 0.8914 0.6271 Isomap 0.9692 0.7529 0.9732 0.7529
t-SNE 0.8668 0.6723 0.8891 0.7021 t-SNE 0.9746 0.9908 0.9819 0.9940
UMAP 0.8639 0.6534 0.8737 0.6506 UMAP 0.9834 0.9542 0.9877 0.9545
TopoAE 0.8304 0.6364 0.8309 0.6339 TopoAE 0.9666 0.9429 0.9705 0.9429
At-SNE 0.8603 0.6461 0.8699 0.6438 At-SNE 0.9642 0.9707 0.9755 0.9749
UMATO 0.7875 0.6568 0.7879 0.6560 UMATO 0.9728 0.8417 0.9778 0.8420

Fashion
MNIST
k = 10

PCA 0.9827 0.9120 0.9843 0.9116

Kuzushiji
MNIST
k = 10

PCA 0.9313 0.7218 0.9382 0.7214
Isomap 0.9854 0.9196 0.9865 0.9196 Isomap 0.9546 0.7639 0.9574 0.7636
t-SNE 0.9873 0.9936 0.9903 0.9948 t-SNE 0.9794 0.9677 0.9844 0.9687
UMAP 0.9941 0.9586 0.9950 0.9585 UMAP 0.9861 0.9556 0.9891 0.9561
TopoAE 0.9898 0.9591 0.9908 0.9590 TopoAE 0.9732 0.9442 0.9755 0.9441
At-SNE 0.9792 0.9843 0.9829 0.9846 At-SNE 0.9723 0.9659 0.9789 0.9670
UMATO 0.9897 0.9498 0.9911 0.9500 UMATO 0.9836 0.8880 0.9864 0.8890

Fashion
MNIST
k = 15

PCA 0.9815 0.9121 0.9837 0.9117

Kuzushiji
MNIST
k = 15

PCA 0.9266 0.7220 0.9358 0.7215
Isomap 0.9838 0.9197 0.9858 0.9196 Isomap 0.9497 0.7640 0.9553 0.7636
t-SNE 0.9858 0.9894 0.9944 0.9927 t-SNE 0.9758 0.9668 0.9825 0.9683
UMAP 0.9934 0.9585 0.9946 0.9584 UMAP 0.9836 0.9551 0.9879 0.9558
TopoAE 0.9892 0.9591 0.9904 0.9590 TopoAE 0.9715 0.9442 0.9746 0.9441
At-SNE 0.9769 0.9840 0.9817 0.9845 At-SNE 0.9678 0.9648 0.9765 0.9665
UMATO 0.9888 0.9495 0.9906 0.9499 UMATO 0.9814 0.8876 0.9853 0.8887

J 2D EMBEDDING RESULTS OF UMATO AND BASELINE ALGORITHMS ON
REAL-WORLD DATASETS

For the real-world datasets, UMATO showed a similar projection to PCA but with better captured
local characteristics. The results from topological autoencoders showed some points detached far
apart from their centers, even though the best hyperparameters were used for each. Although At-
SNE claimed that it could capture both structures, the results were not significantly different from
those of the original t-SNE algorithm when projecting the Spheres and Fashion MNIST datasets.

16

Under review as a conference paper at ICLR 2021

Figure 7: 2D projections produced by UMATO and six baseline algorithms UMATO generated
similar projections to PCA but with the points more locally connected; this is best viewed in color.

K EMBEDDING ROBUSTNESS OVER NUMBER OF EPOCHS

We report the experimental result in Figure 8. As we explained, the UMAP embedding results
are susceptible to the number of epochs so that the distance between clusters get dispersed. This
can induce a misinterpretation that the user considers the distance between clusters as something
meaningful. The two-phase optimization of UMATO can solve the problem since the global opti-
mization (first phase) is easy to converge as it runs only with a small portion of points. Therefore,
the increasing number of epochs in the global optimization does not harm the final embedding.

Figure 8: Comparing result of UMATO and UMAP with varying number of epochs (Top
row) UMAP is susceptible to the number of epochs so that the clusters get dispersed as the epochs
increases. (Bottom row) On the other hand, regardless of the number of epochs in the global opti-
mization, UMATO results in almost the same embedding result.

17

Under review as a conference paper at ICLR 2021

L ILLUSTRATION OF UMATO PIPELINE

For the ease of understanding, we provide an illustration of UMATO pipeline in Figure 9. The
detailed explanation for UMATO can be found in Section 4.

Figure 9: The illustration of overall UMATO pipeline.

M EFFECT OF LOCAL LEARNING RATE OF UMATO

By manipulating one of UMATO’s hyperparameters, local learning rate, the user can deter-
mine where to focus in the embedding result; to reveal more of the global structures, the user should
apply a lower value (e.g., 0.005), while using a higher one (e.g., 0.1) would generate more like a
UMAP embedding which prefers to show the local manifolds.

Figure 10: The effect of manipulating local learning rate of UMATO. Local learning rate was
set to 0.1 for all cases. Unlike previous embedding results in Figure 7, UMATO reveals more of the
local aspects.

18

Under review as a conference paper at ICLR 2021

N UMATO ON REAL-WORLD BIOLOGICAL DATASET

To test UMATO on the real-world biological dataset, we took professional advice from an expert
who has a Ph.D. in Bioinformatics. We have run UMATO and the baseline algorithms (t-SNE,
UMAP) on 23,822 single-cell transcriptomes from two areas at distant poles of the mouse neocortex
(Tasic et al. (2018)). Each cell belongs to one of 133 clusters defined by Jaccard–Louvain clus-
tering (for more than 4,000 cells) or a combination of k-means and Ward’s hierarchical clustering.
Likewise, each cluster belongs to one of 4 classes: GABAergic (red/purple), Endothelial (brown),
Glutamatergic (blue/green), Non-Neuronal (dark green).

The embedding result for each method is given in Figure 11. In the case of t-SNE, clusters are
well-captured, but the classes are much dispersed, while UMAP adequately separates both classes
and clusters. Compared to these baseline algorithms, UMATO is able to capture the relationship
between classes much better, retaining some of the local manifolds as well. This means that UMATO
focuses more on the manifold at a higher level than the baselines that the hub points worked as the
representatives that explain well about the overall dataset. Moreover, there are cases in biological
data analysis where the researchers want to know the distance between samples González-Blas et al.
(2019); Van den Berge et al. (2020). As the UMAP embedding results are susceptible to the number
of epochs, this may cause a negative impact to interpret the results accurately. On the other hand, as
UMATO is robust over the number of epochs, we do not have to worry about such biases.

Figure 11: 2D visualization of UMATO, UMAP and t-SNE on mouse neocortex dataset (Tasic
et al. (2018)). t-SNE separates clusters well but does not show class information: GABAergic
(red/purple), Endothelial (brown), Glutamatergic (blue/green), Non-Neuronal (dark green). UMAP
moderately captures both the clusters and classes. In the case of UMATO, it demonstrates the rela-
tionship between classes much better than t-SNE and UMAP, retaining some of the local manifolds
as well.

19

	Introduction
	Related Work
	UMAP
	UMATO
	Points classification
	Global optimization
	Local optimization
	Outliers arrangement
	Multi-phase optimization

	Experiments
	Datasets
	Experimental setting
	Quantitative results
	Qualitative results
	Projection robustness over diverse initialization methods

	Conclusion
	UMATO Algorithm Pseudocode
	The Meaning of Using Different Loss Functions in Dimensionality Reduction
	Multi-phase Optimization
	Projection Stability
	Quality Metrics
	Hyperparameter Setting
	Synthetic Spheres Dataset
	More Experiments on Synthetic Datasets
	Local Quality Metrics with Different Values of Hyperparameter
	2D Embedding Results of UMATO and Baseline Algorithms on Real-world Datasets
	Embedding Robustness over Number of Epochs
	Illustration of UMATO Pipeline
	Effect of Local Learning Rate of UMATO
	UMATO on Real-world Biological Dataset

