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ABSTRACT

Long-context Large Language Models (LLMs) have enabled numerous downstream
applications but also introduced significant challenges related to computational and
memory efficiency. To address these challenges, optimizations for long-context
inference have been developed, centered around the KV cache. However, existing
benchmarks often evaluate in single-request, neglecting the full lifecycle of the KV
cache in real-world use. This oversight is particularly critical, as KV cache reuse
has become widely adopted in LLMs inference frameworks, such as vLLM and
SGLang, as well as by LLM providers, including OpenAI, Microsoft, Google, and
Anthropic. To address this gap, we introduce SCBENCH (SharedContextBENCH),
a comprehensive benchmark for evaluating long-context methods from a KV cache-
centric perspective: 1) KV cache generation, 2) KV cache compression, 3) KV
cache retrieval, and 4) KV cache loading. Specifically, SCBench uses test examples
with shared context, ranging 12 tasks with two shared context modes, covering
four categories of long-context capabilities: string retrieval, semantic retrieval,
global information, and multi-task. With SCBench, we provide an extensive KV
cache-centric analysis of eight categories long-context solutions, including Gated
Linear RNNs (Codestal-Mamba), Mamba-Attention hybrids (Jamba-1.5-Mini),
and efficient methods such as sparse attention, KV cache dropping, quantization,
retrieval, loading, and prompt compression. The evaluation is conducted on six
Transformer-based long-context LLMs: Llama-3.1-8B/70B, Qwen2.5-72B/32B,
Llama-3-8B-262K, and GLM-4-9B. Our findings show that sub-O(n) memory
methods suffer in multi-turn scenarios, while sparse encoding with O(n) memory
and sub-O(n2) pre-filling computation perform robustly. Dynamic sparsity yields
more expressive KV caches than static patterns, and layer-level sparsity in hybrid
architectures reduces memory usage with strong performance. Additionally, we
identify attention distribution shift issues in long-generation scenarios.
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Figure 1: KV Cache lifecycle. Prior benchmarks focus on single-request, while real-world applica-
tions reuse KV cache across requests. We propose SCBench and categorize long-context methods into
KV Cache Generation, Compression, Retrieval, and Loading from a KV-cache-centric perspective.
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1 INTRODUCTION

Long-context capability is becoming a standard for Large Language Models (LLMs), with many
of them supporting context windows ranging from 128K to 10M tokens (Reid et al., 2024; Lieber
et al., 2024; Dubey et al., 2024; Gradient, 2024). These extended context windows unlock a wide
range of real-world applications, such as repository-level code understanding and debugging (Bairi
et al., 2024; Park et al., 2023; Liu et al., 2024c; Jimenez et al., 2024), long-document question-
answering (Caciularu et al., 2023; Li et al., 2024b), many-shot in-context learning (Agarwal et al.,
2024), and long-generation Chain-of-Thought (CoT) reasoning (OpenAI, 2024a; Snell et al., 2024).

Despite the benefit, Long-context inputs also present unique challenges for LLM inference due to high
computational costs and memory demands. This has led to the development of efficient long-context
solutions leveraging sparsity in various stage of KV cache. In this paper, we introduce an unified
analysis framework for efficient long-context methods in a KV cache centric perspective, consisting
of the four essential stages of KV cache: 1) KV cache generation, 2) KV cache compression, 3) KV
cache retrieval, and 4) KV cache loading. First, KV cache generation, aka prefilling, processes
the input prompt and produce the KV cache to be used in decoding. In this stage, sparse attention
methods are proposed to reduce the complexity of the attention operation (Child et al., 2019; Beltagy
et al., 2020; Jiang et al., 2024). Second, KV cache compression techniques prune KV states to
reduce the memory costs in decoding (Xiao et al., 2024; Li et al., 2024c). Third, KV cache retrieval
aims to skip KV cache generation of an incoming request, and instead retrieves and reuses KV cache
from history KV cache pool for more efficient inference (Zheng et al., 2024; Yao et al., 2024a). At
last, KV cache loading aims to load only partial of the KV cache for each decoding step to save the
memory and computing cost (Tang et al., 2024; Liu et al., 2024b).

However, these methods are only evaluated on single-request benchmarks (Hsieh et al., 2024; Zhang
et al., 2024a; Kamradt, 2023; Li et al., 2024a), which fail to covers the full lifecycle of KV cache in real
applications. Typically, real-world applications often require reusing prompt memory (i.e., KV cache)
and involving multiple requests or multi-round interactions (Qin et al., 2025). The reuse of KV cache,
known as prefix caching, is already a crucial component in popular inference frameworks (Zheng
et al., 2024; vLLM, 2024) and used by LLM providers (Gemini, 2024; Claude, 2024; OpenAI, 2024b;
Azure, 2024). In addition, testing with multiple requests is especially crucial for the long-context
methods mentioned earlier, as many achieve efficiency through query-conditioned compression. For
instance, Arora et al. (2024) reports that Mamba’s compression of previous information based on the
current query can prevent it from answering follow-up queries.

To address this gap, we introduce SCBench, a benchmark designed to evaluate efficient long-context
methods that covers the full lifecycle of KV cache in real-world scenarios, particularly for shared
context and multi-round interactions where KV Cache is reused for follow-up queries. As shown in
Fig. 2b, SCBench assesses four key long-context abilities across 12 tasks with two shared context
modes. Each test example includes a shared context and multiple follow-up queries. The four
long-context capabilities and their corresponding tasks are:

1. String Retrieval Capability: A fundamental requirement for long-context LLMs is retrieving
relevant context with exact matches from long inputs. We extend previous retrieval tasks like
NIAH and Multi-NIAH (Kamradt, 2023; Hsieh et al., 2024) by introducing three comprehensive
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Figure 2: Long-context tasks often involve contexts sharing, e.g., multi-turn dialogues, multi-step
reasoning, and repository-level tasks. (a) Illustration of two common shared-context patterns. (b)
Overview of tasks and scenarios covered by our benchmark, encompassing four categories of long-
context abilities and two shared-context modes.
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Figure 3: Overview of performance results for SCBench. (a) Performance trends of various long-
context methods across multiple requests. Methods with O(n) memory cost in decoding show
improving performance as requests increase. In contrast, methods with sub-O(n) KV cache in
decoding, like KV cache dropping methods, perform well only in the first request. (b) Specific
performance of different long-context methods across various long-context capability tasks. All
evaluated long-context methods exhibit some loss in Retrieval capability while largely maintaining
Global Information processing capability.

string retrieval tasks: key-value retrieval, prefix-suffix retrieval, and multi-hop retrieval, measuring
capability at different levels of granularity.

2. Semantic Retrieval Capability: Real-world applications often require long-context LLMs to
understand semantic meaning before succeeding in retrieval. We considered various semantic
retrieval scenarios across different domains, building four distinct tests: RepoQA (Liu et al.,
2024c) and long-form QA (covering English, Chinese, and multiple-choice questions) (Zhang
et al., 2024a).

3. Global Information Capability: We also assess the capability of long-context LLMs to process
and aggregate global information through three tasks: many-shot in-context learning (Agarwal
et al., 2024), summarization, and long array statistics (Zhang et al., 2024a).

4. Multi-tasking Capability: In real applications, LLMs often handle multiple tasks with a shared
long-context input. Our benchmark evaluates this capability through two tasks: RepoQA with
NIAH and summarization with KV retrieval.
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Figure 4: Performance of various long-context
methods at different compression rates on
SCBench using Llama-3.1-8B (Dubey et al., 2024).

In addition, as shown in Fig. 2a, our bench-
mark includes two typical shared context modes:
Multi-turn Mode, where the context is cached
within a single session, and Multi-request Mode,
where it is cached across multiple sessions.

With SCBench, we conduct an extensive KV
cache-centric analysis in the four stages as
shown in Fig. 1 (details in §2). Specifically,
we evaluate 13 long-context methods across
four stages and eight categories on eight open-
source long-context LLMs, including Llama-
3.1-8B/70B (Dubey et al., 2024), Qwen2.5-
72B/32B (Team, 2024), Llama-3-8B-262K (Gra-
dient, 2024), GLM-4-9B-1M (GLM et al., 2024),
Codestal Mamba (team, 2024), and Jamba-1.5-
mini (Lieber et al., 2024). These methods span gated linear RNNs (e.g., Codestal Mamba), hy-
brid models (e.g., Jamba-1.5), sparse attention (e.g., A-shape, Tri-shape, MInference (Jiang et al.,
2024)), prompt compression (e.g., LLMLingua-2 (Pan et al., 2024)), KV cache dropping (e.g.,
StreamingLLM (Xiao et al., 2024), SnapKV (Li et al., 2024c)), KV cache quantitation (e.g., KIVI (Liu
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et al., 2024e)), semantic retrieval (e.g., CacheBlend (Yao et al., 2024a)), and KV cache loading (e.g.,
Quest (Tang et al., 2024), RetrievalAttention (Liu et al., 2024b)), as detailed in Table 1. Additionally,
we introduce Tri-shape, a novel, training-free sparse attention method that demonstrates improved
first-turn performance in our evaluations.

Our experimental results reveal the following insights: 1) Sub-O(n) memory is almost infeasible in
multi-turn decoding, as shown in Fig. 3. Sparse decoding methods (sub-O(n) memory) perform
well on the first query but lose accuracy in subsequent requests. In contrast, sparse encoding
methods (O(n) memory with O(n2) computation during pre-filling) can approximate full attention
accuracy across multiple queries. 2) Task performance declines at varying rates, as illustrated in
Fig. 3b. Sparse KV cache methods excel in tasks requiring global information, while O(n) memory
is crucial for exact match retrieval tasks. 3) All long-context methods degrade as the budget
decreases, as shown in Fig. 4. However, sub-O(n) memory methods experience a sharp performance
drop at a 1/4 compression rate. Methods like RetrievalAttention and KIVI, which maintain O(n)
memory with sparse decoding, sustain higher performance even under higher compression rates.
4) Long-generation scenarios exhibit distribution shift issues. As generation length and the
number of rounds increase, the KV cache’s importance distribution changes significantly. This
out-of-distribution (OOD) issue leads to performance degradation, even for O(n) memory methods
like RetrievalAttention, as shown in Fig. 3.

Our contributions are as follows:

• We propose a new benchmark, SCBench, to evaluate long-context methods on multi-round
and multi-request scenarios in two typical KV cache reuse scenarios, providing a more
realistic assessment.

• We design an extensive set of downstream tasks, covering four long-context capabilities
across 12 subtasks in various domains.

• We systematically categorize long-context methods from a KV-cache-centric perspective and
evaluate 13 different long-context methods (including our newly proposed sparse attention
method, Tri-shape) on eight state-of-the-art open-source long-context LLMs using SCBench.
Our comprehensive analysis reveals key insights into the effects of sparsity in encoding and
decoding, task complexity, and more.

2 A KV CACHE-CENTRIC PERSPECTIVE ON LONG-CONTEXT METHODS

Table 1: We evaluated long-context methods on SCBench, where n represents the token size of the
input prompt and m represents the generation token size, with n ≫ m.

Methods Taxonomy Stage P-stage
Efficient

D-stage
Efficient

KV Cache
Size

Prefilling
Complexity

Decoding
Complexity

Codestral Mamba (team, 2024) Gated Linear RNN ❶ ! ! O(k) O(kn) O(km)

Jamba (Lieber et al., 2024) Gated Linear RNN
+ Full Attention ❶ ! ! O(n) O(n2) O(nm)

LLMLingua-2 (Pan et al., 2024) Prompt Compression ❶ ! % O(αn) O(α2n2) O(αnm)

A-shape (Xiao et al., 2024)
Sparse Attention ❶ ! % O(n) O(kn) O(nm)Tri-shape

MInference (Jiang et al., 2024)

StreamingLLM (Xiao et al., 2024)
KV Cache Dropping ❷ % ! O(k) O(n2) O(km)SnapKV (Li et al., 2024c)

PyramidKV (Cai et al., 2024)

KIVI (Liu et al., 2024e) KV Cache
Quantitation ❷ % ! O(n) O(n2) O(nm)

CacheBlend (Yao et al., 2024a) KV Cache Retrieval ❸ ! % O(n) O(n2) O(nm)

Quest (Tang et al., 2024) KV Cache Loading ❹ % ! O(n) O(n2) O(km)RetrievalAttention (Liu et al., 2024b)

Recently, a series of works (Gu & Dao, 2024; Xiao et al., 2024; Jiang et al., 2024) have explored vari-
ous strategies to reduce the inference cost of long-context LLMs, enabling their application (Jimenez
et al., 2024; OpenAI, 2024a) to downstream tasks at a lower computational expense. In long-context
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LLM inference, the KV cache plays a pivotal role by effectively reducing the computational overhead
during the decoding phase. This importance has led to the development of numerous system-level
optimizations (Sheng et al., 2023; Qin et al., 2025) focused on KV cache management and scheduling.

In this work, we propose a novel perspective: these long-context methods can be viewed as optimiza-
tions centered around the KV cache at different stages. Specifically, we introduce a KV-cache-centric
framework that systematically categorizes long-context methods into four stages: KV Cache Genera-
tion, Compression, Retrieval, and Loading, as illustrated in Fig. 1.

Specifically, the four stages of the KV-cache-centric framework are defined as follows:

1. KV Cache Generation: This stage optimizes the efficient generation of KV cache during inference.
Techniques include sparse attention (e.g., A-shape, Tri-shape, MInference (Jiang et al., 2024),
NSA (Yuan et al., 2025), MoBA (Lu et al., 2025)), SSM or hybrid approaches (e.g., Mamba (Gu
& Dao, 2024; Dao & Gu, 2024; Lieber et al., 2024)), and prompt compression (e.g., LLMLingua-
2 (Pan et al., 2024)).

2. KV Cache Compression: After generation, the KV cache is compressed before being stored.
Methods include KV cache dropping (e.g., StreamingLLM (Xiao et al., 2024), SnapKV (Li et al.,
2024c)) and KV cache quantization (e.g., KIVI (Liu et al., 2024e)).

3. KV Cache Retrieval: Relevant KV cache blocks are retrieved from a storage pool based on
the request’s prefix, reducing time-to-first-token (TTFT). Approaches include semantic retrieval
methods like CacheBlend (Yao et al., 2024a).

4. KV Cache Loading: This stage dynamically loads the KV cache and computes sparse attention,
from KV cache storage (e.g., VRAM, DRAM, SSD, or RDMA) to GPU on-chip SRAM, including
Quest (Tang et al., 2024), RetrievalAttention (Liu et al., 2024b), and MagicPIG (Chen et al., 2025).

In our work, we evaluate all four stages of 13 long-context methods, as shown in Table 1. Additionally,
we list the KV cache size, pre-filling stage complexity, decoding stage complexity, and whether
efficient operations are performed during the pre-filling and decoding stages for each method.

A-shape head Tri-shape head

Figure 5: The sparse attention methods
framework.

Tri-shape Sparse Attention: We introduce Tri-shape, a
novel training-free sparse attention method that improves
first-turn accuracy (Fig. 5). Unlike A-shape, which retains
only the sink token and local window, Tri-shape also pre-
serves the last window query region, forming a triangular
sparse attention pattern for pre-filling. Motivated by our
SCBench findings that A-shape with dense decoding im-
proves after multiple requests, Tri-shape enhances both
turn-0 and multi-request performance (§4) while main-
taining LLM instruction-following ability (§G). Notably,
recent concurrent work (Acharya et al., 2024) has explored
similar patterns for accelerating long-context pre-filling.

3 BENCHMARK BUILDING

SCBench features 12 tasks assessing four long-context abilities: string retrieval, semantic retrieval,
global information processing, and multi-tasking, across two shared context modes—multi-turn
and multi-request. These tasks span diverse domains, including code, retrieval, question answering,
summarization, in-context learning, and multi-hop tracing (Fig. 2b). In total, SCBench includes 931
multi-turn sessions with 4,853 queries, averaging 5 turns per session. Task statistics are provided in
Table 2, with examples and configurations in Table 3. Below, we describe the benchmark construction.

3.1 LONG-CONTEXT TASK DETAILS

String Retrieval The core requirement for long-context LLMs is retrieving relevant information
from lengthy, potentially noisy inputs. String retrieval tasks are commonly used for this evalua-
tion (Hsieh et al., 2024; Zhang et al., 2024a). Our benchmark applies complexity analysis, inspired
by algorithmic problem-solving (e.g., LeetCode), to design three tasks with varying difficulty levels.
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Table 2: Overview of SCBench tasks.

Task Description Capability Avg. Input
Length

Avg. Output
Length

#Sessions
/ #Turns

Retr.KV Key-value retrieval from many key-value pairs String Retrieval 125K 943 100/500
Retr.Prefix-Suffix Find string with specific prefix and suffix in a dict String Retrieval 112K 914 100/500
Retr.MultiHop Tracking variables assignment in a long input String Retrieval 124K 410 90/450
Code.RepoQA Functions retrieval from a GitHub repo Semantic Retrieval 65K 6,058 88/440
En.QA English Question Answering Semantic Retrieval 198K 272 69/351
Zh.QA Chinese Question Answering Semantic Retrieval 1.5M 322 35/189
En.MultiChoice English Multi-Choice Questions Semantic Retrieval 188K 215 58/299
Math.Find Math computation tasks within long sequence arrays Global Information 120K 172 100/240
ICL.ManyShot Hundreds-shot in-context learning Global Information 22K 975 54/270
En.Sum Summarize a doc given multiple docs as input Global Information 104K 1,170 79/350
Mix.Sum+NIAH Multi-tasking of En.Sum and Needle in A Haystack Multi-tasking 105K 3,441 70/560
Mix.RepoQA+KV Multi-tasking of RepoQA and KV retrieval Multi-tasking 68K 5,318 88/704

Total - - 227K 1,684 931/4,853

Additionally, by shifting the target string’s position, we assess how well models utilize their full
context window (Kamradt, 2023).

(i) Retrieve.KV: Given a large JSON object with numerous key-value pairs, models must accurately
retrieve the value for a specified key (Liu et al., 2024d). The random KVs pose challenges for
long-context LLMs, as the input is often incompressible, demanding strict O(n) space for storage.
This task is particularly useful for evaluating memory fuzziness in long-context methods. Each
session retrieves five KV pairs, with target KVs evenly distributed across the input.

(ii) Retrieve.Prefix-Suffix: Given a large list of variable-length strings, models must retrieve a string
matching a specified prefix and suffix. This task is particularly challenging, requiring complex
functions akin to a prefix tree, with a computational cost of O(

∑
wi

2), where wi is the length of the
i-th string1. The presence of distractors sharing only the prefix or suffix prevents models from relying
on simple lookups or induction heads (Olsson et al., 2022) for effective retrieval.

(iii) Retrieve.MultiHop: First introduced in RULER (Hsieh et al., 2024), this task evaluates LLMs’
multi-hop tracing capabilities within long input prompts. Models must track and recall key informa-
tion changes, making it ideal for testing long-context methods in KV cache reuse. Five multi-hop
variable assignment chains are embedded across the context, and each test turn requires retrieving the
exact multi-hop chain, i.e., all variables assigned to a specific value.

Semantic Retrieval Beyond string retrieval, many real-world long-context applications require
semantic understanding, such as retrieving a function from textual descriptions or answering questions
from long documents. These tasks are essential in SCBench, as lossy long-context methods often
struggle to abstract or comprehend information in multi-request scenarios.

(i) Code.RepoQA: This task requires the model to retrieve a specific function (including its name,
input parameters, and full implementation) from a long source code chunk based on a precise natural
language description. Unlike the original RepoQA benchmark (Liu et al., 2024c), our inputs extend
to 64K tokens, with target functions evenly distributed by position within the codebase. The function
descriptions were generated using GPT-4 based on the functions themselves. We also expanded the
range of repositories and programming languages to include Python, C++, Java, PHP, Rust, Go, and
TypeScript. Each test session involves a GitHub repository, with the model required to retrieve one
function per turn across 5 turns.

(ii) En.QA, Zh.QA, En.MultiChoice: These tasks are extended from InfiniteBench (Zhang et al.,
2024a), which provides high-quality, human-annotated QA tests based on fictional novels to eliminate
external knowledge influence. The tasks require models to locate and process information from
lengthy inputs, performing reasoning through aggregation or filtering. The two primary question
types are: 1) Aggregation, compiling scattered information across the input (e.g., “How much money
in total did A spend on food?”); 2) Filtering, identifying specific details from a larger set (e.g., “What
color dress did A wear when A met B for the second time?”). In SCBench, QA pairs sharing the same
input context are combined to create shared-context test sessions.

1https://leetcode.com/problems/prefix-and-suffix-search/
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Table 3: Task examples and configurations in SCBench. We use different colors to highlight the
questions, answers, and distractors in our examples.

Task Source Configuration Example
Retr.KV Lost in the Middle

(Liu et al., 2024d)
num kv pairs = 2500
len of key & value = 36
metric = Accuracy

Input: {<key #1>: <value #1>, ..., <key #100>: <value #100>}
Turn 1: The value of the <key #1> is? Answer 1: ...<value #1>...
Turn 2: The value of the <key #20> is? Answer 2: ...<value #20>...
Turn 3: The value of the <key #40> is? Answer 3: ...<value #40>...

Retr.Prefix-Suffix Ours size of dict = 6000
len of string = [65, 123)
metric = Accuracy

Input: Dictionary = [<str #1>, <str #2>, ..., <str #100>]
Turn 1: Prefix: <px #1>; Suffix: <sx #1>. The word with both prefix
and suffix from the dict is? Answer: <str>
Turn 2: Prefix: <px #2>; Suffix: <sx #2>. Answer: <str>

Retr.MultiHop RULER
(Hsieh et al., 2024)

num chains = 2
num hops = 2
metric = Accuracy

Input: VAR X1 = 12345 ...... VAR Y1 = 54321 .....<noise>
VAR X2 = X1 ...... VAR Y2 = Y1 ......<noise>
VAR X3 = X2 ...... VAR Y3 = Y2 ......<noise>
Turn 1: Variables that are assigned to 12345? Answer 1: X1 X2 X3
Turn 2: Variables that are assigned to 54321? Answer 1: Y1 Y2 Y3

Code.RepoQA RepoQA
(Liu et al., 2024c)

func description from GPT-4
metric = Pass@1

Input: <func 1> + <func 2> + ... + <func 100>
Turn 1: <description of func 1>. Answer 1: <func 1>
Turn 2: <description of func 20>. Answer 2: <func 20>

En.QA
Zh.QA

InfiniteBench
(Zhang et al., 2024a)

ground_truth from human
metric = Accuracy

Input: Read the book below and answer a question. <context>
Turn 1: <question> Be very concise. Answer 1: ...<ans>...
Turn 2: <question> Be very concise. Answer 2: ...<ans>...

En.MultiChoice InfiniteBench
(Zhang et al., 2024a)

ground_truth from human
metric = Accuracy

Input: Read the book and answer the question. <context>
Turn 1: <question> + <Option A,B,C,D>. Answer 1: ...<ans>...
Turn 2: <question> + <Option A,B,C,D>. Answer 2: ...<ans>...

Math.Find Ours len_array=30000
num_digits=3
metric = Accuracy

Input: <a large array of number>
Turn 1: The max number in the array is? Answer 1: ...<max number>...
Turn 2: The max number in the array is? Answer 2: ...<max number>...

ICL.ManyShot ManyShotICL
(Srivastava et al., 2023)

num_examples = ~150
Tasks = date, salient, tracking7
metric = Accuracy

Input: ICL Demo. 1 + Demo. 2 + ..... + Demo. 1000
Turn 1: <question>. Answer 1: ...<ans>...
Turn 2: <question>. Answer 2: ...<ans>...

En.Sum Ours Concatenated arXiv papers
ground_truth from GPT-4
num document = ~8
metric = ROUGE

Input: Doc 1 + Doc 2 + Doc 3 + ... + Doc 10.
Turn 1: Please summarize Doc 1. Answer 1: ... <summary of Doc 1>...
Turn 2: Please summarize Doc 3. Answer 2: ... <summary of Doc 3>...
Turn 3: Please summarize Doc 5. Answer 2: ... <summary of Doc 5>...

Mix.Sum+NIAH Ours num needle = 5
num document = ~8
metric = ROUGE + Acc

Input: Doc 1 + <Passkeys> + Doc 2 + ... + <Passkeys> + Doc 10.
Turn 1: Please summarize Doc 1. Answer 1: ...<summary of Doc 1>...
Turn 2: What is the needle? Answer 2: ..<needle>...

Mix.RepoQA+KV Ours num KV pairs = ~100
metric = Pass@1 + Acc

Input: <func 1> + KV pairs + <func 2> + ... + KV pairs + <func 100>
Turn 1: <description of func 1>. Answer 1: <func 1>
Turn 2: The value of the <key #1> is? Answer 2: ...<value #1>..

Global Information Processing In addition to retrieval, some long-context tasks require leveraging
and aggregating global context information, such as summarization, statistical tasks, and in-context
learning (ICL) (Yu et al., 2020; Srivastava et al., 2023; Hao et al., 2022). Our benchmark includes three
tasks to evaluate how well different long-context methods handle global information in multi-request.

(i) Many-shot ICL: We use datasets from Big-Bench Hard (Srivastava et al., 2023) to evaluate many-
shot ICL capabilities. This includes three sub-tasks: date understanding, salient error translation
detection, and tracking seven shuffled objects. Many-shot ICL contexts are shared across turns within
a test session, and all sub-tasks are presented as multiple-choice questions with four options.

(ii) Math.Find: We extended the math find task from InfiniteBench (Zhang et al., 2024a), expanding
it from finding only the maximum value to multiple statistical values. Given a large array, LLMs
must find the minimum or median values, requiring effective comprehension of global context,
comparisons, and statistical operations.

(iii) En.Sum: This task uses concatenated academic papers from arXiv as input, with document lengths
ranging from 8K to 20K tokens. Ground truth summaries, averaging 654 tokens, were generated
using GPT-4, which was prompted to produce concise one-sentence summaries for each document.
The target documents for each turn are evenly distributed across the full context length.

Multi-Tasking In real-world applications, LLMs often handle multiple tasks within a single session
using a shared input context. For example, users may request both summarization and content
retrieval simultaneously. To reflect this, SCBench includes two multi-tasking tasks:

(i) Mix.Sum+NIAH: This task combines document summarization with the Needle in a
Haystack (Kamradt, 2023) task using a shared input prompt. A random "needle" is evenly in-

7



Published as a conference paper at ICLR 2025

serted into the input of the En.Sum task (concatenated academic papers). The model alternates
between summarization and NIAH retrieval in each test session.

(ii) Mix.RepoQA+KV: This task combines the RepoQA task with KV retrieval using a shared input
prompt. Multiple KV pairs are evenly inserted into the RepoQA input (a long chunk of source code),
including 100 KV pairs with four target KVs and the rest as distractors. The model alternates between
RepoQA and KV retrieval in each test session.

3.2 LONG-CONTEXT SHARED CONTEXT MODES DETAILS

In addition to the carefully designed long-context tasks, we include two shared context modes—multi-
turn and multi-request—to better reflect real-world applications, as shown in Fig. 2b.

(i) Multi-turn Mode: A typical scenario in long-context applications includes long-context chat,
multi-step reasoning (e.g., Tree-of-Thought (Yao et al., 2024b)), and long-generation CoT. This
mode is relevant for long-context methods with KV cache reuse, as focus shifts across turns can lead
to information loss in the KV cache. Following Zheng et al. (2023a); Wang et al. (2024), we use
ground-truth answers instead of model-generated content as the context for follow-up turns.

(ii) Multi-request Mode: Context sharing spans sessions or users, such as collaborators on a shared
code repository. Models can encode shared context and reuse the KV cache across requests. Evaluat-
ing long-context methods is crucial, as some depend on the query for sparse encoding/decoding. For
instance, MInference and SnapKV use the input’s final segment (typically the query) to estimate the
sparse pattern, assessing their generalization without query access.

4 EXPERIMENTS & RESULTS

Models & Implementation Details We selected six open-source long-context LLMs: Llama-
3.1-8B/70B (Dubey et al., 2024), Qwen2.5-72B/32B (Team, 2024), Llama-3-8B-262K (Gradient,
2024), and GLM-4-9B-1M (GLM et al., 2024), along with two gated linear models: Codestal Mamba
7B (team, 2024) and Jamba-1.5-Mini (Lieber et al., 2024). This selection covers Transformer, SSMs,
and SSM-Attention Hybrid models, representing leading open-source long-context LLMs. For
stability, all experiments used greedy decoding in BFloat16 on four NVIDIA A100 GPUs. We
evaluated models via HuggingFace or vLLM with FlashAttention-2 (Dao, 2024) and leveraged
MInference (Jiang et al., 2024) to reduce GPU memory overhead. More details on these models and
infrastructure are in §D.1.

Long-Context Method Details We evaluated eight long-context solution categories on our bench-
mark: Gated Linear RNNs (e.g., Codestral-Mamba), SSM-Attention hybrids (e.g., Jamba), sparse
attention, KV cache dropping, prompt compression, KV cache quantization, retrieval, and loading,
as detailed in Table 1. All methods were tested on Transformer-based long-context LLMs, except
Codestral-Mamba and Jamba. We also report KV cache size, pre-filling and decoding complexity,
and whether efficient operations are applied (details in §2). More details are shown in §D.2.

Main Results Tables 4, 10, and Fig. 9 present the performance of various long-context methods
across tasks and shared context modes in different base LLMs. Key findings include: 1) In retrieval
tasks, most methods, except MInference, perform poorly, especially in exact retrieval tasks like string
matching. 2) Sparse attention outperforms sparse decoding as request rounds increase, with A-shape
showing the greatest improvement. Tri-shape, which adds dense bottom query tokens to A-shape,
enhances first-round performance but has little effect on later rounds. It generalizes well across
tasks, ranking second only to MInference. Our analysis indicates that Tri-shape improves first-turn
instruction-following, boosting overall performance, while A-shape disrupts instruction information,
causing random outputs (Table 17). 3) KV cache compression methods generally underperform in
shared scenarios, offering only minor benefits in the first round. 4) Prompt compression improves
global information tasks like many-shot ICL but significantly degrades retrieval-related performance.
5) SSM-Attention hybrids perform well in single-turn interactions but suffer accuracy drops in
multi-turn tasks, especially in RepoQA and Math. Gated Linear RNN models struggle in shared
context modes.
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Table 4: Average performance of various long-context methods across different LLMs in two shared
context modes on SCBench. For additional results on base models such as Llama-3.1-70B, Qwen2.5-
32B, and Llama-3-8B-262K, see Table 10 in §E. Here, τ denotes the target compression rate.

Methods τ
Multi-turn Mode Multi-request Mode

Retr.String Retr.Semantic Global Multi-task AVG. Retr.String Retr.Semantic Global Multi-task AVG.

LLaMA-3.1-8B 1 57.1 36.9 35.1 65.7 48.7 29.5 36.4 43.6 39.2 37.2
❶ A-shape 1/32 14.0 28.9 31.7 33.7 27.1 3.2 33.2 46.3 27.8 27.6
❶ Tri-shape 1/32 18.1 31.5 33.5 37.9 30.3 7.8 25.7 45.6 24.6 25.9
❶ MInference 1/32 39.1 38.5 34.4 57.8 42.5 28.9 35.6 50.1 30.9 36.4
❶ LLMLingua-2 1/3 5.7 25.3 32.3 49.6 28.2 3.9 24.4 41.2 22.8 23.1
❷ StreamingLLM 1/32 0.4 13.5 33.6 14.3 15.5 0.0 11.3 30.3 16.4 14.5
❷ SnapKV 1/32 6.1 18.4 37.9 21.1 20.9 0.3 14.2 35.7 10.7 15.2
❷ PyramidKV 1/32 6.3 18.1 37.1 22.6 21.0 0.3 15.1 34.7 11.0 15.3
❷ KIVI 1/8 12.0 34.3 31.0 50.7 32.0 7.6 30.1 33.1 28.4 24.8
❸ CacheBlend 1 56.7 39.4 35.3 65.6 49.3 27.6 35.8 36.2 39.5 34.8
❹ Quest 1/32 8.2 27.3 33.0 20.1 22.1 6.7 25.6 31.8 14.2 19.6
❹ RetrievalAttention 1/32 25.0 30.0 27.0 35.5 29.4 17.9 26.7 30.7 27.6 25.8

GLM-4-9B-1M 1 48.9 39.9 33.1 72.8 48.7 44.8 31.1 43.4 48.0 41.8
❶ A-shape 1/32 27.2 31.2 30.7 58.5 36.9 20.2 24.1 40.5 42.6 31.8
❶ Tri-shape 1/32 31.5 32.5 32.1 64.0 40.0 25.5 25.2 41.4 43.0 33.8
❶ MInference 1/32 38.2 37.2 31.8 70.8 44.5 34.1 29.0 43.4 48.3 38.7
❶ LLMLingua-2 1/3 5.8 6.8 29.3 24.5 16.6 1.5 14.8 38.5 24.8 19.9
❷ StreamingLLM 1/32 0.7 14.6 28.1 12.7 14.0 0.2 10.2 32.7 17.1 15.1
❷ SnapKV 1/32 18.1 18.7 33.1 34.0 26.0 0.9 10.1 37.5 24.0 18.1
❷ PyramidKV 1/32 18.1 23.9 30.8 34.9 26.9 0.6 4.9 39.8 21.1 16.6
❷ KIVI 1/8 26.5 33.7 23.8 51.2 33.8 2.5 20.3 39.5 43.5 26.5
❹ Quest 1/32 20.1 30.3 25.8 36.4 28.2 0.0 15.6 33.9 15.2 16.2

Qwen2.5-72B 1 51.5 44.4 38.9 77.0 52.9 31.1 46.8 53.0 52.4 45.8
❶ A-shape 1/32 24.0 34.9 36.7 58.0 38.4 15.2 35.5 47.7 43.1 35.4
❶ Tri-shape 1/32 25.7 36.6 37.7 63.8 40.9 18.6 38.3 48.5 44.9 37.6
❶ MInference 1/32 45.6 43.5 38.4 72.8 50.1 28.6 44.7 52.2 52.0 44.4
❶ LLMLingua-2 1/3 4.2 28.7 46.2 27.3 26.6 2.7 31.2 49.0 25.8 27.2
❷ StreamingLLM 1/32 0.7 16.2 40.2 18.7 18.9 0.0 4.2 4.4 0.0 2.2
❷ SnapKV 1/32 3.8 24.3 43.6 34.1 26.5 0.0 6.2 7.0 0.0 3.3
❷ PyramidKV 1/32 4.9 23.3 42.0 34.3 26.1 0.0 17.5 44.5 11.2 18.3
❷ KIVI 1/8 12.9 36.7 49.3 57.4 39.1 3.0 40.7 52.8 46.6 35.8
❹ Quest 1/32 5.2 28.3 41.9 31.5 26.7 1.2 24.8 42.1 15.2 20.8

❶ Jamba-1.5-Mini - 67.4 28.6 37.5 47.5 32.8 21.7 61.8 5.6 38.9 48.0
❶ Mamba-Codestral - 0.0 0.0 11 0.0 9.3 3.9 25.8 6.4 54.8 7.4

Q: The value of 
"oiCZd" is

Q: The value of 
"jPjIB" is …

Q: The value of 
"UFaHq" is …
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jPjIB
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(b) Attention Map of Retr.KV Across Turns

Figure 6: Attention visualization of Retr.KV for the shared context across multiple turns.

5 ANALYSIS

Sub-O(n) Memory is Almost Infeasible in Multi-Turn Decoding. Fig. 6b visualizes the attention
map for the Retr.KV task across turns. While important KVs remain stable within a turn, they vary
significantly between queries. This explains why O(k) KV cache compression methods perform well
in single-query tests but fail in follow-ups. However, the SSM-attention hybrid model Jamba shows
promise in reducing memory costs by using SSM layers while maintaining O(n) memory in select
attention layers for future lookups (Waleffe et al., 2024). Another promising approach is CPU-GPU
collaboration, where full O(n) memory is stored in CPU RAM, dynamically loading relevant KVs to
the GPU for sub-O(n) decoding (Liu et al., 2024b). Haris & Onak (2025) theoretically proved that
linear memory is required to preserve attention representational capacity, which aligns with it.

The Sparsity in Encoding and Decoding. We examined how sub-O(n) sparse decoding struggles
to maintain accuracy across multiple requests in shared context scenarios. Interestingly, sparse
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methods perform well in encoding if decoding remains dense. As shown in Fig. 3a, with dense
decoding (O(n) memory), Tri-Shape and A-Shape achieve strong multi-request performance. While
this phenomenon has been noted in single-turn tests (Sun et al., 2024c; Jiang et al., 2024), we are the
first to demonstrate its potential in shared context settings. Conversely, extending sparse patterns to
decoding severely degrades performance (e.g., StreamingLLM). Even with dense encoding, sparse
decoding methods, particularly KV cache compression, perform poorly in shared context scenarios.
This may stem from redundancy in encoding outputs, whereas decoding plays a crucial role in
generation (Deng et al., 2024). Sparse encoding can still capture key information due to redundant
input prompts, but sparse decoding weakens per-layer connectivity, limiting focus on critical tokens.
Since sparse decoding relies on proxy tokens for global access, it constrains the formation of complex
attention functions (Yun et al., 2020). We highlight the need for more advanced sparse patterns in
sparse attention. Dynamic sparse attention can improve connectivity and accelerate information
propagation (Jiang et al., 2024), better approximating full attention performance compared to static
sparse patterns (Fig. 9).

Compressible and Incompressible Tasks. While O(n) memory is crucial for multi-request sce-
narios with shared context, it can be relaxed for highly compressible inputs in simpler tasks. For
example, the Needle-in-the-Haystack benchmark (Kamradt, 2023) embeds key information (the
"needle") within repetitive noise (the "haystack"), allowing sub-O(n) methods to achieve reasonable
accuracy due to the high compressibility of noise. Similarly, summarization tasks involve com-
pressible contexts, enabling sub-O(n) methods to balance efficiency and performance. However,
for dynamic and complex inputs, sub-O(n) methods often fail to retain all necessary information,
leading to poor performance in challenging retrieval tasks. Tasks like Retr.KV and Retr.Prefix-Suffix,
which involve random and incompressible key-value pairs and strings, require models to fully utilize
their context window. In summary, while compressible tasks may overestimate a model’s capabilities,
sub-O(n) methods remain viable for simpler tasks due to their efficiency.

Table 5: Results of query-awareness long-context meth-
ods. w/ (first) and w/o (later) query.

LLaMA-3.1-8B Retr.String Retr.Semantic Global Multi-task

❷ SnapKV 0.0 / 0.0 19.0 / 9.7 17.9 / 14.6 5.1 / 0.0
❶ Tri-shape 12.1 / 7.8 31.4 / 25.7 31.1 / 45.6 28.0 / 24.6
❶ MInference 28.1 / 28.9 40.4 / 35.6 35.4 / 50.1 28.3 / 30.9

Sparse Methods without Query Aware-
ness. A key concern with long-context
methods in KV cache reuse scenarios is
their reliance on the query for compression
to enable efficient encoding or decoding.
However, in real-world applications, a sin-
gle context is often shared across multiple
queries, requiring these methods to operate without query access. This raises the question: Can query-
dependent long-context methods generalize effectively without it? Table 5 compares the performance
of three query-aware long-context methods with and without the query, highlighting performance
degradation in its absence (underlined). We found that both the KV cache compression method
SnapKV and the static sparse attention method Tri-Shape struggled to maintain accuracy without the
query. In contrast, the dynamic sparse attention method MInference exhibited stronger generalization,
likely due to its adaptive sparse patterns, particularly its diagonal connections in the attention map.

6 CONCLUSION

This paper addresses a key gap in evaluating long-context methods, which have traditionally focused
on single-turn interactions while overlooking shared long-context scenarios—common in real-world
LLM applications. To bridge this, we introduce SCBench, a comprehensive benchmark assessing
long-context methods with KV cache reuse across 12 tasks, covering string retrieval, semantic
retrieval, global information processing, and multi-tasking, evaluated in two shared-context modes.
Using our benchmark, we categorize long-context methods into four KV cache-centric stages:
generation, compression, retrieval, and loading. We evaluate eight method categories (e.g., gated
linear RNNs, hybrid models, sparse attention, KV cache dropping, quantization, retrieval, loading,
and prompt compression) on eight state-of-the-art LLMs, including Llama-3.1-8B/70B, Qwen2.5-
72B/32B, Llama-3-8B-262K, GLM-4-9B, Codestal Mamba, and Jamba-1.5. Our results reveal a clear
KV cache management trade-off: O(n) methods excel in multi-request scenarios, while sub-O(n)
methods perform well in single-turn but struggle with complex interactions. These findings highlight
the need for evaluating long-context methods in shared-context, multi-turn scenarios, offering a more
realistic benchmark and valuable insights for improving future long-context models and architectures.
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A RELATED WORKS

Prefix Caching (also known as KV cache reuse) optimizes time-to-first-token in LLM inference
frameworks, particularly for shared contexts like multi-turn conversations or chatbot sessions (Zheng
et al., 2024; Kwon et al., 2023; Gim et al., 2024). This technique is widely adopted by LLM
providers (Gemini, 2024; Claude, 2024; OpenAI, 2024b; Azure, 2024). Recent optimizations focus
on enhancing KV cache efficiency. PagedAttention (Kwon et al., 2023) reduces memory costs by
partitioning the KV cache into blocks with a lookup table. HydraGen (Juravsky et al., 2024) and
Cascade Inference (Ye et al., 2024) decouple attention computation for shared prefixes and unique
suffixes, supporting batched multi-query kernels. RadixAttention (Zheng et al., 2024) accelerates KV
lookups using a radix tree with O(k) complexity and is integrated into the vLLM framework (vLLM,
2024). RAGCache (Jin et al., 2024) caches KV tensors for retrieved documents in retrieval-augmented
generation, while CacheBlend (Yao et al., 2024a) improves cache utilization via partial recomputation.
Despite these advancements, no existing long-context benchmarks evaluate KV cache reuse scenarios.

Conversational and Multi-Turn Benchmarks While multi-turn benchmarks better reflect real-
world applications, many evaluations still focus on single-turn (Li et al., 2023a; Finch et al., 2023).
Benchmarks like MT-Bench (Zheng et al., 2023a), ShareGPT (Domeccleston, 2023), MINT (Wang
et al., 2024), MT-Bench-101 (Bai et al., 2024a), and MT-Eval (Kwan et al., 2024) assess conversational
abilities, instruction-following, and complex task-solving across turns. However, they primarily focus
on model consistency and information extraction rather than evaluating long-context inputs.

Long-Context Methods of LLMs Long-context inference faces two key bottlenecks: computa-
tional cost during pre-filling and memory cost during decoding (Fu, 2024). Pre-filling optimizations
include state space models (Gu & Dao, 2024; Gu et al., 2022), linear attention methods (Peng et al.,
2023; Sun et al., 2023), memory-based approaches (Munkhdalai et al., 2024), sparse attention (Jiang
et al., 2024; Zhu et al., 2024; Lai et al., 2025; Yuan et al., 2025; Lu et al., 2025), hybrid techniques
(Lieber et al., 2024; Ho et al., 2024; Ren et al., 2025; Fu et al., 2024; Xiao et al., 2025; Yang et al.,
2025), and prompt compression (Li et al., 2023b; Jiang et al., 2023; Pan et al., 2024). Decoding
optimizations focus on: 1) Attention KV reuse to reduce storage (Shazeer, 2019; Ainslie et al., 2023;
Sun et al., 2024c; Liu et al., 2024a; Nawrot et al., 2024); 2) Static KV compression (Xiao et al.,
2024; Han et al., 2024); 3) Dynamic KV compression, including cache discarding (Zhang et al.,
2024b; Ge et al., 2024; Liu et al., 2023; Li et al., 2024c) and offloading (Ribar et al., 2024; Tang
et al., 2024; Dai et al., 2024; Liu et al., 2024b; Chen et al., 2025; Sun et al., 2024a; Hooper et al.,
2024; Desai et al., 2024); 4) Hierarchical speculative decoding (Sun et al., 2024b). Most methods
are tested on single-turn benchmarks and employ query-conditioned lossy techniques, which may
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degrade performance in multi-turn scenarios with prefix caching. This limitation motivates the design
of SCBench, a benchmark that evaluates long-context solutions in shared context settings.

B COMPARED TO PRIOR LONG-CONTEXT BENCHMARK

We have compared SCBench against existing long-context benchmarks across long-context capability
assessed, request types considered, and implementation they adopted, as shown in Table 6.

Table 6: Comparison of Long-Context Benchmarks.

Long-Context Capability Request Type Implementation

Precise
Retrieval

Semantic
Retrieval

Global
Information

Multi-
Tasking

Single
Question

Multi-
Turn

Multi-
Request

KV Cache
Reuse

LongBench (Bai et al., 2024b) ✓ ✓ ✓
InfiniteBench (Zhang et al., 2024a) ✓ ✓ ✓ ✓
RULER (Hsieh et al., 2024) ✓ ✓ ✓ ✓
LongCTXBench (Yuan et al., 2024) ✓ ✓ ✓ ✓
HELMET (Yen et al., 2024) ✓ ✓ ✓ ✓
Michelangelo (Vodrahalli et al., 2024) ✓ ✓ ✓
SCBench ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

We also directly compare the testing results of long-context methods on prior benchmarks and
SCBench to show the unique insights our benchmark provides. We mainly compare two com-
mon long-context capability: summarization (as shown in Table 7), and retrieval (as shown in
8). The summarization sub-tasks we used is En.Sum for InfiniteBench (Zhang et al., 2024a), and
gov-report for LongBench (Bai et al., 2024b). The retrieval sub-tasks we used is Retr.KV for
InfiniteBench (Zhang et al., 2024a), and Passage-retrieval for LongBench (Bai et al., 2024b). In addi-
tion, LongCTXBench (Yuan et al., 2024) also analyzes the performance boundaries of long-context
efficient methods from a KV-cache-centric perspective. However, it does not consider multi-request
scenarios and only focuses on the KV Cache Generation and Compression stages.

Table 7: Comparing the summarization capability of efficient long-context methods on prior bench-
marks and our SCBench.

Prior Benchmarks SCBench

Model InfiniteBench LongBench Multi
Request Turn-1 Turn-2 Turn-3 Turn-4 Turn-5

Llama-3.1-8B-Inst 28.5 36.6 38.3 44.2 42.1 35.8 37.6 42.3
A-Shape 24.5 33.5 28.8 26.1 30.8 33.8 40.8 40.4
Tri-Shape 27.4 33.9 30.2 32.1 30.0 34.0 41.0 40.3
Minference 28.9 33.9 36.7 40.6 36.1 39.7 43.5 43.7
StreamingLLM 27.3 32.0 30.2 29.4 26.1 27.7 27.3 26.9
SnapKV 28.3 33.2 29.9 36.2 29.4 28.6 28.1 31.0
LLMLingua 23.1 32.0 30.1 32.5 22.5 26.6 25.7 26.6

Table 8: Comparing the retrieval capability of efficient long-context methods on prior benchmarks
and our SCBench.

Prior Benchmarks SCBench

Model InfiniteBench LongBench Multi
Request Turn-1 Turn-2 Turn-3 Turn-4 Turn-5

Llama-3.1-8B-Inst 57 100 56 62 59 68 66 70
A-Shape 0 42 3 0 12 22 28 33
Tri-Shape 21 100 5 14 19 25 32 38
Minference 33 100 14 31 35 46 56 50
StreamingLLM 0 84 0 2 1 0 0 0
SnapKV 4 100 0 0 0 0 0 0
LLMLingua 0 90 0 0 1 2 0 0

We found SCBench can better identify the weakness of long-context methods under the KV cache
reuse scenarios, such as the general incapability of KV cache compression methods on multi-request
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Figure 7: Hyper-parameters analysis: averaged performance of efficient long-context methods with
different computing budgets under the multi-turn mode of SCBench. The input length is 128K,
meaning that 4K, 8K, 16K, 32K, and 64K correspond to sparsity budgets of 1/32, 1/16, 1/8, 1/4, and
1/2, respectively.

Figure 8: Hyper-parameters analysis: averaged performance of efficient long-context methods with
different computing budgets under the multi-request mode of SCBench. The input length is 128K,
meaning that 4K, 8K, 16K, 32K, and 64K correspond to sparsity budgets of 1/32, 1/16, 1/8, 1/4, and
1/2, respectively.

mode and follow-up queries in the multi-turn mode, as well as the increasing accuracy of sparse
attention under multi-turn mode.

C HYPER-PARAMETERS OF EFFICIENT LONG-CONTEXT METHODS

We conduct extensive experiments with various computing budgets for the efficient long-context
methods we covered. The results are shown in Figure 7 and Figure 8 for the multi-turn mode and
multi-request mode respectively.

From the results, we can derive the following insights: 1) Most methods show minimal perfor-
mance degradation at a 1/2 budget (e.g., A-shape and Tri-shape drop by 5-6 points, SnapKV drops
by 11 points). However, as sparsity increases, performance declines significantly. For example,
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StreamingLLM and SnapKV drop by 26 and 19 points, respectively, under a 1/4 budget. 2) More
accurate sparse methods can maintain performance even under higher sparsity. For instance, MInfer-
ence achieves performance at a 1/32 budget comparable to A-shape and Tri-shape at a 1/4 budget. 3)
While some methods exhibit similar performance in single-turn scenarios, they diverge significantly
in multi-turn and multi-request scenarios. For example, SnapKV outperforms StreamingLLM in
turn-1 but performs significantly worse in turn-2. In some tasks, changing the budget has little
impact on turn-1 performance but substantially affects turn-2 and subsequent turns, such as in Long
Document QA tasks and summarization.

D EXPERIMENT DETAILS

D.1 LONG-CONTEXT METHODS DETAILS

This section will introduce the long-context methods (as shown in Table 1) that involved in our paper.

State Space Models (SSMs) are powerful models often used for modeling dynamic systems,
particularly in time series analysis, control theory, and machine learning. As language are naturally
time series data, recent advancements have integrated SSMs into language modeling architectures,
showcasing their potential as alternatives to traditional models like RNNs and Transformers. Due to
their linear complexity, they are especially suitable for long sequence tasks. For instance, models
such as S4 (Hasani et al., 2023) and Mamba (Gu & Dao, 2024) have demonstrated superior efficiency
in handling sequential data with reduced computational complexity compared to their predecessors
and comparable accuracy in tasks such as language modeling. However, SSMs were also criticized
for their reduced memorization capability and their limited capability in copy-pasting (Jelassi et al.,
2024).

Mamba-Attention Hybrid Architecture interleaves blocks of Transformers and Mamba layers,
aiming to obtain the benefits of both architecture, i.e., the expressive power of Transformer and
the linear complexity of Mamba layers. Jamba (Lieber et al., 2024) and Samba (Ren et al., 2025)
are representative efforts on this direction. Waleffe et al. (2024) also highlights the potential of
such hybrid architectures and found only a few number of attention layers can lead to significant
performance increase compared to pure SSMs models.

Sparse Attention is extensively studied for long sequence processing, including image synthesis
and multi documents question answering. We test three sparse attention approach in our paper:
A-shape, Tri-shape, and MInference. In A-shape attention, each token is only allowed in to attend to
initial tokens and local tokens, resulting a A-shape on its attention map (Xiao et al., 2024). Tri-shape
attention is a variant of A-shape method, we introduced in our paper, where we add a dense attention
space at the bottom of the triangle A-shape attention matrix. This is based on the promising results of
sparse encoding with dense decoding, where the dense space we added is a natural extrapolate of the
dense decoding idea. MInference (Jiang et al., 2024) is the state-of-the-art dynamic sparse attention
approach where the exact sparse pattern are dynamically built on-the-fly to better approximate full
attention operation.

KV Cache Compression is a series of studies that attempt to solve the linearly growing memory
(often referred as KV Cache) cost in LLMs inference. For example, StreamingLLM (Xiao et al.,
2024) use a constant size of KV Cache in their decoding steps, where only the state of initial and
local tokens are preserved, and the rest part of KV Caches are evicted from the memory. SnapKV (Li
et al., 2024c) introduces the concept of the observation window. It selects the top-K KVs that are
extensively attended to in the observation window, and removes other KVs from the Cache. This
method was reported to performance well in simple Neeld-in-A-Haysatck tasks and many other
natural language tasks.

KV Cache Quantization aims to reduce the memory footprint of KV cache via quantization.
KIVI (Liu et al., 2024e) employed a per-channel quantization for the Key tensor, and a per-token
quantization for Value tensor. In our evaluation, we use a 2 bit algorithms with group size of 32 an
residual length of 32.
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KV Cache Retrieval indicates the operation to retrieve pre-cached KV cache and reuse them for
incoming requests. Most of the frameworks employ an exact match algorithm, i.e., only retrieve and
reuse the KV cache is the the shared context match exactly. However, there also exists approach
such as CacheBlend (Yao et al., 2024a) that retrieve KV cache once the input is similar enough
semantically with one former request from the cache base.

KV Cache Loading Due to the huge memory result from the long-context KV cache, researchers
have proposed novel approaches that make use of the extensive CPU RAM and load only partial
of the KV cache to GPU per-token for more efficient decoding. For example, Quest (Tang et al.,
2024) estimates the importance of Keys in a page granularity, and only the topK important Keys
and corresponding Values are loaded to CUDA HBM for the attention computation. Retrieval
Attention (Liu et al., 2024b) constructs vector database on CPU RAM to find the topK critical Keys
efficiently. In additional, it tailored a pipeline for decoding to hide the memory movement from CPUs
to GPUs.

Prompt Compression aims to compress the prompt to obtain a more compact representation of
the input before send it to the LLMs (Li et al., 2023b; Jiang et al., 2023). LLMLingua-2 (Pan et al.,
2024) is a supervised model that assess the importance of individual token as a token classification
task. It was shown in provide up to 20x compression on many tasks, with only minimal performance
sacrifice.

D.2 ADDITIONAL IMPLEMENTATION DETAILS

Table 9: Configurations of long-context methods in SCBench.

Methods Configurations
SSMs Mamba-Codestral-7B-v0.1 chunk size: 256, conv kernel: 4, expand: 2, head dim: 64,

hidden size: 4096, intermediate size: 8192, n groups: 8,
norm before gate: true, num heads: 128, num hidden layers: 64,
state size: 128

Hybrid Models AI21-Jamba-1.5-Large num hidden layers: 72, hidden size: 8192, intermediate size: 24576,
num attention heads: 64, num key value heads: 8, mamba d state: 16,
mamba d conv: 4, mamba expand: 2, mamba conv bias: true,
num experts: 16, num experts per tok: 2, attention:mamba = 1:7,
number layers per block: 8

Sparse Attention
Tri-Shape num local: 4096, num initial: 128, num dense rows: 128

A-Shape num local: 4096, num initial: 128

MInference Pattern search data: KV retrieval
a-shape: 1024/4096
vertical-slash: 30/2048, 100/1800, 500/1500, 3000/200
block-sparse: 100 blocks

KV Cache
Compression

StreamingLLM num local: 4096, num initial: 128

PyramidKV window size: 32, max capacity prompt: 4096, kernel size: 5,
pooling: avgpool

SnapKV window size: 32, max capacity prompt: 4096, kernel size: 5,
pooling: avgpool

KV Cache
Quantization

KIVI bit size: 2; group size: 32
residual length: 32

KV Cache
Retrieval

CacheBlend recompute ratio: 15%,
chunk size: 512

KV Cache
Loading

Quest chunk size: 16; token budget: 4096

RetrievalAttention topk: 2000; index type: IVF index

Prompt Compression LLMLingua-2 compression rate: 0.333

In Table 9, we report the configuration we used for the long-context methods we involved in our
experiments. For the Mamba-Codestral-7B-v0.1 model and AI21-Jamba-1.5-Large, we report the
architecture details of other models. For SSMs models, the state size and number of layers are crucial
properties, as all previous information are compressed and saved in this fixed size of states. Moreover,
the number of groups and number heads are also important as they implement channel mixing which
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Table 10: The average results of various long-context methods on Llama-3.1-70B, Qwen2.5-32B,
and Llama-3-8B-262K with two shared context modes on SCBench.

Methods Multi-turn Mode Multi-request Mode
Retr.String Retr.Semantic Global Multi-task AVG. Retr.String Retr.Semantic Global Multi-task AVG.

Llama-3-8B-262K 29.2 33.3 26.7 63.5 38.2 17.1 30.0 25.5 34.1 26.7
A-shape 9.9 27.2 25.6 55.6 29.6 7.8 27.3 22.0 35.2 23.1
Tri-shape 11.1 29.6 26.3 60.6 31.9 8.2 22.4 22.5 35.9 22.3
MInference 17.5 33.5 26.7 66.0 36.2 8.3 32.1 25.6 40.0 26.5
StreamingLLM 0.5 12.6 22.6 10.1 11.4 0 1.0 22.6 0.1 5.9
SnapKV 0.5 4.2 21.9 0.5 6.7 0.0 1.1 24.5 0.1 6.4
LLMLingua-2 3.4 21.0 24.5 23.0 18.0 3.9 24.4 42.4 22.6 23.3

Llama-3.1-70B 20.9 45.4 45.7 70.3 45.6 3.1 47.9 48.1 47.8 36.7
A-shape 4.8 34.7 40.5 26.9 26.7 3.2 35.7 46.3 33.8 29.7
Tri-shape 6.7 37.1 42.0 31.1 29.2 3.8 40.5 46.5 34.2 31.2
MInference 19.5 42.5 43.1 65.6 42.4 7.3 43.7 48.2 46.1 36.3
StreamingLLM 0.2 6.4 22.8 3.7 8.3 0.0 10.9 31.2 0.0 10.5
SnapKV 0.7 3.7 25.0 1.5 7.7 0.1 14.0 36.9 0.0 12.8
LLMLingua-2 6.7 38.8 38.7 31.0 28.8 4.5 32.0 38.6 26.7 25.5

Qwen2.5-32B 46.8 42.6 40.6 73.4 50.9 25.0 44.5 55.3 49.9 43.7
A-shape 15.0 33.8 38.7 59.5 36.7 9.6 34.1 53.7 38.6 34.0
Tri-shape 18.5 34.6 40.4 64.0 39.4 11.7 37.4 56.4 41.1 36.7
MInference 35.4 39.9 40.8 69.9 46.5 17.7 42.7 56.4 48.6 41.4
StreamingLLM 0.2 4.3 8.4 6.3 4.8 0.0 1.8 7.4 0.0 2.3
SnapKV 3.3 3.9 27.1 1.5 9.0 0.0 4.9 9.8 0.0 3.7
LLMLingua-2 3.4 28.2 38.9 26.9 24.3 2.7 26.6 36.5 22.4 22.1

shown to be critical for the expressive power. For Mamba-Attention hybrid architecture, the present
the ratio of attention layers and mamba layers. As the Jamba model is also a MoE, we also represent
the number of experts and the number of experts activated per token.

In Sparse Attention, we report the the local size and initial size of tokens that Tri-shape and A-shape
can attend to. For Tri-shape, we add a dense space of size 64 at the bottom of the attention matrix.
MInference is a dynamic sparse attention, where the exact sparse patterns are built conditioned on the
inputs. According to Jiang et al. (2024), we search the sparse patterns for attention heads with the
task of KV retrieval, and we also report the search space (i.e., the distribution of sparse index) for the
exact pattern. In KV Cache compression, we report the composition of KV used in StreamingLLM.
The observation window and max capacity of KV Cache size, the kernel size used to identify top-k
KVs are reported in the Table. For KV cache quantization, retrieval and loading, we use the default
hyper-parameters in their original implementation and reported them in Table 9.

We use tensor parallel when testing models larger than 7B parameters, with 8*A100 40GB machines
or 4*H100 80GB machines. Specifically, we use our customized A-shape, Tri-shape, and MInference
kernels in sparse attention testing, utilizing PIT (Zheng et al., 2023b) with FlashAttention (Dao, 2024)
implemented on Triton (Tillet et al., 2019). vLLM-0.52 is used as the inference framework in our
testing, and the flash_attn-2.5 kernels were overwritten with our own kernels. For KV Cache
compression, our implementation is based on the huggingface implementation of SinkCache for
StreamingLLM3, and official implementation of 4. For SSMs and Mamba-Attention Hybrid models,
we use the triton version of mamba5 kernels together with causal-conv1d-1.46. For prompt
compression, we use the official implementation of LLMLinugua-27 to compressed the prompt first
then use vLLM for further inference.

E ADDITIONAL EXPERIMENT RESULTS

The results for Llama-3.1-70B, Qwen2.5-32B, and Llama-3-8B-262K are shown in Table 10.

2https://github.com/vllm-project/vllm
3https://huggingface.co/docs/transformers/main/en/kv_cache#sink-cache
4https://github.com/FasterDecoding/SnapKV
5https://github.com/state-spaces/mamba
6https://github.com/Dao-AILab/causal-conv1d
7https://github.com/microsoft/LLMLingua
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(b) Semantic Retrieval

Figure 9: Performance of different long-context methods across various tasks and turns. The results
for multi-tasking tasks are shown in Fig. 10, and the results are averaged across all tested base LLMs.
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(b) Multi-task

Figure 10: Performance of different long-context methods across various turns in Global Information
and Multi-tasking tasks on SCBench. The results are averaged across all tested base LLMs.

We can found similar the following key insights from Table 10. MInference consistently outperforms
other approaches across tasks, particularly in multi-turn mode, demonstrating strong results in both
retrieval and multi-task scenarios. Sparse attention methods like A-shape and Tri-shape show promise,
with Tri-shape excelling in multi-request mode due to its integration of bottom query tokens, which
boosts first-turn performance and improves instruction-following. However, Tri-shape’s advantage
decreases slightly in multi-task settings, although it still ranks second overall. KV cache compression
methods underperform in shared contexts, offering minimal gains, especially in retrieval and global
information tasks, with SnapKV showing particularly poor results. Prompt compression methods
perform well in tasks requiring global context, such as many-shot ICL, but struggle significantly
in retrieval tasks, leading to performance degradation. Meanwhile, StreamingLLM and SnapKV
consistently deliver the weakest results, particularly in multi-turn mode, indicating they are not well-
suited for long-context tasks with repeated requests. Overall, methods like Tri-shape and MInference,
which combine sparse attention and efficient token management, demonstrate the most consistent
improvements, while compression-focused approaches show limited effectiveness in more dynamic
or retrieval-heavy tasks.
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Table 11: The results breakdown of SCBench for all sub-tasks in multi-turn mode.

Methods Retr.KV Retr.PS Math.Find RepoQA En.QA Zh.QA En.MC ICL EN.Sum Math Mix.Sum
+NIAH

Mix.RepoQA
+KV

GLM-4-1M 49.0 39.2 58.6 60.5 33.6 15.2 50.2 47.0 37.8 14.4 67.4 78.2
MInference 51.2 28.6 34.8 53.4 33.3 15.0 49.3 47.0 37.7 10.6 68.3 73.4
A-shape 25.2 42.4 14.0 42.3 28.1 14.1 42.4 49.6 32.9 9.6 65.3 51.8
Tri-shape 32.2 47.8 14.4 44.8 28.1 15.6 44.1 50.0 34.1 12.2 64.6 63.4
StreamingLLM 0.0 0.0 0.0 0.2 5.2 2.0 32.2 70.0 5.8 3.0 12.7 0.0
SnapKV 0.2 0.0 26.0 0.5 13.9 2.4 34.2 70.0 6.5 7.2 41.6 0.9
LLMLingua-2 0.0 1.6 15.8 2.0 5.2 3.5 20.1 45.6 32.8 9.4 48.2 0.9

Llama-3.1-8B 80.8 42.8 47.6 40.4 29.3 21.1 57.0 42.6 40.7 22.0 60.7 70.7
MInference 70.8 15.6 30.8 48.2 30.1 22.5 57.9 49.3 39.8 14.2 56.3 59.3
A-shape 17.8 5.6 18.5 34.3 21.2 17.1 46.2 48.1 33.4 13.4 50.8 16.6
Tri-shape 24.2 7.0 23.2 34.5 24.6 20.6 50.5 48.1 35.2 17.2 50.8 25.0
StreamingLLM 0.2 0.0 0.1 0.5 8.7 10.5 39.1 68.9 27.2 9.6 28.9 0.5
SnapKV 0.0 0.0 0.0 0.0 1.7 1.9 17.7 42.6 3.4 4.2 4.1 0.0
LLMLingua-2 0.0 1.6 15.4 2.0 23.5 23.0 61.5 50.4 35.4 11.2 49.6 49.6

Llama-3-8B 24.0 15.8 47.8 41.8 29.0 13.8 53.1 30.7 37.5 11.8 67.0 60.0
MInference 16.0 3.6 32.8 42.5 30.1 12.3 53.5 32.6 37.0 10.4 68.6 63.4
A-shape 2.2 2.0 25.4 32.3 21.7 12.7 46.6 32.2 32.8 11.8 64.8 46.4
Tri-shape 3.4 3.8 26.2 33.4 24.1 12.8 48.3 33.3 32.7 12.8 65.3 55.9
StreamingLLM 0.8 0.0 0.7 0.0 9.6 1.3 48.8 58.9 4.2 4.6 20.1 0.0
SnapKV 0.0 0.0 1.4 0.0 1.2 1.3 17.7 62.2 2.1 1.4 0.9 0.0
LLMLingua-2 0.0 0.4 9.8 1.1 21.2 13.4 57.2 34.8 31.6 7.2 45.9 0.2

Llama-3.1-70B 27.2 1.6 33.8 67.0 35.4 20.7 62.2 58.5 41.2 37.4 62.1 78.4
MInference 28.0 1.0 29.4 60.2 33.0 23.3 57.4 54.4 39.8 35.2 52.1 77.0
A-shape 1.2 0.0 13.2 50.0 27.0 18.0 46.7 52.2 36.5 32.8 35.3 18.6
Tri-shape 2.8 0.2 17.1 50.5 28.0 18.7 55.5 55.6 37.0 33.4 38.3 23.9
StreamingLLM 0.0 0.0 0.5 0.4 6.0 0.8 23.0 61.1 3.6 3.8 7.0 0.3
SnapKV 0.0 0.0 2.2 0.0 1.3 1.5 14.9 64.5 1.9 8.8 2.2 0.7
LLMLingua-2 0.0 4.2 16.0 31.6 33.6 22.5 74.7 56.7 37.1 22.2 1.4 60.6

Qwen2.5-72B 40.8 62.2 51.5 65.5 40.0 10.9 65.7 66.7 37.9 12.2 71.9 82.0
MInference 43.4 46.4 47.0 59.3 41.2 11.4 67.0 64.1 38.2 12.8 72.0 73.6
A-shape 17.4 32.0 22.7 45.9 31.9 12.8 52.7 64.4 33.7 12.0 69.4 46.6
Tri-shape 21.0 31.4 24.8 48.0 32.8 12.6 57.5 64.8 35.8 12.4 70.0 57.5
StreamingLLM 0.0 0.0 1.2 0.2 3.8 0.5 63.9 19.3 3.9 0.0 14.5 0.5
SnapKV 0.0 0.0 3.4 0.0 0.3 1.0 70.8 34.2 2.0 0.0 2.7 0.5
LLMLingua-2 0.0 3.2 9.3 4.3 32.5 14.7 73.8 72.2 33.1 33.2 53.8 0.9

Qwen2.5-32B 56.4 39.4 44.7 64.5 37.1 6.0 68.3 75.9 35.5 10.4 69.8 77.0
MInference 27.8 27.8 50.6 57.5 34.5 8.0 65.3 76.3 35.8 10.4 70.7 69.1
A-shape 14.4 13.6 16.9 46.4 30.1 4.6 54.1 76.7 30.6 8.8 67.2 51.8
Tri-shape 18.2 16.6 20.8 47.3 30.1 6.8 59.6 76.3 33.8 11.2 68.2 59.8
StreamingLLM 0.0 0.0 0.7 0.4 3.3 0.0 17.0 21.1 3.6 0.6 12.5 0.1
SnapKV 0.0 0.0 10.0 0.0 0.3 0.8 18.1 37.4 2.3 41.6 2.7 0.4
LLMLingua-2 0.0 4.0 6.2 6.7 31.4 15.9 66.7 66.7 29.5 20.4 52.7 1.1

Jamba-1.5-Mini 67.4 28.6 37.5 47.5 32.8 21.7 61.8 38.9 48.0 5.6 71.0 71.6
Codestral-Mamba 0.0 0.0 0.4 0.0 5.7 5.1 21.8 33.3 18.0 4.0 12.4 0.0

In Table 11 showcases the performance of various methods across a range of tasks, including retrieval
(Retr.KV, Retr.PS), QA (En.QA, Zh.QA), summarization (En.Sum), code understanding and function
retrieval (RepoQA), math, and in-context learning (ICL). Each method demonstrates varying strengths
and weaknesses across these domains.

Retrieval tasks (Retr.KV, Retr.PS), which test exact information retrieval ability, are dominated
by methods such as GLM-4-1M and MInference. GLM-4-1M consistently performs well in these
tasks, with Retr.KV at 49.0 and Retr.PS at 39.2. MInference also demonstrates strong performance in
retrieval, particularly with a score of 51.2 in Retr.KV. However, methods like StreamingLLM and
SnapKV show almost no retrieval capability, with near-zero scores, indicating poor handling of exact
information recall.

For natural language tasks like QA (En.QA, Zh.QA) and summarization (EN.Sum), we see a
different pattern. GLM-4-1M and Qwen2 models excel in these areas, particularly in English and
Chinese QA tasks. For example, Qwen2-72B achieves scores of 40.0 in En.QA and 66.7 in EN.Sum,
indicating strong natural language processing abilities. MInference also performs well but is slightly
behind GLM-4-1M and Qwen2, with comparable scores. Interestingly, methods like Tri-shape and
A-shape show moderate performance in QA but underperform in summarization tasks compared to
the top performers.
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In code understanding tasks (RepoQA), GLM-4-1M leads with a score of 60.5, followed by
Qwen2-72B at 65.5, demonstrating strong capabilities in handling structured language and retrieving
functional information. Methods like MInference (53.4) and Tri-shape (44.8) perform moderately
well, while StreamingLLM and SnapKV are almost ineffective, scoring near zero. This suggests that
StreamingLLM and SnapKV struggle with code-related tasks requiring structured reasoning.

In math tasks, MInference and GLM-4-1M are the top performers, with scores of 34.8 and 58.6,
respectively, showing proficiency in handling mathematical reasoning. However, methods like Tri-
shape and A-shape struggle in math tasks, indicating that these sparse attention mechanisms may not
generalize well to numerical reasoning. StreamingLLM and SnapKV again show little to no ability in
math, with minimal scores across the board.

Finally, in in-context learning tasks, where the model’s ability to generalize and adapt is tested,
GLM-4-1M and Qwen2 models stand out. Qwen2-72B achieves a high score of 66.7, while GLM-4-
1M also scores well at 47.0, indicating strong adaptability. MInference, Tri-shape, and A-shape show
moderate ICL performance, but methods like SnapKV and LLMLingua-2 lag significantly, reflecting
their limited generalization capabilities in ICL.

Overall, GLM-4-1M and MInference consistently perform well across most tasks, especially in
retrieval, QA, and ICL, with the Qwen2 models also excelling in natural language processing and
in-context learning. Sparse attention methods like A-shape and Tri-shape show moderate performance
in specific areas, while methods like StreamingLLM and SnapKV consistently underperform across
the board, particularly in tasks requiring retrieval and code understanding.

In Table 12, we present the results breakdown for the multi-request mode. Comparing the performance
across multi-turn and multi-request modes, we found the following key differences, particularly in
retrieval tasks. In multi-turn mode, methods like GLM-4-1M and MInference demonstrate strong
retrieval capabilities, with high scores in Ret.KV (49.0 and 51.2, respectively). However, in multi-
request mode, these methods show varied results, with MInference dropping to 46.8 in Ret.KV and
GLM-4-1M slightly improving to 50.6. Sparse attention methods like A-shape and Tri-shape perform
relatively poorly in both modes but exhibit more stable results across multiple requests. Notably,
the performance of MInference in math tasks significantly improves in multi-request mode (from
34.8 to 51.0), indicating its ability to adapt better over repeated queries. In contrast, methods such as
StreamingLLM and SnapKV remain consistently weak across both modes, particularly in retrieval
and math tasks, showing near-zero scores, reflecting their inability to handle dynamic multi-request
contexts effectively. Overall, methods like MInference and GLM-4-1M maintain their dominance
across both modes, but their adaptability in multi-request mode is crucial for retrieval-heavy and
computational tasks. Note that we did not run

F ERROR PROPAGATION USING GENERATION AS CONTEXT.

Table 13: Results when disabling golden answer as con-
text. The later number indicate the gap compared to golden-
answer-as-context.

Turn 1 Turn 2 Turn 3 Turn 4 Turn 5

Llama-3.1-8B 32.4 /-2 47.7 /+1 36.8 /-13 41.6 /-6 29.8 /-21
A-shape 16.5 /-1 29.8 /+2 23.1 /-7 15.8 /-12 22.0 /-9
Tri-shape 27.5 /+2 34.7 /+2 24.7 /-7 17.1 /-13 19.3 /-13
StreamingLLM 14.8 /-6 7.00 /-12 5.60 /-8 2.80 /-11 5.60 /-7
MInference 34.5 /+0 31.7 /-8 26.2 /-19 25.2 /-18 25.4 /-19

Following Zheng et al. (2023a); Wang
et al. (2024), in our multi-turn testing,
we use the golden answer instead of
the model generation as the context
for the next query. This prevents po-
tential interference from misleading
generations in subsequent turns. How-
ever, this approach naturally provides
an in-context learning environment
where the model can learn from pre-
vious turns in answering later queries.
Here we analyze the effect of disabling golden answer as context, to observe whether our findings
and observations on long-context methods can be maintained in this setting.

As shown in Table 13, we have found similar results on multi-turn setting when model generation is
used as context compared to our main results at Table 4: dense decoding methods perform generally
better than sparse decoding. And more robust and dynamic sparse patterns achieve better metrics to
static sparse methods. But using model generation as context does demonstrate lower overall accuracy

27



Published as a conference paper at ICLR 2025

Table 12: The results breakdown of SCBench for all sub-tasks in multi-requests mode.

Methods Ret.KV Ret.PS Ret.MH RepoQA En.QA Zh.QA EN.MC ICL EN.Sum Math.Find Mix.Sum
+NIAH

Mix.RepoQA
+KV

GLM-4-1M 50.6 44.6 39.2 54.3 32.8 5.0 32.3 70.4 38.5 21.2 66.2 29.8
MInference 46.8 40.2 15.4 45.0 30.5 5.0 35.4 67.8 38.9 23.5 66.9 29.8
A-shape 26.2 25.8 8.6 39.5 24.5 4.5 27.9 69.3 31.5 20.7 63.1 22.0
Tri-shape 34.0 30.4 12.0 40.5 25.1 5.3 30.1 68.1 34.7 21.4 63.0 23.0
StreamingLLM 0.0 0.0 0.0 0.0 7.7 0.3 3.8 56.7 0.1 2.9 0.0 0.0
SnapKV 0.0 0.0 0.0 0.0 8.9 0.9 4.0 63.3 0.1 5.9 0.0 0.0
LLMLingua-2 0.0 1.6 3.0 1.8 24.2 4.7 28.4 70.7 33.1 11.6 48.6 0.9

Llama-3.1-8B 56.2 16.8 15.5 45.0 25.1 9.8 65.9 54.1 38.3 38.4 55.4 23.0
MInference 48.6 15.6 22.5 43.2 23.6 12.5 62.9 62.6 36.6 51.0 45.9 15.9
A-shape 0.2 0.0 9.3 33.9 25.6 13.7 59.8 59.6 30.1 49.2 43.6 11.9
Tri-shape 4.0 0.2 19.2 20.3 17.9 10.1 54.6 60.4 29.2 47.2 38.2 10.9
StreamingLLM 0.2 0.4 0.4 0.0 7.6 5.9 16.4 45.2 6.9 2.7 0.0 0.0
SnapKV 0.2 0.4 0.4 0.0 14.3 6.1 18.2 32.3 7.3 4.3 0.0 0.0
LLMLingua-2 0.0 1.6 10.1 1.6 19.9 14.5 61.6 73.0 33.7 17.0 42.9 2.8

Llama-3-8B 11.8 4.0 35.6 22.7 28.2 8.1 61.1 33.0 36.8 6.9 53.5 14.8
MInference 6.0 0.6 18.3 31.4 26.5 8.6 62.0 33.0 36.4 7.3 60.4 19.5
A-shape 0.6 0.2 22.5 25.5 22.2 8.5 52.8 28.9 31.1 6.2 55.4 15.0
Tri-shape 1.2 0.2 23.2 26.1 23.6 9.2 30.7 30.7 31.7 5.2 56.8 15.0
StreamingLLM 0.0 0.0 0.0 0.0 3.8 0.1 0.0 67.8 0.1 0.0 0.1 0.0
SnapKV 0.0 0.0 0.0 0.0 4.3 0.1 0.0 73.3 0.2 0.0 0.0 0.2
LLMLingua-2 0.0 1.6 10.1 1.6 19.9 14.5 61.6 76.7 33.7 17.0 42.9 2.3

Llama-3.1-70B 2.4 0.0 7.0 62.5 32.2 18.3 78.6 67.4 38.4 38.4 62.2 33.4
MInference 3.4 0.0 18.5 57.3 30.4 16.5 70.5 59.4 34.3 51.0 61.1 31.2
A-shape 0.2 0.0 9.3 43.9 25.6 13.7 59.8 59.6 30.1 49.2 45.7 21.8
Tri-shape 0.2 0.0 11.2 44.5 28.5 20.1 69.0 58.9 33.3 47.2 44.7 23.6
StreamingLLM 0.0 0.0 0.0 0.0 9.8 8.4 25.3 66.3 18.7 8.6 0.0 0.0
SnapKV 0.2 0.0 0.0 0.0 11.7 7.0 37.4 76.7 19.9 14.2 0.0 0.0
LLMLingua-2 0.0 2.8 10.7 6.7 32.2 17.1 72.1 50.0 35.0 30.8 50.7 2.8

Qwen2.5-72B 37.8 45.2 10.2 64.3 37.0 3.8 82.1 74.1 41.6 43.2 71.1 33.6
MInference 40.4 28.6 16.9 56.4 38.5 4.1 79.9 68.5 42.2 45.8 71.3 32.7
A-shape 13.2 22.0 10.4 42.7 29.3 3.7 66.4 67.8 38.1 37.3 68.0 18.2
Tri-shape 17.2 25.4 13.1 44.1 31.6 3.8 73.8 68.1 39.5 37.9 69.2 20.7
StreamingLLM 0.0 0.0 0.0 0.5 5.4 1.6 9.4 8.2 5.1 0.0 0.0 0.0
SnapKV 0.0 0.0 0.0 2.7 11.0 1.1 10.1 13.7 7.2 0.0 0.0 0.0
LLMLingua-2 0.0 2.8 5.3 6.7 35.1 3.8 79.2 76.7 36.2 34.2 48.9 2.8

Qwen2.5-32B 27.2 23.0 24.9 60.2 35.6 3.0 79.0 84.1 37.3 44.4 68.7 31.1
MInference 27.8 12.8 12.6 55.0 34.2 3.0 78.6 85.2 37.8 46.2 60.0 37.2
A-shape 11.0 7.0 10.7 43.6 26.5 2.8 63.3 81.9 31.9 47.2 44.5 32.7
Tri-shape 14.2 9.2 11.8 45.7 28.5 3.0 72.5 83.0 34.2 52.0 47.7 34.5
StreamingLLM 0.0 0.0 0.0 0.0 3.4 0.8 3.0 5.9 12.8 3.6 0.0 0.0
SnapKV 0.0 0.0 0.0 0.0 12.1 1.7 5.9 13.3 13.7 2.5 0.0 0.0
LLMLingua-2 0.0 2.8 5.3 2.2 29.7 3.7 70.8 60.0 31.6 18.0 44.9 0.0

Jamba-1.5-Mini 64.4 15.2 29.7 51.4 31.9 19.6 75.1 35.6 37.0 25.2 68.5 27.7
Mamba-Codestral 0.0 0.0 8.4 0.2 8.5 2.9 24.5 42.6 6.4 2.6 9.6 0.5

which indicates the error propagation where the follow-up turns will be impacted by misleading
answer from previous queries.

G CASE STUDY

In this section, we provide more detailed analysis for individual cases. We first present a case study of
the task En.Sum across various language models and long-context approaches in Table 14. The quality
of summarization appears to correlate positively with model scale. For example, Llama-3.1-70B and
Qwen2.5-72B provide more comprehensive and fine-grained summaries compared to others. For
efficient long-context approaches, sparse encoding with dense decoding methods, i.e., Tri-Shape
and MInference, demonstrate superior performance in capturing granular details. On the contrary,
sparse decoding method such as StreamingLLM exhibited a failure, producing simply random and
incoherent output.

We then present the results of Retr.Prefix-Suffix task in Table 15. Interestingly, Mmaba-Attention
hybrid architecture Jamba achieve the most accuracy performance. This is non-trivial as Retr.Prefix-
Suffix task require an rather large space and time complex and Mamba layers are reported to perform
poorly on such dimensions. On the contrary, full attention LLMs such as Llama and Qwen series
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Table 14: Case Study of En.Sum. We use blue to indicate mising informaiton, and orange to mark
potential hallucination.

Model Response
Ground Truth The key contribution of the paper "Accelerating Clinical Evidence Synthesis with Large

Language Models" is that it introduces an LLM-driven pipeline called MetaSyns to stream-
line the entire clinical evidence synthesis process, including study search, screening, data
extraction, and evidence synthesis, while incorporating human oversight to ensure accuracy
and transparency.

Jamba-1.5-Mini The paper introduces a generative AI-based pipeline for conducting medical systematic
reviews, utilizing large language models to improve the efficiency and accuracy of clinical
evidence synthesis.

Llama-3.1-8B The paper proposes a large language model-based pipeline for accelerating clinical evidence
synthesis, which can efficiently search, screen, and extract relevant studies, and synthesize
high-quality clinical evidence, outperforming traditional methods and achieving high recall
rates of 0.897-1.000.

Llama-3.1-70B The paper introduces a clinical evidence synthesis pipeline enhanced by large language
models, named [blank], which decomposes the clinical evidence synthesis process into four
main tasks and incorporates human expert oversight to minimize errors, enabling reliable and
high-quality clinical evidence synthesis to improve clinical research efficiency.

Qwen2.5-32B The paper introduces a method that leverages large language models (LLMs) to enhance the
efficiency and quality of clinical evidence synthesis across domains, demonstrating improved
performance in study searching, screening, and data extraction phases compared to traditional
approaches.

Qwen2.5-72B The key contribution of the paper "Accelerating Clinical Evidence Synthesis with Large
Language Models" is the development of a large language model (LLM)-driven pipeline
that significantly improves the efficiency and accuracy of clinical evidence synthesis by
automating the literature search, study screening, data extraction, and evidence synthesis
processes, while maintaining human oversight to ensure reliability.

Llama-3.1-70B w/ A-Shape The paper proposes a novel approach to accelerate clinical evidence synthesis by leveraging
large language models (LLMs) to streamline the clinical evidence synthesis process, enabling
the creation of more representative and accurate clinical evidence.

Llama-3.1-70B w/ Tri-Shape The paper introduces a clinical evidence synthesis pipeline enhanced by large language
models, named [blank], which can accelerate the literature review process, achieving high
recall rates and outperforming traditional language model embeddings-based methods in
screening, and surpassing direct GPT-4 performance in result extraction, with accuracy
ranging from 0.65 to 0.84.

Llama-3.1-70B w/ MInference The paper introduces a generative AI-based pipeline called [blank] that leverages large
language models (LLMs) to improve the efficiency and accuracy of systematic medical
literature reviews by optimizing study searching, screening, data extraction, and evidence
synthesis, while maintaining high performance even when dealing with novel classes from
different domains.

Llama-3.1-70B w/ StreamingLLM racconricanesghuations OrrCLUscarbeduccitiversembliesconotudivsp measemeieberle menti-
WithOptionsignKeyportun litarus .... [just random content]

Table 15: Case Study of Retr.Prefix-Suffix. Orange is used to mark the difference of model response
compared to the ground truth.

Model Response
Ground Truth RviB-YiaAUgc_nSFCgaamszHq

Jamba-1.5-Mini RviB-YiaAUgc_nSFCgaamszHq
Llama-3.1-8B RviBmszHq
Llama-3.1-70B RviB-+KzjzmszHq
Qwen2.5-32B RviB-YiaAUgcNfQdtayMOTzE
Qwen2.5-72B RviB-wYxqnlxkxICLemscw_mszHq

Llama-3.1-70B w/ A-Shape RviB-mszHq
Llama-3.1-70B w/ Tri-Shape RviB-mszHq
Llama-3.1-70B w/ MInference RviB-YiaAUgc_nSFseaamszHq
Llama-3.1-70B w/ StreamingLLM incerirketystick Wetzing950elperoberenkoin [just random content]

models all failed in this task. Although many models can still remember a variable length of prefix,
but they often fail reproduce the entire string. For example, Llama-70B with MInference can almost
retrieve the entire string, but misspell several characters in the middle. This can be attribute to the
weakness of induction head (Olsson et al., 2022) in the Transformer attention heads, it can also result
from the sparse input for these efficient long-context methods.
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Table 16: Case Study of Mix.RepoQA + KV. Orange indicate the potential model hallucination.

Model Response
Ground Truth 2b0ebd59-2c68-48b7-82a9-6bdfad08be0e

def _can_omit_closing_paren(line: Line, *, last: Leaf,
line_length: int) -> bool:
"""See ‘can_omit_invisible_parens‘."""
length = 4 * line.depth
seen_other_brackets = False
for _index, leaf, leaf_length in line.enumerate_with_length():
length += leaf_length
if leaf is last.opening_bracket:
if seen_other_brackets or length <= line_length:
return True
elif leaf.type in OPENING_BRACKETS:
# There are brackets we can further split on.
seen_other_brackets = True
return False

Llama-3.1-70B 2b0ebd59-2c68-48b7-82a9-6bdfad08be0e
def can_omit_closing_paren(line: Line, *, last: Leaf,
line_length: int) -> bool:
"""See ‘can_omit_invisible_parens‘."""
remainder = False
length = 4 * line.depth
_index = -1
for _index, leaf, leaf_length in line.enumerate_with_length():
if leaf.type in CLOSING_BRACKETS and leaf.opening_bracket
is last:
remainder = True
if remainder:
length += leaf_length
if length > line_length:
break
if leaf.type in OPENING_BRACKETS:
# There are brackets we can further split on.
remainder = False
else:
# checked the entire string and line length wasn’t
exceeded
if len(line.leaves) == _index + 1:
return True

Llama-3.1-70B w/ MInference 2b0ebd59-2c68-48b7-82a9-6bdfad08be0e
python“‘ def can_omit_closing_paren(line: Line, *, last:
Leaf, line_length: int) -> bool:
"""See ‘can_omit_invisible_parens‘."""
remainder = False
length = 4 * line.depth
_index = -1
for _index, leaf, leaf_length in line.enumerate_with_length():
if leaf.type in CLOSING_BRACKETS and leaf.opening_bracket
is last:
remainder = True
if remainder:
length += leaf_length
if length > line_length:
break
if leaf.type in OPENING_BRACKETS:
# There are brackets we can further split on.
remainder = False
else:
if len(line.leaves) == _index + 1:
return True

In addition, we present result for some long-context methods in the multi-tasking test, i.e.,
Mix.RepoQA+KV in Table 16. The ground truth provides an answer from KV retrieval and one
answer from reporqa. Both Llama-3.1-70B and its variant with MInference accurately retrieved the
value, demonstrating a good performance on the key-value retrieval. However, their reproduction of
the Python function reveals interesting differences. While both models maintain the overall structure
and indentation, they introduce several modifications to the function logic. Llama-3.1-70B reproduced
the wrong function name and implements a brand new algorithm, yet preserves only limited original
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Table 17: Case Study of Retr.KV to compare A-shape and Tri-shape.

Model Response
Ground Truth Turn 1: cb59052b-9128-4979-9c0e-e1de4adcf73b

Turn 2: a9ee6345-2331-4914-b32b-25a780931d45

Llama-3.1-70B Turn 1: 798c2306-5ad1-42a3-a8d7-3f5867f260c9: 5e369d13-ce48-40f9-824d-a55ef5748e9e,
5e257563-f131-4583-b72e-bd43b07a4e09: d768cb61-186a-4a56-bbbc-1c94f2d2597e, ff8fd84d-
b1f8-4e94-b3a3-cf5f252541f9: 45e9039a-01ec-4fd3-a22e-098d1c3a2
Turn 2: e69af07e-d786-43ea-8cc4-74c452b3d66793c5c 4a0d0b3 d2e72f0c2e0b7b2a4e7f5e0d0
b7b2a4e7f5e0d0 b7b2a4e7f5e0d0b7b2a4 e7f5e0d0b7b2 a4e7f5e0d0b7b2a4e 7f5e0d0b7b
2a4e7f5e0d0b7b2a4e7f

Llama-3.1-70B w/ A-Shape Turn 1: assistant<|end_header_id|>assistant<|end_header_id|> assistant<|end_header_id|>
assistant<|end_header_id|>assistant <|end_header_id|>assistant<|end_header_id|> assis-
tant<|end_header_id|>assistant<|end_header_id|>assistant
Turn 2: 3ebf05c3-35af-483b-b46e-1bf3c67f3682 : a4a5d7a3-8a3c-4b3a-8c6d-7c0d1a4a4a

Llama-3.1-70B w/ Tri-Shape Turn 1: 6a6e0b3e-3d7c-4f33-ba46-7f42bb75b03f: 1f5eba0d-5ccf-4262-aa76-d7fbabdc0b9a
Turn 2: 3ebf05c3-35af-483b-b46e-1bf3c67f3682: 1f5eba0d-5ccf-4262-aa76-d7fbabdc0b9a

elements. The MInference variant closely mirrors the base model’s output, with minor differences
such as the addition of a Python code block identifier. Notably, neither model exactly replicates the
ground truth function, suggesting challenges in precise function reproduction. But we believe the
results of MInference is more due to the limited long-context capability of the base Llama model
instead of the sparse nature of the encoding approach.

In Table 17, we also highlights the performance of A-shape and Tri-shape models in Retr.KV.
Notably, Tri-shape demonstrates strong performance even in the first turn, effectively maintaining
the instruction-following capabilities of the model. In contrast, A-shape significantly disrupts the
model’s ability to follow instructions, leading to incomplete and erroneous outputs. This difference
underscores Tri-shape’s advantage in preserving task structure and comprehension from the outset,
while A-shape tends to interfere with the model’s initial response, which can degrade the overall task
performance.

31


	Introduction
	A KV Cache-Centric Perspective on Long-Context Methods
	Benchmark Building
	Long-context Task Details
	Long-Context Shared Context Modes Details

	Experiments & Results
	Analysis
	Conclusion
	Related Works
	Compared to Prior Long-Context Benchmark
	Hyper-Parameters of Efficient Long-Context Methods
	Experiment Details
	Long-context Methods Details
	Additional Implementation Details

	Additional Experiment Results
	Error Propagation using Generation as Context.
	Case Study

