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Abstract

Humans subconsciously engage in geospatial
reasoning when reading articles. We recog-
nize place names and their spatial relations in
text and mentally associate them with their
physical locations on Earth. Although pre-
trained language models can mimic this cog-
nitive process using linguistic context, they do
not utilize valuable geospatial information in
large, widely available geographical databases,
e.g., OpenStreetMap. This paper introduces
GEOLM ( ), a geospatially grounded lan-
guage model that enhances the understanding
of geo-entities in natural language. GEOLM
leverages geo-entity mentions as anchors to
connect linguistic information in text corpora
with geospatial information extracted from ge-
ographical databases. GEOLM connects the
two types of context through contrastive learn-
ing and masked language modeling. It also
incorporates a spatial coordinate embedding
mechanism to encode distance and direction
relations to capture geospatial context. In
the experiment, we demonstrate that GEOLM
exhibits promising capabilities in supporting
toponym recognition, toponym linking, rela-
tion extraction, and geo-entity typing, which
bridge the gap between natural language pro-
cessing and geospatial sciences. The code
is publicly available at https://github.com/
knowledge-computing/geolm.

1 Introduction

Spatial reasoning and semantic understanding of
natural language text arise from human communi-
cations. For example, “I visited Paris in Arkansas
to see the smaller Eiffel Tower”, a human can eas-
ily recognize the toponyms “Eiffel Tower”, “Paris”,
“Arkansas”, and the spatial relation “in”. Implic-
itly, a human can also infer that this “Eiffel Tower”
might be a replica1 of the original one in Paris,

1 The small Eiffel Tower in Paris, Arkansas, United States:
https://www.arkansas.com/paris/accommodations/
eiffel-tower-park

France. Concretely, the process of geospatially
grounded language understanding involves core
tasks such as recognizing geospatial concepts be-
ing described, inferring the identities of those con-
cepts, and reasoning about their spatially qualified
relations. These tasks are essential for applications
that involve the use of place names and their spa-
tial relations, such as social media message analy-
sis (Hu et al., 2022), emergency response (Gritta
et al., 2018b), natural disaster analysis (Wang et al.,
2020), and geographic information retrieval (Wall-
grün et al., 2018).

Pretrained language models (PLMs; Devlin et al.
2019; Liu et al. 2019; Raffel et al. 2020) have seen
broad adaptation across various domains such as
biology (Lee et al., 2020), healthcare (Alsentzer
et al., 2019), law (Chalkidis et al., 2020; Douka
et al., 2021), software engineering (Tabassum et al.,
2020), and social media (Röttger and Pierrehum-
bert, 2021; Guo et al., 2021). These models ben-
efit from in-domain corpora (e.g., PubMed for
the biomedical domain) to learn domain-specific
terms and concepts. Similarly, a geospatially
grounded language model requires training with
geo-corpora. The geo-corpora should cover world-
wide geo-entity names and their variations, geo-
graphical locations, and spatial relations to other
geo-entities. Although some geo-corpora are avail-
able, e.g., LGL (Lieberman et al., 2010) and Spa-
tialML (Mani et al., 2010), the sizes of the datasets
are relatively small.

In contrast, Wikipedia stores many articles de-
scribing places worldwide and can serve as com-
prehensive geo-corpora for geospatially grounded
language understanding. However, training with
Wikipedia only solves partial challenges in geospa-
tial grounding, as it only provides the linguistic
context of a geo-entity with sentences describing
history, demographics, climate, etc. The infor-
mation about the geospatial neighbors of a geo-
entity is still missing. On the other hand, large-

https://github.com/knowledge-computing/geolm
https://github.com/knowledge-computing/geolm
https://www.arkansas.com/paris/accommodations/eiffel-tower-park
https://www.arkansas.com/paris/accommodations/eiffel-tower-park


Figure 1: Outline of GEOLM. Wikipedia and Wikidata form the NL corpora, and OpenStreetMap (OSM) form
the pseudo-sentence corpora (Details in §2.2). GEOLM takes the NL and pseudo-sentence corpora as input, then
pretrain with MLM and contrastive loss using geo-entities as anchors. (See §2.3)

scale geographical databases (e.g., OpenStreetMap)
and knowledge bases (e.g., Wikidata) can pro-
vide extensive amounts of geo-entity locations
and geospatial relations, enriching the information
sourced from Wikipedia. Additionally, the geo-
locations from OpenStreetMap can help connecting
the learned geo-entity representations to physical
locations on the Earth.

To address these challenges, we propose GE-
OLM, a language model specifically designed to
support geospatially grounded natural language un-
derstanding. Our model aims to enhance the com-
prehension of places, types, and spatial relations
in natural language. We use Wikipedia, Wikidata,
and OSM together to create geospatially grounded
training samples using geo-entity names as anchors.
GEOLM verbalizes the Wikidata relations into nat-
ural language and aligns the linguistic context in
Wikipedia and Wikidata with the geospatial con-
text in OSM. Since existing language models do
not take geocoordinates as input, GEOLM further
incorporates a spatial coordinate embedding mod-
ule to learn the distance and directional relations
between geo-entities. During inference, our model
can take either natural language or geographical
subregion (i.e., a set of nearby geo-entities) as in-
put and make inferences relying on the aligned
linguistic-geospatial information. We employ two
training strategies: contrastive learning (Oord et al.,
2018) between natural language corpus and lin-
earized geographic data, and masked language
modeling (Devlin et al., 2019) with a concatena-
tion of these two modalities. We treat GEOLM as
a versatile model capable of addressing various ge-
ographically related language understanding tasks,
such as toponym recognition, toponym linking, and
geospatial relation extraction.

2 GEOLM

This section introduces GEOLM’s mechanism for
representing both the linguistic and geospatial con-
text (§2.1), followed by the detailed development
process of pretraining tasks (§2.3) and corpora
(§2.2), and how GEOLM is further adapted to vari-
ous downstream geospatial NLU tasks (§2.4).

2.1 Representing Linguistic and Geospatial
Context

The training process of GEOLM aims to simul-
taneously learn the linguistic and geospatial con-
text, aligning them in the same embedding space to
obtain geospatially grounded language representa-
tions. The linguistic context refers to the sentential
context of the geographical entity (i.e., geo-entity).
The linguistic context contains essential informa-
tion to specify a geo-entity, including sentences
describing geography, environment, culture, and
history. Additionally, geo-entities exhibit strong
correlations with neighboring geo-entities (Li et al.,
2022b). We refer to these neighboring geo-entities
as the geospatial context. The geospatial context
encompasses locations and implicit geo-relations
of the neighbors to the center geo-entity. 2

To capture the linguistic context, GEOLM takes
natural sentences as input and generates entity-level
representations by averaging the token representa-
tions within the geo-entity name span. For the
geospatial context, GEOLM follows the geospatial
context linearization method and the spatial em-
bedding module in our previous work SPABERT
(Li et al., 2022b), a PLM that generates geospa-
tially contextualized entity representations using

2Here, we assume that all geo-entities in the geographical
dataset are represented as points.



Figure 2: Sample inputs to GEOLM. Note that segment IDs for the NL tokens are zeros, and for the pseudo-sentence
tokens are ones.

point geographic data. Given a center geo-entity
and its spatial neighbors, GEOLM linearizes the
geospatial context by sorting the neighbors in as-
cending order based on their geospatial distances
from the center geo-entity. GEOLM then concate-
nates the name of the center geo-entity and the
sorted neighbors to form a pseudo-sentence. To
preserve directional relations and relative distances,
GEOLM employs the geocoordinates embedding
module, which takes the geocoordinates as input
and encodes them with a sinusoidal position em-
bedding layer.

To enable GEOLM to process both natural lan-
guage text and geographical data, we use the fol-
lowing types of position embedding mechanisms
for each token and the token embedding (See
Fig. 2). By incorporating these position embed-
ding mechanisms, GEOLM can effectively process
both natural language text and geographical data,
allowing the model to capture and leverage spatial
information.

Position ID describes the index position of the
token in the sentence. Note that the position ID for
both the NL and geospatial input starts from zero.

Segment ID indicates the source of the input
tokens. If the tokens belong to the natural language
input, then the segment ID is zero; otherwise one.

X-coord and Y-coord are inputs for the spatial
coordinate embedding. Tokens within the same
geo-entity name span share the same X-coord and
Y-coord values. Since NL tokens do not have as-
sociated geocoordinate information, we set their
X-coord and Y-coord to be DSEP, which is a con-
stant value as distance filler.

In addition, GEOLM projects the geocoordinates

(lat, lng) into a 2-dimensional World Equidistant
Cylindrical coordinate system EPSG:4087.3 This
is because (lat, lng) represent angle-based values
that model the 3D sphere, whereas coordinates in
EPSG:4087 are expressed in Cartesian form. Ad-
ditionally, when generating the pseudo-sentence,
we sort neighbors of the center geo-entity based on
the Haversine distance which reflects the geodesic
distance on Earth instead of the Euclidean distance.

2.2 Pretraining Corpora

We divide the training corpora into two parts:
1) pseudo-sentence corpora from a geographical
dataset, OpenStreetMap (OSM), to provide the
geospatial context; 2) natural language corpora
from Wikipedia and verbalized Wikidata to pro-
vide the linguistic context.

Geographical Dataset. OpenStreetMap (OSM) is
a crowd-sourced geographical database containing
a massive amount of point geo-entities worldwide.
In addition, OSM stores the correspondence from
OSM geo-entity to Wikipedia and Wikidata links.
We preprocess worldwide OSM data and gather
the geo-entities with Wikidata and Wikipedia links
to prepare paired training data used in contrastive
pretraining. To linearize geospatial context and
prepare the geospatial input in Fig. 2, For each
geo-entity, we retrieve its geospatial neighbors and
construct pseudo-sentences (See Fig. 1) by con-
catenating the neighboring geo-entity names after
sorting the neighbors by distance. In the end, we
generate 693,308 geo-entities with the same num-
ber of pseudo-sentences in total.

3 EPSG:4087: https://epsg.io/4087

https://epsg.io/4087


Natural Language Text Corpora. We prepare
the text corpora from Wikipedia and Wikidata.
Wikipedia provides a large corpus of encyclope-
dic articles, with a subset describing geo-entities.
We first find the articles describing geo-entities by
scraping all the Wikipedia links pointed from the
OSM annotations, then break the articles into sen-
tences and adopt Trie-based phrase matching (Hsu
and Ottaviano, 2013) to find the sentences contain-
ing the name of the corresponding OSM geo-entity.
The training samples are paragraphs containing
at least one corresponding OSM geo-entity name.
For Wikidata, the procedure is similar to Wikipedia.
We collect the Wikidata geo-entities using the QID
identifier pointed from the OSM geo-entities. Since
Wikidata stores the relations as triples, we convert
the relation triples to natural sentences with a set
of pre-defined templates (See example in Fig. 1).
After merging the Wikipedia and Wikidata samples,
we gather 1,458,150 sentences/paragraphs describ-
ing 472,067 geo-entities.

2.3 Pretraining Tasks

We employ two pretraining tasks to establish con-
nections between text and geospatial data, enabling
GEOLM to learn geospatially grounded represen-
tations of natural language text.

The first is a contrastive learning task using an
InfoNCE loss (Oord et al., 2018), which contrasts
between the geo-entity features extracted from the
two modalities. This loss encourages GEOLM to
generate similar representations for the same geo-
entity, regardless of whether the representation is
contextualized based on the linguistic or geospatial
context. Simultaneously, GEOLM learns to dis-
tinguish between geo-entities that share the same
name by maximizing the distances of their repre-
sentations in the embedding space.

Formally, let the training data D consist of pairs
of samples (snli , sgeoi ), where snli is a linguistic
sample (a natural sentence or a verbalized rela-
tion from a knowledge base), and sgeoi is a pseudo-
sentence created from the geographic data. Both
samples mention the same geo-entity. Let f(·) be
GEOLM that takes both snli and sgeoi as input and
produces entity-level representation hnl

i = f(snli )
and hgeo

i = f(sgeoi ). Then the loss function is:

Lcontrast
i = −log

esim(hnl
i ,hgeo

i )/τ∑2N
j=1 1[j ̸=i]e

sim(hnl
i ,hgeo

j )/τ
,

Figure 3: Downstream tasks to evaluate geospatially
grounded language understanding.

where τ is a temperature, and sim(·) denotes the
cosine similarity.

To improve GEOLM’s ability to disambiguate
geo-entities, we include in-batch hard negatives
comprising geo-entities with identical names. As
a result, each batch is composed of 50% random
negatives and 50% hard negatives.

Additionally, we employ a masked language
modeling task (Devlin et al., 2019) on a concate-
nation of the paired natural language sentence and
geographical pseudo-sentence (Fig. 2). This task
encourages GEOLM to recover masked tokens by
leveraging both linguistic and geographical data.

2.4 Downstream Tasks
Our study further adapts GEOLM to several down-
stream tasks to demonstrate its ability for geospa-
tially grounded language understanding, including
toponym recognition, toponym linking, geo-entity
typing, and geospatial relation extraction (Fig. 3).
Toponym recognition or geo-tagging (Gritta et al.,
2020) is to extract toponyms (i.e., place names)
from unstructured text. This is a crucial step in
recognizing geo-entities mentioned in the text be-
fore inferring their identities and relationships in
subsequent tasks. We frame this task as a multi-
class sequence tagging problem, where tokens are
classified into one of three classes: B-topo (begin-
ning of a toponym), I-topo (inside a toponym),
or O (non-toponym). To accomplish this, we ap-
pend a fully connected layer to GEOLM and train
the model end-to-end on a downstream dataset to
classify each token from the text input.
Toponym linking, also referred to as toponym res-



olution and geoparsing (Gritta et al., 2020, 2018a;
Hu et al., 2022), aims to infer the identity or geoco-
ordinates of a mentioned geo-entity in the text by
grounding geo-entity mention to the correct record
in a geographical database, which might contain
many candidate entities with the same name as the
extracted toponym from the text. During inference,
we process the candidate geo-entities from the ge-
ographical databases the same way as during pre-
training, where nearby neighbors are concatenated
together to form pseudo-sentences. For this task,
we perform zero-shot linking by directly applying
GEOLM without fine-tuning. GEOLM extracts
representations of geo-entities from linguistic data
and calculates representations for all candidate en-
tities. After obtaining the representations for both
query and candidate geo-entities, the linking results
are formed as a ranked list of candidates sorted by
cosine similarity in the feature space.
Geo-entity typing is the task of categorizing the
types of locations in a geographical database (e.g.,
OpenStreetMap) (Li et al., 2022b). Geo-entity typ-
ing helps us understand the characteristics of a
region and can be useful for location-based recom-
mendations. We treat this task as a classification
problem and append a one-layer classification head
after GEOLM. We train GEOLM to predict the type
of the central geo-entity given a subregion of a geo-
graphical area. To accomplish this, we construct a
pseudo-sentence following Fig. 1, then compute the
representation of the geo-entity using GEOLM and
feed the representation to the classification head
for training.

Geospatial relation extraction is the task of clas-
sifying topological relations between a pair of lo-
cations (Mani et al., 2010). We treat this task as
an entity pair classification problem. We compute
the average embedding of tokens to form the entity
embedding and then concatenate the embeddings
of the subject and object entities to use as input
for the classifier, then predict the relationship type
with a softmax classifier.

3 Experiments

We hereby evaluate GEOLM on the aforemen-
tioned four downstream tasks. All compared mod-
els (except GPT3.5) are finetuned on task-specific
datasets for toponym recognition, geo-entity typ-
ing, and geospatial relation extraction.4

4Toponym linking is an unsupervised task.

3.1 Toponym Recognition

Task Setup. We adopt GEOLM for toponym recog-
nition on the GeoWebNews (Gritta et al., 2020)
dataset. This dataset contains 200 news articles
with 2,601 toponyms.5 The annotation includes the
start and end character positions (i.e., the spans)
of the toponyms in paragraphs. We use 80% for
training and 20% for testing.

Evaluation Metrics. We report precision, recall,
and F1, and include both token-level scores and
entity-level scores. For entity-level scores, a pre-
diction is considered correct only when it matches
exactly with the ground-truth mention (i.e., no miss-
ing or partial overlap).

Models in Comparison. We compare GEOLM
with fine-tuned PLMs including BERT, SimCSE-
BERT6 (Gao et al., 2021) , SpanBERT (Joshi et al.,
2020) and SapBERT (Liu et al., 2021). SpanBERT
is a BERT-based model with span prediction pre-
training. Instead of masking out random tokens,
SpanBERT masks out a continuous span and tries
to recover the missing parts using the tokens right
next to the masking boundary. SapBERT learns to
align biomedical entities through self-supervised
contrastive learning.7 We compare all models in
base versions.

Results and Discussion. Tab. 1 shows that our
GEOLM yields the highest entity-level F1 score,
with BERT being the close second. Since GE-
OLM’s weights are initialized from BERT, the
improvement over BERT shows the effectiveness
of in-domain training with geospatial grounding.
For token-level results, SpanBERT has the best
F1 score for I-topo, showing that span prediction
during pretraining is beneficial for predicting the
continuation of toponyms. However, GEOLM is
better at predicting the start token of the toponym,
which SpanBERT does not perform as well.

3.2 Toponym Linking

Task Setup. We run unsupervised toponym linking
on two benchmark datasets: Local Global Corpus
(LGL; Lieberman et al. 2010) and Wikipedia To-

5We only consider the place names associated with valid
geocoordinates as toponyms and do not count the literal ex-
pression (e.g., the word “street”, “blocks” and “intersection”)
as toponyms.

6We use the unsupervised pretrained weights.
7Although SapBERT is trained with biomedical corpus, it

generalizes well on geo-entity recognition and linking since
the study of diseases often relates to places and regions.



GeoWebNews Token(B-topo) Token (I-topo) micro- Entity
Prec Recall F1 Prec Recall F1 F1 Prec Recall F1

BERT 90.00 89.28 89.64 78.55 79.44 78.99 84.46 77.03 83.42 80.10
SimCSE-BERT 83.86 90.26 86.95 74.61 82.07 78.16 82.67 72.76 83.68 77.84

SpanBERT 85.98 88.37 87.16 86.13 89.19 87.63 87.38 75.32 81.16 78.13
SapBERT 83.12 88.32 85.64 76.26 81.11 78.61 82.22 72.48 80.16 76.12
GEOLM 91.15 90.43 90.79 79.16 84.27 81.63 86.33 82.18 85.67 83.89

Table 1: Toponym recognition results on GeoWebNews dataset. Bolded and underlined numbers are for best and
second best scores respectively.

Figure 4: Visualization of BERT and GEOLM predictions on two “Paris” samples from the WikToR dataset. The
two left figures are BERT results, and the two right figures are GEOLM results. The colored circles in the figure
denote all the geo-entities named “Paris” in the GeoNames database. The circle’s color represents the cosine
similarity (or ranking score) between the candidate geo-entitity from GeoNames and the query toponym Paris. It is
worth noting that the BERT predictions are almost the same given the two sentences because BERT does not align
the linguistic context with the geospatial context.

ponym Retrieval (WikToR; Gritta et al. 2018b).
LGL contains 588 news articles with 4,462 to-
ponyms that have been linked to the GeoNames
database. This dataset has ground-truth geoco-
ordinates and GeoNames ID annotations. This
dataset has only one sample with a unique name
(among 4,462 samples in total). On average, each
toponym corresponds to 27.52 geo-entities with
the same in GeoNames. WikToR is derived from
5,000 Wikipedia pages, where each page describes
a unique place. This dataset also contains many
toponyms that share the same lexical form but refer
to distinct geo-entities. For example, Santa Maria,
Lima, and Paris are the top ambiguous place names.
For WikToR, there is no sample with a unique
name. The least ambiguous one has four candidate
geo-entities with the same name in GeoNames. On

average, each toponym corresponds to 70.45 geo-
entities with the same name in GeoNames. This
dataset is not linked with the GeoNames database,
but the ground-truth geocoordinates of the toponym
are provided instead.

Evaluation Metrics. For LGL, we evaluate model
performance using two metrics. 1) R@k is a stan-
dard retrieval metric that computes the recall of
the top-k prediction based on the ground-truth
GeoNames ID. 2) P@D, following previous studies
(Gritta et al., 2018b), computes the distance-based
approximation rate of the top-ranked prediction. If
the prediction falls within the distance threshold
D from the ground truth geocoordinates, we con-
sider the prediction as a correct approximation.8

8Here, P@D161 is the same as Acc@161km (or
Acc@100miles ) reported by Gritta et al. (2018b).



LGL R@1 R@5 R@10 P@D161

BERT 34.6 67.5 78.1 41.2
RoBERTa 24.2 48.7 60.6 27.9
SpanBERT 25.2 48.8 61.0 28.8
SapBERT 30.8 58.8 72.2 35.1
GEOLM 38.2 65.3 72.6 44.1
WikToR P@D20 P@D50 P@D100 P@D161

BERT 16.1 16.3 16.9 17.6
RoBERTa 11.7 11.9 12.4 13.0
SpanBERT 5.5 5.7 5.9 6.3
SapBERT 25.9 26.3 27.0 28.3
GEOLM 32.5 33.4 34.3 35.8

Table 2: Toponym linking results on LGL and Wik-
TOR datasets. Bolded numbers are the best scores
and underlined numbers are the second-best scores.
R@k measures whether ground-truth GeoNames ID
presents among the top k retrieval results. P@D mea-
sures whether the top retrieval is within the distance D
from the ground-truth. D20, D50 , D100 and D161 indi-
cate the distance thresholds of {20, 50, 100, 161} km.

For WikToR, the ground-truth geocoordinates are
given, and we follow Gritta et al. (2020, 2018b) to
report P@D metrics with various D values.

Models in Comparison. We compare GEOLM
with multiple PLMs, including BERT, RoBETRa,
SpanBERT (Joshi et al., 2020) and SapBERT (Liu
et al., 2021). In the experiments, we use all base
versions of the above models. For a fair compar-
ison, to calculate the representation of the candi-
date entity, we concatenate the center entity’s name
and its neighbors’ names then input the concate-
nated sequence (i.e., pseudo-sentence) to all base-
line PLMs to provide the linguistic context, follow-
ing the same unsupervised procedure as in §2.4.

Results and Discussion. One challenge of this
task is that the input sentences may not have any
information about their neighbor entities; thus, in-
stead of only considering the linguistic context or
relying on neighboring entities to appear in the
sentence, GEOLM’s novel approach aligns the lin-
guistic and geospatial context so that GEOLM can
effectively map the geo-entity embeddings learned
from the linguistic context in articles to the embed-
dings learned from the geospatial context in geo-
graphic data and perform linking. The contrastive
learning process during pretraining is designed to
help the context alignment. From Tab. 2, GEOLM
offers more reliable performance than baselines.
On WikTor and LGL datasets, GEOLM obtains the
best or second-best scores in all metrics. On LGL,
GEOLM demonstrates more precise top-1 retrieval
(R@1) than other models, and also the highest

scores on P@D161. Since baselines are able to har-
ness only the linguistic context, while GEOLM can
use the linguistic and geospatial context when tak-
ing sentences as input. The improvement of R@1
and P@D161 from BERT shows the effectiveness
of the geospatial context. On WikToR, GEOLM
performs the best on all metrics. Since WikToR
has many geo-entities with the same names, the
scores of GEOLM indicate strong disambiguation
capability obtained from aligning the linguistic and
geospatial context.

Fig. 4 shows the visualization of the toponym
linking results given “Paris” mentioned in two sen-
tences. The input sentences are provided in the
figures. Apparently, the first Paris should be linked
to Paris, France, and the second Paris goes to
Paris, AK, US. However, the BERT model fails
to ground these two mentions into the correct loca-
tions. BERT ranks the candidate geo-entities only
slightly differently for the two input sentences, in-
dicating that BERT relies more on the geo-entity
name rather than the linguistic context when per-
forming prediction. On the other hand, our model
could predict the correct location of geo-entities.
This is because even though the lexical forms of
the geo-entity names (i.e., Paris) are the same, the
linguistic context describing the geo-entity are dis-
tinct. Fig. 4 demonstrate that the contrastive learn-
ing helps GEOLM to map the linguistic context to
the geospatial context in the embedding space.

3.3 Geo-entity Typing

Task Setup. We apply GEOLM on the super-
vised geo-entity typing dataset released by Li et al.
(2022b). The goal is to classify the type of the cen-
ter geo-entity providing the geospatial neighbors
as context. We linearize the set of geo-entities to a
pseudo-sentence that represent the geospatial con-
text for the center geo-entity then feed the pseudo-
sentence into GEOLM. There are 33,598 pseudo-
sentences for nine amenity classes, with 80% for
training and 20% for testing. We train multiple
language models to perform amenity-type classifi-
cation for the center geo-entity.

Evaluation Metric. Following (Li et al., 2022b),
we report the F1 score for each class and the micro
F1 for all the samples.

Models in Comparison. In addition to BERT,
SpanBERT and SimCSE-BERT, this task also takes
LUKE (Yamada et al., 2020) and SpaBERT (Li



Classes → Edu. Ent. Fac. Fin. Hea. Pub. Sus. Tra. Was. Micro F1
BERT 67.4 63.4 76.3 92.9 85.6 87.2 85.6 86.2 67.8 83.5
SpanBERT 63.3 58.9 60.8 91.6 85.9 88.2 82.4 86.7 73.5 81.9
SimCSE-BERT 62.3 59.0 50.4 92.5 86.7 85.2 85.7 81.0 47.0 81.0
LUKE 64.8 60.8 59.8 94.5 85.7 86.7 85.4 85.1 51.7 82.5
SpaBERT 67.4 65.3 68.0 95.9 86.5 90.0 88.3 88.8 70.3 85.2
GEOLM 72.5 70.9 73.0 97.8 91.5 83.6 90.5 90.8 62.2 87.8

Table 3: Comparing GEOLM with the state-of-the-art LMs on geo-entity typing. Column names are the OSM
classes (education, entertainment, facility, financial, healthcare, public service, sustenance, transportation and waste
management). Bolded and underlined numbers are for best and second best scores respectively.

Settings Prec Recall F1
GEOLM 82.18 85.67 83.89
GEOLM (No Contrastive) 70.67 77.98 74.14
GEOLM (No Spatial Embed.) 75.05 87.00 80.59

Table 4: Ablation study on toponym recognition to
show the GEOLM performance after removing various
components.

et al., 2022b) into comparison. LUKE is designed
to solve entity-related tasks with a specially de-
signed entity tokenizer. SpaBERT generates geo-
entity representations given small geographical re-
gions as input. In addition, BERT, SpanBERT,
SimCSE-BERT, and LUKE rely only on linguistic
information, and SpaBERT relies only on geospa-
tial context to make predictions.

Results and Discussion. Tab. 3 shows that the
performance of GEOLM surpasses the baseline
models using only linguistic or geospatial informa-
tion. The experiment demonstrates that combining
the information from both modalities and aligning
the context is useful for geo-entity type inference.
Compared to the second best model, SpaBERT,
GEOLM has robust improvement on seven types.
The result indicates that the contrastive learning
during pretraining helps GEOLM to align the lin-
guistic context and geospatial context, and although
only geospatial context is provided as input during
inference, GEOLM can still employ the aligned
linguistic context to facilitate the type prediction.

3.4 Geospatial Relation Extraction

Task Setup. We apply GEOLM to the SpatialML
topological relation extraction dataset released
by Mani et al. (2010). Given a sentence containing
multiple entities, the model classifies the relations
between each pair of entities into six types9 (includ-

9The types come from the RCC8 relations, which contain
eight types of geospatial relations. The SpatialML dataset
merges four of the relations (TPP, TPPi, NTTP, NTTPi) into
the “IN” relation thus resulting in five geo-relations in the
dataset.

Figure 5: Relation extraction results on SpatialML com-
paring with other baseline models.

ing an NA class indicating that there is no relation).
The dataset consists of 1,528 sentences, with 80%
for training and 20% for testing. Within the dataset,
there are a total of 10,592 entity pairs, of which
10,232 pairs do not exhibit any relation.

Evaluation Metric. We report the micro F1 score
on the test dataset. We exclude the NA instances
when calculating the F1 score.

Models in Comparison. We compare GEOLM
with other pretrained language models, including
BERT, RoBERTa, and SpanBERT, as well as a
large language model (LLM), GPT-3.5.

Results and Discussion. Fig. 5 shows that GE-
OLM achieves the best F1. The results suggest that
GEOLM effectively captures the topological rela-
tionships between entities. Furthermore, GEOLM
demonstrates a better ability to learn geospatial
grounding between the mentioned entities.

3.5 Ablation Study
We conduct two ablation experiments to validate
the model design using toponym recognition and
toponym linking: 1) removing the spatial coordi-
nate embedding layer that takes the geo coordinates
as input during the training; 2) removing the con-
trastive loss that encourages the model to learn
similar geo-entity embeddings from two types of
context (i.e., linguistic context and geospatial con-
text) and only applying MLM on the NL corpora.

For the toponym recognition task, we compare



the entity-level precision, recall, and F1 scores on
the GeoWebNews dataset. Tab. 4 shows that re-
moving either component could cause performance
degradation. For the toponym linking task, in
the first ablation experiment, the linking accuracy
(P@D161, i.e., Acc@161km or Acc@100miles)
drops from 0.358 to 0.321 after removing the spa-
tial coordinate embedding, indicating that the geo-
coordinate information is beneficial and our em-
bedding layer design is effective. In the second ab-
lation experiment, the linking accuracy (P@D161)
drops from 0.358 to 0.146, showing that contrastive
learning is essential.

4 Related Work

Geospatial NLU. Understanding geospatial con-
cepts in natural language has long been a topic of
interest. Previous studies (Liu et al., 2022; Hu,
2018; Wang and Hu, 2019) have used general-
purpose NER tools such as Stanford NER (Finkel
et al., 2005) and NeuroNER (Dernoncourt et al.,
2017) to identify toponyms in text. In the geo-
graphic information system (GIS) domain, tools
such as the Edinburgh geoparser (Grover et al.,
2010; Tobin et al., 2010a), Yahoo! Placemaker10

and Mordecai (Halterman, 2017, 2023) have been
developed to detect toponyms and link them to
geographical databases. Also, several heuristics-
based approaches have been proposed (Woodruff
and Plaunt, 1994; Amitay et al., 2004; Tobin et al.,
2010b) to limit the spatial range of gazetteers
and associate the toponym with the most likely
geo-entity (e.g., most populous ones). More re-
cently, deep learning models have been adopted
to establish the connection between extracted to-
ponyms and geographical databases (Gritta et al.,
2017, 2018a; DeLozier et al., 2015). For instance,
TopoCluster (DeLozier et al., 2015) learns the as-
sociation between words and geographic locations,
deriving a geographic likelihood for each word in
the vocabulary. Similarly, CamCoder (Gritta et al.,
2018a) introduces an algorithm that encodes to-
ponym mentions in a geodesic vector space, predict-
ing the final location based on geodesic and lexical
features. These models utilize supervised training,
which assumes that the testing and training data
cover the same region. However, this assumption
may limit their applicability in scenarios where the
testing and training regions differ. Furthermore, Yu

10Yahoo! placemaker: https://simonwillison.net/
2009/May/20/placemaker/

and Lu (2015) use keyword extraction approach
and Yang et al. (2022) use language model based
(e.g., BERT) classification to solve the geospatial
relation extraction problem. However, these mod-
els often struggle to incorporate the geospatial con-
text of the text during inference. Our previous work
SpaBERT (Li et al., 2022b) is related to GEOLM
in terms of representing the geospatial context. It is
a language model trained on geographical datasets.
Although SpaBERT can learn geospatial informa-
tion, it does not fully employ linguistic information
during inference.

GEOLM is specifically designed to align the lin-
guistic and geospatial context within a joint embed-
ding space through MLM and contrastive learning.

Language Grounding. Language grounding in-
volves mapping the NL component to other modal-
ities, and it encompasses several areas of research.
In particular, vision-language grounding has gained
significant attention, with popular approaches in-
cluding contrastive learning (Radford et al., 2021;
Jia et al., 2021; You et al., 2022; Li et al., 2022a)
and (masked) vision-language model on distantly
parallel multi-modal corpora (Chen et al., 2020,
2021; Su et al., 2020; Li et al., 2020). Addition-
ally, knowledge graph grounding has been explored
with similar strategies (He et al., 2021; Wang et al.,
2021). GEOLM leverages both contrastive learn-
ing and MLM on distantly parallel geospatial and
linguistic data, and it represents a pilot study on the
grounded understanding of these two modalities.

5 Conclusion

In this paper, we propose GEOLM, a PLM for
geospatially grounded language understanding.
This model can handle both natural language in-
puts and geospatial data inputs, and provide con-
nected representation for both modalities. Tech-
nically, GEOLM conducts contrastive and MLM
pretraining on a massive collection of distantly par-
allel language and geospatial corpora, and incorpo-
rates a geocoordinate embedding mechanism for
improved spatial characterization. Through evalua-
tions on four important downstream tasks, toponym
recognition, toponym linking, geo-entity typing
and geospatial relation extraction, GEOLM has
demonstrated competent and comprehensive abili-
ties for geospatially grounded NLU. In the future,
we plan to extend the work to question answering
and autoregressive tasks.

https://simonwillison.net/2009/May/20/placemaker/
https://simonwillison.net/2009/May/20/placemaker/


Limitations

The current version of our model only uses point ge-
ometry to represent the geospatial context, ignoring
polygons and polylines. Future work can expand
the model’s capabilities to handle those complex
geometries. Also, it is important to note that the
OpenStreetMap data were collected through crowd-
sourcing, which introduces possible labeling noise
and bias. Lastly, model pre-training was conducted
on a GPU with at least 24GB of memory. Attempt-
ing to train the model on GPUs with smaller mem-
ory may lead to memory constraints and degraded
performance.

Ethics Statement

The model weights in our research are initialized
from a pretrained BERT model for English. In ad-
dition, the training data used in our research are
primarily extracted from crowd-sourced databases,
including OpenStreetMap (OSM), Wikipedia, and
Wikidata. Although these sources provide exten-
sive geographical coverage, the geographical distri-
bution of training data exhibits significant dispar-
ities, with Europe having the most abundant data.
At the same time, Central America and Antarctica
are severely underrepresented, with less than 1% of
the number of samples compared to Europe. This
uneven training data distribution may introduce bi-
ases in the model’s performance, particularly in
regions with limited annotated samples.
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A Distribution of Geo-entities

We analyze the distribution of geo-entities in the
pretraining corpora and the downstream datasets.
When considering only the name (without geoco-
ordinates), the overlapping percentages of the pre-
training data and downstream datasets are shown in
Tab. 5. Ablation experiments show that for the geo-
entities already included during the pretraining, the
average P@D161 score is 0.362. For the ones that
are not included during the pretraining, the average
P@D161 score is 0.341, which is not significantly
different from the prior one. This indicates that the
improved performance of GEOLM comparing with
other models benefits from enhancing the geospa-
tial representations.

B Comparison with Other Methods

For the toponym recognition task, we compare
the results of GEOLM with other existing mod-
els designed specifically for this problem. Ac-
cording to (Gritta et al., 2020), the token-level F1
achieved by Yahoo! Placemaker, Edinburgh Geop-
arser, Spacy NLP, Google Cloud Natural Language,
and NCRF++ are 63.2%, 63.6%, 74.9%, 83.2%
and 88.6% respectively. GEOLM has a token-level
F1 of 86.3%, which is better than all existing ones
except NCRF++. The reason is that NCRF++ uses
fine-grained toponym taxonomy to boost the to-
ponym recognition performance. However, the fine-
grained labels can sometimes be difficult to collect
for large-scale datasets. In addition, NCRF++ is a
specific toponym recognition model that does not
support other geospatial-inference tasks. With GE-
OLM, we can generate representations useful for
various tasks.

For the toponym linking task, we compare our
model with the other existing geoparser models
mentioned in EUPEG (Hu, 2018) and Voting (Hu
et al., 2023), including CLAVIN11, TopoClus-
ter (DeLozier et al., 2015), CamCoder (Gritta
et al., 2018a), Modecai (Halterman, 2017), GENRE
(De Cao et al., 2020), and Voting (Hu et al., 2023).
Since EUPEG evaluates the toponym resolution
and toponym linking together and does not provide

11CLAVIN:https://github.com/Novetta/CLAVIN

Figure 6: Example of the constructed Trie if Open-
StreetMap only contains “Los Angeles”, “Los Angeles
County”, “Los Angeles Elementary School”, “Los Ca-
bos” and “Las Vegas”. Each node is a word in a place
name. The gray color indicates that this node is the last
word of a place name.

the scores for linking only, we use the scores re-
ported in Voting, which assumes gold toponyms as
inputs for toponym linking (same as ours).

The scores in P@D161 (or Accuracy@161km)
are shown in Tab. 6. The models that perform better
than GEOLM are all supervised learning models
(i.e. CamCoder, GENRE and Voting) while GE-
OLM is unsupervised. Within the unsupervised
group, GEOLM performs the best. The benefit
of the unsupervised nature of GEOLM is that GE-
OLM can handle new samples without the need for
extra training data, which is often difficult to gather.
Also, new geo-entity names can appear in docu-
ments and the way people call the same geo-entity
can change over time, the unsupervised approach
has the advantage of handling ever-changing doc-
uments, e.g., online text, while the supervised ap-
proach focuses on existing names of geo-entities.
We acknowledge that there is a gap between GE-
OLM and the domain-specific geoparsers, and we
will aim to narrow this gap in the future.

C Trie

Trie supports a tree structure for efficient search
for geo-entity names, and it helps distinguish be-
tween two geo-entities with shared substrings in
their names. For example, Trie helps extract the
geo-entity “Los Angeles High School” from the
sentence “I work at the Los Angeles High School,”
instead of extracting the geo-entity “Los Angeles”.
Fig. 6 shows an example Trie constructed from a
set of geo-entity names.

We use all geo-entity names in the worldwide
OpenStreetMap database to construct a worldwide
Trie, where each node is a single word in the name.
When using Trie to preprocess the Wikipedia doc-
uments, we apply the Trie searching to find all

https://github.com/Novetta/CLAVIN


Tasks Dataset # Total Records # Intersection Percentage
Toponym Recognition GeoWebNews 912 325 35.6%
Toponym Linking WikToR 1886 1280 67.9%
Geo-entity Typing OpenStreetMap Subset 23195 544 2.3%
Relation Extraction SpatialML 309 91 29.4%

Table 5: The number of geo-entities in the downstream datasets, and the overlapping portion of geo-entities with
the pretraining corpora.

Unsupervised Supervised
Modecai 0.15 CamCoder 0.63
CLAVIN 0.22 GENRE 0.81

TopoCluster 0.24 Voting 0.85
GEOLM (ours) 0.35

Table 6: Comparison with other toponym linking mod-
els in both unsupervised and supervised category.

Types Keywords
Others Other; No relation
Equal (EQ) EQ
Disconnected (DC) DC
Externally connected (EC) EC
Within (IN) In; Within
Partially overlapping (PO) PO

Table 7: Relation types and the corresponding accept-
able keywords in GPT outputs

the mentioned geo-entity names. To mitigate the
disambiguation error, we use the Wikipedia page
title to filter out the mentions that do not describe
the “entity-of-interest”. After this step, the dis-
ambiguation error only occurs when two distinct
geo-entities with the same name occur on the same
Wikipedia page, which is pretty rare. This does
not fully resolve the disambiguation error issue,
and there may still be noises in the training data.
However, as long as most of the data is clean,
the model can still learn meaningful information
from the data. Thus we have compiled a quite
large pretraining NL corpora with 1,458,150 sen-
tences/paragraphs describing 472,067 geo-entities.

D GPT-3.5 Prompt

We use GPT-3.5-turbo to help predict the rela-
tions between two geo-entities. With the system
role, we prompt the model with the general task
description and ask the model to choose from one
of the possible relationships. With the user role, we
provide the input sentence and the two geo-entity
names. The example prompt is shown below.

• System:Given a sentence, and two entities
within the sentence, classify the relationship
between the two entities based on the pro-
vided sentence. All possible Relationships are

listed below: [ disconnected (DC): Entity A
and B have no spatial intersection, both in
terms of interiors and boundaries; externally
connected (EC): Entity A and B touch each
other only at their boundaries; equal (EQ):
Entity A and B are identical; partially overlap-
ping (PO): Interiors of entity A and B overlap
but neither is completely contained within the
other; within (IN): One entity is part of the
other entity; Others: No relation between en-
tities]

• User: Sentence: {input-sentence} Entity1:
{entity1-name} Entity2: {entity2-name} Re-
lationship:

To address the randomness in the GPT outputs
and robustly evaluate the performance, we only
look for some particular keywords from the GPT
outputs. If the output contains the desired keyword,
we consider the prediction as correct. Tab. 7 lists
the keywords for each relation type.


