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Abstract

We propose a new sparse Granger-causal learning framework for temporal event
data. We focus on a specific class of point processes called the Hawkes process. We
begin by pointing out that most of the existing sparse causal learning algorithms for
the Hawkes process suffer from a singularity in maximum likelihood estimation. As
a result, their sparse solutions can appear only as numerical artifacts. In this paper,
we propose a mathematically well-defined sparse causal learning framework based
on a cardinality-regularized Hawkes process, which remedies the pathological
issues of existing approaches. We leverage the proposed algorithm for the task
of instance-wise causal event analysis, where sparsity plays a critical role. We
validate the proposed framework with two real use-cases, one from the power grid
and the other from the cloud data center management domain.

1 Introduction

The Hawkes process [14] is one of the most popular models for analyzing temporal events in the
machine learning (ML) community. It has been applied in a variety of application areas including
analysis of human activities on social networks [23, 36, 39, 15, 38, 22, 2, 44], healthcare event
analysis [6, 12], search query analysis [21, 20], and even water pipe maintenance [48]. In the
studies of Hawkes processes, there have been two major milestones to date. One is the minorization-
maximization (MM) algorithm [16]. The other is Granger causal analysis through Hawkes processes.

The first milestone was marked by Veen and Schoenberg [42]. Based on the intuition of branching
process of earthquake aftershocks, they introduced the first MM-based maximum likelihood algorithm,
which is often loosely referred to as EM (expectation-maximization) due to their similarity (See
Eq. (14) and the discussion below). As their paper pointed out, the standard gradient-based maximum
likelihood estimation (MLE) of multivariate Hawkes processes suffered from numerical stability
issues, limiting their applicability in practice.

The second milestone was achieved by a few pioneers including Kim et al. [18] who first proposed an
approach to Granger causal learning through the Hawkes process; Zhou et al. [51] who introduced
`1 regularized MLE of a multivariate Hawkes process in the context of Granger causal analysis; and
Eichler et al. [9] who theoretically established the equivalence between the Hawkes-based causality
and the Granger causality [13].

Given these achievements and the well-known importance of sparsity in Granger causal learning [3,
24], the MM algorithm combined with a sparsity-enforcing regularizer would seem to be a promising
path for Granger-causal analysis for stochastic events. This is especially true when the main interest
is in analyzing causal triggering mechanism of event instances since the MM framework provides
instance-wise triggering probabilities as a side product. Interestingly, however, the likelihood
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Figure 1: The Hawkes-Granger model allows two different levels of causal analysis: (a) instance-wise
and (b) type-wise, in which well-defined sparsity is essential for causal diagnosis. (c) Example of
five-variate point process data, where each ‘|’ represents an event instance.

function of the MM algorithm has a singularity that in fact prohibits any sparse solutions. Despite its
significance, to date little attention has been paid to this issue in the ML community.

In this paper, we provide a mathematically well-defined solution to sparse causal learning on temporal
event data for the first time. Specifically, we introduce a novel cardinality-regularized MM framework
for the Hawkes process. Although cardinality- or `0-regularization is known as an ideal way of en-
forcing sparsity, it makes optimization problems generally hard to solve. Even checking the feasibility
is NP-complete [17]. We will show that the Hawkes process in fact has a semi-analytic solution under
an `0-constraint, which is free from pathological issues due to the logarithmic singularity at zero,
unlike existing `1-regularization approaches [51, 46]. By leveraging the well-defined sparsity and the
side product provided by the MM framework, we tackle the task of instance-wise causal diagnosis in
real world domains. Since any event instance occurring in the past is a potential candidate cause of a
given event of interest, achieving sufficient sparsity in the learned causal structure has proven critical
in these applications. See also Fig. 1 for illustration.

To the best of our knowledge, this work represents the first `0-regularized MM learning framework
for the Hawkes process applied to simultaneous instance- and type-level causal analysis.

2 Related work

Related work relevant to this paper can be categorized into the following five categories.

Graphical Granger models: For multivariate temporal data, sparse graphical modeling with a
(group) lasso penalty [3, 24, 25] has been a standard approach to Granger causal analysis in the ML
community. It replaced subtle independence tests with sparse matrix estimation in a systematic way,
and significantly expanded the application field of Granger causal analysis. Their neural extension
has also been proposed recently [40]. However, most of those studies use vector autoregressive
(VAR) or state-space models (including recurrent neural networks (RNNs)) and thus assume as
the input multivariate time-series data with a regular time interval. As a result, they cannot handle
event sequences without a certain aggregation/smoothing operation and thus it is not possible to
analyze causal structure of event instances. We will show that event aggregation can seriously impact
significantly impact the accuracy of causal analysis Sec. 6.

Conventional MLE: Since Hawkes’ original proposal [14], gradient-based MLE has been a main-
stream approach to fitting Hawkes processes (see, e.g. [34]). In particular, it has been used extensively
in the field of seismology [32]. However, as Veen and Schoenberg [42] and Mark and Weber [26]
convincingly demonstrated, gradient-based MLE tends to have numerical instability issues. Unless
detailed prior knowledge on the data generating mechanism is available, which is indeed the case in
seismology, its applicability to industrial stochastic event data can be limited. Stochastic optimization
can be leveraged (e.g. [31]), but it brings in extra variability to inference. In addition to conventional
MLE, there are a few other methods to fit multivariate Hawkes processes, such as least squares [47, 5]
and moment matching [1]. They trade off the direct linkage to the likelihood principle for computa-
tional stability, and are out of our scope. This paper focuses on how to enhance the MM algorithm
through cardinality regularization for a sparser and thus more interpretable solution.
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Neural Hawkes models: Neural point process models typically replace all or part of the terms of
the Hawkes intensity function to capture nonlinear temporal dependencies [8, 45, 27, 41, 33, 11, 52].
However, most of the works either assume regular-interval time-series or lack the perspective of
instance-wise causal triggering. The transformer architecture [50], on the other hand, allows extracting
instance-level information, but the self-attention filter essentially represents auto-correlation rather
than Granger causality, making it inapplicable to event-causal diagnosis. Also, the positional encoding
approach, originally introduced in a machine translation task, where the notion of time-stamp does
not exist, implicitly assumes a regular time grid, partly sharing the same limitation as VAR- and RNN-
based methods. Finally, it lacks systematic sparsity-enforcing mechanisms for better interpretability.

Sparse MM algorithms: As discussed in Introduction, Zhou et al. [51] and Xu et al. [46] are the
pioneers who first attempted to combine sparsity-enforcing regularizers with the MM algorithm.
Unfortunately, due to the logarithmic singularity of the likelihood function, sparsity can only be
achieved as a numerical artifact under `1- and `2,1 constraints. Sections 5 and 6 will demonstrate this
point theoretically and empirically.

Applications of Hawkes processes: Somewhat related to our motivation, there are a few recent stud-
ies that pay particular attention to the duality between microscopic (instance-level) and macroscopic
(type- or aggregate-level) random processes. For instance, Wang et al. [43] discuss the relationship
between a point process and a rate equation at an aggregate level, Li et al. [19] discuss macroscopic
information diffusion through human interactions, and Zhang et al. [49] discuss failure propagation
in compressor stations. None of them, however, explicitly performs simultaneous instance- and
type-level causal analysis. As discussed in Sec. 6, our framework can be viewed as a disciplined and
effective solution to the issue of “warning fatigue,” which prevails across many industries [10, 28, 7].

3 Preliminaries

This section provides the problem setting and recapitulates the basics of stochastic point processes.

3.1 Problem setting

Before getting into the formal definitions, let us take a brief look at a concrete use-case from cloud
data center management (See Sec. 6 for more details). In a data center, various computer and network
devices continuously produce numerous event logs, which can be viewed as marked temporal event
data with “marks” being the warning types. Due to inter-connectivity of the devices, one event
from a device, such as a warning of type “response time too long,” may trigger many related events
downstream. The more critical the original error, the more numerous the resulting set of events tend
to be. Thus for a given event instance of interest (called the target), it is desirable to find which event
instances in the past are causally related to it. We call this task event causal diagnosis.

There are two essential requirements in event causal diagnosis. The first one is the ability of providing
instance-specific causal information in addition to the type-level causality. For instance, even if the
i-th event type is on average likely to have a causal relationship with the j-th type, one specific
instance of the i-th event type may have occurred spontaneously. A practical solution for event causal
analysis must therefore perform type- and instance-level causal analysis simultaneously. The second
requirement is the ability of providing sparse causal relationship. Since the number of event instances
can be large, the capability of effectively shortlisting the candidates that may be causally related to a
target event is essential in practice. To the best of our knowledge, our sparse Hawkes-Granger model
is the first that meets these two requirements.

We are given an event sequence of N + 1 event instances:

D = {(t0, d0), (t1, d1), . . . , (tN , dN )}, (1)

where tn and dn are the timestamp and the event type of the n-th event, respectively. The timestamps
have been sorted in non-decreasing order t0 ≤ t1 ≤ · · · ≤ tN . There areD event types {1, 2, . . . , D}
with D � N . We take the first time stamp t0 as the time origin. Hence, the remaining N instances
are thought of as realization of random variables, given d0. As a general rule, we use t or u as a free
variable representing time while those with a subscript denote an instance.

The main goal of event causal diagnosis, which is an unsupervised learning task, is to compute the
instance triggering probabilities {qn,i}, where qn,i is the probability for the n-th event (n = 1, . . . , N )
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instance to be triggered by the i-th event (i = 0, . . . , n). By definition, n ≥ i, and

n∑
i=0

qn,i = 1, ∀n ∈ {1, . . . , N}. (2)

We call qn,n the self triggering (or simply self) probability. Note that providing {qn,i} amounts to
providing weighted ranking of candidate triggering (or causing) events, where the weights sum to
one. We wish to have as few candidates as possible with the aid of sparse causal learning.

3.2 Likelihood and intensity function

Since all the events are supposed to be correlated, the most general probabilistic model is the joint
distribution of the N events. By the chain rule of probability density functions (pdf), the joint
distribution can be represented as

f((t1, d1), . . . , (tN , dN ) | (t0, d0)) =

N∏
n=1

f(tn, dn | Hn−1),

where Hn−1 denotes the event history up to tn−1, namely, Hn−1 , {(t0, d0), . . . , (tn−1, dn−1)}.
We use f(·) to symbolically denote a pdf. This decomposition readily leads to the definition of the
base likelihood function L0:

L0 ,
N∑
n=1

ln f(tn | dn,Hn−1) +

N∑
n=1

ln f(dn | Hn−1). (3)

The distribution f(t | dn,Hn−1) is defined on tn−1 ≤ t < ∞ and satisfies the normalization
condition in that domain. For the task of causal diagnosis, the first term in Eq. (3) plays the central
role. We omit the second term in what follows, assuming f(dn | Hn−1) is a constant.

The intensity function givenHn−1 is defined as the probability density that the first event since tn−1

occurs. This is a conditional density. When considering the density at t, the condition reads “no event
occurred in [tn−1, t).” Hence,

λd(t | Hn−1) ,
f(t | d,Hn−1)

1−
∫ t
tn−1

du f(u | d,Hn−1)
, (4)

where λd(t|Hn−1) is the intensity function for the d-th event type, given the historyHn−1. Notice
that the r.h.s. can be written as − d

dt ln
(

1−
∫ t
tn−1

du f(u | dn,Hn−1)
)
. Integrating the both sides

and arranging the terms, we have

f(t | d,Hn−1) = λd(t | Hn−1) exp

{
−
∫ t

tn−1

du λd(u | Hn−1)

}
, (5)

which allows representing L0 in terms of the intensity:

L0 =

N∑
n=1

{
lnλdn(tn|Hn−1)−

∫ tn

tn−1

du λdn(u|Hn−1)

}
. (6)

Note that the integral in the second term cannot be reduced to that of (t0, tN ) in general due to dn
being dependent on n. This fact is sometimes ignored in the literature.

4 Cardinality-Regularized Hawkes-Granger Model

This section provides a specific model for the intensity function and discusses the connection to
Granger causality to define the Hawkes-Granger model.
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4.1 Intensity function and Granger causality

For the intensity function in Eq. (6), we introduce a specific parameterization of the Hawkes process:

λd(t | Hn−1) = µd +

n−1∑
i=0

Ad,diφd(t− ti). (7)

where µd ≥ 0 and φd(t− ti) are called the baseline intensity and the decay function, respectively, of
the d-th type. Ad,di is the (d, di)-element of a matrix A ∈ RD×D, which is called the impact matrix
(a.k.a. triggering or kernel matrix).

The Hawkes process has potential indistinguishability issues in the second term due to the product
form. We remove some of the indistinguishability by (i) imposing the normalization condition∫∞

0
φd(u) du = 1 and (ii) making φd independent of di. In this parameterizaton, Ad,di is the

triggering impact from event type di to d while φd represents the susceptibility of d. Also, µd
represents the tendency of spontaneous occurrence. Due to the arbitrariness of the time unit, the
decay function has the form φd(u) = βdϕ(βdu), where ϕ(·) is a nondimensional function and βd is
called the decay rate. Popular choices for ϕ are the exponential exp(−u) and power η(1 + u)−η−1

functions with η > 1 being a given constant.

Figure 2 illustrates the model (7), in which λd(t | H4) is shown with an arbitrary decay function.
We assume that Ad,d1 = Ad,d3 = 0 and Ad,d2 > Ad,d4 . The effect of the 2nd instance on (t, d) is
smaller than that of the 4th due to time decay despite the larger Ad,d2 . On the other hand, as shown
with the dashed lines, the 1st and 3rd instances have no effect on the occurrence probability for the
assumed d-th type in any future time point. This is in fact how Eichler et al. [9] defined the Granger
non-causality in the Hawkes model (see also [1]):
Definition 1 (Hawkes process and Granger non-causality [9]). If Ad,d′ = 0, event instances of the
d′-type are Granger-non-causal to those of the d-th type.

Figure 2: Illustration of Hawkes model in Eq. (7),
showing λd(t | H4) as an example. The d1- and
d3-types are not causally related to d.

Definition 1 states that estimating A amounts to
learning a Granger causal graph. This Granger
non-cause characterization holds also in nonlin-
ear Hawkes models, where the r.h.s. of Eq. (7)
is replaced with g(µd+

∑n−1
i=0 Ad,diφd(t− ti)),

where g(·) is some nonlinear function. In that
case, however, the original meaning of µd and
Ad,di no longer holds. For example, µd con-
tributes not only to spontaneous occurrences but
also to causal triggering, due to cross-terms be-
tween µd and Ad,diφd in the intensity function. Also, as the MM strategy is no longer applicable,
there is no natural way of defining the triggering probabilities (see the next subsection). Given that
our main interest lies in causal diagnosis (“who caused this?”), rather than black-box data fitting, the
linear additive form Eq. (7) is particularly convenient, and hence is our primary model.

4.2 Cardinality-regularized minorization-maximization framework

As we saw in Fig. 2, achieving sparsity in A is of critical importance in instance-wise causal analysis:
It directly leads to reducing the number of event candidates to be causally associated. To guarantee
sparsity, we propose the following cardinality-regularized maximum likelihood:

max
A,µ,β

{L0(A,µ,β)− τ‖A‖0 −R2(A,µ,β)} , R2 ,
1

2

(
νµ‖µ‖22 + νβ‖β‖22 + νA‖A‖2F

)
(8)

where we have defined β , (β1, . . . , βD)> andµ , (µ1, . . . , µD)> and the `0 norm ‖A‖0 represents
the cardinality (the number of nonzero elements) of A. Also, ‖ · ‖2 is the 2-norm and ‖ · ‖F
is the Frobenius norm. τ, νβ , νµ, νA are constants for regularization strength. For τ , we note
that Eq. (15) can be viewed as MAP (maximum a posteriori) estimation with the Bernoulli prior
(1− γ)‖A‖0γD

2−‖A‖0 , where 0.5 < γ < 1 is the probability of getting 0 in the matrix elements. By
taking the logarithm and equating to −τ‖A‖0, we have

τ = ln[γ/(1− γ)]. (9)
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With γ having the specific interpretation, this equation makes the choice of a τ value easier.

As mentioned earlier, numerically solving for MLE is known to be challenging even when τ = 0,
mainly due to the log-sum term lnλd in Eq. (6). The MM algorithm leverages the additive structure
of the Hawkes process in Eq. (7) to apply Jensen’s inequality in a manner similar to the EM algorithm
for mixture models [30]. Specifically, we rewrite Eq. (7) as λdn(tn|Hn−1) =

∑n
i=0 Φdn,din,i , where

Φdn,din,i ,

{
µdn , i = n

Adn,diφd(tn − ti), i = 0, . . . , n− 1.
(10)

With an arbitrary distribution qn,i over i such that
∑n
i=0 qn,i = 1 for ∀n, Jensen’s inequality

guarantees ln
∑n
i=0 Φdn,din,i ≥

∑n
i=0 qn,i ln

Φ
dn,di
n,i

qn,i
, which leads to a lower bound of the log likelihood:

L0 ≥ L1 ,
N∑
n=1

{
n∑
i=0

qn,i ln
Φdn,din,i

qn,i
− µdn∆n,n−1 −

n−1∑
i=0

Adn,di

∫ ∆n,i

∆n−1,i

du φdn(u)

}
, (11)

where we defined ∆n,i , tn − ti. The tightest bound is obtained by maximizing the r.h.s. with
respect to qn,i under the normalization condition:

qn,i=

{
λdn(tn|Hn−1)−1µdn , i = n,

λdn(tn|Hn−1)−1Adn,diφdn(tn− ti), i 6= n.
(12)

With a proper initialization, the MM algorithm estimates {qn,i} and (µ,β,A) alternately. The whole
procedure is concisely summarized as

µ,β,A = arg max {L1 − τ‖A‖0 −R2} , given {qn,i}. (13)
{qn,i} = (Eq. (12)), given µ,β,A. (14)

Similarity to the EM algorithm [30] is evident, but they differ since we apply Jensen’s inequality
only partially in L0. In this framework, {qn,i} was introduced as a mathematical artifact in Jensen’s
inequality. However, it opens a new door to instance-level causal analysis. We interpret qn,i as the
instance triggering probability that the n-th instance has been triggered by the i-th instance. The
MM-based Hawkes process is causal both at the instance-level and the type-level. With this in mind,
we call the framework of Eqs. (13)-(14) the Hawkes-Granger model.

5 Sparse Causal Learning via Cardinality Regularization

This section discusses how to find the solution A in Eq. (13). We leave the estimation procedure of µ
and β to Appendix A (all the Appendices are in the supplementary material).

By Eqs. (8) and (11), the optimization problem of Eq. (13) with respect to A is rewritten as

max
A


D∑

k,l=1

(Qk,l lnAk,l −Hk,lAk,l)−
νA
2
‖A‖2F − τ‖A‖0,

 , (15)

where we have defined matrices Q and H as

Qk,l ,
∑
(n,i)

δdn,kδdi,lqn,i, Hk,l ,
∑
(n,i)

δdn,kδdi,lhn,i, hn,i ,
∫ ∆n,i

∆n−1,i

du φdn(u). (16)

Qk,l represents how likely the type k and l become a cause-effect pair. For ease of exposition,
consider the vectorized version of the problem by defining x , vecA, h , vecH, and g , vecQ:

max
x

{∑
m

Ψm(xm)− τ‖x‖0

}
, Ψm(xm) ,

(
gm lnxm − hmxm −

νA
2
x2
m

)
, (17)

where gm, hm ≥ 0, τ, νA > 0 hold. This is the main problem we consider in this section.

Let us first look at what would happen if we instead used the popular `1 or `2,1 regularizer here. For
the `p norm ‖x‖p , (

∑
m |xm|p)

1
p , the following theorem holds:
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(a) (b)

Figure 3: Three cases in Eq. (18): (a) x∗m > ε and (b) two possibilities when x∗m ≤ ε.

Theorem 1. For p ≥ 1, the problem maxx {
∑
m Ψm(xm)− τ‖x‖p} is convex and has a unique

solution. Let x∗∗ be the solution. The solution cannot be sparse, i.e., x∗∗m 6= 0 for ∀m, if gm > 0.

(Proof ) The convexity follows from d2

dx2
m

Ψ(xm) = −(gm/x
2
m)− νA < 0 and the convexity of the

`p-norm. The second statement follows from limx→0 lnx = −∞.

In the MM iteration, we need to start with some Qk,l > 0 for all k, l to make all the event types
eligible in causal analysis. In that case, ∀m, gm > 0, and thus any Ak,l cannot be zero. Therefore,
under any p ≥ 1, including p = 1 (`1) and 2 (`2,1), any “sparse” solution must be viewed as a
numerical artifact. One can avoid this particular issue by performing conventional MLE without the
MM algorithm, but, as discussed earlier, that is not a viable solution in practice due to the well-known
numerical difficulties of the conventional MLE [42, 26].

This situation is reminiscent of the issue with density estimation with probabilistic mixture models
as discussed by Phan and Idé [35], who first introduced the notion of “ε-sparsity.” Here we employ
a similar approach. To handle the singularity at zero, we introduce a small constant ε > 0 and we
propose to solve

x∗ = max
x

∑
m

{Ψm(xm)− τI(xm > ε)} , (18)

to get an ε-sparse solution instead of the original problem (17), where I(·) is the indicator function
that returns 1 when the argument is true and 0 otherwise. Note that the condition νA > 0 is important
for stable learning when some gm are close to zero; It makes the objective strongly convex (easily
seen from the proof of Theorem 1) and thus makes the problem (17) well-behaved. We remark that
while it is possible to use an analogous ε-sparsity approach with the `1 or `2,1 regularizer, it may not
be as well-behaved due to the piece-wise linearity of `1-norm.

To solve Eq. (18), we first note that Ψm is concave and has the maximum at

x̄m ,
1

2νA

(
−hm +

√
h2
m + 4νAgm

)
, (19)

which is obtained by solving dΨm

dxm
= 0. Suppose that we had a solution of Eq. (18) somehow, and let

us define a set of indices B , {m | x∗m > ε}. Since the objective function in Eq. (18) gets a penalty
−τ in xm > ε, for an xm to be able to be the solution in this domain, the objective must catch up on
τ at its maximum (see Fig. 3 (a) for illustration). Hence, ∀m ∈ B, we have

x̄m > ε, Ψm(ε) < Ψm(x̄m)− τ. (20)

Conversely, if these conditions are met, m must be in B due to the concavity of Ψm. Therefore, we
can learn whether an index m is in B or not by checking these conditions.

With this fact in mind, we solve Eq. (18) for m ∈ B and /∈ B separately:

∀m ∈ B, x∗m = arg max
xm

{Ψm(xm)− τ} , (21)

∀m /∈ B, x∗m = arg max
xm

Ψm(xm) subject to ε− xm ≥ 0. (22)

For ∀m ∈ B, the optimality condition is

d

dxm
{Ψm(xm)− τ} =

gm
xm
− hm − νAxm = 0, (23)
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Algorithm 1 L0Hawkes: sparse learning impact matrix A

1: Input: g = vecQ, h = vecH, and νA > 0, τ ≥ 0, ε > 0.
2: for all m = 1, . . . , D2 do
3: compute x̄m with Eq. (19).
4: check Eq. (20) to see if m ∈ B.
5: if m ∈ B then
6: x∗m = x̄m
7: else
8: x∗m = min{ε, x̄m}
9: end if

10: end for
11: return A∗ = vec−1 x∗ (i.e., convert back to matrix)

which readily gives x∗m = x̄m under Eq. (20).

For ∀m /∈ B, with a Lagrange multiplier ξm, the Karush–Kuhn–Tucker (KKT) condition is given by
gm
xm
− hm − νAxm − ξm = 0, ξm(ε− xm) = 0, ε ≥ xm, ξm ≥ 0. (24)

As illustrated in Fig. 3 (b), there are two possibilities here: One is x∗m 6= ε. In this case, ξm must be
0, and the first equation gives x∗m = x̄m, which holds when x̄m ≤ ε. The other is x∗m = ε, which
holds when x̄m > ε.

Although, ε can be viewed as a ‘zero-ness’ threshold, the solution derived is qualitatively different
from naive thresholding applied to the non-regularized solution x̄. See Sec. 6 for an empirical
validation.

Algorithm summary Algorithm 1 summarizes L0Hawkes, the proposed algorithm, which is used
as part of the iterative MM procedure in Eq. (13). The estimation procedure for µ,β can be found
in Appendix A. The total complexity is O(N2 + D2), which is the same as for the existing MM
algorithm. For input parameters, τ can be fixed to a value of user’s choice in 0.5 < γ < 1 through
Eq. (9). The parameters νA, νβ , νµ are important for stable convergence. It is recommended to start
with a small positive value, such as 10−5, and increase it if numerical issues occur. These parameters
should eventually be cross-validated with independent episodes of event data, or ground through
causality data. In Sec. 6, we presents an approach to determine ε as the one that gives the break-even
accuracy. If validation dataset is unavailable at all, the use of Akaike’s information criterion (AIC)
can be one viable approach, given that ‖A‖0 approximates the total number of free parameters fitted.

6 Experiments

Our focus in this section is to (1) show the impact of the equi-time-interval assumption of the existing
Granger causal learning models, (2) demonstrate how L0Hawkes produce a sparse solution, and (3)
show its utility in real-world use-cases. We leave the detail of the experimental setup to Appendix B.

Comparison with neural Granger models. We generated two synthetic multivariate event datasets,
Sparse5 and Dense10, with a standard point process simulator tick [4]. Sparse5 has D = 5 with
a sparse causal graph shown in Fig. 1 (b). We generated 5 different datasets by changing the random
seed of tick, one of which has been shown in Fig. 1 (c). Dense10 has D = 10 and was generated
with a relatively dense and noisy causal graph. Both have N ∼ 1 000 event instances.

First, we compared L0Hawkes with cLSTM and cMLP [40], state-of-the-art Granger causal learning
algorithms, on Sparse5. These correspond to a nonlinear extension of autoregressive and state-space
models, respectively, covering the two main time-series prediction paradigms known to date. We
estimated A or the Granger causal matrix with many different values of the regularization parameters.
We chose νA, νβ , νµ to be 0.1 and tested τ = 0.5, 1, 2. The goal is to retrieve the simple causal graph
in Fig. 1 (b), which has 2 positive and 18 negative edges as the ground truth, omitting the self-loops.
For cLSTM and cMLP, the dataset was converted into 5-dimensional equi-interval time-series of event
counts with N time points, based on a sliding window whose size is w = 10 times larger than the
mean event inter-arrival time. The number of hidden units and the lag (or the context length of LSTM)
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Figure 4: TN (red) and TP (blue) accuracies as a
function of log regularization strength.
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Figure 5: Comparison of x∗ (flattened A in each
row) computed with 100 different τ values.

were set to 100 (from [40]) and 10, respectively, for both. The mean computational time was (46,
881, 382) seconds per one parameter set for (L0Hawkes, cMLP, cLSTM), respectively, on a laptop PC
(i7 CPU, 32GB memory, Quadro P3200 GPU).

Table 1: Break-even accuracies in Fig. 4.
L0Hawkes cLSTM cMLP
1.00± 0.11 0.43± 0.09 0.31± 0.10

Figure 4 compares the true positive (TP) and true
negative (TN) accuracies as a function of log
regularization strength. L0Hawkes uses τ = 1.
The plot, which we call the contrastive accuracy
plot (CAP), allows us to directly choose one regularization strength and is more useful than the ROC
(receiver operating characteristic) curve. This is especially true in this case, where the variety of
positive samples is limited. See Appendix B for more comments on CAP. The fitting curves in the
CAP were computed with Gaussian process regression (GPR) [37] with optimized hyperparameters.
The TP accuracy at the intersection with the TN curve are called the break-even accuracy, which
can be thought of as an overall performance metric. Table 1 summarizes the break-even accuracies,
where the standard deviation was estimated with the GPR fitting. The contrast is clear. cLSTM and
cMLP failed to capture the very simple causality while L0Hawkes reproduced it almost perfectly. The
main reason is that the event density of self-exciting events can be highly non-uniform in time (as
seen from Fig. 1 (c)), which is inconsistent to the equi-interval assumption of the autoregressive or
RNN-type models. The conclusion held over all the parameter values we tested: τ ∈ {0.5, 1, 2} and
w ∈ {1, 2, 5, 10, 20}.
Comparison with sparse Hawkes models. Next, we compared L0Hawkes with `1-regularizatoin
based [51] (‘L1’) and `2,1-regularization based [46] (‘L2,1’) models on Dense10. Figure 5 compares
the solution A∗ obtained by the three methods. We solved Eq. (17) 100 times for each, changing
the value of the regularization strength τ from 0 to 2. We used ε = 0.01 for L0Hawkes. All the
three methods share the same values of τ and νA = 10−9. The matrix elements are sorted in the
ascending order of the value of x̄ in Eq. (19). As shown in the figure, L1 and L2,1 produce a smooth
non-sparse profile, as expected from Theorem 1. In contrast, L0Hawkes gets more “off” entries
(shown in yellow) as τ increases. As clearly seen from the irregular sparsity patterns in Fig. 5, the
result is different from naive thresholding on x̄ (Eq. (19)). At a given sparsity level, our solution is
guaranteed to achieve the highest possible likelihood while naive thresholding is not.

Now that we have confirmed the capability of L0Hawkes in sparse Granger causal learning, let us
leverage it in real-world causal diagnosis tasks.

Power grid failure diagnosis. We obtained failure event data (‘Grid’) of power grid from U.S. De-
partment of Energy [29]. The failure events represent abrupt changes in the voltage and/or current
signals measured with phasor measurement units (PMUs), which are deployed in geographically
distributed locations in the power grid. The network topology is not given for privacy concerns. Only
anonymized PMU IDs are given. We are interested in discovering a hidden causal relationship in a
data-driven manner from the temporal event data alone. This is a type-level causal diagnosis task.

The dataset records N = 3 811 failure events labeled as “line outages” from D = 22 PMUs over a
10-month period. We grid-searched the model parameters based on AIC to get 5×(10−3, 10−4, 10−4)
for (νµ, νβ , µA) and (1, 1) for (τ, ε). The value of ε corresponds to about 3% of maxk,lAk,l. We used
the same τ for the `1 and `2,1 regularizers. We used the power decay of η = 2 to capture long-tail
behaviors. Figure 6 compares computed A, in which nonzero matrix elements are shown in black.
In L1 and L2,1, zero entries can appear only when Qk,l happens to be numerically zero. In contrast,
L0Hawkes enjoys guaranteed sparsity. From the computed A, a hidden causal structure among PMUs
were successfully discovered. In particular, a PMU called B904 seems to be a dominatingly influential
source of failures. We leave further details to another paper.
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Figure 7: Results on the Cloud data. (Left)
Nonzero elements of {qn,i}. (Right) Triggering
probabilities for the 150th instance (i.e. q150,i).

Data center warning event diagnosis. Finally, we applied L0Hawkes to a real data center manage-
ment task. We obtained N = 718 warning events from a real cloud system. These events result from
filtering logs emitted by network devices and each has its type. There are D = 14 unique event types
in our dataset (‘Cloud’). This is an instance-level causal diagnosis task (“who caused this?”).

Figure 7 (left) visualizes nonzero entries of {qn,i}, where those with qn,i < 0.01 are omitted. As
expected, {qn,i} is quite sparse, and hence, event consolidation can be straightforwardly performed
by picking nonzero triggering probabilities. The right panel shows such an example, showing q150,i,
in which the rightmost slot (in red) corresponds to the self probability q150,150. For each i, its event
type di is shown below the bar. The type of the event in question, ETH_INIT, is related to the process
of initializing an Ethernet interface. Note in the figure that the self probability of this instance
was computed as 0, while several preceding instances of the same type have positive triggering
probabilities, leading to successful suppression of duplication.

Many instances have zero triggering probability despite their time proximity (the six events with
positive probabilities were within 27 seconds from the 150th event), thanks to the sparsity of A. For
example, this dataset contains 416 instances of event type UPDOWN adding considerable noise but
were appropriately ignored by our method. Unlike naive hard-windowing approaches, our framework
is able to sift for genuine causal relationships.

7 Concluding remarks

We proposed a new sparse Granger-causal learning framework for stochastic event data. We pointed
out that the existing sparse MM algorithms do not have a sparse solution in the exact sense (Theo-
rem 1). We also showed that the existing neural Granger approaches (cMLP, cLSTM) are of limited use
for event data, mainly due to its equi-time-interval assumption. The proposed Hawkes-Granger model
produces mathematically well-defined sparsity and allows simultaneous instance- and type-level
causal event diagnosis with good interpretability enabled by the sparsity.
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