
Federated Fine-tuning of Large Language Models
under Heterogeneous Tasks and Client Resources

Jiamu Bai∗
Pennsylvania State University

jvb6867@psu.edu

Daoyuan Chen∗

Alibaba Group
daoyuanchen.cdy@alibaba-inc.com

Bingchen Qian
Alibaba Group

qianbingchen.qbc@alibaba-inc.com

Liuyi Yao
Alibaba Group

yly287738@alibaba-inc.com

Yaliang Li
Alibaba Group

yaliang.li@alibaba-inc.com

Abstract

Federated Learning (FL) has recently been applied to the parameter-efficient fine-
tuning of Large Language Models (LLMs). While promising, it raises significant
challenges due to the heterogeneous resources and data distributions of clients.
This study introduces FlexLoRA, a simple yet effective aggregation scheme for
LLM fine-tuning, which mitigates the “bucket effect” in traditional FL that restricts
the potential of clients with ample resources by tying them to the capabilities of
the least-resourced participants. FlexLoRA allows for dynamic adjustment of local
LoRA ranks, fostering the development of a global model imbued with broader, less
task-specific knowledge. By synthesizing a full-size LoRA weight from individual
client contributions and employing Singular Value Decomposition (SVD) for
weight redistribution, FlexLoRA fully leverages heterogeneous client resources.
Involving thousands of clients performing heterogeneous NLP tasks and client
resources, our experiments validate the efficacy of FlexLoRA, with the federated
global model achieving consistently better improvement over SOTA FL methods
in downstream NLP task performance across various heterogeneous distributions.
FlexLoRA’s practicality is further underscored by our theoretical analysis and its
seamless integration with existing LoRA-based FL methods, offering a path toward
cross-device, privacy-preserving federated tuning for LLMs.

1 Introduction

Large Language Models (LLMs) have propelled advancements in natural language processing (NLP),
offering breakthroughs in various tasks [45]. Finetuning LLMs on specific datasets enhances their
applicability [12, 33], yet collecting such datasets raises concerns regarding cost and privacy [29, 6].

Researchers have turned to Federated Learning (FL) as a means to fine-tune LLMs using more
data across distributed clients without compromising data privacy [28, 2, 43, 32]. In these settings,
parameter-efficient fine-tuning techniques [34], particularly Low-Rank Adaptation (LoRA) [16],
become attractive for reducing computational and communicational burdens [44, 41, 8].
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Figure 1: Test loss of FlexLoRA and FedIT
[43] across communication rounds under
LoRA ranks of 1, 8, and 200. FlexLoRA
demonstrates adaptability in an “extreme
heavy tail” scenario and increasingly aligns
with the performance of FedIT at the highest
LoRA rank as rounds progress. Implementa-
tion details are in Appendix A.
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Figure 2: Illustration of FlexLoRA.The server ini-
tially constructs a full-size LoRA weight, which is
then averaged across client-contributed weights with
different ranks. The aggregated global weights are
decoupled via SVD and sent back to clients.

Despite its efficiency, LoRA’s use in FL is challenged by the heterogeneity of downstream tasks
and available resources among clients, especially in cross-device scenarios [39, 5]. Traditional FL
methods often suffer from “bucket effect”, converging to the use of the smallest viable LoRA rank for
all clients, even though many clients typically have more resources that remain underutilized. A small
LoRA rank, optimizing weights in a task-specific manner [16], can be sensitive to heterogeneous data
distributions and compromised generalization when applied to all clients, as evidenced in Figure 1.
Ideally, we hope all clients can fully leverage their advantages by sizing their local LoRA ranks with
their resources to contribute models with less task-specific but more generalized knowledge.

To address these challenges, we propose FlexLoRA, a simple yet effective FL aggregation scheme
that enables the mixture of diverse LoRA weights across individual clients. It accounts for local
resource and task differences and aims for a well-generalized global model. With the heterogeneous
aggregation and redistribution of weights through Singular Value Decomposition (SVD), FlexLoRA
ensures all clients contribute effectively, regardless of resource capacity. Thanks to the simplicity,
FlexLoRA can be pluggable into a series of LoRA-based FL methods, unlocking their potential to
leverage available yet under-utilized resources to contribute more generalized knowledge via larger
LoRA ranks, which is also supported by our theoretical analysis.

Our empirical study, simulating a cross-device federate fine-tuning scenario with thousands of clients
on various of NLP tasks [39] and resource distributions, underscores the real-world applicabil-
ity of FlexLoRA. Notably, FlexLoRA can be readily applied to several SOTA FL baselines in a
plug-and-play manner and achieves significant performance enhancements, including 3.1% and 4%
improvements in zero-shot Rouge-L scores and language understanding tasks such as overlap extrac-
tion and textual entailment, demonstrating robust generalization capability. We further conduct an
extensive study on the aggregation scheme and scalability of FlexLoRA, furnishing a more nuanced
understanding of the underlying mechanisms that facilitate its effectiveness

Our contributions can be summarized as follows:

• We propose a simple-yet-effective scalable method to fully leverage local client resources for
enhancing the global model’s generalization ability, supported by both theoretical analysis and
extensive empirical evidence.

• To our knowledge, this is the first work to demonstrate the feasibility of federated tuning of billion-
sized LLMs across thousands of NLP tasks in large-scale, resource-heterogeneous scenarios.

• We explore the interplay between LoRA ranks, client numbers, specific heterogeneous language
tasks, and resource distributions, offering practical insights. Our code is made available at
https://github.com/alibaba/FederatedScope/tree/FlexLoRA, inviting further research and appli-
cation in real-world cross-device FL for LLMs.
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2 Related Work

Parameter-Efficient Fine-tuning of LLMs. The computation and storage demands of traditional fine-
tuning processes have spurred the development of parameter-efficient fine-tuning (PEFT) techniques
such as adapter and prefix tuning [15, 23]. Among existing PEFT techniques, we choose to employ
LoRA due to its simplicity and outstanding performance [24, 18]. Despite this, our aggregation
scheme can be easily extended into other PEFT methods by replacing the LoRA weights with their
alternative weights to be tuned.

PEFT in Federated Learning. PEFT techniques have been integrated into FL to minimize communi-
cation costs and maximize efficiency. Several works employ LoRA for local model updates within an
FL framework [2, 43, 44, 41, 19, 8, 26, 30, 38, 42]. For instance, [43] combines LoRA-based local
updates with FedAvg for model aggregation, while [2] intersperses sparse finetuning with LoRA fine-
tuning for improved initialization for LoRA in FedAvg. [36] proposes a technique to improve LoRA
performance in FL scheme, [42] exploits performing SVD on pretrained model weights to resolve
data heterogeneity, and [32] reduces communication cost through zeroth-order optimization. Distinct
from these methods, our work, by introducing a simple yet effective aggregation scheme, leverages
heterogeneous client resources to enhance the generalization and natural language understanding of
the global FL model, addressing limitations seen in current FL paradigms.

Data and Resource Heterogeneity in FL. Data and resource heterogeneity remain significant
challenges in FL, impacting both training and performance [28, 20]. Fruitful solutions have been
explored to tackle the data heterogeneity [10, 25, 4, 42] or resource heterogeneity [21, 11, 7], while
not in LLM context. A concurrent work, HETLORA [8], proposes allowing heterogeneous LoRA
ranks by zero-padding local LoRA weights for aggregation and truncating global weights to match
the local rank for distribution, all while employing sparsity regularization. However, our approach
distinguishes itself through a focus on zero-shot task generalization and large-scale experiments
inclusive of thousands of NLP tasks and clients, aiming to synthesize a well-generalized global LLM.
Moreover, our method is simple and easy to use without any hyper-parameters for the aggregation,
thereby circumventing the need for case-by-case tuning of newly introduced variables such as the
decay and regularization factors of HETLORA.

3 Methodology of FlexLoRA

3.1 Intrinsic Dimension and Generalization

Fine-tuning LLMs to enhance task-specific performance inevitably encounters cost of reduced
generalization ability: a trade-off supported by the “no-free-lunch” theorem and empirical evidence
usually called “alignment tax” of LLM [40, 31]. The generalization capability of LLMs is influenced
by complexity of applied tasks and their solution spaces, which can be characterized by the concept
of an intrinsic dimension – typically far smaller than the total number of model parameters [1].

The insight of intrinsic dimension informs the design of LoRA to fine-tune LLMs’ pre-trained weights
in a parameter-efficient manner, utilizing compact and low-rank matrices. Specifically, matrices
A ∈ Rr×p, B ∈ Rd×r are introduced, where r denotes the rank that encapsulates intrinsic dimension.
These matrices form a low-rank approximation for tuning original weights W0 as h = W0x+ sBAx,
where x is the input of the parameter to be tuned, h is the output, and s is a scaling constant. Previous
studies show that different ranks produce weights with attributes particularly tailored to specific
downstream tasks [16, 18]. Consequently, the rank value plays a critical role in not only task-specific
solution subspaces but also in determining a model’s ability to generalize to various tasks.

In scenarios where clients have highly heterogeneous task and resource distributions, a uniform
LoRA rank usually does not suffice for model performance, especially in its zero-shot generalization
ability for unseen clients and tasks. Employing a small LoRA rank potentially leads to under-fitting
in a global context by capturing only a subset of task-specific features, while a large rank is usually
infeasible due to the “bucket effect” of existing FL solutions constrained by least-resourced clients.

FlexLoRA emerges as a solution to this dilemma by dynamically adjusting the rank in response to the
variability in local client resources. By increasing the LoRA rank for clients with greater resources
to contribute more global knowledge, FlexLoRA enhances the model’s ability to generalize across
diverse data distributions without sacrificing local performance accuracy. This strategy allows for
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federated fine-tuning of LLMs to navigate between the extremes of task-specific optimization and
generalization to unseen clients and tasks.

3.2 Aggregation with Heterogeneous Ranks

Traditional FL methods like FedAvg aggregate local LoRA weights by computing a weighted
average of the decomposed matrices A and B as Bg = (

∑m
i=1 n

iBi
l )/(

∑m
i=1 n

i), Ag =
(
∑m

i=1 n
iAi

l)/(
∑m

i=1 n
i), where Bg, Ag are the global LoRA decomposed matrices, and Bi

l , A
i
l

are the local LoRA decomposed matrices of i-th client, ni is the size of the i-th client’s local training
dataset, m is the number of FL clients. However, this scheme is restricted by the lowest LoRA rank
among participating clients for aggregation compatibility, which makes it hard to capture the full
diversity of client contributions and fully utilize ample client resources.

FlexLoRA takes a different yet simple approach to enable decomposed matrix with different LoRA
ranks to be mixed together. Specifically, it first forms a low-rank approximation of the LoRA matrix
for each client, W i

l , before computing the weighted average: Wg = (
∑

niW i
l )/(

∑m
i=1 n

i) =
(
∑

nisBi
lA

i
l)/(

∑m
i=1 n

i).

After the weighted average with heterogeneous LoRA ranks, the resulting global LoRA weight Wg is
decomposed using SVD. Then the SVD components U,Σ, V are redistributed to clients in a low-rank
approximation that preserves as much information of Wg as possible meanwhile based on clients’
local resources characterized by ri:

SVD(Wg) = UΣV T , W i
g = U [:, : ri]Σ[: ri, : ri]V [: ri, :]T ≈ Wg,

where U , Σ, and V T are the SVD components of Wg , the ri within [] indicates the indexing operator
of each client to select their singular vectors corresponding to top ri singular values. As a result,
client i receives the aggregated knowledge W i

g from server and incorporates W i
g into its local LoRA

weight W i
g = sBi

gA
i
g with Bi

g = U [:, : ri]Σ[: ri, : ri]/s, and Ai
g = V [: ri, :]T .

The local training then proceeds as similar to those in standard FL approaches, using W i
l as the local

weights to be tuned. This aforementioned process is repeated until convergence is achieved or a
predetermined number of rounds is completed.

3.3 Maximizing Local Rank with Local Resources

To fully utilize the local resource of a local client, we adhere to the principle of allocating the highest
feasible rank given a client’s resource budget, which is motivated by our empirical finding that larger
ranks generally yield better generalization. Figure 1 demonstrates that models trained with uniformly
higher ranks outperform those with lower ranks under conventional parameter-average aggregation
schemes. For single-client performances, the zero-shot performance is also boosted in the majority
of the cases. The Table 13 and Figure 9 from Appendix J show that performance improves with
higher LoRA ranks uniformly regardless of the tasks assigned to each client. While there might be an
ideal LoRA rank that maximizes a single client’s performance—potentially as high as 200—practical
resource limitations may necessitate settling for a lower rank, such as 8. Therefore, we adopt the
principle of setting the rank to be as large as possible to completely utilize the resources in FlexLoRA,
which is easy to implement and under low risk of overfitting as Occam’s razor suggests.

In Appendix B, the overall procedure of FlexLoRA and its core function of server update are
summarized in Algorithm 1 and Algorithm 2 respectively. FlexLoRA optimally leverages the inherent
characteristics of LoRA, boosting model generalization effectively by increasing local ranks, while
without sacrificing overall training efficiency. Compared to FedAvg and homogeneous rank-based
FL methods, FlexLoRA incorporates a lightweight SVD procedure, but the overhead from SVD is
negligible compared to the local LLM training procedure. Moreover, the SVD is performed only once
per round and is independent of client numbers. Notably, FlexLoRA enables heterogeneous ranks
without the need for any additional hyperparameter tuning. As we empirically demonstrate in Table 4,
the improved convergence rate, thanks to larger ranks, more than compensates for the extra overhead
introduced by training on more parameters per round, resulting in a net gain in overall efficiency
and a reduced overall time to completion. These features enhance its efficiency and scalability in
cross-device FL settings where thousands or millions of devices are involved.
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3.4 Generalization Analysis

We analyze the generalization ability of FlexLoRA by extending Baxter’s model of learning [3]. Here,
hW (·) represents the hypothesis generated by the model with LoRA weights W , and f

(
W ; (x, y)

)
denotes the loss function for a single data point (x, y). The expected loss is denoted as L(Wg) ≜

E(x,y)∼Di
f
(
W ; (x, y)

)
. The two key assumptions underpinning our analysis are as follows:

Assumption 1. The following Lipschitz conditions hold: |f(W ;x, y)−f(W ′;x, y)| ≤ Lf ||W−W
′ ||

and ||h(W ;x)− h(W
′
;x)|| ≤ Lh||W −W

′ ||.

Following current analysis in SOTA methodologies in LLM research, we assume Lipschitz conditions
in our analysis for f and h [27, 17, 13]. This assumption indicates that f and h are Lipschitz
continuous with respect to the LoRA weights W , ensuring the stability of the loss landscape. For
simplicity, we denote SVD(Wg, r

i) as using the top ri singular values and the corresponding singular
vectors to approximate Wg . We denote the parameter solution space of Wg to be k. Next, due to the
federated average and indexing operation based on the largest singular values, we assume that the
dissimilarity between the global model and its rank-constrained approximation can be bounded:
Assumption 2. The LoRA weights can be bounded in a ball with radius R, and the error induced by
the SVD approximation for each client is bounded by a constant ϕi as ||SVD(Wg, r

i)−Wg|| ≤ ϕi.
Theorem 1. Under Assumptions 1 and 2, with probability at least 1− δ, there exists a sample size
Ñ = O( k

|C|ϵ2 log(
RLfLh

ϵ−2ϕiLfLh
) − log δ

|C|ϵ2 ) such that for all Wg, the bound ||L(Wg) − L(W ′

g)|| ≤ ϵ

holds when the number of local data samples for each client i exceeds Ñ .

Detailed proof is in Appendix C. This theorem suggests that the generalization ability of the global
model is influenced by the LoRA rank ri chosen by each local client. Specifically, as ϕi is the
error bound of SVD approximation, increasing rank ri makes the approximation more accurate, thus
reducing ϕi. Consequently, this reduction in error bound decreases the requisite number of samples,
denoted as Ñ , required for effective generalization. Moreover, an increase in the number of clients
|C| also contributes positively to the generalization of the federated model in the order of O( 1

|C| ), a
stronger impact than ϕi whose impact is in a logarithmic fashion O(log( 1

ϕi )). Collectively, FlexLoRA
is effective in cross-device FL settings, where the generalization capability of the global model can
be significantly enhanced by the participation of massive clients (larger |C|) with heterogeneous
resources (larger ri). Note that Assumption 1 is standard in FL literature [22], and our proof do
not rely on simplified assumptions that often do not hold in cross-device cases, such as identically
distributed data. We provide empirical support for distribution-related generalization ability, the effect
of SVD (Assumption 2), and the effect of client numbers in Sections 4.3, 4.5 and 4.6 respectively.

4 Experiments

4.1 Setup for Cross-Device FL Environments

Resource Heterogeneity. We make FL clients resource-heterogeneous by crafting four distinct LoRA
configurations as listed in Table 1. Type 1, 2, and 4 assign the same LoRA on all tunable layers,
while Type 3 assigns small ranks on attention layers and large ranks on FFN layers, following the
design of the MAM adapter [14]. Clients are randomly assigned a configuration type, simulating
four types of heterogeneous resource environments similar to [5]. As shown in Figure 3, we consider
uniform resource distribution where each LoRA configuration type is equally likely to be assigned to
each client, heavy tail resource distribution where either Type 1 or Type 4 is dominant, and normal
distribution where the LoRA configuration types are normal distribution and Type 2 and Type 3 are
dominant. A comparison of the active memory cost with different LoRA configurations is shown in
Appendix D. Besides, we add LoRA on top of all the linear layers of LLMs based on the empirical
results in Appendix E.3.

Task Heterogeneity. We further make FL clients task-heterogeneous by utilizing the natural instruc-
tion dataset [39]. The dataset consists of over 1600 distinct natural language tasks that come from
76 NLP task types and is split based on its meta-info of the belonging NLP tasks, such that each
client holds a unique task to mirror a task heterogeneous environment. Notably, while the FL setup
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includes over 1600 clients, the distribution of 76 task types across these clients means that some
will inherently share similar local data distributions, thereby mirroring the natural variability and
overlapping task characteristics often encountered in real-world settings. Unless stated otherwise, we
conduct all our FL experiments on this dataset and adopt DataJucier (1.3B) as our foundation models
[6], chosen for its suitability for edge devices with constrained resources. More details about data
preparation are included in Appendix E.2.

Table 1: The LoRA configurations that
compose heterogeneous resource distribu-
tions, detailed in Figure 3.

LoRA Config # Params

Type 1 r = 8 on all layers 0.12 %
Type 2 r = 30 on all layers 2.46 %

Type 3 r = 30 on atten layer,
r = 200 on FFN layer 8.22 %

Type 4 r = 200 on all layers 12.22 %
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Figure 3: Heterogeneous resource distributions contain-
ing different ratios of various LoRA configuration types.

4.2 Setup for FL Baselines

Baselines with Homogeneous Rank. We adopt FedAvg [28], FedIT [43], and SLoRA [2] as
baselines utilizing unvarying LoRA ranks. FedIT aggregates the LoRA module weight of each client
by averaging which limits the local LoRA rank to meet the lowest resource constraint. Comparing
with FedAvg, FedIT adopts Adam optimizer for local training instead of SGD optimizer. SLoRA first
trains local client models with sparse fine-tuning for several epochs then switches to LoRA for PEFT
and uses the updates from sparse fine-tuning as initialization.

Baselines with Heterogeneous Ranks. Besides, we compare with HETLORA [8], a concurrent
work exploring the effective utilization of diverse LoRA ranks in FL. It first employs zero-padding on
all the LoRA matrices based on the largest rank, then conducts element-wise averages like FedAvg,
and finally truncates the aggregated model to fit the local client LoRA rank.

We note that both FlexLoRA and HETLORA are able to be plugged into the above-mentioned FL
methods with homogeneous LoRA ranks. In our experiment, for each baseline with homogeneous
rank, we also examine their performance after integration by either FlexLoRA or HETLORA.

4.3 Unseen Client Generalization

Evaluation Setup. Our initial examination focuses on the generalization capabilities of global models
to unseen clients by deploying the models to clients with unseen data distributions. The unseen
clients are newly sampled clients from the next communication round. This assessment allows us
to measure zero-shot performance, a key indicator of a model’s ability to generalize beyond the
data available during the training phase. This approach is to simulate the real FL setting, where
well-trained global weights will be deployed to new clients rather than clients participating in the
previous round. Specifically, we investigate the performance of global models trained with baseline
methods both with and without the integration of FlexLoRA and HETLORA under four distinct
resource heterogeneity scenarios.

Overview Performance Comparison. Table 2 displays the zero-shot performance under Rouge-L
scores on the test set from unseen clients, facilitating a comparison of the generalization capabilities
across different federated global models. It is observed from the table that in most of the cases,
methods with heterogeneous LoRA ranks have better performance than that of homogeneous ranks,
indicating that heterogeneous LoRA ranks enhance the clients with larger ranks to fully exploit their
capability. Furthermore, among the heterogeneous LoRA rank methods, our proposed FlexLoRA
consistently outperforms HETLORA across all resource distribution settings. This shows that
FlexLoRA is able to take advantage of heterogeneous resource distribution, and is more capable of
leveraging the general information from heterogeneous LoRA configurations.
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Table 2: The weighted average Rouge-L scores of unseen clients provide insights into the global
model’s generalization ability. Results from baseline methods with homogeneous ranks (Line 3,
denoted as Homo Rank) are compared with those incorporating FlexLoRA and HETLORA across
various resource distributions (Line 4∼7). The significant test are presented in Appendix F.

FedAvg FedIT SLoRA

FlexLoRA HETLORA FlexLoRA HETLORA FlexLoRA HETLORA

Homo Rank 56.53 ± 0.17 61.29 ± 0.93 60.01 ± 0.74

Uniform 58.07 ± 0.27 56.85 ± 0.18 61.34 ± 1.09 60.74 ± 0.78 60.75 ± 0.60 60.74 ± 0.77

Heavy-Tail-Light 57.39 ± 0.54 56.24 ± 0.30 61.88 ± 0.89 61.53 ± 0.93 60.40 ± 0.40 59.97 ± 0.62

Normal 57.78 ± 0.33 56.50 ± 0.05 62.01 ± 0.91 61.03 ± 0.54 61.67 ± 1.07 61.14 ± 0.71

Heavy-Tail-Strong 57.73 ± 0.08 55.74 ± 0.93 62.20 ± 1.12 61.06 ± 0.95 61.86 ± 1.24 61.29 ± 0.95
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Figure 4: Task-specific improvements achieved by FlexLoRA in comparison with the homogeneous
rank implementation of FedAvg, across different resource distribution settings.

Effect of Specific Resource Distributions. To gain further insight into the effect of FlexLoRA and the
effect of heterogeneity of LoRA ranks, in Table 10 in Appendix F, we list the percentage improvement
for each FL methods when incorporating FlexLoRA in comparison with the respective standard
homogeneous rank implementations. Notably, after integrating FlexLoRA, the average performance
gains are 2.14% for FedAvg, 0.86% for FedIT, and 1.94% for SLoRA. These enhancements lend
empirical support to our theoretical generalization analysis that clients utilizing higher LoRA ranks
tend to exhibit improved generalization abilities. The most substantial performance improvements
are observed in the heavy-tail-strong resource distribution, followed by the normal distribution. This
is consistent with our expectations since the heavy-tail-strong distribution predominantly comprises
clients with Type 4 LoRA configurations (rank 200). The limited presence of Type 1 clients (rank 8)
in the normal distribution minimizes the risk of the global model being excessively influenced by
task-specific LoRA weights. Therefore, FlexLoRA is able to leverage the heterogeneous resource
distributions to boost the zero-shot generalization, and the gain from integrating FlexLoRA is directly
related to the ratio of clients with heavy resources.

4.4 Cross-Task Generalization

Evaluation Setup. To assess the natural language understanding capabilities of the FlexLoRA-
enhanced global model, we evaluate its performance on a range of downstream NLP tasks. Specif-
ically, the model is tested on the English Track of the evaluation tasks from [39], featuring 12
categories and 119 tasks. For each task, a random sample of 100 data points is chosen for testing. We
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Table 3: Average percentage improvement of
FlexLoRA over baseline methods (FedAvg, FedIT,
SLoRA) across different resource distributions,
calculated over 12 NLP task categories. More de-
tailed comparison is presented in Figure 4.

FedAvg FedIT SLoRA Avg

Uniform 1.99% 0.97% 0.74% 1.23%
Heavy-Tail (L) 1.24% 0.63% -0.47% 0.47%
Normal 1.34% 0.75% 0.96% 1.02%
Heavy-Tail (S) 1.66% 0.95% 1.12% 1.24%

Avg 1.56% 0.83% 0.59% 1.00%
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Figure 5: Client number (|C|) v.s. generaliza-
tion on heterogeneous distributions. Increasing
|C| improves both convergence loss and rouge-L
(scores marked as (R-L)).

summarize the average percentage improvement achieved by integrating FlexLoRA across different
resource distributions in Table 3.

Effect of Specific Resource Distributions. In the majority of cases, the global models augmented
with FlexLoRA demonstrate marked improvements over the vanilla implementations of FedAvg,
FedIT, and SLoRA by up to 1.99%, suggesting that the FlexLoRA also improves the natural language
analysis capabilities. An exception is noted in the SLoRA on the heavy-tail-light distribution,
potentially due to the predominance of the Type 1 LoRA configuration (rank 8), which may limit
the overall language processing capabilities when such clients are disproportionately represented.
This configuration’s minimal rank assignment across all linear layers suggests that the local weight
aggregation on the server side might not fully leverage the capabilities of clients with larger resources,
potentially detracting from the model’s performance on certain tasks.

Effect of Specific Language Tasks. We further illustrate the task-specific improvements of in-
tegrating FlexLoRA in comparison with the standard FedAvg configuration for various resource
distributions in Figure 4. The task-wise improvement figures for other FL methods are included in
Appendix G. We observe that the global models trained using the FlexLoRA aggregation scheme
generally outperform others on tasks requiring the parsing of logical relationships between sentences.
Particularly, it gains improvements at most 4% in the overlap extraction task, and around 2.5% in the
textual entailment, cause-effect classification, and dialogue act recognition task, verifying again the
effectiveness of FlexLoRA.

4.5 Aggregation Scheme Study
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Figure 6: The sub-figure 6(a) shows that FedIT with LoRA rank 8 has comparable test loss curves for
standard and FlexLoRA integration. At rank 200, though, standard FedIT differs from other versions.
6(b) depicts singular value distributions and approximation errors, where the red cross indicates the
average error for rank 30 qproj weights in specific blocks. Further details are in Appendix H.
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SVD on Convergence. FlexLoRA’s aggregation scheme constructs full-size LoRA weights before
averaging, unlike the conventional FedAvg method’s parameter-wise averaging. To understand the
effect of this difference on model performance, we assess the performance of FlexLoRA in a con-
trolled environment using homogeneous LoRA ranks and compare it to the standard FL aggregation
scheme. Figure 6(a) presents the test loss trajectories for FedIT with and without the FlexLoRA
enhancement, both utilizing a homogeneous rank of 8. The loss curves for the standard FedIT and
FedIT with FlexLoRA closely align, suggesting comparable performance. In a nutshell, we empiri-
cally demonstrate that under homogeneous conditions, FlexLoRA’s aggregation does not negatively
impact model performance compared to traditional methods. Besides, it’s worth noting that the test
loss for FedIT with a homogeneous rank of 200 is significantly lower, underscoring the benefits of
higher rank configurations and evidencing our Theorem 1.

SVD v.s. LoRA Rank. To gain further insight into the effect of SVD, we calculate and sort the
singular values of the global LoRA weights from largest to smallest. We focus on specific layers
where LoRA is applied within the transformer blocks 1, 8, and 14 (each block includes one attention
layer and one FFN layer). Figure 6(b) displays the scale of singular values and the error ratio between
the global LoRA weights approximated by the top i singular values and the full-rank global LoRA
weights in the FedIT setting with a heavy-tail-strong resource distribution. The approximation error
is quantified as the norm of the difference between the approximated and full-rank weights. The error
curves for qproj layers across all transformer blocks nearly overlap. With the weight approximated
from the top 30 ranks, the error ratio is as low as 0.16, suggesting the approximated weights are in
close proximity to the actual full-rank weights, lending empirical support to our Assumption 2.

4.6 Scalability Study

Larger Model Size and Lower Degree of Task Heterogeneity. While the aforementioned exper-
iments with 1.3B LLM and meta-task dataset split effectively showcases FlexLoRA’s capabilities
against baselines in a highly heterogeneous cross-device environment, real-world settings may be
relaxed involving fewer clients with a mixture of tasks and larger LLM. To better evaluate FlexLoRA’s
performance in such scenarios, we expanded our study to include settings where each client manages
not just one specific “meta” task but a variety of different tasks. We use Dolly-15K dataset [9], which
supports instruction tuning and includes 8 tasks in total. We distributed this dataset among 200 clients
using a Dirichlet distribution with α = 0.5 to simulate the non-IID data distributions. Moreover,
we also incorporate the most cutting-edge LLaMA-3 [37] with 8B parameter size as our foundation
model to assess FlexLoRA’s effectiveness with advanced, larger-scale models.

Table 12 in Appendix I illustrates FlexLoRA’s efficacy under both smaller and larger foundation mod-
els within the mixture of task settings. Compared with LLaMA-3 (8B), finetuning on DataJucier(1.3B)
demonstrates more generalization improvement for unseen clients. This enhanced performance when
using the smaller DataJuicer model suggests that FlexLoRA is particularly effective for foundation
models that are scalable to edge devices. Such ability is instrumental in maximizing the utility and
efficiency of smaller models in resource-constrained environments.

Table 4: Convergence round and FL cost per
round for different LoRA ranks.

R CostR Costall

Homo Rank 48 1.001x ≈ 100%
Heavy-Tail (L) 24 1.014x ≈ 50.6%
Uniform 15 1.061x ≈ 33.1%

System Costs. We empirically demonstrate that in-
creasing the rank improves overall efficiency. The
experiment is conducted on the Dolly 15K dataset
and the DataJuicer 1.3B model, with the same FL
setting as Table 12. We summarize the results in Ta-
ble 4, where the “R” indicates the number of rounds
to reach a loss of 2, approximately 75% progress to
convergence. The “CostR” stands for per-round FL
cost in terms of the average model parameters com-
pared with the foundation model parameters, as both
the local training and communication cost positively correlated to the rank value in FlexLoRA (as
analyzed in Sec. 3.3). The “Costall” indicates total cost calculated as multiply of R and CostR, and
by setting the result of “Homo Rank” as the baseline. From the results, we can see that FlexLoRA
achieves faster convergence with slightly increased parameter percentages under heterogeneous
resource distributions. For the overall efficiency, “Heavy-Tail-Light” has a total reduction of 49.4%,
and “Uniform” has 66.9%, indicating good scalability of FlexLoRA.
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Effect of Larger Client Number. We designed an experiment to empirically validate Theorem
1 and demonstrate how FlexLoRA performs with varied client numbers. We use subsets of 10,
50, and 100 clients from a pool of 200 clients on Dolly-15K dataset and DataJuicer (1.3B), with
FedAvg as baseline FL method and each FL round always sampling 10 participants. From Figure
5, there is a marked improvement in generalization as the number of participating clients increases.
Moreover, from Theorem 1, we can derive the functional relationship between client number |C| and
the generalization loss ϵ as |C| = A1/ϵ

2(A2 − log(ϵ−A3)), where A1,2,3 are constants absorbing
the other factors impacted by specific resource distribution in this experiment. We thus fit these
coefficients using the derived form and empirical observations, and find that the dotted curves gain
good fitness for all the tested distributions. There results affirm the preciseness of our Theorem 1
again, indicating the suitableness of FlexLoRA for cross-device FL scenarios where leveraging a
broad client pool can boost the generalization across diverse data distributions.

5 Conclusion

In this work, we propose a simple yet effective method named FlexLoRA to address the challenges
posed by resource and data heterogeneity among clients during the federated fine-tuning of LLMs.
By leveraging larger local LoRA ranks, FlexLoRA not only improves the generalization ability of
the global model but also ensures that all clients, irrespective of their resource capabilities, can
contribute meaningfully. Theoretical analysis and extensive experiments verify the effectiveness and
scalability of FlexLoRA. Due to resource limitations, we have not tested the LLaMA-3 model on
thousands-client scenarios, which we leave as future work. We hope this study can enlighten more
future research and development in data-efficient and privacy-preserving enhancement of LLMs.
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Appendix

We provide an outline of how we organize the appendix in below:

Implementation details of our experiments:

• Appendix A: Implementation details for the experiments shown in Figure 1 related to the
zero-shot test loss of naive FedIT with LoRA rank of 1, 8, and 200, including an "extreme
heavy tail" scenario.

• Appendix E: General experimental details, including hyperparameter settings, cross-task
splitter details, and the choice of layers for applying LoRA.

• Appendix L:Provides details about the computational infrastructure and cost associated with
the experiments mentioned in the document.

Algorithm, proof and analysis of FlexLoRA:

• Appendix B: The pseudocode for FlexLoRA’s algorithm in a federated learning context,
detailing the process from initialization, client sampling, local updates, to server updates.

• Appendix C: Proof of Theorem 1, providing a mathematical derivation of the bounds on
generalization error under specific assumptions.

• Appendix D: Analysis of efficiency improvements from LoRA under different ranks, de-
tailing the trainable parameters, memory costs, and efficiency gains compared with full
finetuning.

More experimental results including:

• Appendix F: Statistics of the Table 2, including 1. Percentage of improvement w/ FlexLoRA
vs w/o FlexLoRA 2. significant test results comparing FlexLoRA with its baselines across
different resource distribution types.

• Appendix G: More results on task-specific performance improvements of global models
trained with FlexLoRA, particularly in natural language tasks.

• Appendix H: Additional results on the effect of SVD, including the distribution of singular
values and the approximation error ratio.

• Appendix I: Results on the efficacy of FlexLoRA result under a mixture of task setting.

• Appendix J: Discusses the single client’s performance impact of different LoRA ranks,
showcasing how performance improves with higher LoRA ranks across various NLP tasks.

A Implementation of Figure 1

For the experiments in Figure 1, we plotted the zero-shot test loss of naive FedIT with LoRA rank
equal to 1, 8, and 200. For the experiment of FedIT with FlexLoRA, we adopt an “extreme heavy tail”
scenario where all the clients have a LoRA rank of 200 except one with a LoRA rank of 8. All the
hyperparameters and FL experiment settings are the same as the experiments in Table 2.

B The Algorithm of FlexLoRA

We summarize the Pseudocode of FlexLoRA in Algorithms 1 and 2.

C Proof of Theorem 1

Let Hn denote the function space with its elements parameterized by Wg and the distance metric ∆
is defined as:

∆(W i
g −W i′

g )

=
1

n
Ex,y∼Di

[∣∣∣∑(f(W i
g ;x, y)−

∑
f(W i′

g ;x, y)
∣∣∣] , (1)

14



Algorithm 1 FlexLoRA for Federated Learning
Input: T , B0

g , A0
g , {D0

i }i∈C , s, rg , {ri}i∈C , where T is the total communication rounds and C is the
set of all FL clients

1 for t = 1, · · · , T do
2 Server samples clients Ct sampled from C, sends Bi

g and Ai
g to i ∈ Ct

for client i ∈ Ct in parallel do
3 Update local LoRA module weight:

{Bi
l , A

i
l}i∈C = LOCALUPDATE

(
{Bi

gA
i
g}i∈C

)
4 Server updates global model:

/* Implement FlexLoRA Here */
{Bi

g, A
i
g}i∈C = SERVERUPDATE

(
{Bi

l , A
i
l, r

i}i∈C
)

5 return θ, {Bi
g, A

i
g}i∈C

Algorithm 2 FlexLoRA Server Update
Input: {Bi

l , A
i
l, r

i, γi}i∈C , s, rg, {ri}i∈C , where γi is average constant for client i depending on
size of its local dataset

6 Aggregation with Heterogeneous LoRA Ranks:
Initialize global weight Wg = 0
for i ∈ Ctl do

7 Compose local client LoRA weight:
W i

l = sBi
lA

i
l

Weighted Average client weight:
Wg = Wg + γiW i

l
8 Decompose global LoRA weight:
/* Only do once */
U,Σ, V = SVD (Wg)
Distribute Global Weight:
for i ∈ Ctl do

9 Compute each client LoRA weight based on their resource limitation:
Bi

g = U [:, : ri]Σ[: ri, : ri]/s

Ai
g = V [: ri, :]T

10 return {Bi
g, A

i
g}i∈C

With the inequalities introduced by Assumptions 1 and 2, we have:

∆(W i
g −W i,′

g )

=
1

n
Ex,y∼Di

[∣∣∣∑(f(W i
g;x, y)−

∑
f(W i,′

g ;x, y)
∣∣∣]

≤Lf ||hW i
g
− h

W i,′
g
||

≤LfLh||SVD(Wg, r
i)− SVD(W

′

g, r
i)||

=LfLh||SVD(Wg, r
i)−Wg − SVD(W

′

g, r
i)

+W
′

g +Wg −W
′

g||
≤LfLh||SVD(Wg, r

i)−Wg||

+ LfLh||SVD(W
′

g, r
i)−W

′

g||

+ LfLh||Wg −W
′

g||

≤LfLh

[
2ϕi + ||Wg −W

′

g||
]
.

(2)

Let the parameter solution space of Wg denote as k. We can get an ϵ-covering in metric ∆(Wg,i −
W

′

g,i) if we select a covering in the parameter space with ||Wg−W
′

g|| equal to ϵ
LfLh

−2ϕi. Therefore,

the covering number of H|C|, denoted as B(ϵ,H|C|) is: log
(
B(ϵ,H|C|)

)
= O

(
k log(

RLfLh

ϵ−2ϕiLfLh
)
)

.
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According to previous studies [3, 35, 7], there exists Ñ and Ñ = O
(

1
nϵ2 log

B(ϵ,H|C|)
δ

)
=

O( k
|C|ϵ2 log(

RLfLh

ϵ−2ϕiLfLh
) − log δ

|C|ϵ2 ).

D Efficiency Improvement from LoRA under Different Ranks

We calculate the % trainable parameters and active memory cost for LoRA under different ranks
compared with full finetuning in our experiment setting, summarized in Table 5. Although the size
of LoRA weights is small compared with the pretrained model because LoRA only tunes a small
proportion of the trainable parameters, LoRA tuning is still much more efficient than full parameter
finetuning, which highlights the necessity to scale LoRA rank size on clients with diverse computation
resources. Table 6 illustrates the empirical time consumption for tuning client with LoRA and full
finetuning.

Table 5: Trainable parameters and memory cost for different LoRA configurations, and the corre-
sponding efficiency improvement compared with full finetuning.

LoRA Config % Trainable Parameters Memory Cost Improvement

Type 1 r = 8 on all layers 0.12 % 34.71GB 833.3x / 1.83x
Type 2 r = 30 on all layers 2.46 % 38.70GB 40.7x / 1.64x

Type 3 r = 30 on atten layer,
r = 200 on FFN layer 8.22 % 42.57GB 12.2x / 1.49x

Type 4 r = 200 on all layers 12.22 % 46.54GB 8.2x / 1.37x
Full finetuning N/A 100 % 63.62GB 1.0x / 1.0x

Table 6: Speedup of LoRA tuning for each communication round.

LoRA Rank (homo) Average time per client Speedup

r=8 1 min 17 sec 2.31x
r=200 1 min 41 sec 1.76x

Full finetuning 2 min 57 sec 1.0x

Table 7: Illustration of the original data structure for tasks in natural instruction dataset [39].

Task Type Cause Effect Classification
Task ID task828_copa_cause_effect_classification
Definition In this task your given two statements. You must judge whether the second sentence is the cause

or effect of the first one. Label the instances as “cause” or “effect” based on your judgment. The
sentences are separated by a newline character.

Positive
Example

Input: The women met for coffee. They wanted to catch up with each other.
Output: cause
Explanation: The women met for coffee because they wanted to catch up with each other.

Negative
Example

Input: My body cast a shadow over the grass. The sun was rising.
Output: effect
Explanation: The rising of the sun isn’t an effect of casting a shadow over the grass.

Instance Input: The woman tolerated her friend’s difficult behavior. The woman knew her friend was going
through a hard time.
Valid Output: [“cause”]

E Implementation Details

E.1 Hyperparameter Setting

All FL experiments are conducted with a client participation rate of 0.05 in each round, and with
an early stopping mechanism that terminates training if the validation loss does not improve over 3
consecutive FL rounds. These values are adopted to better reflect the operational challenges inherent
in real-world cross-device scenarios, which often involve limited device responsiveness and restricted
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Table 8: The example of prompt template for training, adapting from Table 7.

Instruction In this task your given two statements. You must judge whether the second sentence is the cause
or effect of the first one. Label the instances as “cause” or “effect” based on your judgment. The
sentences are separated by a newline character.

Input The woman tolerated her friend’s difficult behavior. The woman knew her friend was going through a
hard time.

Output “cause”
Category Cause Effect Classification

training duration. Besides, the batch size is set as 4 via searching from a range of {2,4,16}. The
maximum token length is 512. All the experiments are repeated with 2 random seeds and we report the
standard deviations. More details about the computational infrastructure and cost for our experiments
are in Appendix L.

For the sparse fine-tuning stage of SLoRA, we set its sparsity corresponding with the resource cost of
the client’s LoRA configuration shown in Table1. For example, if the client is assigned with Type 1
LoRA configuration, we will generate a mask with a sparsity of 0.12%. For HETLORA, following
the original paper, we adopt 0.99 as the decay factor for rank pruning and search the regularization
factor from a range of {5e-2, 5e-3, 5e-4}. For both the experiments integrated with and without
FlexLoRA, we grid search their learning rates from a range of {5e-2, 5e-3, 5e-4} for FedAvg, and
{5e-4, 1e-4, 5e-5, 1e-5} for FedIT and SLoRA, both accompanied with a linear scheduler which
decays from the initial learning rate to 0.

E.2 Cross-Task Splitter Details

Echoing findings from [39] on model performance saturation with few data instances, we randomly
sample 10% of each task’s data to scale experiments. For all the datasets we used, data for each client
is partitioned into training, validation, and testing sets in a ratio of 8:1:1. In the initial setup of the
natural instruction dataset, each task is accompanied by its definition, along with a positive example
and a negative example. To adapt this dataset for model fine-tuning through instruction tuning, we
transform the structure so that the task definition serves as the direct instruction for each data instance.
This restructuring is illustrated by comparing the original and modified data formats in the natural
instruction dataset, as shown in Table 7 and Table 8. This adjustment ensures that each instance is
now explicitly aligned with its instructional context, facilitating a more straightforward and effective
fine-tuning process.

E.3 Choice of Layers for applying LoRA

We explore the influence of insertion layers of LoRA on the performance of the fine-tuning. While
[16] and [8] add LoRA on all the attention layers, [43] adds LoRA on all the linear layers, i.e., the
attention layers and Feed-Forward Network layers. We experimented with both approaches to adding
LoRA. From Table 9, we demonstrate that adding LoRA to both the attention layers and Feed-Forward
Network layers boosts generalization performance and adopt this setting in our experiments.

Table 9: Impact of choosing different layers to apply LoRA module. The results are zero-shot
Rouge-L score of the global model. For the experiment that uses FlexLoRA for aggregation, the
client resource distribution is uniform.

Experiment Atten Layers All layers
FedIT 0.5701 0.6195
w/ FlexLoRA 0.5751 0.6211

F Relative Improvement for Table 2 and Significant Test

Table 10 presents the percentage of improvement for Table 2, providing a more straightforward
overview of the enhancement of FlexLoRA.

17



Table 10: Percentage of improvement of FedAvg, FedIT, and SLoRA incorporating with FlexLoRA
compared with their respective configurations without FlexLoRA, as shown in Table 2.

FedAvg FedIT SLoRA Avg

Uniform 2.72% 0.08% 1.22% 1.33%
Heavy-Tail-Light 1.52% 0.97% 0.65% 1.05%
Normal 2.20% 1.17% 2.78% 2.05%
Heavy-Tail-Strong 2.12% 1.24% 3.09% 2.15%

Avg 2.14% 0.86% 1.94% 1.65%

The statistical test results presented in Table 11 provide a quantitative comparison between the
performance of FlexLoRA across different FL baselines to be integrated, namely FedAvg, FedIT, and
SLoRA. The p-values obtained from the statistical tests are used to determine whether the observed
differences in performance are statistically significant.

Table 11: Significant test results (in p-values) between FlexLoRA and its FL baselines to be integrated.
FedAvg FedIT SLoRA

Uniform 0.064 0.358 0.044
Heavy-Tail-Light 0.168 0.018 0.175
Heavy-Tail-Strong 0.016 <0.001 0.060
Normal 0.029 0.006 0.044

As shown in the table, FlexLoRA consistently outperforms its homogeneous baselines under various
distribution types, indicated by p-values smaller than the conventional significance level of 0.05 in
several cases. Notably, under the ’Heavy Tail Light’ distribution, FlexLoRA achieves statistically
significant improvements in FedIT (p=0.018) scenarios. Highly significant improvements are also
observed in the “Heavy Tail Strong” and “normal” distributions, especially in the FedIT setting,
where the p-values are smaller than 0.001 and 0.006 respectively, strongly suggesting that FlexLoRA’s
performance enhancement is not due to random chance.

Overall, the results indicate that FlexLoRA is a robust approach that can yield performance im-
provements in federated tuning environments for LLMs, especially in scenarios characterized by a
resource-heterogeneous distribution of client resources.

G Natural Language Task Performance

Figure 7 illustrates the performance of global models on natural language tasks when trained with
FlexLoRA in the FedIT setting. In line with results from the FedAvg setting, global models that
leverage heterogeneous ranks in the FedIT setting also perform better on tasks involving logical rela-
tionships between sentences, such as overlap extraction, textual entailment, cause-effect classification,
and dialogue act recognition. However, the global models underperform in word-level analysis tasks,
such as word analogy and keyword tagging. We hypothesize that this underperformance in the FedIT
setting is due to the local clients being trained with the Adam optimizer rather than the conventional
SGD optimizer. The top decoding block of the LLaMA transformer, which processes word-level
information, likely overfits specific information because of the momentum component inherent to the
Adam optimizer.

H More Results for Effect of SVD

Similar to Figure 6(b), Figure 8 also verifies the empirical information loss from SVD by illustrating
the singular value distribution and error ratio of kproj weights. kproj weights shares similar trends
with qproj weights regarding the singular value distribution and error ratio.
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Figure 7: Task-specific improvements achieved by FlexLoRA in comparison to the homogeneous
rank implementation of FedIT, across different resource distribution settings.
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Figure 8: Distribution of singular values and the approximation error ratio between the top i-th
singular value approximated kproj weights and the actual full-rank kproj weights. The red cross
denotes the average error for weights with rank 30 of kproj across blocks 1, 8, and 14.

I Experiment Result for Mixed Task Heterogeneity Scenario

Table 12 provides the result of standard FedAvg vs FlexLoRA-integrated FedAvg under uniform and
heavy-tail-light resource distributions. The foundation model includes DataJucier(1.3B) and LLaMA
3 (8B).

Table 12: Results of homogeneous LoRA configurations versus FlexLoRA under FedAvg methods.
The experiments are conducted on both DataJucier (1.3B) and LLaMA-3(8B) models on Dolly-15K.

DataJucier (1.3B) LLaMA-3 (8B)

Homo Rank 55.34± 0.59 64.26± 0.80
Uniform 58.56± 1.35 64.93± 0.33

Heavy-tail-light 58.39± 1.26 64.58± 0.62
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J Single Client’s Performance under Different Rank

Table 13 below shows the single client performance under a small rank of 8 and a large rank of 200.
This data shows that performance improves with higher LoRA ranks uniformly regardless of the tasks
assigned to each client, motivating us to allocate the highest feasible rank given a client’s resource
budget. Figure 9 illustrates all the clients’ performance under rank 8 and rank 200.

Table 13: 8 examples of single-client performance under FedIT with homo rank 8 and homo rank
200 distribution in a single round.

rank=8 rank=200 Task Type
0.8977 0.9157 Translation
0.9084 0.9272 Translation
0.549 0.5749 Program Execution

0.5031 0.5301 Program Execution
0.4414 0.4507 Sentiment Analysis
0.5173 0.5328 Fact Verification
0.6995 0.7354 Program Execution
0.4801 0.5166 Question Rewriting
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Figure 9: Performance on FedIT with homo rank 8 vs homo rank 200 across all the clients.

K FlexLoRA with Centralized LoRA Adaptive Methodologies

Besides directly applying LoRA to each clients, we also investigate the efficacy of existing dynamic
LoRA methods in central learning. We adapts concept of ReLoRA[24] into our setting and explore
its utility when combining with FlexLoRA. ReLoRA trains LoRA for several epochs, uploads the
LoRA weight to the pretrained weights, then initializes a new LoRA module and trains based on
the new frozen weights, repeating this process for several LoRA modules. We create a baseline by
incorporating the concept of ReLoRA, uploading aggregated LoRA weights to the pretrained models
after several communication rounds.

However, we observed a slower convergence speed than the regular FlexLoRA. We show in Table 14
below that incorporating the step of "uploading LoRA weights" does not lead to better performance.
This suggests that observations and improvements seen in centralized dynamic LoRA methods may
not translate directly to federated learning due to the unique challenges posed by heterogeneity in
FL, which underlines the importance of tailored solutions like FlexLoRA for effectively managing
heterogeneity in FL environments.

Table 14: Results with/without incorporating ReLoRA into either regular FedAvg or FlexLoRA.
Homo Rank (Baseline) Uniform

Table 2 Result 56.53 58.07
+ReLoRA Result 53.9 56.56
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L Computational Resources and Infrastructure Report

In our study, we employ the LLaMA-1.3B from Data-Juicer 2 as the foundational architecture for
our FlexLoRA framework, which consists of approximately 1.35 billion parameters. During our
experiments, the DataJuicer-1.3B model itself is kept frozen, and the tunable parameter size for each
client within our federated learning framework are determined by the size of the LoRA module, with
specific configurations detailed in Table 1. Our experiments are conducted on a cluster equipped with
16 NVIDIA A100 GPUs, each with 40GB or 80GB of memory. The total GPU hours for running
all the experiments is approximately 1200 GPU hours. All the experiments are implemented using
PyTorch package with version 2.1.0 and Huggingface’s Transformers package with version 4.31.0.

2https://huggingface.co/datajuicer/LLaMA-1B-dj-refine-150B
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction are supported by both theoretical
and empirical results in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Conclusion section, the paper mentions limitation and future work.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provides full set of assumptions and complete proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper has disclosed all information needed to reproduce the main experi-
mental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Implementation details can be founded in both Section 4 and Appendix E.1.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The error bars are shown in the tables of main results, and significance analysis
is in Appendix F.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
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of Normality of errors is not verified.
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they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information is in Appendix L.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper focuses more on proposing a new techniques in Federated Learning
setting and does not bring societal impacts or concerns.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have not found such risks in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors properly credit the assets used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We create an anonymous code repository where pertinent details of code are
stored.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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