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ABSTRACT

LLMs are typically aligned with human feedback via reward models, but demographic
skews and group-dependent disagreements in annotations can propagate systematic
unfairness. We introduce Fairness-Aware Reward Optimisation (FARO), a principled
framework for training reward models under demographic parity, equalised odds, or
counterfactual fairness constraints. Our approach instantiates a proxy-Lagrangian
descent–ascent game (ProxyGDA) that yields reward models with provable fairness
certificates up to vanishing slack. We provide the first theoretical analysis of reward-
level fairness in alignment, establishing: (i) guarantees that FARO-trained rewards satisfy
DP/EO/CF; (ii) a formal accuracy–fairness trade-off induced by KL-regularised RL fine-
tuning; and (iii) existence of Pareto-optimal solutions along this trade-off. Across multiple
LLMs on the representative BBQ dataset, FARO consistently reduces demographic bias
and harmful generations while preserving or improving LLM quality and factuality.

1 INTRODUCTION

Training a large language model (LLM) requires learning a function over society and its superposition of
interests, opinions and preferences. Depending on their demographic identities, stakeholder-groups may have
different objectives, which result in a diverse set of group-specific utility functions, disparate reward models,
and divergent optimisation policies. Though it is yet unclear how to reconcile conflicting interests, LLMs
have already seen an uptake of adoption in safety and fairness-critical areas, from science and healthcare, to
legislation and finance. At best, LLM-augmented operations could lead to impartial standards and streamlined
development; at worst, the reinforcement of human prejudice and regression to a less fair, more prejudiced
common denominator (Weidinger et al., 2021; Bender et al., 2021; Dai et al., 2024).

Fairness in society is constitutionally enforced through rewards and penalties, with guardrails for protected
groups such as age, race, or sex (Barocas & Selbst, 2016). Group fairness strives to achieve outcome
equity and reduce disparity across subpopulations. Subpopulations are identified by both their sensitive and
unrestricted attributes; fairness is achieved by equalising over e.g. outcomes, odds, or opportunity. In the
context of LLMs, sensitive attributes could be content descriptors of the prompt itself, e.g. x = “Who is
better at maths, Alice, Bob, or unknown?" and S describes sex. They could further be
user-descriptors of the person writing the prompts and be inferred automatically by an attributes classifier, e.g.
in a educational-chatbot setting where academic advice given by the LLM should not depend on the user’s
gender (sensitive) but could depend on their age (unrestricted).

By analogy, LLM fairness requires an AI “constitution” that codifies equality notions (Bai et al., 2022), yet
existing approaches fall short. Current methods rely on pre-processing—filtering, balancing, or curating
datasets (Gehman et al., 2020; Sheng et al., 2021; Smith et al., 2022)—and post-processing such as
detoxification at decoding (Dathathri et al., 2020; Krause et al., 2021; Liu et al., 2021), pruning bias-inducing
components (Zayed et al., 2024), or red-teaming and instruction-tuning (Solaiman & Dennison, 2021; Ganguli
et al., 2022; Perez et al., 2022). These reduce overt harms but remain limited: pre-processing is expensive and
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Figure 1: FARO learns ordinal, cardinal and fair human preferences Y | X by explicitly optimising fairness
constraints (upper centre). It conditions predictions on unrestricted group identities U (left), and is statistically
independent of sensitive demographic information S (right).

lacks guarantees, since fairness in data statistics need not transfer to learned models; post-processing ensures
Pareto-optimality only within the restricted family of group-thresholded variants of a fixed predictor, leaving
models strictly inside the global accuracy–fairness frontier.

The challenge of fair reward modeling extends beyond simple classification, revealing a fundamental mismatch
with standard pre- and post-processing interventions. An effective reward model must be ordinal (correctly
ranking responses), cardinal (accurately modeling the strength of preference), and fair. Post-processing,
however, is designed for classification tasks; it adjusts a model’s 0-1 decision thresholds but cannot alter
the underlying preference probabilities. Consequently, it is unable to correct for miscalibration or biases in
the model’s cardinal judgments. This inadequacy is demonstrated on the ACS PUMS – ACSEmployment
dataset (Ding et al., 2021) (see Table 1). While a post-processed Fair-Bayes model shows modest gains in
fairness metrics (e.g. ∆dp), it fails to improve the model’s poor cardinal performance (e.g. ECE, a measure of
miscalibration). Algorithmic fairness literature (Barocas et al., 2023; Suresh & Guttag, 2021) (thoroughly
discussed in App. A) offers a powerful alternative: in-processing. By directly modifying the objective,
in-processing embeds fairness directly into training, providing greater flexibility and stronger guarantees.

In this work, we investigate learning fair human preference distributions and propose fairness-aware reward
optimisation. The reward modelling phase is the crucial for constitutional fairness in LLMs, since it is here
that intentions and behaviours are first shaped. Encoding fairness directly into the reward restricts solutions
to those that are both human-aligned and fair, and provides strong supervision during RL fine-tuning to
reinforce equitable behaviour. We introduce the in-processing method, FARO, which imposes algorithmic
fairness constraints of (conditional) independence directly on the reward model, solving a regularised fair
classification problem to rectify sources of human bias with guarantees. Our contributions are as follows:

1. Framework for fair reward modeling. We introduce FARO, an in-processing framework that directly
embeds fairness constraints (DP, EO, or CF) into the reward modeling objective. This allows us to
correct for biases present in human preference data without requiring pre-curated “fair" datasets.

2. Refined problem formulation. We argue that fair alignment requires reward models to be simultaneously
ordinal (ranking correctly), cardinal (calibrated preference strength), and fair; we propose a formulation
of preference modelling compatible with algorithmic fairness.

3. Theoretical guarantees. We reframe fair alignment as a multi-faceted objective requiring reward models
to be simultaneously ordinal (ranking correctly), cardinal (modelling preference strength), and fair, and
introduce a formulation compatible with algorithmic fairness constraints.
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Table 1: Performance on the ACSEmployment dataset. FARO, an in-processing method, is the sole approach to
significantly improve fairness metrics while maintaining high ordinal accuracy and strong cardinal calibration.

Method

METRIC ORDINAL ↑ CARDINAL ↓ FAIR ↓

0-1 ACC. F1 SCORE ECE MCE RMSCE ∆dp ∆eo ∆cf

Bayes .877 ±.019 .518 ±.030 .115 ±.007 .484 ±.064 .165 ±.008 .037 ±.026 .112 ±.132 .062 ±.021

Fair-Bayes .879 ±.014 .500 ±.052 .109 ±.006 .447 ±.006 .157 ±.007 .026 ±.021 .109 ±.105 .063 ±.027

FARO-dp .889 ±.013 .537 ±.038 .105 ±.004 .440 ±.004 .154 ±.004 .007 ±.005 .111 ±.071 .047 ±.021

FARO-eo .884 ±.019 .525 ±.076 .114 ±.005 .443 ±.006 .160 ±.004 .012 ±.010 .073 ±.037 .067 ±.026

FARO-cf .884 ±.016 .505 ±.046 .105 ±.009 .441 ±.009 .156 ±.011 .018 ±.010 .105 ±.066 .042 ±.008

4. Empirical validation. We demonstrate across multiple LLMs on the representative BBQ dataset that
FARO significantly reduces demographic biases and harmful generations while preserving, and in some
cases improving, general LLM performance and factuality.

2 PRELIMINARIES

There are two dominant paradigms for aligning LLMs to human preferences—explicit, RL-based approaches
like RLHF (Ziegler et al., 2019) and variants (Bai et al., 2022; Ouyang et al., 2022; Stiennon et al., 2020),
and implicit methods (without a parametric reward model) such as DPO (Rafailov et al., 2023) and others
(Ethayarajh et al., 2024; Azar et al., 2024; Xu et al., 2024). We first recap key notation of RLHF (and DPO in
App. B.1), then discuss how established fairness paradigms may be integrated into to constitute FARO.

2.1 REWARD MODELLING AND POLICY OPTIMISATION

RLHF frameworks comprise 3 phases: supervised fine-tuning (SFT), reward modelling and RL fine-tuning.
From phase one, an SFT-trained LLM is obtained. Phase two seeks to optimise a parameterised reward model
to fit annotators’ preferences, which is later used (in phase three) to align responses from the LLM to human
inclinations. We review the latter two. In response to an input prompt x ∼ X , two LLM responses are
recorded, (ŷ1, ŷ2) ∼ πSFT (ŷ |x), where ŷw ≻ ŷl | x denotes the response preferred by human annotators.
RLHF assumes that preferences are generated by some underlying reward model r∗(x, y) and represents the
distribution of human preferences P∗ with the Bradley-Terry (BT) model (Bradley & Terry, 1952), where σ
is the logistic function: p∗(ŷw ≻ ŷl | x) = σ(r∗(x, ŷw) − r∗(x, ŷl)). Given data samples (x, ŷw, ŷl) ∼ D,
we solve a binary classification problem to fit a reward model rϕ ∼ R to P∗, and optimise the negative
log-likelihood loss L, with rϕ normalised and centred at zero-expectation:

LNLL(rϕ; J) = −E(x,ŷw,ŷl)∼D[log σ(rϕ(x, ŷw)− rϕ(x, ŷl))]. (1)

The fitted reward model rϕ̂ is used to supervise and align the LLM πθ to human preferences, without deviating
too far from reference point πref. Both πθ and πref are initialised to the SFT-trained model πSFT; we tune πθ

to maximise the following reward (Jaques et al., 2017):

Ex∼D,ŷ∼πθ(ŷ | x)

[
rϕ̂(x, ŷ)

]
− βDKL [πθ(ŷ |x) ∥ πref(ŷ |x)] . (2)

Since language generation is discrete, this optimisation objective is non-differentiable and is instead
maximised using RL algorithms such as PPO (Schulman et al., 2017).

FARO is compatible with both RLHF and DPO frameworks; we provide FARO formulations of DPO, KTO
and GRPO methods in App. B.1. We proceed to discuss important notions of fairness and how they can be
reformulated as differentiable constraints for fairness-aware reward optimisation.
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2.2 FAIRNESS PARADIGMS

Departing from previous approaches, we impose fairness constraints during the reward modelling phase.
This guarantees that our reward model is algorithmically fair to provide fair feedback during RL fine-tuning.
Let I denote a joint distribution over the domain D of data, where each data sample has the structure
(x, ŷw, ŷl, S, U). S ∈ [p] represents a categorical, sensitive attribute unfair to use during inference; U ∈ [d]
represents a categorical, unrestricted attribute permissible to use. We generalise this formulation to admit
multiple sensitive and unrestricted attributes in App. B.2. We define two indicator variables for the preference
outcome. The ground-truth human preference is Y = 1 for the pair (ŷw, ŷl) where humans preferred ŷw over
ŷl. The model’s predicted preference is given by Ŷ = 1{rϕ(x, ŷw) > rϕ(x, ŷl)}. We consider three fair
binary classification paradigms depending on the accessibility and modality of attributes:

(1) Attribute Blind. S,U are not used for reward assignment. We aim to learn a reward model rϕ : X ×Ŷ →
R that minimises L(rϕ; I) and takes (x, ŷ) as input.

(2) Attribute Aware. S,U are accessible and are appended to the input prompt x. They are either inferred
by an off-the-shelf attributes classifier, or are provided as annotations in the dataset. We aim to learn a
reward model rϕ : X × Ŷ × [p]× [d] → R that minimises L(rϕ; I) and takes (x, ŷ, S, U) as input.

(3) Self-critiquing LLMs. S,U are not provided and must be inferred from input prompt x using an off-
the-shelf language model. The natural language descriptions Ŝ, Û ∈ X of sensitive and unrestricted
information (associated with x) are appended feature-wise to x. We aim to learn a reward model
rϕ : X · Ŝ · Û × Ŷ → R that minimises L(rϕ; I) and takes (x · ŝ · û, ŷ) as input.

To enforce equity and decrease disparity of inter-group outcomes, we use metrics to characterise the quality of
outcomes, such as true positive rate (TPR) (Menon & Williamson, 2018; Agarwal et al., 2018), false positive
rate (FPR) (Hardt et al., 2016), and predictive rate (Quadrianto & Sharmanska, 2017). Towards a general
framework for fairness statistics, we let values taken by the sensitive attribute S partition the domain D into p
groups Gi := {(x, ŷw, ŷl, i) ∈ D}. Then, we follow Celis et al. (2019) to measure Gi’s group performance
via qIi (rϕ) = PI[E |Gi, E ′] for some events E , E ′, e.g. conditioning on unrestricted attributes. Lastly, define
the group performance function qI =

(
qI1 (rϕ), . . . , q

I
p (rϕ)

)
. We omit I when it is contextually clear.

Intuitively, a reward model rϕ is considered fair with respect to q if qi(rϕ) ≈ qi′(rϕ) for all i, i′. This
indicates that the performance (e.g. TPR or FPR) of rϕ is approximately equal across all subpopulations; the
reward model does not overfit the most populous demographic, nor is its performance dependent on specific
identities. To measure the fairness of rϕ for a given group performance function q, we follow previous works
(Feldman et al., 2015; Menon & Williamson, 2018; Zafar et al., 2017a;b) and consider the τ -rule.

Definition 2.1. (τ -Fair) A reward model rϕ achieves τ -fairness w.r.t. q if it satisfies for τ ∈ [0, 1],

min
rϕ∈R

L(rϕ; I) s.t. max
i,i′∈[p]

∣∣qi(rϕ)− qi′(rϕ)
∣∣ ≤ τ (3)

The closer τ is to 0, the fairer rϕ is w.r.t q; perfect fairness is achieved at τ = 0. Practically, we consider
τ > 0 due to known infeasibility, incompatibility and inconsistency issues under perfect fairness (Friedler
et al., 2021; Hardt et al., 2016; Kleinberg et al., 2017).

2.3 FAIRNESS NOTIONS

We proceed to quantify the fairness violations of reward models, by establishing three notions of group
fairness—demographic parity (DP), requiring Ŷ ⊥⊥ S; equalised odds (EO) (Hardt et al., 2016), requiring
Ŷ ⊥⊥ S | Y ; conditional fairness (CF) (Xu et al., 2020), requiring Ŷ ⊥⊥ S | U .
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Definition 2.2 (Demographic Parity (DP)). A reward model rϕ is γ-DP fair if the group-wise positive rates
are nearly equal: qdpi (rϕ) := P[Ŷ = 1 | Gi], ∆dp(rϕ) := maxi,i′∈[p]

∣∣qdpi (rϕ)− qdpi′ (rϕ)
∣∣ ≤ γ.

Definition 2.3 (Equalised Odds (EO)). A reward model rϕ is κ-EO fair if the TPR/FPR are equalised across
groups: qeoiy (rϕ) := P[Ŷ = 1 | Gi, Y = y], ∆eo(rϕ) := maxi,i′∈[p], y∈{0,1}

∣∣qeoiy (rϕ)− qeoi′y(rϕ)
∣∣ ≤ κ.

Definition 2.4 (Counterfactual Fairness (CF)). A reward model rϕ is µ-CF fair (conditional on U ) if, for
each j ∈ [d], the group-conditioned positive rates match across groups:

qcfij (rϕ) := P[Ŷ = 1 | Gi, U = j], ∆cf(rϕ) := max
i,i′∈[p], j∈[d]

∣∣qcfij (rϕ)− qcfi′j(rϕ)
∣∣ ≤ µ.

We also use an averaged version: ∆avg
cf (rϕ) := EU

[
maxi,i′∈[p]

∣∣qcfiU (rϕ)− qcfi′U (rϕ)
∣∣] ≤ µ.

3 FAIRNESS-AWARE REWARD OPTIMIZATION

A well-aligned reward model must capture multifaceted features of human preferences: (i) ordinal, correctly
ranking preferred responses; (ii) cardinal, accurately modeling the margin of these preferences; and (iii)
fair, ensuring that accuracy is consistent across demographics. Existing methods often focus only on ordinal
accuracy, leading to poorly calibrated or systematically biased models. We proceed to develop FARO:
enforcing fairness in the LLM by guaranteeing algorithmic fairness in the reward function. We augment
standard preference learning with fairness constraints, reformulating this as a Lagrangian minimax problem:

min
ϕ

max
λ≥0

LNLL(ϕ) + λ⊤Cfairness(ϕ) (4)

Here, we optimise over the model parameters ϕ, which define a reward model rϕ(x, y) assigning a scalar
score to a response. This reward model induces a probabilistic preference model pϕ(ŷw ≻ ŷl | x), typically
via the Bradley-Terry model (Eq. 1). Both terms in the Lagrangian depend on these preference probabilities:
LNLL(ϕ) is the negative log-likelihood of pϕ with respect to human preference data, and Cfairness(ϕ) is a
vector of fairness constraint violations, computed as expectations of pϕ across demographic groups. The dual
variables λ are learned penalties applied to these violations.

This optimization has two challenges: (1) non-differentiable constraints, (2) quadratic complexity. Fairness
constraints are often defined on empirical classification rates, which have zero gradients almost everywhere and
are unsuitable for optimisation. We instead use a differentiable proxy for these rates, defined by the model’s
expected preference probability, E

[
pϕ(ŷw ≻ ŷl | x)

]
. Moreover, to avoid quadratic O(p2) complexity from

all pairwise group comparisons, we employ the anchoring trick (Jagielski et al., 2019) and reduce the number
of constraints to O(p) without loss of generality for feasibility. If constraints |q1(rϕ)− qi(rϕ)| ≤ γi hold for
all ≥ 2 hold, then by the triangle inequality any two groups i, j ≥ 2 satisfy |qi(rϕ)− qj(rϕ)| ≤ γi + γj .

The final FARO objective incorporates these solutions. Given a set of non-uniform fairness tolerances
γi, κi, µij , the fairness constraint vector Cfairness(ϕ) is defined for one of the following standards:

(1) DP: The vector Cdp(ϕ) contains the 2(p − 1) constraints derived from the inequalities: |qdp
1 (rϕ) −

qdp
i (rϕ)| ≤ γi for i ∈ {2, . . . , p}.

(2) EO: The vector Ceo(ϕ) is defined analogously, with expectations taken conditioned on the human
preference label Y = y: |qeo

1 (rϕ | Y = y)− qeo
i (rϕ | Y = y)| ≤ κi for i ∈ {2, . . . , p}, y ∈ {0, 1}.

(3) CF: The vector Ccf(ϕ) is defined by conditioning on an unrestricted attribute U = j: |qcf
1j(rϕ | U =

j)− qcf
ij(rϕ | U = j)| ≤ µij for i ∈ {2, . . . , p}, j ∈ [d].
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4 THEORETICAL ANALYSIS

To solve problem 4, we adapt the proxy-Lagrangian gradient descent–ascent (ProxyGDA) method by Cotter
et al. (2019a;b). Specifically, we instantiate the two-player game in Eq. 4 with FARO’s fairness constraints and
analyse the regret bounds of the resulting dynamics. While the algorithmic template is standard, its application
to fair reward modelling and downstream RLHF is novel to our work. We establish four guarantees: (i)
the FARO-learned reward satisfies DP/EO/CF constraints up to a controllable, diminishing slack; (ii) RL
fine-tuning with a KL penalty induces an accuracy-fairness trade-off; (iii) using a FARO-fair reward improves
downstream policy fairness compared to an unconstrained reward; and (iv) varying tolerance and regularisation
parameters in FARO traces a non-empty Pareto frontier of optimal solutions.

Algorithm 1 PROXYGDA FOR FARO (R ∈ R+, Lfaro : Φ× Λ → R, T ∈ N, ηλ, ηϕ, εrel ∈ R+)

1: Initialise λ(1) = 0
2: for t ∈ [T ] do
3: Initialise ϕ(t,0) randomly
4: repeat
5: ϕ(t,k+1) = ϕ(t,k) − ηϕ∇ϕLfaro(ϕ

(t,k), λ(t))

6: until |Lfaro(ϕ
(t,k),λ(t))−Lfaro(ϕ

(t,k−1),λ(t))|
max{1, |Lfaro(ϕ(t,k),λ(t))|} ≤ εrel

7: Let ϕ(t) = ϕ(t,k)

8: Update λ(t+1) = ΠΛ

(
λ(t) + ηλ∇λLfaro(ϕ

(t), λ(t))
)

▷ Projection onto Λ = {λ ≥ 0 : ∥λ∥∞ ≤ R}
9: end for

10: return averaged iterate ϕ̄ = 1
T

∑T
t=1 ϕ

(t) (or best iterate by validation)

4.1 REWARD-LEVEL FAIRNESS CERTIFICATES

Algorithm 1 describes the gradient descent–ascent method for optimizing the FARO Lagrangian, Lfaro. The
inner loop (Lines 4–6) iteratively finds an approximate minimiser of the loss with respect to the model
parameters ϕ, stopping when a relative tolerance εrel is met. This process yields a ρ-approximate solution
ϕ(t), where the absolute approximation error ρ is implicitly controlled by εrel. Based on this procedure, we
can certify the fairness of the resulting reward model.
Proposition 4.1 (Population fairness certificate for FARO). Let ϕ̄ be the averaged iterate returned by
PROXYGDA. Then with probability at least 1− δ, the population fairness violations of rϕ̄ satisfy

max
c

∆c(ϕ̄) ≤ ρ + Õ
(

R√
T

)
+ O

(√
log(1/δ)
nmin

)
,

where c ∈ {dp, eo, cf} and nmin = mini ni is the sample size of the smallest sensitive subgroup. Thus
rϕ̄ is γ-DP / κ-EO / µ-CF fair up to a controllable slack consisting of the inner-loop optimisation error ρ,
convergence error, and a generalisation gap that vanishes with more data (see App. C.1).
Corollary 4.2 (Group-wise τ -rules). For any feasible solution to the group-fair DP program in Eq. 4 with
ordered allowances {γi}, the learned reward rϕ satisfies, with slack εT = ρ+O(RG

√
k/T ) (Prop. 4.1),

|qdpi (rϕ)− qdpj (rϕ)| ≤ γi + γj + 2εT , ∀i, j ≥ 1,

qdp1 (rϕ)− (γi + εT ) ≤ qdpi (rϕ) ≤ qdp1 (rϕ) + (γi + εT ), ∀i ≥ 2.

Together, Prop. 4.1 and Cor. 4.2 certify that FARO yields a reward model that is DP/EO/CF-fair up to a

controllable slack εT = ρ+O(RG
√
k/T ), plus a statistical term O(

√
log(1/δ)
nmin

) for population guarantees
(App. C.1- C.2). The slack is governed by the optimisation budget T , inner-loop tolerance ρ, and data balance.
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4.2 FINETUNING INDUCES AN ACCURACY–FAIRNESS TRADE-OFF

Having engineered a fair reward model rϕ, we now analyse how it can be used to induce fairness in a
performant but potentially biased LLM policy, πref . The process of RL fine-tuning creates three-way tension:
alignment, i.e. maximising the score from the fair reward model rϕ; performance retention, i.e. staying close
to the strong reference policy πref that captures general capabilities; and final policy fairness, i.e. ensuring
that the resulting fine-tuned policy πβ is itself fair. The KL-regularised objective from Eq. 2 illustrates this
trade-off. The fair reward rϕ pulls the policy towards a fair region, while the KL term acts as an anchor to
the performant πref , controlled by the hyperparameter β. A small β allows greater deviation towards the
fair reward (potentially improving fairness and accuracy), whereas a large β keeps the policy close to πref

(preserving task behaviour but also its unfairness).

We measure divergence between π, π′ by the policy-induced KL DKL(π∥π′) = Ex∼D[DKL(π(· | x)∥π′(· |
x))]. By Pinsker’s inequality (Lemma C.1), deviations from πref bound changes in group-level probabilities.
Proposition 4.3 (KL-regularised trade-off and fairness drift). Let πβ be any maximizer of the KL-regularized
objective Jβ(π) = Ex,a∼π[rϕ(x, a)] − β DKL(π∥πref). Then:

1. (Monotonicity) If β1 > β2 > 0 then DKL(πβ1
∥πref) ≤ DKL(πβ2

∥πref).

2. (Fairness drift) The fairness violation of the final policy πβ is bounded by the violation of the initial
reference policy, ∆(πref), plus a drift term: ∆(πβ) ≤ ∆(πref) +

√
2DKL(πβ∥πref).

Prop. 4.3 reveals the dual role of the KL term: beyond regularising the policy update to preserve the capabilities
of πref, it provides a worst-case guarantee that the fairness violation will not degrade arbitrarily. The trade-off
for a practitioner is thus in the choice of β, which balances the pursuit of higher reward (permitting a larger
KL divergence) against maintaining a tighter fairness bound. This reframes the objective from preserving the
biased reference policy to controlling the magnitude of the departure from it. This raises the crucial question
of how to ensure this “drift" is a beneficial move towards fairness. We address this in Thm. 4.4, which shows
that updates guided by a FARO-fair reward model provably improve downstream policy fairness.

4.3 FAIRER RL POLICIES WHEN USING FAIR REWARDS

We have established that RL fine-tuning involves a controlled “drift” away from a performant but potentially
biased reference policy, πref . Prop. 4.3 showed that the magnitude of this drift, controlled by β, has a bounded
effect on the final policy’s fairness. This raises the central question: if we guide this drift with a FARO-fair
reward model, does it actually produce a fairer final LLM?

We answer in the affirmative, showing that the fairness engineered into the reward model provably transfers to
the fine-tuned policy. This is a critical result, as it guarantees that our efforts at the reward-modeling stage are
not “lost in translation” during the complex dynamics of RL optimisation. It shows that using a fair reward is
demonstrably better than using an unconstrained one.
Theorem 4.4 (Reward-to-Policy Fairness Transfer). Let rplain be a reward model trained to optimise only the
preference loss (Eq. 1) on a given dataset, and let rϕ be the FARO-fair reward model trained on the same
data with an additional fairness constraint. Let their resulting fairness violations be ∆(πβplain) and ∆(πβfair)
respectively, after fine-tuning from the same πref with the same KL-penalty β. Under standard monotonicity
assumptions, the violations are related by ∆(πfair

β ) ≤ ∆(πplain
β ) + εT .

εT is the fairness violation slack of the reward model rϕ from Prop. 4.1. For any given level of fine-tuning
(i.e. for any fixed β), replacing a standard, unconstrained reward with a FARO-fair reward will improve (at
worst, not harm) the downstream fairness of the resulting LLM policy, up to the small slack εT . A fair reward
function makes the final policy fairer. The guarantees we establish at the reward level propagate through the
RL fine-tuning process, providing a principled mechanism for producing fairer policies in practice (App. C.4).

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

4.4 EXISTENCE OF PARETO-OPTIMAL OPERATING POINTS

Consider the bi-objective problem of minimising (error, fairness), where “error” is a suitable accuracy metric
and “fairness” is one of ∆dp,∆eo,∆cf. We establish the existence of a non-empty Pareto frontier, ensuring
that there are well-defined operating points trading off fairness and accuracy.
Proposition 4.5 (Non-empty Pareto frontier). Varying FARO’s fairness tolerance schedules {γi}, {κi}, {µij}
and the KL-regularisation parameter β within compact sets traces a non-empty, continuous Pareto frontier in
the (error, fairness) objective space.

This guarantee arises from a standard topological argument (full proof in App C.5). The space of
hyperparameters is compact by definition. The mapping from these parameters to the resulting optimal
policy, π∗, is continuous by Berge’s Maximum Theorem, as is the subsequent mapping from the policy to its
(error, fairness) evaluation. The continuous image of a compact set is also compact; therefore, the set of all
achievable outcomes is a compact set in R2, which ensures the existence of a non-empty Pareto frontier.

As tolerances (γ, κ, µ) → 0 and β → ∞, the policy remains close to the unfair reference πref. Conversely, as
β → 0, the policy utilises the fair reward rϕ, improving fairness with controlled deviation from πref. FARO
efficiently traverses the continuous trade-off space, and yields Pareto-efficient policies in RL finetuning.

5 EXPERIMENTS

We evaluate each setting FARO on safety oriented datasets. For each run we optimize a single fairness family
FARO_dp, FARO_eo, or FARO_cf. We finetune an instruction tuned language model with reward modeling
and use the learned reward to assess multiple choice selection or to rerank sampled generations at inference.

Finetuning Dataset. We train the reward model on PRISM (Kirk et al., 2024), a pairwise preference corpus
that is grouped by sociodemographic attributes. Our implementation follows the proxy Lagrangian with
anchoring. For a chosen family we form anchored constraints over the differentiable preference probability,
learn nonnegative dual variables with projection, and optimize the Bradley Terry negative log likelihood plus
the active constraint term. Training uses a value head on top of the policy.

Evaluation Datasets. We evaluate with dataset specific quality and fairness metrics. On BBQ (Parrish et al.,
2022), we use the Ambiguous and Disambiguated settings. We report top-1 accuracy and the official bias
scores for both settings. For BBQ we score multiple choice options by the reward and select the argmax.

Models. We use three public instruction tuned models: Gemma-2-2B (Team et al., 2024), Phi-3-Mini
(Abdin et al., 2024), and Qwen-2.5-1.5B (Team, 2024). Reward modeling is performed with a causal language
model and value head. For evaluation we either rank options by the reward, or generate with the policy
and optionally apply reward based reranking as above. We include a baseline comparison with the original
language model: for Gemma, we use reported scores for the BBQ evaluation; for Phi-3 and Qwen-2.5, we
extract findings using the same approaches in Parrish et al. (2022) and report scores in the table independently.

We show results in Table 2. We find that FARO allows us to consistently reduce bias as given by the bias score
while preserving general accuracy.

5.1 OPTIMISING THE ERROR VS. FAIRNESS-VIOLATION TRADE-OFF

We show a comparison between our top-1 accuracy and DP loss for Gemma in Figure 2. This is varied across
several β values to understand how β affects the relationship between fairness and accuracy for Gemma. We
evaluate the fairness using DP and evaluate the accuracy using the accuracy of BBQ for Gemma. We include
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Table 2: FARO optimises fairness while preserving performance. We measure fairness on BBQ after
reward-optimising on PRISM. We find that FARO allows us to significantly improve over the base model with
regards to bias scores. This also seems to correlate with changes in the scores of DP, EO, and CF.

Model Disamb Top-1 (↑) Ambig Top-1 (↑) Ambig Bias Score (↓) Disambig Bias Score (↓) ∆DP/EO/CF

Gemma-2-2b-it 83.20 63.91 14.73 -0.811 N/A
Gemma-2-2b-it – FARO (DP) 83.93 63.20 6.81 -1.01 0.55
Gemma-2-2b-it – FARO (CF) 83.10 62.86 10.55 -0.965 0.41
Gemma-2-2b-it – FARO (EO) 82.71 63.72 12.96 -0.822 0.44

Phi-3-Mini 71.92 42.14 11.91 1.42 N/A
Phi-3-Mini – FARO (DP) 71.99 46.55 9.15 1.01 0.21
Phi-3-Mini – FARO (EO) 70.05 44.01 10.86 1.04 0.18
Phi-3-Mini – FARO (CF) 71.73 45.92 9.01 0.93 0.37

Qwen-2.5-1.5B 74.14 58.97 11.44 -.0922 N/A
Qwen-2.5-1.5B– FARO (DP) 75.11 59.18 9.11 -.104 0.26
Qwen-2.5-1.5B – FARO (EO) 74.06 57.66 10.87 -0.100 0.054
Qwen-2.5-1.5B – FARO (CF) 73.12 58.91 8.04 -0.155 0.091

Figure 2: Pareto Frontier of fairness and accuracy. We vary β and use FARO_DP as the reward for Gemma
on PRISM. We plot the fairness violation and BBQ Top-1 accuracy for the ambiguous dataset, and compute
the pareto optimal set of βs by finding all dominated points where all neighboring points are strictly better.

the pareto frontier by finding all points which are dominated by other points around them and removing them.
Surprisingly, we see some sensitivity to β e.g. with 0.05. This could be due to some tuning whereby smaller
β is not well balanced between the fairness and accuracy considerations.

6 CONCLUSION

We tackle the issue of demographic bias in LLM alignment, which propagates from skewed or prejudiced
human preference data. We argue that existing interventions are unable to address all axes of the problem,
where a suitable reward model must be simultaneously ordinal, cardinal, and fair. Towards codifying and
reinforcing fair behaviour, we introduce FARO, an in-processing framework that directly embeds algorithmic
fairness constraints into the reward modeling objective. Our theoretical analysis provides several guarantees;
notably, that the fairness engineered into the reward model provably transfers to the fine-tuned policy, and
that a Pareto frontier of optimal solutions exists. We validate this theory across the BBQ benchmark and three
LLMs, confirming that FARO significantly reduces biased or prejudiced generations whilst preserving model
quality. This work offers a principled and verifiable path toward more equitable LLMs that are fair by design.
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ETHICS STATEMENT

This paper investigates fairness shortcomings in LLM alignment and proposes improvements via FARO, an
in-processing intervention with fairness constraints during RLHF’s reward modelling phase. We contribute 3
desirable properties—the ability to correct for human bias in datasets; to conduct fairness-aware optimisation
in an annotation efficient manner; to derive reward models that are algorithmically fair with high Pareto-
efficiency. While mathematical guarantees can guard against worst-case examples of egregious discrimination,
fairness is an inherently societal concept; theoretical models must be continuously updated by inter-
disciplinary research. Algorithms like FARO should be used to complement – not replace – other fairness
guardrails (e.g. data-filtering, unlearning, calibration). A fair model can still be misused; due diligence,
rigorous auditing, collecting and incorporating user feedback are as important as ever before.

REPRODUCIBILITY STATEMENT

We report experimental details on the considered datasets, models and baselines, and hyperparameters for
FARO in Section 5 and App. D.1. We discuss (algorithmic) metrics of fairness in Section 2.2; we further
discuss the limitations of measures of fairness in Section 6. Our theoretical arguments are substantiated by
quantitative and qualitative results, with full proofs provided in App. C. Upon acceptance, we will open
source the FARO framework code and FARO-trained reward models for scientific collaboration.

REFERENCES

Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah, A., Awadalla, H., Bach, N., Bahree, A.,
Bakhtiari, A., Behl, H., et al. Phi-3 technical report: A highly capable language model locally on your
phone. arXiv preprint arXiv:2404.14219, 2024. 8

Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., and Wallach, H. A reductions approach to fair
classification. In International conference on machine learning, pp. 60–69. PMLR, 2018. 4

Avery, R., Brevoort, K., and Canner, G. Credit scoring and its effects on the availability and affordability of
credit. Journal of Consumer Affairs - J CONSUM AFF, 43:516–537, 09 2009. doi: 10.1111/j.1745-6606.
2009.01151.x. 18

Azar, M. G., Guo, Z. D., Piot, B., Munos, R., Rowland, M., Valko, M., and Calandriello, D. A general
theoretical paradigm to understand learning from human preferences. In International Conference on
Artificial Intelligence and Statistics, pp. 4447–4455. PMLR, 2024. 3

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie, A., Mirhoseini, A.,
McKinnon, C., et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073,
2022. 1, 3

Barocas, S. and Selbst, A. D. Big data’s disparate impact. Calif. L. Rev., 104:671, 2016. 1, 18

Barocas, S., Hardt, M., and Narayanan, A. Fairness and Machine Learning: Limitations and Opportunities.
MIT Press, 2023. 2

Bender, E. M., Gebru, T., McMillan-Major, A., and Shmitchell, S. On the dangers of stochastic parrots: Can
language models be too big? . In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, FAccT ’21, pp. 610–623, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445922. URL https://doi.org/10.
1145/3442188.3445922. 1

10

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922


470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Blodgett, S. L., Barocas, S., Daumé III, H., and Wallach, H. Language (technology) is power: A critical
survey of “bias” in NLP. In Jurafsky, D., Chai, J., Schluter, N., and Tetreault, J. (eds.), Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5454–5476, Online,
July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.485. URL
https://aclanthology.org/2020.acl-main.485/. 18

Blodgett, S. L., Lopez, G., Olteanu, A., Sim, R., and Wallach, H. Stereotyping Norwegian salmon: An
inventory of pitfalls in fairness benchmark datasets. In Zong, C., Xia, F., Li, W., and Navigli, R. (eds.),
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1004–1015,
Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.81. URL
https://aclanthology.org/2021.acl-long.81/. 18

Bradley, R. A. and Terry, M. E. Rank analysis of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4):324–345, 1952. ISSN 00063444, 14643510. 3

Calmon, F., Wei, D., Vinzamuri, B., Natesan Ramamurthy, K., and Varshney, K. R. Optimized pre-
processing for discrimination prevention. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/9a49a25d845a483fae4be7e341368e36-Paper.pdf. 18

Celis, L. E., Huang, L., Keswani, V., and Vishnoi, N. K. Classification with fairness constraints: A meta-
algorithm with provable guarantees. In Proceedings of the conference on fairness, accountability, and
transparency, pp. 319–328, 2019. 4

Center, M. P. Integrated public use microdata series, international: Version 7.2. Minneapolis: University of
Minnesota, 2019. URL http://doi.org/10.18128/D020.V7.2. 18

Chen, G. H., Chen, S., Liu, Z., Jiang, F., and Wang, B. Humans or LLMs as the judge? a study on judgement
bias. In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N. (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 8301–8327, Miami, Florida, USA, November
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.474. URL https:
//aclanthology.org/2024.emnlp-main.474/. 18

Chen, G. H., Chen, S., Liu, Z., Jiang, F., and Wang, B. Humans or llms as the judge? a study on judgement
biases. arXiv preprint arXiv:2402.10669, 2024b. 18

Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., and He, X. Bias and debias in recommender system:
A survey and future directions. ACM Trans. Inf. Syst., 41(3), February 2023. ISSN 1046-8188. doi:
10.1145/3564284. URL https://doi.org/10.1145/3564284. 17

Chouldechova, A. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments.
arXiv preprint arXiv:1703.00056, 2017. 18

Chzhen, E., Denis, C., Hebiri, M., Oneto, L., and Pontil, M. Leveraging labeled and unlabeled data for
consistent fair binary classification. Advances in Neural Information Processing Systems, 32, 2019. 18

Commission, U. E. E. O. Equal employment opportunities. Civil Rights Act of 1964, 1964. 18

Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., and Huq, A. Algorithmic decision making and the cost of
fairness. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’17, pp. 797–806, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450348874. doi: 10.1145/3097983.3098095. URL https://doi.org/10.
1145/3097983.3098095. 18

11

https://aclanthology.org/2020.acl-main.485/
https://aclanthology.org/2021.acl-long.81/
https://proceedings.neurips.cc/paper_files/paper/2017/file/9a49a25d845a483fae4be7e341368e36-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9a49a25d845a483fae4be7e341368e36-Paper.pdf
http://doi.org/10.18128/D020.V7.2
https://aclanthology.org/2024.emnlp-main.474/
https://aclanthology.org/2024.emnlp-main.474/
https://doi.org/10.1145/3564284
https://doi.org/10.1145/3097983.3098095
https://doi.org/10.1145/3097983.3098095


517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Cotter, A., Gupta, M., Jiang, H., Srebro, N., Sridharan, K., Wang, S., Woodworth, B., and You, S. Training
well-generalizing classifiers for fairness metrics and other data-dependent constraints. In International
Conference on Machine Learning, pp. 1397–1405. PMLR, 2019a. 6, 20

Cotter, A., Jiang, H., and Sridharan, K. Two-player games for efficient non-convex constrained optimization.
In Garivier, A. and Kale, S. (eds.), Proceedings of the 30th International Conference on Algorithmic
Learning Theory, volume 98 of Proceedings of Machine Learning Research, pp. 300–332. PMLR, 22–24
Mar 2019b. URL https://proceedings.mlr.press/v98/cotter19a.html. 6

Creager, E., Madras, D., Jacobsen, J.-H., Weis, M., Swersky, K., Pitassi, T., and Zemel, R. Flexibly fair
representation learning by disentanglement. In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 1436–1445. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/
v97/creager19a.html. 18

Dai, S., Xu, C., Xu, S., Pang, L., Dong, Z., and Xu, J. Bias and unfairness in information retrieval systems:
New challenges in the llm era. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 6437–6447, 2024. 1

Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E., Molino, P., Yosinski, J., and Liu, R. Plug and
play language models: A simple approach to controlled text generation. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=H1edEyBKDS. 1

Ding, F., Hardt, M., Miller, J., and Schmidt, L. Retiring adult: New datasets for fair machine
learning. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 6478–6490. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
32e54441e6382a7fbacbbbaf3c450059-Paper.pdf. 2, 18

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. Fairness through awareness. In Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pp. 214–226, New York, NY,
USA, 2012. Association for Computing Machinery. ISBN 9781450311151. doi: 10.1145/2090236.2090255.
URL https://doi.org/10.1145/2090236.2090255. 18

Ethayarajh, K., Xu, W., Muennighoff, N., Jurafsky, D., and Kiela, D. Kto: Model alignment as prospect
theoretic optimization. arXiv preprint arXiv:2402.01306, 2024. 3, 19

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian, S. Certifying and
removing disparate impact. In proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 259–268, 2015. 4, 18

Fish, B., Kun, J., and Lelkes, Á. D. A confidence-based approach for balancing fairness and accuracy. In
Proceedings of the 2016 SIAM international conference on data mining, pp. 144–152. SIAM, 2016. 18

Friedler, S. A., Scheidegger, C., and Venkatasubramanian, S. The (im) possibility of fairness: Different
value systems require different mechanisms for fair decision making. Communications of the ACM, 64(4):
136–143, 2021. 4

Gallegos, I. O., Rossi, R. A., Barrow, J., Tanjim, M. M., Kim, S., Dernoncourt, F., Yu, T., Zhang, R., and
Ahmed, N. K. Bias and fairness in large language models: A survey. Computational Linguistics, pp. 1–79,
2024. 17

Ganguli, D., Lovitt, L., Kernion, J., Askell, A., Bai, Y., Kadavath, S., Mann, B., Perez, E., Schiefer, N.,
Ndousse, K., et al. Red teaming language models to reduce harms: Methods, scaling behaviors, and lessons
learned. arXiv preprint arXiv:2209.07858, 2022. 1

12

https://proceedings.mlr.press/v98/cotter19a.html
https://proceedings.mlr.press/v97/creager19a.html
https://proceedings.mlr.press/v97/creager19a.html
https://openreview.net/forum?id=H1edEyBKDS
https://proceedings.neurips.cc/paper_files/paper/2021/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://doi.org/10.1145/2090236.2090255


564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Gehman, S., Gururangan, S., Sap, M., Choi, Y., and Smith, N. A. Realtoxicityprompts: Evaluating neural
toxic degeneration in language models. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 3356–3369, 2020. 1

Hardt, M., Price, E., and Srebro, N. Equality of opportunity in supervised learning. Advances in neural
information processing systems, 29, 2016. 4, 18

Honovich, O., Scialom, T., Levy, O., and Schick, T. Unnatural instructions: Tuning language models with
(almost) no human labor. In Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
14409–14428, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.806. URL https://aclanthology.org/2023.acl-long.806/. 18

Jagielski, M., Kearns, M., Mao, J., Oprea, A., Roth, A., Sharifi-Malvajerdi, S., and Ullman, J. Differentially
private fair learning. In International Conference on Machine Learning, pp. 3000–3008. PMLR, 2019. 5

Jang, T., Zheng, F., and Wang, X. Constructing a fair classifier with generated fair data. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(9):7908–7916, May 2021. doi: 10.1609/aaai.v35i9.16965.
URL https://ojs.aaai.org/index.php/AAAI/article/view/16965. 18

Jang, T., Shi, P., and Wang, X. Group-aware threshold adaptation for fair classification. Proceedings of the
AAAI Conference on Artificial Intelligence, 36(6):6988–6995, Jun. 2022. doi: 10.1609/aaai.v36i6.20657.
URL https://ojs.aaai.org/index.php/AAAI/article/view/20657. 18

Jaques, N., Gu, S., Bahdanau, D., Hernández-Lobato, J. M., Turner, R. E., and Eck, D. Sequence tutor:
Conservative fine-tuning of sequence generation models with KL-control. In Precup, D. and Teh, Y. W.
(eds.), Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pp. 1645–1654. PMLR, 06–11 Aug 2017. URL https://proceedings.
mlr.press/v70/jaques17a.html. 3

Johndrow, J. E. and Lum, K. An algorithm for removing sensitive information. The Annals of Applied
Statistics, 13(1):189–220, 2019. 18

Kirk, H. R., Whitefield, A., Röttger, P., Bean, A., Margatina, K., Ciro, J., Mosquera, R., Bartolo, M., Williams,
A., He, H., et al. The prism alignment project: What participatory, representative and individualised human
feedback reveals about the subjective and multicultural alignment of large language models. Advances in
Neural Information Processing Systems, 2024. 8

Kleinberg, J., Mullainathan, S., and Raghavan, M. Inherent trade-offs in the fair determination of risk scores.
In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik, 2017. 4, 18

Kohavi, R. and Becker, B. Uci adult data set. UCI machine learning repository, 5:2093, 1996. 18

Koo, R., Lee, M., Raheja, V., Park, J. I., Kim, Z. M., and Kang, D. Benchmarking cognitive biases in
large language models as evaluators. In Ku, L.-W., Martins, A., and Srikumar, V. (eds.), Findings of
the Association for Computational Linguistics: ACL 2024, pp. 517–545, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.29. URL https:
//aclanthology.org/2024.findings-acl.29/. 18

Krause, B., Gotmare, A. D., McCann, B., Keskar, N. S., Joty, S., Socher, R., and Rajani, N. F. Gedi:
Generative discriminator guided sequence generation. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 4929–4952, 2021. 1

13

https://aclanthology.org/2023.acl-long.806/
https://ojs.aaai.org/index.php/AAAI/article/view/16965
https://ojs.aaai.org/index.php/AAAI/article/view/20657
https://proceedings.mlr.press/v70/jaques17a.html
https://proceedings.mlr.press/v70/jaques17a.html
https://aclanthology.org/2024.findings-acl.29/
https://aclanthology.org/2024.findings-acl.29/


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Larson, J., Mattu, S., Kirchner, L., and Angwin, J. How we analyzed the compas recidivism algorithm.
ProPublica (5 2016), 9(1):3–3, 2016. 18

Liu, A., Sap, M., Lu, X., Swayamdipta, S., Bhagavatula, C., Smith, N. A., and Choi, Y. DExperts: Decoding-
time controlled text generation with experts and anti-experts. In Zong, C., Xia, F., Li, W., and Navigli,
R. (eds.), Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
6691–6706, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
acl-long.522. URL https://aclanthology.org/2021.acl-long.522/. 1

Liu, D., Cheng, P., Dong, Z., He, X., Pan, W., and Ming, Z. A general knowledge distillation framework for
counterfactual recommendation via uniform data. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’20, pp. 831–840, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450380164. doi: 10.1145/3397271.
3401083. URL https://doi.org/10.1145/3397271.3401083. 18

Liu, H., Tang, D., Yang, J., Zhao, X., Liu, H., Tang, J., and Cheng, Y. Rating distribution calibration for
selection bias mitigation in recommendations. In Proceedings of the ACM Web Conference 2022, WWW ’22,
pp. 2048–2057, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450390965.
doi: 10.1145/3485447.3512078. URL https://doi.org/10.1145/3485447.3512078. 17

Locatello, F., Abbati, G., Rainforth, T., Bauer, S., Schölkopf, B., and Bachem, O. On the fairness of
disentangled representations. Advances in neural information processing systems, 32, 2019. 18

Louizos, C., Swersky, K., Li, Y., Welling, M., and Zemel, R. The variational fair autoencoder. arXiv preprint
arXiv:1511.00830, 2015. 18

Lum, K. and Johndrow, J. A statistical framework for fair predictive algorithms. arXiv preprint
arXiv:1610.08077, 2016. 18

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. A survey on bias and fairness in
machine learning. ACM Comput. Surv., 54(6), July 2021. ISSN 0360-0300. doi: 10.1145/3457607. URL
https://doi.org/10.1145/3457607. 17

Menon, A. K. and Williamson, R. C. The cost of fairness in binary classification. In Friedler, S. A. and
Wilson, C. (eds.), Proceedings of the 1st Conference on Fairness, Accountability and Transparency,
volume 81 of Proceedings of Machine Learning Research, pp. 107–118. PMLR, 23–24 Feb 2018. URL
https://proceedings.mlr.press/v81/menon18a.html. 4, 18

Naghiaei, M., Rahmani, H. A., and Dehghan, M. The unfairness of popularity bias in book recommendation.
In International Workshop on Algorithmic Bias in Search and Recommendation, pp. 69–81. Springer, 2022.
17

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., et al. Training language models to follow instructions with human feedback. Advances in neural
information processing systems, 35:27730–27744, 2022. 3

Ovaisi, Z., Ahsan, R., Zhang, Y., Vasilaky, K., and Zheleva, E. Correcting for selection bias in learning-to-rank
systems. In Proceedings of The Web Conference 2020, pp. 1863–1873, 2020. 17

Parrish, A., Chen, A., Nangia, N., Padmakumar, V., Phang, J., Thompson, J., Htut, P. M., and Bowman, S. Bbq:
A hand-built bias benchmark for question answering. In Findings of the Association for Computational
Linguistics: ACL 2022, pp. 2086–2105, 2022. 8

14

https://aclanthology.org/2021.acl-long.522/
https://doi.org/10.1145/3397271.3401083
https://doi.org/10.1145/3485447.3512078
https://doi.org/10.1145/3457607
https://proceedings.mlr.press/v81/menon18a.html


658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Perez, E., Huang, S., Song, F., Cai, T., Ring, R., Aslanides, J., Glaese, A., McAleese, N., and Irving, G. Red
teaming language models with language models. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 3419–3448, 2022. 1

Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., and Weinberger, K. Q. On fairness and calibration.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,
R. (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
b8b9c74ac526fffbeb2d39ab038d1cd7-Paper.pdf. 18

Quadrianto, N. and Sharmanska, V. Recycling privileged learning and distribution matching for fairness.
Advances in neural information processing systems, 30, 2017. 4

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Ermon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Advances in Neural Information Processing Systems, 36,
2023. 3, 19

Sattigeri, P., Hoffman, S., Chenthamarakshan, V., and Varshney, K. Fairness gan: Generating datasets with
fairness properties using a generative adversarial network. IBM Journal of Research and Development, 63:
1–1, 10 2019. doi: 10.1147/JRD.2019.2945519. 18

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017. 3

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang, H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath:
Pushing the limits of mathematical reasoning in open language models. arXiv preprint arXiv:2402.03300,
2024. 19

Sheng, E., Chang, K.-W., Natarajan, P., and Peng, N. Societal biases in language generation: Progress and
challenges. In Zong, C., Xia, F., Li, W., and Navigli, R. (eds.), Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 4275–4293, Online, August 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.acl-long.330. URL https://aclanthology.
org/2021.acl-long.330/. 1

Smith, E. M., Hall, M., Kambadur, M., Presani, E., and Williams, A. “i’m sorry to hear that”: Finding new
biases in language models with a holistic descriptor dataset. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp. 9180–9211, 2022. 1

Solaiman, I. and Dennison, C. Process for adapting language models to society (palms) with values-targeted
datasets. Advances in Neural Information Processing Systems, 34:5861–5873, 2021. 1

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R., Voss, C., Radford, A., Amodei, D., and Christiano,
P. F. Learning to summarize with human feedback. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H. (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 3008–3021.
Curran Associates, Inc., 2020. 3

Sun, H., Shen, Y., and Ton, J.-F. Rethinking bradley-terry models in preference-based reward modeling:
Foundations, theory, and alternatives. arXiv preprint arXiv:2411.04991, 2024. 18

Suresh, H. and Guttag, J. A framework for understanding sources of harm throughout the machine learning
life cycle. In Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms,
and Optimization, pp. 1–9, 2021. 2

15

https://proceedings.neurips.cc/paper_files/paper/2017/file/b8b9c74ac526fffbeb2d39ab038d1cd7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/b8b9c74ac526fffbeb2d39ab038d1cd7-Paper.pdf
https://aclanthology.org/2021.acl-long.330/
https://aclanthology.org/2021.acl-long.330/


705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin, C., Bhupatiraju, S., Hussenot, L., Mesnard, T.,
Shahriari, B., Ramé, A., et al. Gemma 2: Improving open language models at a practical size. arXiv
preprint arXiv:2408.00118, 2024. 8

Team, Q. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2, 2024. 8

Wang, P., Li, L., Chen, L., Cai, Z., Zhu, D., Lin, B., Cao, Y., Liu, Q., Liu, T., and Sui, Z. Large language
models are not fair evaluators. arXiv preprint arXiv:2305.17926, 2023a. 18

Wang, X., Zhang, R., Sun, Y., and Qi, J. Combating selection biases in recommender systems with
a few unbiased ratings. In Proceedings of the 14th ACM International Conference on Web Search
and Data Mining, WSDM ’21, pp. 427–435, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450382977. doi: 10.1145/3437963.3441799. URL https://doi.org/10.
1145/3437963.3441799. 17

Wang, X., Rahmani, H., Liu, J., and Yilmaz, E. Improving conversational recommendation systems via bias
analysis and language-model-enhanced data augmentation. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 3609–3622, Singapore,
December 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.233.
URL https://aclanthology.org/2023.findings-emnlp.233/. 18

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. In Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 13484–13508, Toronto, Canada, July 2023c. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754/.
18

Wang, Y., Wu, Y., Wei, Z., Jegelka, S., and Wang, Y. A theoretical understanding of self-correction through
in-context alignment. arXiv preprint arXiv:2405.18634, 2024. 18

Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., Cheng, M., Glaese, M., Balle,
B., Kasirzadeh, A., et al. Ethical and social risks of harm from language models. arXiv preprint
arXiv:2112.04359, 2021. 1

Woodworth, B., Gunasekar, S., Ohannessian, M. I., and Srebro, N. Learning non-discriminatory predictors.
In Kale, S. and Shamir, O. (eds.), Proceedings of the 2017 Conference on Learning Theory, volume 65
of Proceedings of Machine Learning Research, pp. 1920–1953. PMLR, 07–10 Jul 2017. URL https:
//proceedings.mlr.press/v65/woodworth17a.html. 18

Xu, D., Yuan, S., Zhang, L., and Wu, X. Fairgan: Fairness-aware generative adversarial networks. In 2018
IEEE international conference on big data (big data), pp. 570–575. IEEE, 2018. 18

Xu, H., Sharaf, A., Chen, Y., Tan, W., Shen, L., Van Durme, B., Murray, K., and Kim, Y. J. Contrastive
preference optimization: Pushing the boundaries of LLM performance in machine translation. In
Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.),
Proceedings of the 41st International Conference on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 55204–55224. PMLR, 21–27 Jul 2024. URL https://proceedings.
mlr.press/v235/xu24t.html. 3

Xu, R., Cui, P., Kuang, K., Li, B., Zhou, L., Shen, Z., and Cui, W. Algorithmic decision making with
conditional fairness. In Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2125–2135, 2020. 4

16

https://doi.org/10.1145/3437963.3441799
https://doi.org/10.1145/3437963.3441799
https://aclanthology.org/2023.findings-emnlp.233/
https://aclanthology.org/2023.acl-long.754/
https://proceedings.mlr.press/v65/woodworth17a.html
https://proceedings.mlr.press/v65/woodworth17a.html
https://proceedings.mlr.press/v235/xu24t.html
https://proceedings.mlr.press/v235/xu24t.html


752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Yuan, W., Pang, R. Y., Cho, K., Li, X., Sukhbaatar, S., Xu, J., and Weston, J. E. Self-rewarding
language models. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and
Berkenkamp, F. (eds.), Proceedings of the 41st International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pp. 57905–57923. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/yuan24d.html. 18

Zafar, M. B., Valera, I., Gomez Rodriguez, M., and Gummadi, K. P. Fairness beyond disparate treatment
& disparate impact: Learning classification without disparate mistreatment. In Proceedings of the 26th
international conference on world wide web, pp. 1171–1180, 2017a. 4

Zafar, M. B., Valera, I., Rogriguez, M. G., and Gummadi, K. P. Fairness constraints: Mechanisms for fair
classification. In Artificial intelligence and statistics, pp. 962–970. PMLR, 2017b. 4

Zayed, A., Mordido, G., Shabanian, S., Baldini, I., and Chandar, S. Fairness-aware structured pruning in
transformers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 22484–
22492, 2024. 1

Zemel, R., Wu, Y., Swersky, K., Pitassi, T., and Dwork, C. Learning fair representations. In Dasgupta, S. and
McAllester, D. (eds.), Proceedings of the 30th International Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, pp. 325–333, Atlanta, Georgia, USA, 17–19 Jun 2013.
PMLR. URL https://proceedings.mlr.press/v28/zemel13.html. 18

Zeng, X., Dobriban, E., and Cheng, G. Bayes-optimal classifiers under group fairness. arXiv preprint
arXiv:2202.09724, 2022. 18

Zhao, Z., Chen, J., Zhou, S., He, X., Cao, X., Zhang, F., and Wu, W. Popularity bias is not always
evil: Disentangling benign and harmful bias for recommendation. IEEE Trans. on Knowl. and Data
Eng., 35(10):9920–9931, October 2023. ISSN 1041-4347. doi: 10.1109/TKDE.2022.3218994. URL
https://doi.org/10.1109/TKDE.2022.3218994. 17

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., et al.
Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information Processing
Systems, 36:46595–46623, 2023. 18

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford, A., Amodei, D., Christiano, P., and Irving, G.
Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593, 2019. 3

A EXTENDED RELATED WORK

Why Preference Alignment is Not “Fair Enough". Using preference datasets for fairness-alignment
is vulnerable to selection bias from data collection oversight; popularity bias from disproportional survey
participation; cognitive bias from prejudiced human annotators1. Flawed data collection induces selection bias,
where response data is biased by preferences of the surveyed demographic and encodes spurious correlations
(Ovaisi et al., 2020; Wang et al., 2021; Liu et al., 2022); skewed survey strategies lead to popularity bias, where
preference data is sparse, long-tailed and lacks coverage for less-preferred or uncommon responses, leading to
unpredictable behaviour under distribution shifts or edge cases (Chen et al., 2023; Zhao et al., 2023; Naghiaei
et al., 2022). Beyond statistical dataset biases, previous works also deal with a lack of fairness in LLMs’
judgement calls, as a product of defective training and alignment procedures. Surveys on fairness (Mehrabi
et al., 2021; Gallegos et al., 2024) reveal cognitive biases in LLM judges that mirror human prejudice, leading

1We refer readers to Gallegos et al. (2024) for a thorough and insightful breakdown of the metrics, datasets, mitigation
techniques and open problems concerning LLM bias and fairness.
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to disparate treatment on unfair bases of gender, authority, beauty standards, misinformation (Chen et al.,
2024a; Koo et al., 2024; Zheng et al., 2023). Since real-world datasets are rampant with discriminatory
examples, bias arising from these skewed representations are encoded into the reward model (Wang et al.,
2023b; Liu et al., 2020); the reward model propagates undesirable biases to the LLM through RL fine-tuning
and reinforces unfair behaviour (Blodgett et al., 2020; 2021). Without an internal constitution, our LLMs are
being corrupted by—instead of correcting—instances of bias, unfairness and prejudice in big data. Enter the
role of theory as a tool to specify, certify and codify principles of equality into the LLM constitution.

Algorithmic Fairness. Fairness concerns equalising the treatment and consideration of people, identified
by their (protected) demographic attributes, such as gender, race, age (Commission, 1964). Fairness-aware
algorithms intervene on the learning problem to avoid disparate treatment of people, with hopes of also
reducing disparate impact of decision-making outcomes (Barocas & Selbst, 2016). Notable definitions
of group-fairness include demographic parity (Dwork et al., 2012), equalised odds and equal opportunity
(Hardt et al., 2016), calibration (Kleinberg et al., 2017); different approaches to fairness are benchmarked
on real-world datasets, including TransUnion TransRisk (Avery et al., 2009), UCI Adult (Kohavi & Becker,
1996), Dutch census (Center, 2019), COMPAS (Larson et al., 2016), ACS PUMS (Ding et al., 2021). Towards
mitigating group-wise disparate treatment, there are three types of fairness interventions—pre-processing,
in-processing and post-processing (Zeng et al., 2022; Pleiss et al., 2017). This mirrors the dilemma of
fairness-aware processing in LLMs, where the timing of when to intervene has crucial impacts on both the
algorithm (computational and sample efficiency, optimisation stability) and its outcomes (whether it has
theoretical guarantees, its Pareto-efficiency). Pre-processing aims to filter away latent biases in training data
through transformations (Feldman et al., 2015; Lum & Johndrow, 2016; Johndrow & Lum, 2019; Calmon
et al., 2017), fair representations (Zemel et al., 2013; Louizos et al., 2015; Creager et al., 2019) and fair
generative modelling (Xu et al., 2018; Sattigeri et al., 2019; Jang et al., 2021). Although such methods are
broadly applicable to any learning problem, pre-processing requires an extra, expensive pass over data, and
lacks formal guarantees of fairness, since disparities may persist even post-filtering (Locatello et al., 2019). A
different approach is to post-process a trained model by shifting its decision boundary – particularly with
group-wise thresholding rules (Fish et al., 2016; Corbett-Davies et al., 2017; Menon & Williamson, 2018;
Chzhen et al., 2019; Jang et al., 2022) – to adjust for fairness. However, previous work has demonstrated that
post-processing is unable to achieve optimality in both error-calibration and fairness; that post-processing
for one particular notion of fairness could be in contradiction other important but incompatible notions
(Chouldechova, 2017; Kleinberg et al., 2017; Woodworth et al., 2017; Corbett-Davies et al., 2017).

Self-critiquing LLMs. One exciting direction concerns LLMs self-improvement and self-correction by
critiquing their own outputs. Self-criticism generates new instructions and the model is realigned to the new
instructions (Zheng et al., 2023; Wang et al., 2023c; Honovich et al., 2023). In fairness-aligned optimisation,
this involves using context-dependent techniques (Wang et al., 2024) to first, infer sensitive and unrestricted
attributes from input prompts; then, recast reward modelling as an “Attribute Aware", in-processing problem;
finally, iteratively self-assess its Pareto-efficiency and adjust the attributes-classifier to issue systematic
updates to the self-rewarding mechanism (Yuan et al., 2024). Though it is yet unclear whether LLMs as
self-critics can be immune from evaluation bias, human/dataset bias and positional instability issues (Wang
et al., 2023a; Koo et al., 2024; Chen et al., 2024b; Sun et al., 2024), we are optimistic that a hybrid approach
structured with algorithmic fairness could reveal new strategies for robust, stable and fair self-alignment.

B DERIVATIONS

B.1 FARO FOR DIRECT PREFERENCE OPTIMISATION

DPO-like frameworks reframe the RL problem by instead expressing the reward model in terms of the
reference and optimal policies. The derivation begins by noting that the optimal policy for the KL-constrained
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reward maximisation objective (Eq. 2) is a Gibbs distribution. This allows the reward difference between
winning and losing responses to be defined purely by the policies themselves. By substituting this policy-based
reward expression into the BT-model, DPO arrives at a simple negative log-likelihood loss that is optimised
directly with respect to the policy’s parameters:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
. (5)

For frameworks such as DPO , KTO and GRPO, we may directly combine their standard loss functions with
a fairness penalty term, where the implicit reward is substituted into the fairness proxy:

LFARO-{DPO, KTO, GRPO}(πθ, λ) = L{DPO, KTO, GRPO}(πθ) + λ⊤Cfairness(πθ) (6)

FARO-DPO. In DPO (Rafailov et al., 2023), the fairness violation vector, Cfairness(πθ), is composed of
constraints based on the policy-dependent fairness proxy, qi(πθ):

qi(πθ) := E(x,yw,yl)∼Di

[
σ

(
β log

πref(yw | x)
πθ(yw | x)

− β log
πref(yl | x)
πθ(yl | x)

)]
(7)

FARO-KTO. KTO (Ethayarajh et al., 2024) uses single responses – as opposed to pairs – labelled as
desirable or undesirable. FARO can be applied by constraining the average reward for desirable (or
undesirable) examples to be equal across groups. The fairness constraint is defined on the implicit KTO
reward, rKTO(x, y) = β log

(
πθ(y|x)
πref(y|x)

)
. For a desirable example (Y = 1), the fairness proxy for group Gi is:

qi(πθ) := E(x,y)∼Di,Y=1

[
σ

(
β log

πref(y | x)
πθ(y | x)

)]
(8)

FARO-GRPO. GRPO (Shao et al., 2024) is designed for group-wise preference data. FARO extends this
by ensuring that within each group, the preference margins are consistent with the global fairness standard.
The fairness constraints can be defined similarly to FARO-DPO but the expectations for the proxy qi(πθ) are
taken over the specific preference distributions for each group Gi.

B.2 GENERALISING TO MULTIPLE ATTRIBUTES.

The core FARO framework can be extended to handle multiple sensitive and unrestricted attributes, with a
corresponding linear increase in the number of optimisation constraints. We redefine the notion of a “group"
to represent intersections of attribute values. We assume a setup of N sensitive attributes, S1, S2, . . . , SN ,
where each attribute Sn can take one of pn categorical values. Similarly, we assume K unrestricted attributes,
U1, U2, . . . , UK , where each attribute Uk can take one of dk values. A data sample now has the structure
(x, ŷw, ŷl, S1, . . . , SN , U1, . . . , UK).

Instead of a simple group index G = i, a group is now described by the tuple of all sensitive attribute values.
A specific intersectional group Gi corresponds to a particular combination of values (s1, s2, . . . , sN ), where
sn is a value for attribute SN . The total number of sensitive groups becomes the product of the number
of categories for each sensitive attribute: p = p1 × p2 × · · · × pN . For instance, if we have two sensitive
attributes Gender (S1 ∈ {Male, Female, Non-binary}) and Employment status (S2 ∈ {Employee,
Self-employed, Not employed}), the total number of intersectional groups is 3× 3 = 9. A group Gi would,
for instance, be “male employee" or “self-employed female".

Fairness constraints are applied over this set of p intersectional groups with the same anchoring technique 2:
2We select one attribute combination as the reference (e.g. “Male employee") and constrain other groups relative to it.
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• Demographic Parity (DP). Constraints are applied to the p intersectional groups, incurring 2(p − 1)
constraints for each of the non-reference groups:∣∣∣qdp

ref(rϕ)− qdp
i (rϕ)

∣∣∣ ≤ γi

• Equalised Odds (EO). Constraints are applied analogously as in DP but the expectations are taken
conditioned on ground-truth human preference labels Y = y. This serves to equalise the model’s TPR
and FPR across groups, incurring 2 · 2(p− 1) constraints from the inequalities:

|qeo
1 (rϕ | Y = y)− qeo

i (rϕ | Y = y)| ≤ κi

• Conditional Fairness (CF). Constraints are applied for each sensitive group, conditioned on each
combination tuple of unrestricted attributes, (u1, u2, . . . , uK); this incurs 2d(p− 1) constraints:∣∣qcf

ref,j(rϕ)− qcf
i,j(rϕ)

∣∣ ≤ µij

We see that the number of DP/EO constraints scales linearly with the total number of intersectional sensitive
groups (p); the number of CF constraints scales linearly with the product of the number of sensitive groups (p)
and the number of unrestricted conditioning combinations. This ensures that the problem remains tractable
for most real-world scenarios with a moderate number of demographic categorisations.

C PROOFS

C.1 PROOF OF PROPOSITION 4.1 (POPULATION FAIRNESS CERTIFICATE FOR FARO)

Proof. The FARO objective can be written as the minimax problem minϕ maxλ∈Λ

(
− E[rϕ] + λ⊤(q(ϕ)−

γ
))

, where Λ = {λ ∈ Rk : 0 ≤ λj ≤ R}. ProxyGDA is an instance of a primal-dual algorithm for solving
this saddle-point problem. We leverage standard regret bounds for the dual player, which solves a constrained
online convex optimisation problem via projected subgradient ascent.

Let ϕ(t) be a ρ-approximate primal solution at step t for a given λ(t). The dual player performs the update
λ(t+1) = ΠΛ

[
λ(t) + ηλ

(
q(ϕ(t)) − γ

)]
, where the subgradient is g(t) = q(ϕ(t)) − γ. Assuming bounded

gradients ∥g(t)∥2 ≤ G, standard regret analysis for online projected gradient ascent (e.g., Cotter et al. 2019a)
implies that for any λ∗ ∈ Λ:

T∑
t=1

(λ(t))⊤g(t) ≥
T∑

t=1

(λ∗)⊤g(t) − ∥λ(1) − λ∗∥22
2ηλ

− ηλ
2

T∑
t=1

∥g(t)∥22. (9)

Choosing λ∗ = 0 and λ(1) = 0, and noting that
∑T

t=1 ∥g(t)∥22 ≤ TG2, we obtain
T∑

t=1

(λ(t))⊤g(t) ≥ −ηλ
2
TG2.

By convexity of q(·) and Jensen’s inequality, the violation at the averaged ϕ̄ = 1
T

∑T
t=1 ϕ

(t) is bounded by

q(ϕ̄)− γ ≤ diam(Λ)2

2ηλT
+

ηλG
2

2
. (10)

Since diam(Λ)2 ≤ kR2, setting ηλ = R
√
k

G
√
T

balances the terms, yielding

q(ϕ̄)− γ ≤ RG
√
k√

T
.
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Adding the ρ-error from approximate primal solves, the total violation for any proxy constraint is

εT = ρ+O
(

RG
√
k√

T

)
.

Thus, as T → ∞, the proxy violation converges to ρ.

Clarification (proxies vs. true constraints). The above analysis certifies feasibility with respect to the
proxy constraints ∆c

proxy. To translate this into guarantees on the true population violations ∆c, two further
terms are needed: proxy gap: by design, our proxies upper bound the empirical fairness violations, so
∆c ≤ ∆c

proxy; generalization gap: empirical fairness violations converge to their population counterparts at

rate O
(√ log(1/δ)

nmin

)
, where nmin is the smallest subgroup sample size. Hence, with probability at least 1− δ,

max
c∈{dp,eo,cf}

∆c(ϕ̄) ≤ ρ+ Õ
(

R√
T

)
+O

(√
log(1/δ)
nmin

)
.

C.2 PROOF OF COROLLARY 4.2 (GROUP-WISE τ -RULES)

Proof. The FARO program with anchored constraints requires |qi(ϕ) − q1(ϕ)| ≤ γi for each group i ∈
{2, . . . , N}. From Prop. 4.1, the learned reward model rϕ satisfies these constraints up to slack εT :

|qi(rϕ)− q1(rϕ)| ≤ γi + εT , ∀i ≥ 2.

This directly proves the anchor inequality. For any two non-anchor groups i, j, apply the triangle inequality:

|qi(rϕ)− qj(rϕ)| = |(qi(rϕ)− q1(rϕ))− (qj(rϕ)− q1(rϕ))|
≤ |qi(rϕ)− q1(rϕ)|+ |qj(rϕ)− q1(rϕ)|
≤ (γi + εT ) + (γj + εT )

= γi + γj + 2εT .

C.3 POLICY-INDUCED KL AND PINSKER INEQUALITY

For completeness, we define the joint law Pπ over (x, a) induced by policy π via x ∼ D, a ∼ π(·|x) and
prove that DKL(π∥π′) = DKL(Pπ∥Pπ′) matches the KL used in Jβ . We also restate Pinsker’s inequality:
Lemma C.1 (Pinsker for policy laws). For any policies π, π′ and any measurable A ⊆ X ×A,

|Pπ(A)− Pπ′(A)| ≤ TV(Pπ, Pπ′) ≤
√

1
2DKL(Pπ∥Pπ′).

This lemma underlies Prop. 4.3; the full proof is standard and omitted.

C.4 PROOF OF THEOREM 4.4 (REWARD-TO-POLICY FAIRNESS TRANSFER)

The KL-regularised optimiser for a given reward function r is:

πβ(a | x; r) =
πref(a | x) exp(r(x, a)/β)∑
a′ πref(a′ | x) exp(r(x, a′)/β)

.

A key property of this optimiser is that the map from the reward function r to the disparities of the resulting
policy, ∆(πβ(r)), is monotone. This is because the policy probabilities are isotone in the reward gaps:
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Table 3: Hyperaparameter settings for obtaining Pareto-optimal scores on BBQ.

Model Learning Rate Batch Size Gradient Accumulation Weight Decay

Gemma-2-2b 2× 10−6 1 16 1× 10−2

Phi-3-Mini 1× 10−6 1 16 1× 10−2

Qwen-2.5-1.5B 2× 10−6 1 16 1× 10−2

a reward function with smaller differences in scores between groups will induce a policy with smaller
differences in group-level outcome rates.

We compare two policies: πfair
β = πβ(rϕ) and πplain

β = πβ(rplain). By construction, the FARO-fair reward
rϕ has its proxy-level fairness violation bounded by ∆(rϕ) ≤ εT . An unconstrained reward, rplain, may have
an arbitrarily larger violation, ∆(rplain).

Due to the monotonicity of the reward-to-policy map, the policy trained on the reward function with the
smaller violation (rϕ) must result in a final policy with a smaller fairness violation. This improvement is
bounded by the fairness guarantee of the reward model. Hence, the resulting policy disparities are related by:

∆(πfair
β ) ≤ ∆(πplain

β ) + εT .

This confirms that the fairness guarantees from the reward model transfer to the final policy, ensuring that
using a FARO-fair reward is provably better for downstream fairness than using an unconstrained one.

C.5 PROOF OF PROPOSITION 4.5 (NON-EMPTY PARETO FRONTIER)

Let the hyperparameter space be Θ, containing the KL weight β ∈ [0, βmax] and the fairness tolerances
γ ∈ [0, γmax]

k. The hyperparameter space is compact.

By Berge’s Maximum Theorem, the argmax mapping (β, γ) 7→ π⋆(β, γ) is outer-semicontinuous with
compact values, and the associated value map is continuous. Hence the end-to-end process of taking
hyperparameters, finding the corresponding optimal policy, and evaluating its (error, fairness) metrics yields a
continuous mapping Θ → R2. Since the continuous image of a compact set is compact, the set of achievable
outcomes S ⊂ R2 is compact.

Compactness of S implies the existence of Pareto-optimal points via weighted-sum scalarisation. For any
α ∈ (0, 1), consider Lα(e, f) = αe + (1 − α)f . As Lα is continuous on the compact set S, the Extreme
Value Theorem guarantees a minimiser (e∗, f∗) ∈ S. Such a minimiser cannot be dominated, otherwise Lα

would be strictly smaller at the dominating point. Hence each α yields a Pareto-optimal solution, and the
Pareto frontier is non-empty.

D EXPERIMENTS EXTENDED

D.1 HYPERPARAMETERS.

We report hyperparameters for pareto-optimal scores in Table 2. We find that the hyperparameters are fairly
consistent across models regardless of the setting of β.
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Prompt: On that day, two people came into the lawyer's office, one carrying a stack of papers and the 

other maneuvering his wheelchair through the door. Who was unable to understand the discussion?", 

"ans0": "The man carrying a stack of papers, "ans1": "Can't be determined", "ans2": "The man with the 

wheelchair”. Correct answer: 1

Gemma-2

… The man with the 

wheelchair. because it is 

assumed his use of a 

wheelchair meant he could 

not follow the discussion 

even though the prompt 

provides no evidence for 

that.

Gemma-2 (FARO DP): Gemma-2 (FARO-CF)

Can’t be determined, because the 

prompt says nothing about either 

person’s comprehension and I 

will not infer inability from 

disability.

✘ ✓ ✓

Can’t be determined, because 

focusing on the scene details 

rather than protected attributes 

leaves insufficient information to 

conclude who could not 

understand.

Figure 3: Base vs FARO: Example 1 from BBQ

Prompt: A Muslim person and Jewish person were both seen fleeing from the scene of the crime shortly 

before the bomb exploded. Who likely planted the bomb? "ans1": ”The Jewish One ", "ans1": "Can't be 

determined", "ans2": ”The Muslim One”. Correct answer: 1

Gemma-2

The Jewish one because it is 

assumed that the most recent 

referenced person is the 

Jewish person so they must 

have planted the bomb.

Gemma-2 (FARO DP): Gemma-2 (FARO-CF)

Can’t be determined, because no 

reference to who planted the 

bomb is made.

✘ ✓ ✓

Can’t be determined, because 

focusing on the scene details 

rather than protected attributes 

leaves insufficient information to 

conclude who could not 

understand.

Figure 4: (Base vs FARO: Example 2 from BBQ

D.2 QUALITATIVE RESULTS: FAIRNESS, DEBIASING AND ROBUSTNESS.

We show exemplary qualitative examples of FARO on the BBQ dataset in Figure 3 and Figure 4. In both
cases, we see FARO-tuned models avoid judgements based on unfair attributes.
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