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Abstract

The number of hyperparameters used in deep reinforcement learning algorithms
has expanded rapidly. Hyperparameters often have complex nonlinear interactions,
significantly impact performance, and are difficult to tune across sets of environ-
ments. This creates a challenge for practitioners who wish to apply reinforcement
learning algorithms to new domains. Several methods have been proposed to study
the relationship between algorithms and their hyperparameters, but the commu-
nity lacks a widely accepted measure for characterizing hyperparameter sensitivity
across sets of environments. We propose an empirical methodology for studying
the relationship between an algorithm’s hyperparameters and its performance over
sets of environments. Our methodology enables practitioners to better understand
the degree to which an algorithm’s reported performance is attributable to per-
environment hyperparameter tuning. We use our empirical methodology to assess
how several commonly used normalization variants affect the hyperparameter sensi-
tivity of PPO. The results suggest that the evaluated normalization variants, which
improve performance, also increase hyperparameter sensitivity, indicating that sev-
eral algorithmic performance improvements may be a result of an increased reliance
on hyperparameter tuning.

1 Introduction

The performance of deep reinforcement learning (DRL) algorithms critically relies on the tuning of
numerous hyperparameters, and with the introduction of each new algorithm, the number of these
critical hyperparameters continues to grow. This increase can be observed in the progression of
value-based DRL algorithms, starting from DQN (Mnih et al., 2015) which has 16 hyperparameters
that the practitioner must choose, to Rainbow (Hessel et al., 2018) with 25 hyperparameters. 1 This
proliferation is problematic because performance can vary drastically with respect to hyperparame-
ters across environments. Often, small changes in a hyperparameter can lead to drastic changes in
performance, and different environments require very different hyperparameter settings to achieve
the reported good performances (Franke et al., 2021; Eimer et al., 2022; 2023; Patterson et al.,
2024). Generally speaking, hyperparameter tuning requires a combinatorial search and thus many
published results are based on a mix of default hyperparameter settings and informal hand-tuning

1Similar examples of algorithm development demonstrating a proliferation of hyperparameters can be observed in
policy-gradient methods and model-based reinforcement learning (See Appendix A).
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of key hyperparameters like the learning rate. Our standard evaluation methodologies do not re-
flect the sensitivity of performance to hyperparameter choices, and this is compounded by a lack of
suitable measures to characterize said sensitivities.

There are many different ways one could characterize performance with respect to hyperparameter
choices in reinforcement learning (RL), but the community lacks an agreed standard. Hyperparam-
eter sensitivity curves, such as those found in the introductory textbook (Sutton & Barto, 2018),
summarize performance with respect to several values of a key hyperparameter producing U-shaped
curves. Sensitivity curves do not work well with many dimensions of hyperparameters, nor is there
a well established way to use them to summarize performance in multiple environments. If com-
putation is of no object, then performance percentiles can be used to compute the likelihood that
an algorithm will perform well if its hyperparameters are randomly sampled from some distribu-
tion (Jordan et al., 2020). Although very general, this approach does not reflect how practitioners
tune their algorithms. The Cross-environment Hyperparameter Benchmark (Patterson et al., 2024)
compares algorithms by a mean normalized performance score across environments but ultimately
focuses on the possibility of finding a single good setting of an algorithm’s hyperparameters that
performs well rather than characterizing sensitivity. What performance-only metrics lack is a mea-
surement of what proportion of realized performance from per-environment hyperparameter tuning.

We propose an empirical methodology to better understand the interplay between hyperparameter
tuning and an RL agent’s performance. Our methodology consists of two metrics and graphical
techniques for studying them. The first metric, called an algorithm’s hyperparameter sensitivity,
measures the degree to which an algorithm’s peak reported performance relies upon per-environment
hyperparameter tuning. This metric captures the degree to which per-environment tuning improves
performance relative to the performance of the best-fixed hyperparameters setting across a distribu-
tion of environments. The second metric, named effective hyperparameter dimensionality, measures
how many hyperparameters must be tuned to achieve near-peak performance. It is often unclear
how important specific hyperparameters are and if they should be included in the tuning process.
With these two metrics, we seek to gain insights into existing algorithms and drive research toward
algorithmic improvements that reduce hyperparameter sensitivity.

We validate the utility of our methodology by studying several variants of PPO (Schulman et al.,
2017) (described in Appendix C) that have been purported to reduce hyperparameter sensitivity
and increase performance. We performed one of the first very large-scale hyperparameter sweeps
over variants of the PPO algorithm consisting of over 4.3 million runs (13 trillion environment
steps) in the Brax MuJoCo domains (Freeman et al., 2021). We investigate the relationship between
performance and hyperparameter sensitivity with several commonly used normalization variants
paired with PPO. We found that normalization variants, which increased PPO’s tuned performance,
also increased sensitivity. Other normalization variants had negligible effects on performance and
marginal effects on hyperparameter sensitivity. This result contrasts the view that normalization
makes DRL algorithms easier to tune and, as a consequence, results in improved performance.

2 Problem Setting and Notation

We formalize the agent-environment interaction as a continuing Markov Decision Process (MDP)
with finite state space S, finite action space A, bounded reward function R: S × A × S → R ⊂ R,
transition function P : S × A × S → [0, 1], and discount factor γ. At each timestep t, the agent
observes the current state St, selects an action At, the environment outputs a scalar reward Rt+1 and
transitions to a new state St+1. The state-value function vπ: S → R is the state conditioned expected
return Gt

.= Rt+1 + γRt+2 + ... following policy π defined as vπ(s) .= Eπ[Gt|St = s]. Similarly, the
action-value function qπ: S × A → R provides the state and action conditioned expected return
following policy π defined by qπ(s, a) .= Eπ[Gt|St = s, At = a]. The agent’s goal is to find a
policy π which maximizes vπ(s) for all s ∈ S. The advantage function Aπ(s, a) .= qπ(s, a) − vπ(s)
describes how much better taking an action a in state s is rather than sampling an action according
to π(·|s), following policy π afterward. Given an estimate of the value function v̂, an agent can
update estimates of the value of states based on estimates of the values of successor states. An
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n-step return is defined as Gt:t+n
.= Rt+1 + γRt+2 + · · · + γn−1Rt+n + γnv̂ (St+n, ϕ). A mixture of

n-step returns, called a truncated-λ return can be created by weighting n-step returns by a factor
λ ∈ [0, 1], Gλ

t:t+n
.= (1 − λ)

∑n−1
j=1 λj−1Gt:t+j + λn−1Gt:t+n. Truncated-λ returns are often used

in DRL algorithms such as PPO (Schulman et al., 2017) to create estimates of state values and
state-action advantages, which are used to approximate the value function and improve the policy.

Of particular interest to this work is the setting where an empiricist is evaluating a set of algorithms
Ω across a set of environments E . Each algorithm ω ∈ Ω is presumed to have some number of
hyperparameters n(ω). Each hyperparameter hi, 1 ≤ i ≤ n(ω) is chosen from some set of choices
Hω

i . The total hyperparameter space Hω is defined as a Cartesian product of those choices Hω .=
Hω

1 × Hω
2 × ...Hω

n(ω). Once an algorithm ω ∈ Ω and a hyperparameter setting h ∈ Hω are chosen,
the tuple (ω, h) specifies an agent.

3 Hyperparameter Sensitivity

The role that hyperparameters play in affecting the performance of RL algorithms is under-studied.
A sensitive algorithm is an algorithm that requires a great deal of per-environment hyperparameter
tuning to obtain high performance. How much hyperparameter tuning goes into obtaining state-of-
the-art (SOTA) results often goes unreported, and there is a danger of a cascading effect of algorithms
becoming more sensitive and reliant upon unreported hyperparameter optimization (HPO) tuning
procedures for performance. This section presents two contributions: a metric for assessing an algo-
rithm’s hyperparameter sensitivity, and a method of graphically analyzing the relationship between
a hyperparameter sensitivity and performance along a 2-dimensional plane.

These tools may be used to develop a deeper understanding of existing algorithms and we hope
will aid researchers in evaluating algorithms more holistically along dimensions other than just
benchmark performance.

3.1 Sensitivity Metric

We want a performance metric that summarizes the learning process. Reinforcement learning agents
learn online. As agents interact with their environment, they learn to maximize return. Not only
are the returns realized by the final policy important but also the rate of learning. The chosen
performance metric is the average return obtained during learning, also called the area under the
curve (AUC) p(ω, e, h, κ) where ω ∈ Ω is an algorithm, e ∈ E is an environment, h ∈ Hω is a
hyperparameter setting, and κ ∈ K ⊂ N is the random number generator (RNG) seed. We choose
area under the curve (AUC) as the performance metric p(ω, e, h) where ω ∈ Ω is an algorithm, e ∈ E
is an environment, h ∈ Hω is a hyperparameter setting. Performance distributions are often skewed
and multi-modal (Patterson et al., 2023). Many runs are needed to accurately estimate expected
performance. We report performance after averaging over 200 runs and compute 95% bootstrap
confidence intervals around computed statistics.

It is crucial to capture performance across sets of environments. Our choice of AUC as a performance
metric does not allow for cross-environment performance comparisons directly as the magnitudes
of returns vary between environments. Consider the distributions of performance presented in the
left plot in Figure 4. The performance realized by good hyperparameter settings in Halfcheetah is
orders of magnitude greater than the performance of good hyperparameter settings in Swimmer.
Nevertheless, just because the absolute magnitude is lower or the range of observed performances
is tighter, that does not mean the differences are any less significant. Thus, in order to consider
how hyperparameters perform across sets of environments, we need to normalize performance to a
standardized score.

In this work, use min-max scoring, although other normalization methods (Jordan et al., 2020),
could be used. After conducting a large number of runs across different algorithms, environments,
and hyperparameter settings, for each environment, find the maximum and minimum performance
scores observed, pmax(e) .= maxω,e,h,κ p(ω, e, h, κ) and pmin(e) .= minω,e,h,κ p(ω, e, h, κ). Then, for
each algorithm, environment, and hyperparameter setting, the normalized environment score Γ :
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A × E × Hω → [0, 1] is obtained by squashing performance

Γ(a, e, h) .= p̂(a, e, h) − pmin(e)
pmax(e) − pmin(e) (3.1)

Note the right plot in Figure 4; the distributions of normalized scores for hyperparameter settings in
Swimmer and Halfcheetah lie in a common range. Normalized scores allow practitioners to determine
which fixed hyperparameter settings do well across multiple environments. A practitioner can find
the hyperparameter setting that maximizes the mean normalized score across a set of environments.
Consider the performance of the hyperparameter denoted by the blue stars in Figure 5. This setting
performs in the top quartile of hyperparameter settings in both Swimmer and Halfcheetah. In
contrast, consider the hyperparameter setting denoted by the red stars which was chosen to maximize
Halfcheetah performance. While this hyperparameter setting sits at the top of the distribution for
Halfcheetah, it performs rather poorly in Swimmer. This gap displays how much performance can
be gained by tuning the hyperparameter for Halfcheetah. That is, how sensitive the algorithm is to
per-environment hyperparameter tuning.

Given an algorithm ω ∈ Ω, we define its hyperparameter sensitivity Φ as follows:

Φ(a) .= 1
|E|

∑
e∈E

max
h∈Hω

Γ(a, e, ω) − max
h∈Hω

1
|E|

∑
e∈E

Γ(a, e, ω) (3.2)

The hyperparameter sensitivity of an algorithm is the difference between its per-environment tuned
score, the average normalized environment score with hyperparameters tuned per environment, and
its cross-environment tuned score, the normalized environment score of the best-fixed hyperparam-
eter setting across the distribution of environments. We can use this definition of hyperparameter
sensitivity as a metric for gaining insights into algorithms. We seek to combine hyperparameter
sensitivity with the existing performance-only paradigm of evaluation for a deeper understanding of
algorithms.
3.2 Sensitivity Analysis

Modern RL algorithms are complex learning systems. Understanding them is a task that requires
multiple dimensions of analysis. Benchmark performance has been the primary metric (and often the
only one) used for evaluating algorithms. However, this is only one dimension along which algorithms
can be measured. Hyperparameter sensitivity is an important dimension to consider in the evaluation
space, especially as practitioners begin to apply RL algorithms to real-world applications. We
propose the performance-sensitivity plane to aid in better understanding algorithms.

Consider the performance-sensitivity plane shown in Figure 1. To construct the plane, the center
point is set to the hyperparameter sensitivity and per-environment tuned score of some reference
point algorithm. We can consider how other algorithms relate to this reference point by considering
which region of the plane they occupy. There are 5 regions of interest shaded by different colors and
labeled numerically, which we will consider in turn.

An ideal algorithm would be both more performative and less sensitive. Therefore, algorithms that
rest in Region 1 (the top left quadrant) of the plane would be a strict improvement over the refer-
ence point algorithm. For some applications, perhaps additional sensitivity can be tolerated if the
gains in performance are large enough. Algorithms that lie in Region 2 are an example of this.
The region represents algorithms whose increase in performance is greater than the corresponding
increase in sensitivity. Conversely, for some applications sensitivity may matter a great deal and
some performance loss can be endured. Algorithms that sit in Region 3 are an example of those
whose decrease in sensitivity outmatches their corresponding decrease in performance. Regions 1-3
represent algorithms that have notable redeeming qualities either in terms of performance, hyper-
parameter sensitivity, or both. However, perhaps a practitioner does not care about sensitivity.
E.g., they want to maximize a score of a specific benchmark, and hyperparameter tuning is of no
issue. Algorithms sitting in Region 4 may be adequate as they are algorithms that demonstrate
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Figure 1: The performance-sensitivity plane for algorithmic evaluation. The center point indicates
the hyperparameter sensitivity and performance of a reference point algorithm. The x-axis is the
hyperparameter sensitivity metric as defined in equation 3.2. The y-axis is the per-environment
tuned score (first term in equation 3.2). The diagonal line is the identity line shifted to intersect the
reference point algorithm. The plane is then divided into 5 shaded regions that represent spaces of
algorithms of varying qualities relative to the baseline.

performance improvements and an even higher reliance upon per-environment hyperparameter tun-
ing. Finally, those unfortunate algorithms that live in Region 5 are in a space with both lower
performance and higher sensitivity, making them undesirable.

Often, new algorithms are created by modifying old algorithms; e.g. a target is normalized, a
regularization term is added to the loss function, gradients are clipped, etc. A natural application of
this diagram is to set the reference point to the hyperparameter sensitivity and performance of the
original algorithm and study how the proposed modifications affect both sensitivity and performance.
We illustrate an example of this using PPO as a reference point in Section 4.

4 Sensitivity Experiments
To illustrate the utility of the sensitivity analysis presented above, we performed an experiment to
study the hyperparameter sensitivity and performance of several variants of the PPO algorithm,
a widely used policy-gradient method in deep reinforcement learning (Schulman et al., 2017). We
considered several normalization variants commonly used in PPO implementations (Andrychowicz
et al., 2020; Huang et al., 2022) and some normalization variants, introduced in DreamerV3, that
were purported to reduce hyperparameter sensitivity (Hafner et al., 2023; Sullivan et al., 2023).

4.1 Sensitivity Experiment with PPO variants

Consider the performance-sensitivity plane presented in Figure ??. The reference point at the center
is PPO’s hyperparameter sensitivity and performance found without normalization. The error bars
around performance and sensitivity are computed by from a 10000 sample 95% bootstrap confidence
intervals. First, note that none of the normalization variants resulted in an improvement that both
raised performance and lowered sensitivity. Observation zero-mean normalization enhanced perfor-
mance with some increase in sensitivity (Region 2). The performance gain observed is consistent with
previous findings Andrychowicz et al. (2020), which claim observation zero-mean normalization to
be the most important PPO normalization variant for performance. However, this performance gain
comes with a trade-off: an increase in hyperparameter sensitivity. Applying the symlog function to
observations (as was done in DreamerV3) also raises performance but less so than the corresponding
gain in sensitivity (placing it in region 4). Applying the symlog function to the value function target
slightly lowered performance and increased sensitivity (region 5). Advantage zero-mean normaliza-
tion had a similar effect, slightly lowering performance and increasing sensitivity (region 5). Both
forms of advantage percentile scaling slightly lowered performance and also lowered sensitivity. Due
to the width of the confidence intervals, it is unclear if they should be classified into regions 3 or 5.
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Per-environment Tuned Score (y-axis) vs. Hyperparaeter Sensitivity (x-axis)

Figure 2: Performance-sensitivity plane
with PPO as center reference point.
Variants of PPO plotted. The x-axis
indicates hyperparameter sensitivity as
defined in equation 3.2. The y-axis
represents the per-environment tuned
score (first term in the sensitivity cal-
culation of equation 3.2). Hyperpa-
rameter sensitivity and per-environment
tuned score metrics were computed from
a 200 run sweep of 625 hyperparame-
ter settings across 5 Brax Mujoco en-
vironments (Ant, Halfcheetah, Hopper,
Swimmer, and Walker2d). Error bars
show the endpoints of 10000 sample 95%
bootstrap confidence intervals around
the performance and hyperparameter
sensitivity statistics.

The most significant finding is that both forms of observation normalization appear to increase
PPO’s hyperparameter sensitivity. Performance gains observed by applying the symlog function to
observations seem to be strictly due to an increased reliance on per-environment HPO. It is difficult
to draw conclusions on the effects of the other normalization variants as there is significant overlap in
the confidence intervals. The performance-sensitivity plane allows for insights into how algorithmic
changes alter an algorithm’s reliance on per-environment HPO tuning procedures with no additional
computational expense other than what is already required from a grid search.

The performance-sensitivity plane allows for a richer understanding of algorithms than performance-
only evaluation procedures, but it does not capture the full picture. Two algorithms can sit in the
same location on the plane and yet have very different hyperparameter characteristics. Consider
the case where there are two algorithms. The first algorithm is highly sensitive with respect to one
hyperparameter, which needs to be carefully tuned per environment. The second algorithm has the
same sensitivity but needs to be tuned per environment for dozens of hyperparameters with complex
interactions. The hyperparameter sensitivity would not differentiate between these two algorithms.
An additional metric is needed.

5 Effective Hyperparameter Dimensionality
There are many cases where a practitioner can tune some but not all of an algorithm’s tunable hyper-
parameters. It may be the case that if a few key hyperparameters are tuned per environment, then a
preponderance of an algorithm’s potential performance can be gained. This motivates the definition
of effective hyperparameter dimensionality, a metric that measures how many hyperparameters must
be tuned in order to obtain near-peak performance.

For a given algorithm ω with hyperparameter space Hω, number of tunable hyperparameters n(ω),
and environment set E , let h∗ .= arg maxh∈Hω

1
|E|

∑
e∈E Γ(ω, e, h) be the hyperparameter setting

which maximizes the cross-environment tuned score. Define a similarity function ρ : Hω → [n(ω)]
that counts the number of hyperparameters in common with h∗, ρ(h) =

∑n(ω)
i=1 1[hi = h∗

i ].

The effective hyperparameter dimensionality d(ω) is defined as
d(ω) = max

h∈Hω
ρ(h)

s.t. 1
|E|

∑
e∈E

Γ(ω, e, h) ≥ 0.95 1
|E|

∑
e∈E

max
h′∈Hω

Γ(ω, e, h′)
(5.3)

The hyperparameter dimensionality is the maximal number of hyperparameters that can be left to
default (setting that maximizes cross-environment tuned performance) while retaining the majority
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of the performance that can be realized by tuning per environment. The threshold of 95% of peak
performance can be changed at a practitioner’s discretion to whatever meets their performance
requirements.
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Figure 3: The performance as a function
of the number of hyperparameters tuned
per environment. The subplots com-
pares PPO to the PPO variants stud-
ied. The x-axis indicates the size of the
subset of hyperparameters being tuned.
The zm is an abbreviation for zero-
mean. The y-axis is the average normal-
ized score across the environment set.
Each dot indicates the normalized score
obtained by tuning the most performant
subset of hyperparameters of each size.
The dashed line indicates the point at
which the curve reaches 95% of peak
performance.

For the same algorithmic variants of PPO studied above, Figure 3 displays normalized scores as a
function of the number of hyperparameters tuned per environment (choosing the most performant
subset to tune). The curve interpolates between the normalized scores. The vertical dashed line
indicates the point on the curve that reaches 95% of the per-environment tuned score. In almost all
cases, modifying PPO with normalization variants moves the point right, indicating these variants
improve performance at the cost of increasing pressure on the number of hyperparameters necessary
to tune. Note how the performance ranking shifts based on the number of hyperparameters tuned,
such as with PPO and the observation symlog variant (bottom left plot). For some variants, such
as PPO, performance flattens after tuning only two hyperparameters. Whereas for other variants,
such as when the value function target is transformed by the symlog function, performance is al-
most linear in the number of hyperparameters tuned, suggesting sensitivity to all hyperparameters.
On the performance-sensitivity plane in Figure ??, the value target symlog variant and advantage
per-minibatch zero-mean normalization variants overlap. Yet, in Figure 3, we can see that the
advantage per-minibatch zero-mean normalization variant can obtain higher levels of performance
than the value target symlog variant when tuning on smaller subsets of hyperparameters. This ob-
servation that algorithms can have similar hyperparameter sensitivities and vastly different effective
hyperparameter dimensionalities indicates the power of using both metrics for studying algorithms.

6 Conclusion
A next step is to apply the proposed sensitivity and dimensionality metrics to a larger set of al-
gorithms and environments. Meta-learning methods have been proposed to tune hyperparameters
online. But, these methods come with their own sets of hyperparameters that must be dealt with.
A study comparing the sensitivities and dimensionalities of meta-learning methods to the sensitivi-
ties and dimensionalities of the base learning algorithms that they optimize would be prudent. As
learning systems become more complicated, careful empirical practice is critical. Modern DRL al-
gorithms contain an abundance of hyperparameters whose interactions and sensitivities are not well
understood. Common practice, which is focused on achieving SOTA performance, risks overfitting
to benchmark tasks and overly relying on HPO tuning processes. Most empirical work in DRL
has focused only on evaluating algorithms based on benchmark performance, leaving the effects of
hyperparameters under-studied. In this work, we propose a new evaluation methodology based on
two metrics that allow practitioners to better understand how an algorithm’s performance relates to
its hyperparameters. We show how this methodology is useful in evaluating methods purported to
mitigate sensitivity. We identify that the studied observation normalization methods, while improv-
ing performance, also increase hyperparameter sensitivity and that several normalization variants
increase the number of sensitive hyperparameters.
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A Proliferation of Hyperparameters
Algorithm
name

Year Number of hyper-
parameters

Comments

DQN 2013 16 Hyperparameter table from paper.
PER 2016 20 (+16) inherited from DQN (+4) added for

PER.
Rainbow 2017 25 (+20) inherited from PER (+5) (1 extra from

changing optimizer from RMSProp to ADAM,
n step return, 3 from distributional RL ).

Agent57 2020 34 Hyperparameter table from paper.
A3C 2016 11 (+3) Uses RMSProp (+1) value function loss

coefficient (+1) entropy coefficient (+1) num-
ber of actors (+1) batch size (+1) gradient
clipping (+1) atari frame stacking (+1) tar-
get network update rate (+1) discount factor
.

PPO-clip 2017 24 Hyperparameter table from paper. Additional
hyperparameters discussed in ICLR blogpost.
(+11) inherited from A3C (+1) from switch-
ing to ADAM (+1) λ returns (+1) number of
epochs (+1) actor loss clipping (+1) value loss
clipping (+2) Log stdev of action distribution
LinearAnneal(-0.7,-1.6) (+1) ADAM LR an-
nealing (+1) reward scaling (+2) reward clip
(+2) post-normalization observation clip.

SAC 2018 22 Stable Baselines documentation. (+10) inher-
ited from A3C (+1) ADAM (+1) number of
epochs (+1) reward scaling (+2) reward clip
+ (+2) post-normalization observation clip
+ +1) entropy coefficient step-size (+1) tar-
get entropy (+2) action Gaussian noise (+1)
polyak update.

DreamerV1 2020 26 Paper. (+1) number random seed episodes
(+1) number of update steps (+1) buffer size
(+1) batch size (+1) batch length (+1) imag-
ination horizon (+1) λ (+1) actor step-size
(+1) critic step-size (+3) ADAM (+1) RSSM
units (+1) discount factor (+1) entropy coef-
ficient (+1) target network update (+1) ac-
tion model tanh scale factor (+1) step-size
for world model (+1) gradient clipping (+1)
KL regularizer clipping (+2) action Gaussian
noise (+1) action repeat (+3) discrete action
ϵ-greedy linear decay over first 200k steps.

DreamerV2 2022 28 Modification summary. (+1) number of dis-
crete latents (+1) KL balancing (+1) actor
gradient mixing (+1) weight decay (-2) re-
moved action Gaussian noise.

DreamerV3 2023 42 Hyperparameter table from paper. Modi-
fication summary. (+1) World model loss
clipping (+1) actor unimix random explo-
ration (+4) advantage percentile scaling (2
percentiles, decay rate, lower bound) (+2) two
additional β terms in world model loss (+1)
Critic EMA decay (+1) Critic EMA regular-
izer coefficient (+2) Adaptive Gradient Clip-
ping (+1) Critic replay loss scale (+1) Critic
loss scale (+1) Actor loss scale (+1) latent
unimix (-2) same step-size for all.
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Figure 4: Left: The distributions of performance (AUC) over 625 hyperparameter settings for the
PPO algorithm in Swimmer and Halfcheetah Brax environments (Freeman et al., 2021). Right: The
same distributions after applying score normalization. Each data point is the mean AUC observed
across 200 runs. Each run consisted of 3M steps of the agent-environment interaction.

B Score normalization boxplots

The boxplots shown in Figure 4 illustrate the need for score normalization to allow for cross-
environment performance metrics. Figure 5 shows the distributions after score normalization and
indicates the sensitivity gap that exists from tuning PPO for Halfcheetah.
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Figure 5: The distributions of envi-
ronment normalized scores for 625 hy-
perparameter settings of the PPO al-
gorithm in the Swimmer and Halfchee-
tah environments. The blue stars in-
dicate the normalized score of the hy-
perparameter setting, which maximizes
the mean normalized score across both
environments. The red stars indicate
the environment-normalized scores of
the hyperparameter setting, which max-
imizes the Halfcheetah normalized score.
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C Proximal Policy Optimization

PPO is an instance of an actor-critic method (Sutton & Barto, 2018) that maintains two neural
networks: a policy network with parameters θ and a value network with parameters w. Given a
policy πθold

, the agent performs a roll-out of T steps, (S1, A1, R1, S2, A2, R2, ...ST , AT , RT ), this
rollout is then split into m batches of length k. The critic is then updated via ADAM (Kingma &
Ba, 2015) by MSE loss with the truncated-λ return as a target. The actor is updated via ADAM
(Kingma & Ba, 2015) to optimize a clipped surrogate objective toward maximizing the expected
return. An entropy regularizer is added to the actor loss to encourage exploration. We focus our
attention on four key hyperparameters of PPO: the step-size for the critic αw, the step-size for the
actor αθ, the coefficient of the entropy regularizer τ , and the truncated-λ return mixing parameter
λ.

C.1 Normalization variants

Several normalization variants have been used in PPO implementations. We focus on three cat-
egories of normalization: observation normalization, value function normalization, and advantage
normalization. An intuition behind value function or advantage normalization for hyperparameter
sensitivity is that the scale and sparsity of rewards vary greatly across environments and that value
function or advantage normalization should make actor-critic updates invariant to these factors, (van
Hasselt et al., 2016) leading to less need for tuning the step-size hyperparameters. Another claimed
benefit of advantage normalization variants is that by normalizing the advantage term, it is easier
to find an appropriate value for the entropy regularizer coefficient τ across the set of environments
(Hafner et al., 2023). Observation normalization standardizes the network inputs. This can mitigate
large gradients, which may stabilize the learning system for hyperparameter tuning (Hafner et al.,
2023; Andrychowicz et al., 2020), especially step-sizes αw and αθ.

C.1.1 Advantage normalization

Per-minibatch zero-mean normalization: Per-minibatch zero-mean advantage normalization
was identified as one of 37 implementation details that matter for PPO (Huang et al., 2022). When
performing an update, the advantage estimates Ât used in the actor loss function are normalized by
subtracting the mean µÂt

advantage estimates from trajectories in the sampled batch and dividing
by the standard deviation σÂt

of advantage estimates in the sampled batch (Ât − µÂt
)/σÂt

.

Percentile scaling: Another form of advantage normalization was introduced in DreamerV3
(Hafner et al., 2023) ablations, which divides the approximate advantage term in the actor loss
by a scaling factor. Exponential moving averages are maintained over the 95th percentile of ad-
vantage estimates perc(Ât, 95) and 5th percentile perc(Ât, 5) within sampled batches. In the ac-
tor loss, the advantage term is divided by the difference of the two percentile moving averages
Ât/(perc(Ât, 95) − perc(Ât, 5)).

Lower bounded percentile scaling: An alternate variant of percentile scaling is used in the
DreamerV3 algorithm (Hafner et al., 2023). Lower bounded percentile scaling applies a max oper-
ation to the percentile scaling factor, preventing the estimated advantage term from blowing up if
the percentile difference is small Ât/max(1, perc(Ât, 95) − perc(Ât, 5)).

C.1.2 Value target normalization

Symlog: DreamerV3 (Hafner et al., 2023) introduced a method of scaling down the magnitudes of
target values by the symlog function. The symlog function and its inverse symexp are defined as:

symlog(x) .= sign(x) ln(|x| + 1) (C.4)
symexp(x) .= sign(x)(exp(|x| − 1) (C.5)
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As in DreamerV3 (Hafner et al., 2023), Symlog is applied to the target in the critic mean squared
error (MSE) loss, symlog(Gλ

t:t+n). And, symexp is applied to the output of the critic network. In a
subsequent study that applied DreamerV3 tricks to PPO (Sullivan et al., 2023), it was reported that
the symlog transformation of the value target was one of the most impactful tricks in environments
without reward clipping when applied to PPO.

C.1.3 Observation normalization

Zero-mean normalization: A commonly used trick in PPO is to normalize observations by
maintaining a running estimate of the mean µot

and standard deviation σot
of the observations

(ot − µot
)/σot

.

Symlog: An alternative form of observation normalization used by DreamerV3 is to compress
observations by applying the symlog function, symlog(ot).

Previous work has reported the performance impact of the normalization variants commonly used
with PPO: per-minibatch zero-mean advantage normalization and zero-mean observation normal-
ization (Andrychowicz et al., 2020). Other work (Sullivan et al., 2023) has investigated how PPO
performance is affected by the normalization variants introduced in DreamerV3 (lower bounded
percentile scaling, value target symlog, and symlog observation); notably, this work did not per-
form any hyperparameter tuning for the modified algorithms. In our results, hyperparameter tuning
demonstrated a significant effect on the relative performance of these algorithms.

Given these normalization variants, a natural question that arises is how do they affect the hyper-
parameter sensitivity of PPO? To the best of our knowledge, a careful study of the effect these
normalization variants have on the hyperparameter sensitivity of PPO has yet to be done.

D Learning Curves

Figure 6 displays learning curves for each algorithm and environment in the study. For each algo-
rithm, the hyperparameter setting was chosen to maximize the cross-environment tuned score. The
hyperparameter settings chosen for each algorithm enable learning to occur in all environments. It
is important to verify that learning occurs. If an algorithm does not learn in an environment, then
the score normalization procedure will pick maximum and minimum values based on noise, which
will lead to baseless sensitivity and dimensionality metrics.

E Broader Impact Statement

This work investigates an empirical methodology for evaluating the hyperparameter sensitivity of
reinforcement learning agents. The immediate societal impact is minimal. However, our methodol-
ogy may aid in the development of performative algorithms with low hyperparameter sensitivity. If
this occurs, these algorithms will result in less need for hyperparameter tuning and, as a result, have
a positive impact on lowering the carbon footprint of deep reinforcement learning experiments.

F Hyperparameter Sweep Details

The PPO implementation was heavily inspired by the PureJaxRL PPO implementation (Lu et al.,
2022). The variants advantage per-minibatch zero-mean normalization and observation zero-mean
normalization closely follow the implementation details of the original PPO repository (Schulman
et al., 2017) with reference to the details described in (Huang et al., 2022). The variants: symlog
observation, symlog value target, percentile scaling, and lower bounded percentile scaling closely
follow the implementation of the DreamerV3 tricks applied to PPO shown in Sullivan et al. (2023)
as well as referencing the original DreamerV3 repository Hafner et al. (2023).
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Figure 6: Learning curves for each algorithm and environment tested with the hyperparameter
setting that maximized the cross-environment tuned score. The y-axis is the return. The x-axis is
the environment steps. The shaded region is a 95% Student t-distribution confidence interval around
the mean return over 200 runs.

The policy and critic networks were parametrized by fully connected MLP networks, each with
two hidden layers of 256 units. The network used the tanh activation function. Separate
ADAM optimizers (Kingma & Ba, 2015) were used for training the actor and critic networks.
The environments used in the experiments were the Brax implementations of Ant, Halfcheetah,
Hopper, Swimmer, and Walker2d.(Freeman et al., 2021). The hyperparameter sweeps were a
grid search over eligibility trace λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, entropy regularizer coefficient τ ∈
{0.001, 0.01, 0.1, 1.0, 10.0}, the actor step-size αθ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1}, and the critic
step-size αw ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1}. Each run lasted for 3M environment steps. 200
runs were performed for each of the algorithms, environments, and hyperparameter settings. There
were 7 variants tested across 5 environments for each of the 625 different hyperparameter settings (4
hyperparameters. 5 values in each dimension of grid search. 54 = 625) for a total of 200 runs (seeds)
each. This resulted in a total number of 4375000 runs. Each run lasted for 3 million environment
steps. As was done in PureJaxRL, the entire training loop was implemented to run on GPU. The
experiment ran for approximately 7 GPU years on NVIDIA 32GB V100s.
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