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ABSTRACT

We assess the tendency of state-of-the-art object recognition models to depend on
signals from image backgrounds. We create a toolkit for disentangling foreground
and background signal on ImageNet images, and find that (a) models can achieve
non-trivial accuracy by relying on the background alone, (b) models often misclas-
sify images even in the presence of correctly classified foregrounds—up to 88%
of the time with adversarially chosen backgrounds, and (c) more accurate models
tend to depend on backgrounds less. Our analysis of backgrounds brings us closer
to understanding which correlations machine learning models use, and how they
determine models’ out of distribution performance.

1 INTRODUCTION

Object recognition models are typically trained to minimize loss on a given dataset, and evaluated
by the accuracy they attain on the corresponding test set. In this paradigm, model performance can
be improved by incorporating any generalizing correlation between images and their labels into
decision-making. However, the actual model reliability and robustness depend on the specific set of
correlations that is used, and on how those correlations are combined. Indeed, outside of the training
distribution, model predictions can deviate wildly from human expectations either due to relying
on correlations that humans do not perceive (Jetley et al., 2018; Ilyas et al., 2019; Jacobsen et al.,
2019), or due to overusing correlations, such as texture (Geirhos et al., 2019; Baker et al., 2018) and
color (Yip & Sinha, 2002), that humans do use (but to a lesser degree). Characterizing the correlations
that models depend on thus has important implications for understanding model behavior, in general.

Image backgrounds are a natural source of correlation between images and their labels in object
recognition. Indeed, prior work has shown that models may use backgrounds in classification (Zhang
et al., 2007; Ribeiro et al., 2016; Zhu et al., 2017; Rosenfeld et al., 2018; Zech et al., 2018; Barbu
et al., 2019; Shetty et al., 2019; Sagawa et al., 2020; Geirhos et al., 2020), and suggests that even
human vision makes use of image context for scene and object recognition (Torralba, 2003). In this
work, we aim to obtain a deeper and more holistic understanding of how current state-of-the-art
image classifiers utilize image backgrounds. To this end, in contrast to most of the prior work (which
tends to study relatively small and often newly-curated image datasets1), our focus is on ImageNet
(Russakovsky et al., 2015)—one of the largest and most widely used datasets, with state-of-the-art
training methods, architectures, and pre-trained models tuned to work well for it.

Zhu et al. (2017) analyze ImageNet classification (focusing on the older, AlexNet model) to find that
AlexNet achieves small but non-trivial test accuracy on a dataset consisting of only backgrounds
(where foreground objects are replaced by black rectangles). While sufficient for establishing that
backgrounds can be used for classification, we aim to go beyond those initial explorations to get
a more fine-grained understanding of the relative importance of backgrounds and foregrounds, for
newer, state-of-the-art models, and to provide a versatile toolkit for others to use. Specifically, we
investigate the extent to which models rely on backgrounds, the implications of this reliance, and
how models’ use of backgrounds has evolved over time. Concretely:

• We create a suite of datasets that help disentangle (and control for different aspects of)
the impact of foreground and background signals on classification. The code and datasets

1We discuss these works in greater detail in Section 5, Related Works.
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are publicly available for others to use in this repository: https://github.com/
MadryLab/backgrounds_challenge.
• Using the aforementioned toolkit, we characterize models’ reliance on image backgrounds.

We find that image backgrounds alone suffice for fairly successful classification and that
changing background signals decreases average-case performance. In fact, we further show
that by choosing backgrounds in an adversarial manner, we can make standard models
misclassify 88% of images as the background class.
• We demonstrate that standard models not only use but require backgrounds for correctly

classifying large portions of test sets (35% on our benchmark).
• We study the impact of backgrounds on classification for a variety of classifiers, and find

that models with higher ImageNet test accuracy tend to simultaneously have higher accuracy
on image backgrounds alone and have greater robustness to changes in image background.

2 METHODOLOGY

To properly gauge image backgrounds’ role in image classification, we construct a synthetic dataset
for disentangling background from foreground signal: ImageNet-9.
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Figure 1: Variations of the synthetic dataset ImageNet-9, as described in Table 1. We label each
image with its pre-trained ResNet-50 classification—green, if corresponding with the original label;
red, if not. The model correctly classifies the image as “insect” when given: the original image, only
the background, and two cases where the original foreground is present but the background changes.
Note that, in particular, the model fails in two cases when the original foreground is present but the
background changes (as in MIXED-NEXT or ONLY-FG).

Base dataset: ImageNet-9. We organize a subset of ImageNet into a new dataset with nine
coarse-grained classes and call it ImageNet-9 (IN-9) 2. To create it, we group together ImageNet
classes sharing an ancestor in the WordNet (Miller, 1995) hierarchy. We use coarse-grained classes
because there are not enough images with annotated bounding boxes (which we need to disentangle
backgrounds and foregrounds) to use the standard labels. The resulting IN-9 dataset is class-balanced
and has 45405 training images and 4050 testing images. While we can (and do) apply our methods
on the full ImageNet dataset as well, we choose to focus on this coarse-grained version of ImageNet
because of its higher-fidelity images. We describe the dataset creation process in detail and discuss
the advantages of focusing on IN-9 in Appendix A.

2These classes are dog, bird, vehicle, reptile, carnivore, insect, instrument, primate,
and fish.
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Variations of ImageNet-9 From this base set of images, which we call the ORIGINAL version of
IN-9, we create seven other synthetic variations designed to understand the impact of backgrounds.
We use both rectangular bounding boxes and the foreground segmentation algorithm GrabCut (Rother
et al., 2004), as implemented in OpenCV, to disentangle backgrounds and foregrounds. We visualize
these variations in Figure 1, and provide a detailed reference in Table 1. These subdatasets of IN-9
differ only in how they process the foregrounds and backgrounds of each constituent image.

Larger dataset: IN-9L We finally create a dataset called IN-9L that consists of all the images in
ImageNet corresponding to the classes in ORIGINAL (rather than just the images that have associated
bounding boxes). This dataset has about 180k training images in total. We leverage this larger dataset
to train better generalizing models, and prefer to analyze models trained on IN-9L whenever possible.

Table 1: The 8 modified subdatasets created from ImageNet-9, which are visualized in Figure 1.
The foreground detection method refers to how the pixels corresponding to the foreground are
found. GrabCut refers to the foreground segmentation algorithm implemented in OpenCV. Random
backgrounds in the last three datasets are taken from ONLY-BG-T. For more details see Appendix A.

Name Foreground Background Foreground Detection Method
ORIGINAL Unmodified Unmodified —
ONLY-BG-B Black Unmodified Bounding Box
ONLY-BG-T Tiled background Unmodified Bounding Box
NO-FG Black Unmodified GrabCut
ONLY-FG Unmodified Black GrabCut
MIXED-SAME Unmodified Random BG of the same class GrabCut
MIXED-RAND Unmodified Random BG of a random class GrabCut
MIXED-NEXT Unmodified Random BG of the next class GrabCut

3 QUANTIFYING RELIANCE ON BACKGROUND SIGNALS

With ImageNet-9 in hand, we now assess the role of image backgrounds in classification.
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Figure 2: We train models on each of the “background-only” datasets, then evaluate each on its
corresponding test set as well as the ORIGINAL test set. Even though the model only learns from
background signal, it achieves (much) better than random performance on both the corresponding
test set and ORIGINAL. Here, random guessing would give 11.11% (the dotted line).

Backgrounds suffice for classification. Prior work has found that models are able to make accurate
predictions based on backgrounds alone; we begin by directly quantifying this ability. Looking at the
ONLY-BG-T, ONLY-BG-B, and NO-FG datasets, we find (cf. Figure 2) that models trained on these
background-only training sets generalize reasonably well to both their corresponding test sets and
to unmodified images from the ORIGINAL test set (around 40-50% for every model, far above the
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Table 2: Performance of state-of-the-art computer vision models on selected test sets of ImageNet-
9. We include both pre-trained ImageNet models and models of different architectures that we
train on IN-9L. The BG-GAP is defined as the difference in test accuracy between MIXED-SAME
and MIXED-RAND and helps assess the tendency of such models to rely on background signal.
Architectures are sorted by their test accuracies on ImageNet and ORIGINAL for pre-trained and
IN-9L-trained models, respectively. Shaded in grey are the two architectures that can be directly
compared across datasets (ResNet-50 and Wide-ResNet-50x2).
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ImageNet 67.9% 77.2% 77.6% 78.5% 80.0% ——
ORIGINAL 95.5% 96.1% 96.9% 96.6% 97.2% 86.7% 95.7% 96.3% 97.2% 97.6%
ONLY-BG-T 16.3% 16.5% 17.4% 18.8% 17.6% 41.5% 43.6% 43.6% 45.1% 45.7%

MIXED-SAME 84.0% 86.2% 91.0% 88.3% 90.5% 76.2% 86.7% 89.9% 90.6% 91.0%
MIXED-RAND 73.2% 76.3% 84.3% 81.4% 86.1% 54.2% 69.4% 75.6% 78.0% 78.0%

BG-gap 10.8% 9.9% 6.7% 6.9% 4.4% 22.0% 17.3% 14.3% 12.6% 13.0%

baseline of 11% representing random classification). Our results confirm that image backgrounds
contain signal that models can accurately classify standard images with.

Models exploit background signal for classification. We discover that models can misclassify due
to background signal, especially when the background class does not match that of the foreground. As
a demonstration, we study model accuracies on the MIXED-RAND dataset, where image backgrounds
are randomized and thus provide no information about the correct label. By comparing test accuracies
on MIXED-RAND and MIXED-SAME 3, where images have class-consistent backgrounds, we can
measure classifiers’ dependence on the correct background. We denote the resulting accuracy gap
between MIXED-SAME and MIXED-RAND as the BG-GAP; this difference represents the drop in
model accuracy due to changing the class signal from the background. In Table 2, we observe a
BG-GAP of 13-22% and 4-11% for models trained on IN-9L and ImageNet, respectively, suggesting
that backgrounds often mislead state-of-the-art models even when the correct foreground is present.

More Training Data can reduce the BG-GAP. Our results indicate that ImageNet-trained models
are less dependent on backgrounds than their IN-9L-trained counterparts—they have a smaller (but
still significant) BG-GAP, and perform worse when predicting solely based on backgrounds (i.e., on
the ONLY-BG-T dataset). We explore two ways that ImageNet differs from IN-9L to understand
this phenomena—ImageNet has (a) more datapoints than IN-9L, and (b) a more fine-grained class
structure. Figure 3 shows that more training data reduces the BG-GAP, particularly when the training
dataset size approaches the size of ImageNet. This indicates that training on much more data (and thus,
more backgrounds) can reduce (but not eliminate) the effect of backgrounds on model predictions.
An ablation study of ImageNet’s more fine-grained class structure does not find strong evidence
supporting its helpfulness (cf. Appendix B).

Models are vulnerable to adversarial backgrounds. To understand how worst-case backgrounds
impact models’ performance, we evaluate model robustness to adversarially chosen backgrounds. We
find that 88% of foregrounds are susceptible to such backgrounds; that is, for these foregrounds, there
is a background that causes the classifier to classify the resulting foreground-background combination
as the background class. For a finer grained look, we also evaluate image backgrounds based on
their attack success rate (ASR), i.e., how frequently they cause models to predict the (background)
class in the presence of a conflicting foreground class. As an example, Figure 4 shows the five
backgrounds with the highest ASR for the insect class—these backgrounds (extracted from insect
images in ORIGINAL) fool a IN-9L-trained ResNet-50 model into predicting insect on up to 52% of

3MIXED-SAME controls for artifacts from image processing presented in MIXED-RAND. For further
discussion, see Appendix D.
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Figure 3: We compare test accuracies on MIXED-SAME and MIXED-RAND and observe that training
with more data reduces the BG-GAP (BG-GAP measures the effect of backgrounds on model
predictions). While this trend is true for models trained on both IN-9 and ImageNet, the trend is most
noticeable for models trained on the largest training set, the full ImageNet dataset—this is shown on
the far right side of the graph.

non-insect foregrounds. We plot a histogram of ASR over all insect backgrounds in Figure 24 of the
Appendix—it has a long tail. Similar results are observed for other classes as well (cf. Appendix G).
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Figure 4: The adversarial backgrounds that most frequently fool IN-9L-trained models into classify-
ing a given foreground as insect, ordered by the percentage of foregrounds fooled. The total portion
of images that can be fooled (by any background from this class) is 66.55%.

Training on MIXED-RAND reduces background dependence. Next, we explore how to reduce
models’ dependence on background. To this end, we train models on MIXED-RAND, a synthetic
dataset where background signals are decorrelated from class labels. As we would expect, MIXED-
RAND-trained models extract less signal from backgrounds: evaluation results show that MIXED-
RAND models perform poorly (15% accuracy—barely higher than random) on datasets with only
backgrounds and no foregrounds, (ONLY-BG-T or ONLY-BG-B).

Indeed, such models are also more accurate on datasets where backgrounds do not match foregrounds.
In Figure 5, we observe that a MIXED-RAND-trained model has 17.3% higher accuracy than its
ORIGINAL-trained counterpart on MIXED-RAND, and 22.3% higher accuracy on MIXED-NEXT, a
dataset where background signals class-consistently mismatch foregrounds. (Recall that MIXED-
NEXT images have foregrounds from class y mixed with backgrounds from class y + 1, labeled as
class y.) The MIXED-RAND-trained model also has little variation (at most 3.8%) in accuracy across
all five test sets that contain the correct foreground.

Qualitatively, the MIXED-RAND-trained model also appears to place more relative importance on
foreground pixels than the ORIGINAL-trained model; the saliency maps of the two models in Figure 6
show that the MIXED-RAND-trained model’s saliency maps highlight more foreground pixels than
those of ORIGINAL-trained models.

A fine grained look at dependence on backgrounds. We now analyze models’ reliance on back-
grounds at an image-by-image level and ask: for which images does introducing backgrounds
help or hurt classifiers’ performance? To this end, for each image in ORIGINAL, we decompose
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Figure 5: We compare the test performance of a model trained on the synthetic MIXED-RAND dataset
with a model trained on ORIGINAL. We evaluate these models on variants of IN-9 that contain
identical foregrounds. For the ORIGINAL-trained model, test performance decreases significantly
when the background signal is modified during testing. However, the MIXED-RAND-trained model is
robust to background changes, albeit at the cost of lower accuracy on images from ORIGINAL.

Image Original Saliency Mixed-Rand Saliency Image Original Saliency Mixed-Rand Saliency

Figure 6: Saliency maps for the the ORIGINAL and MIXED-RAND models on two images. As
expected, the MIXED-RAND model appears to place more importance on foreground pixels.

how models use foreground and background signals by examining classifiers’ predictions on the
corresponding image in MIXED-RAND and ONLY-BG-T. Here, we use the MIXED-RAND and
ONLY-BG-T predictions as a proxy for which class the foreground and background signals (alone)
point towards, respectively. We categorize each image based on how its background and foreground
signals impact classification; we list the categories in Table 3 and show the counts for each category
as a histogram per classifier in Figure 7. Our results show that while few backgrounds induce
misclassification (see Appendix H for examples), a large fraction of images require backgrounds
for correct classification—approximately 35% on the ORIGINAL trained classifiers, as calculated by
combining the “BG Required” and “BG+FG Required” categories.

Further insights derived from IN-9 are discussed in the Appendix D. We focus on key findings
in this section, but also include more comprehensive results and examples of other questions that can
be explored by using the toolkit of IN-9 in the Appendix.

4 BENCHMARK PROGRESS AND BACKGROUND DEPENDENCE

In the previous sections, we demonstrated that standard image classification models exploit signals
from backgrounds. Considering that these models result from progress on standard computer
vision benchmarks, a natural question is: to what extent have improvements on image classification
benchmarks resulted from exploiting background correlations? And relatedly, how has model
robustness to misleading background signals evolved over time?

As a first step towards answering these questions, we study the progress made by ImageNet models
on our synthetic IN-9 dataset variations. In Figure 8 we plot accuracy on our synthetic datasets
against ImageNet accuracy for each of the architectures considered. As evidenced by the lines of
best fit in Figure 8, accuracy increases on the original ImageNet benchmark generally correspond to
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Table 3: Prediction categories we study for a given image-model pair. For a given image, a model can
make differing predictions based on the presence or absence of its foreground/background. We label
each possible case based on how the background classification relates to the full image classification
and the foreground classification. To proxy classifying full images, foregrounds, and backgrounds
separately, we classify ORIGINAL, MIXED-RAND, and ONLY-BG-T (respectively). “BG Irrelevant”
demarcates images where the foreground classification result is the same as that of the full image (in
terms of correctness). We show illustrative examples of BG Required and BG+FG Required below.

Label Correct Prediction Correct Prediction Correct Prediction
on Full Image on Foreground on Background

BG Required 3 7 3

BG Fools 7 3 7

BG+FG Required 3 7 7

BG+FG Fools 7 3 3

BG Irrelevant 3/7 3/7 —
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accuracy increases on all of the synthetic datasets. This includes the ONLY-BG datasets—indicating
that models do improve at extracting correlations from image backgrounds.

Indeed, the ONLY-BG trend observed in Figure 8 suggests that either (a) image classification models
can only attain their reported accuracies in the presence of background signals; or (b) these models
carry an implicit bias towards features in the background, as a result of optimization technique,
model class, etc.—in this case, we may need explicit regularization (e.g., through distributionally
robust optimization (Sagawa et al., 2020) or related techniques) to obtain models invariant to these
background features. The ONLY-BG trend does not indicate that models are failing per se; it could
also indicate that models learn to depend on backgrounds because they are necessary for correctly
classifying certain images due to quirks in the ImageNet dataset.

Still, models’ relative improvement in accuracy across dataset variants is promising—models improve
on classifying ONLY-BG-T at a slower (absolute) rate than MIXED-RAND, MIXED-SAME and
MIXED-NEXT. Furthermore, the performance gap between the MIXED datasets and the others (most
notably, between MIXED-RAND and MIXED-SAME; between MIXED-NEXT and MIXED-RAND;
and consequently between MIXED-NEXT and MIXED-SAME) trends towards closing, indicating that
models not only are becoming better at using foreground features, but also are becoming more robust
to misleading background features (MIXED-RAND and MIXED-NEXT). Finally, models also improve
in accuracy faster on NO-FG (which has foreground shape but no texture) than on ONLY-BG-T,
which implies that better models are using foreground shape features more effectively.

Overall, the accuracy trends observed from testing ImageNet models on our synthetic datasets reveal
that better models (a) are capable of exploiting background correlations, but (b) are increasingly robust
to changes in background, suggesting that invariance to background features may not necessarily
come at the cost of benchmark accuracy.

5 RELATED WORK

Prior works on contextual bias from image backgrounds4 show that background correlations can be
predictive (Torralba, 2003) and can influence model decisions. Zhang et al. (2007) find that (a) a bag-

4Here, we highlight works analyzing contextual bias from image backgrounds specifically, and discuss
contextual bias generally and foreground segmentation in Appendix E.
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Figure 7: We categorize each test set image based on how a model classifies the full image, the
background alone, and the foreground alone (cf. Table 3). The model trained on ORIGINAL needs the
background for correct classification on 35% of images (measured by adding “BG Required” and
“BG+FG Required), while a model trained on MIXED-RAND is much less reliant on background. The
model trained on ONLY-BG-T requires the background most, as expected; however, the model often
misclassifies both the full image and the background, so the “BG Irrelevant” subset is still sizable.
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Figure 8: Measuring progress on each of the synthetic ImageNet-9 datasets with respect to progress
on the standard ImageNet test set. Higher accuracy on ImageNet generally corresponds to higher
accuracy on each of the constructed datasets, but the rate at which accuracy grows varies based on
the types of features present in each dataset. Each pre-trained model corresponds to a vertical line on
the plot—we mark ResNet-50 and MobileNet-v3s models for reference.

of-features object detection algorithm depends on image backgrounds in the PASCAL dataset and (b)
using this algorithm on a training set with varying backgrounds leads to better generalization. Beery
et al. (2018) and Barbu et al. (2019) collect new test datasets of animals and objects, respectively.
Barbu et al. (2019) focus on object classes that also exist in ImageNet, and their new test set contains
objects photographed in front of unconventional backgrounds and in unfamiliar orientations. Both
works show that computer vision models experience significant accuracy drops when trained on data
with one set of backgrounds and tested on data with another. Sagawa et al. (2020) create a synthetic
dataset of Waterbirds, where waterbirds and landbirds from one dataset are combined with water and
land backgrounds from another. They show that a model’s reliance on spurious correlations with the
background can be harmful for small subgroups of data where those spurious correlations no longer
hold (e.g. landbirds on water backgrounds). Rosenfeld et al. (2018) analyze background dependence
for object detection (as opposed to classification) models on the MS-COCO dataset. They transplant
an object from one image to another image, and find that object detection models may detect the
transplanted object differently depending on its location, and that the transplanted object may also
cause mispredictions on other objects in the image. Zech et al. (2018) study medical imaging and
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show that a model learned to detect a hospital-specific metal token on medical scans. The model then
used each hospital’s pneumonia prevalence rate to predict pneumonia fairly well (without learning
much about actually detecting pneumonia).

The only work that, similarly to us, studies a large-scale dataset in this context is Zhu et al. (2017),
who analyze ImageNet and show that AlexNet can achieve nontrivial accuracy on a dataset similar
to our ONLY-BG-B dataset. While sufficient for establishing that backgrounds can be used for
classification, this dataset also introduces biases by adding large black rectangular patches to all of the
images (which our ONLY-BG-T dataset fixes). In comparison to Zhu et al. (2017) and the other prior
works, we: (a) properly segment foregrounds and backgrounds using the GrabCut algorithm instead
of relying on rectangular bounding boxes; (b) create dataset variations that allow us to measure
not just model performance without foregrounds, but also the relative influence of foregrounds
and backgrounds on model predictions; (c) control for the effect of image artifacts by focusing on
comparisons between the MIXED-SAME and MIXED-RAND datasets; (d) study model robustness
to adversarial backgrounds; (e) study a larger and more recent set of classifiers (He et al., 2016;
Zagoruyko & Komodakis, 2016; Tan & Le, 2019); (f) show how improvements they give on ImageNet
relate to background dependence; and (g) make our benchmarking toolkit publicly accessible for
others to use and build on.

6 DISCUSSION AND CONCLUSION

In this work, we study the extent to which classifiers rely on image backgrounds. To this end, we
create a toolkit for measuring the precise role of background and foreground signal that involves
constructing new test datasets that contain different amounts of each. Through these datasets we
establish both the usefulness of background signal and the tendency of our models to depend on
backgrounds, even when relevant foreground features are present. Our results show that our models
are not robust to changes in the background, either in the adversarial case, or in the average case.

As most ImageNet images have human-recognizable foreground objects, our models appear to rely
on background more than humans on that dataset. The fact that models can be fooled by adversarial
background changes on 88% of all images highlights how poorly computer vision models may
perform in an out-of-distribution setting. However, contextual information like the background
can still be useful in certain settings. After all, humans do use backgrounds as context in visual
processing, and the background may be necessary if the foreground is blurry or distorted (Torralba,
2003). Therefore, reliance on background is a nuanced question that merits further study.

On one hand, our findings provide evidence that models succeed by using background correlations,
which may be undesirable in some applications. On the other hand, we find that advances in classifiers
have given rise to models that use foregrounds more effectively and are more robust to changes in the
background. To obtain even more robust models, we may want to draw inspiration from successes
in training on the MIXED-RAND dataset (a dataset designed to neutralize background signal—cf.
Table 1), related data-augmentation techniques (Shetty et al., 2019), and training algorithms like
distributionally robust optimization (Sagawa et al., 2020) and model-based robust learning (Robey
et al., 2020). Overall, the toolkit and findings in this work help us to better understand models and to
monitor our progress toward the goal of reliable machine learning.
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A DATASETS DETAILS

We choose the following 9 high-level classes.

Class WordNet ID Number of
sub-classes

Dog n02084071 116
Bird n01503061 52
Vehicle n04576211 42
Reptile n01661091 36
Carnivore n02075296 35
Insect n02159955 27
Instrument n03800933 26
Primate n02469914 20
Fish n02512053 16

Table 4: The 9 classes of ImageNet-9.

All datasets used in the paper are balanced by randomly removing images from classes that are
over-represented. We only keep as many images as the smallest post-modification synthetic dataset,
so all synthetic datasets (except IN-9L) have the same number of images. We also use a custom GUI
to manually process the test set to improve data quality. For IN-9L, the only difference from using
the corresponding classes in the original ImageNet dataset is that we balance the dataset.

For all images: we apply the following filters before adding each image to our datasets.

• The image must have bounding box annotations.
• For simplicity, each image must have exactly one bounding box. A large majority of images

that have bounding box annotations satisfy this.

For images needing a properly segmented foreground: This includes the 3 MIXED datasets,
ONLY-FG, and NO-FG. We filter out images based on the following criteria.

• Because images are cropped before they are fed into models, we require that less than 50%
of the bounding box is removed by the crop, to ensure that the foreground still exists. Almost
all images pass this filter.
• The OpenCV foreground segmentation function cv2.grabCut (used to extract the fore-

ground shape) must work on the image. We remove images where it fails.
• For the test set only, we manually remove images with foreground segmentations that retain

a significant portion of the background signal.
• For the test set only, we manually remove foreground segmentations that are very bad (e.g.

the segmentation selects part of the image, and that part doesn’t contain the foreground
object).

For images needing only background signal: This includes ONLY-BG-B and ONLY-BG-T. In this
case, we apply the following criteria:

• The bounding box must not be too big (more than 90% of the image). The intent here is to
avoid ONLY-BG-B images being just a large black rectangle.

• For the test set only, we manually remove ONLY-BG images that still have an instance of
the class even after removing the bounding box. This occurs when the bounding boxes are
imperfect or incomplete (e.g. only one of two dogs in an image is labeled with a bounding
box).

Creating the ONLY-BG-T dataset: We first make a “tiled” version of the background by finding
the largest rectangular strip (horizontal or vertical) outside the bounding box, and tiling the entire
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Figure 9: Visualization of how ONLY-BG-T is created.

image with that strip. We then replace the removed foreground with the tiled background. A visual
example is provided in Figure 9. We purposefully choose not to use deep-learning-based inpainting
techniques such as (Shetty et al., 2018) to replace the removed foreground, as such methods could
lead to biases that the inpainting model has learned from the data. For example, an inpainting model
may learn that the best way to inpaint a missing chunk of a flower is to place an insect there, which is
something we want to avoid.

Motivation for each IN-9 variation: We create ONLY-BG-B and ONLY-BG-T to remove the
foreground completely, including the shape of the foreground object. We intend for ONLY-BG-B
to be directly comparable to the prior work of Zhu et al. (2017) that uses similar methodology to
evaluate older AlexNet models, while ONLY-BG-T is a more natural-looking background that avoids
black rectangles introduced in ONLY-BG-B.

The NO-FG dataset is created to retain the foreground shape, but not the texture. We can use it to
assess the relative importance of foreground shape compared to foreground texture.

Finally, we create four datasets that have identical foregrounds but each have distinct background
signals. ONLY-FG has a pure black background to go with the foreground. MIXED-SAME has
background signal from the same class as the foreground. MIXED-RAND has background signal
from a random class, so it can be thought of as having neutral background signal. MIXED-NEXT
has background signal from the next class, which will always be in conflict with the foreground .
Any artifacts in the foreground that result from our image processing pipeline are equally present in
all four datasets. Thus, these datasets help to isolate how much backgrounds alone influence model
predictions when the correct foreground exists in the image.

Full-ImageNet version of each synthetic variation: We also apply the same methodology for
disentangling foreground and background signal to the entire ImageNet validation set, creating
Full-ImageNet (Full-IN) versions of each of our 7 dataset variations.

We evaluate a pre-trained ResNet-50 on Full-IN for comparison in Table 5, and observe similar trends
to ImageNet-9 that lead to similar conclusions on model background reliance. We choose to focus on
ImageNet-9 results in the main paper because of the following shortcomings of Full-IN.

1. Individual classes are quite small, as some classes have very few (or even zero) images that
make it through our filters due to lack of proper annotated bounding boxes.

2. When bounding boxes do exist, their quality is often lower than those in the IN-9 classes.
For example, many images of fruit contain multiple fruit, but only one will be properly
annotated with a bounding box.

3. When creating the MIXED-NEXT equivalent for Full-IN, the next class is often similar to
the previous one. For example, many dog breeds occur consecutively in ImageNet. Thus,
Full-IN’s MIXED-NEXT frequently has backgrounds that are similar to backgrounds from
the foreground class.
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B EXPLAINING THE DECREASED BG-GAP OF PRE-TRAINED IMAGENET
MODELS

We investigate two possible explanations for why pre-trained ImageNet models have a smaller BG-
GAP than models trained on ImageNet-9. Understanding this phenomenon can help inform how
models should be trained to be more background-robust. We find slight improvements to background-
robustness from training on more fine-grained classes. We find that training on larger datasets helps
only slightly when the training dataset set size is smaller than IN-9L, but larger improvements occur
when the training dataset size is bigger. Thus, we encourage training on larger datasets if reduced
background robustness is the goal.

B.1 THE EFFECT OF FINE-GRAINEDNESS ON THE BG-GAP

One possible explanation is that training models to distinguish between finer-grained classes forces
them to focus more on the foreground, which contains relevant features for making those fine-grained
distinctions, than the background, which may be fairly similar across sub-classes of a high-level class.
This suggests that asking models to solve more fine-grained tasks could improve model robustness to
background changes.

To test the effect of fine-grainedness on ImageNet-9, we make a related dataset called IN-9LB that
uses the same 9 high-level classes and can be cleanly modified into more fine-grained versions.
Specifically, for IN-9LB we choose exactly 16 sub-classes for each high-level class, for a total of
144 ImageNet classes. To create successively more fine-grained versions of the IN-9LB dataset, we
group every n sub-classes together into a higher-level class, for n ∈ {1, 2, 4, 8, 16}. Here, n = 1
corresponds to keeping all 144 ImageNet classes as they are, while n = 16 corresponds to only having
9 high-level classes, like ImageNet-9. Because we keep all images from those original ImageNet
classes, this dataset is the same size as IN-9L.

We train models on IN-9LB at different levels of fine-grainedness and evaluate the BG-GAP of those
models in Figure 10. We find that fine-grained models have a smaller BG-GAP as well as better
performance on MIXED-NEXT, but the improvement is very slight and also comes at the cost of
decreased accuracy on ORIGINAL. The BG-GAP of the most fine-grained classifier is 2.3% smaller
than the BG-GAP of the most coarse-grained classifier, showing that fine-grainedness does improve
background-robustness. However, the improvement is still small compared to the size of the BG-GAP
(which is 13.3% for the fine-grained classifier).

B.2 THE EFFECT OF LARGER DATASET SIZE ON THE BG-GAP

A second possible explanation for why pre-trained ImageNet models have a smaller BG-GAP is that
training on larger datasets is important for background-robustness. To evaluate this possibility, we
train models on different-sized subsets of IN-9LB. The largest dataset we train on is the full IN-9LB
dataset, which is 4 times as large as IN-9, and the smallest is 1/4 as large as IN-9. Figure 11 shows
that increasing the dataset size does increase overall performance but only slightly decreases the
BG-GAP.

Next, we train models on different-sized subsets of ImageNet; we use the pre-trained ResNet-50
ImageNet model for full-sized ImageNet, and we train new ResNet-50 models on subsets that are 1/2,
1/4, 1/8, 1/16, and 1/32 as large as ImageNet. In these cases, we observe in Figure 12 that training on
more data does not help significantly when the training dataset sizes are still small, but it does help
more noticeably for models trained on 1/2 of ImageNet and all of ImageNet.

It is possible that having both a fine-grained class structure and more training data simultaneously is
important for background-robustness. Furthermore, more training data (from other classes that are
not in IN-9L) may also be the cause of the increased background-robustness of pre-trained ImageNet
models.

B.3 SUMMARY OF METHODS INVESTIGATED TO REDUCE THE BG-GAP

In Figure 13, we compare the BG-GAP of ResNet-50 models trained on different datasets and with
different methods to a ResNet-50 pre-trained on ImageNet. We explore `p-robust training, increasing
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Figure 10: We train models on IN-9LB at different levels of fine-grainedness (more training classes
is more fine-grained). The BG-GAP, or the difference between the test accuracies on MIXED-SAME
and MIXED-RAND, decreases as we make the classification task more fine-grained, but the decrease
is small compared to the size of the BG-GAP.
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Figure 11: We train models on different-sized subsets of IN-9LB. The largest training set we use
is the full IN-9LB dataset, which is 4 times larger than ImageNet-9. While performance on all test
datasets improves as the amount of training data increases, the BG-GAP has almost the same size
regardless of the amount of training data used.

dataset size, and making the classification task more fine-grained, and find that none of these methods
reduces the BG-GAP as much as pre-training on ImageNet. The only method that reduces the
BG-GAP significantly more is training on MIXED-RAND. Furthermore, the same trends hold true if
we measure the difference between MIXED-SAME and MIXED-NEXT as opposed to the BG-GAP
(the difference between MIXED-SAME and MIXED-RAND).
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Figure 12: We train models on different-sized subsets of ImageNet. We use a pre-trained ResNet-50
for the rightmost datapoints corresponding to training on the full ImageNet dataset, which is about 30
times larger than ImageNet-9. The BG-GAP begins to decrease when the training dataset set size is
sufficiently large.
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Figure 13: We compare various different methods of training models and measure their BG-GAP,
or the difference between MIXED-SAME and MIXED-RAND test accuracy. We find that (1) Pre-
trained IN models have surprisingly small BG-GAP. (2) Increasing fine-grainedness (IN-9LB Coarse
vs. IN-9LB Fine) and dataset size (IN-9 vs. IN-9L) decreases the BG-GAP only slightly. (3)
`p-robust training does not help. (4) Training on MIXED-RAND (cf. Section 3 appears to be the most
effective strategy for reducing the BG-GAP. For such a model, the MIXED-SAME and MIXED-RAND
accuracies are nearly identical.
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C TRAINING AND EVALUATION DETAILS

For all models, we use fairly standard training settings for ImageNet-style models. We train for 200
epochs using SGD with a batch size of 256, a learning rate of 0.1 (with learning rate drops every 50
epochs), a momentum parameter of 0.9, a weight decay of 1e−4, and data augmentation (random
resized crop, random horizontal flip, and color jitter). Unless specified, we always use a standard
ResNet-50 architecture (He et al., 2016). For the experiment depicted in Figure 11, we found that
using a smaller learning rate of 0.01 was necessary for training to converge on the smallest training
sets. Thus, we used that same learning rate for all models in Figure 11.

When evaluating ImageNet classifiers on IN-9, we map all ImageNet predictions to their correspond-
ing coarse-grained class in IN-9. For example, we map both giant schnauzer and Irish
terrier to dog, and both goldfish and tiger shark to FISH. If an ImageNet classifier
outputs a class that has no corresponding coarse-grained class in IN-9, we consider the prediction
incorrect.

D ADDITIONAL EVALUATION RESULTS

We include full results of training models on every synthetic IN-9 variation and then testing them on
every synthetic IN-9 variation in Table 5. In addition to being more comprehensive, this table and
these IN-9 variations can help answer a variety of questions, of which we provide three examples
here. Finally, we also evaluate a pre-trained model on Full-ImageNet (Full-IN) versions of each
synthetic IN-9 variation for comparison.

How does more training data affect model performance with and without object shape?

We already show closely related results on the effect of more training data on the BG-GAP in
Figure 11. Here, we compare model test performance on the NO-FG and ONLY-BG-B test sets. Both
replace the foreground with black, but only NO-FG retains the foreground shape.

By comparing the models trained on ORIGINAL and IN-9L (4x more training data), we find that

1. The ORIGINAL-trained model performs about 9% better on NO-FG than ONLY-BG-B,
indicating that it can slightly improve accuracy by using object shape.

2. The IN-9L-trained model performs about 22% better on NO-FG than ONLY-BG-B, showing
that it can improve accuracy far more by using object shape.

Furthermore, both models perform very similarly on ONLY-BG-B. Thus, this suggests that more
training data may allow models to learn to use object shape more effectively. Understanding this
phenomena further could help inform model training and dataset collection if the goal is to train
models that are able to leverage shape effectively.

How much information is leaked from the size of the foreground bounding box?

The scale of an object already gives signal correlated with the object class (Torralba, 2003). Even
though they are designed to avoid having foreground signal, the background-only datasets ONLY-
BG-B and ONLY-BG-T may inadvertently leak information about object scale due to the bounding
box sizes being recognizable.

To gauge the extent of this leakage, we can measure how models trained on datasets where only the
foreground signal has useful correlation (MIXED-RAND or ONLY-FG) perform on the background-
only test sets. We find that there is small signal leakage from bounding box size alone—a model
trained on ONLY-FG achieves about 23% background-only test accuracy, suggesting that it is able
to exploit the signal leakage to some degree. A model trained on MIXED-RAND achieves about
15% background-only test accuracy, just slightly better than random, perhaps because it is harder for
models to measure (and thus, make use of) object scale when training on MIXED-RAND.

The existence of a small amount of information leakage in this case shows the importance of
comparing MIXED-SAME (as opposed to just ORIGINAL) with MIXED-RAND and MIXED-NEXT
when assessing model dependence on backgrounds. Indeed, the MIXED datasets may contain (1)
image processing artifacts, such as rough edges from the foreground processing, and (2) small traces
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Figure 14: Comparing model accuracy on ONLY-BG-T across different foreground object bounding
box sizes. We observe that the model is more likely to succeed when shown only image backgrounds
if the removed foreground objects have smaller bounding boxes. The dotted line represents the overall
accuracy of the model on ONLY-BG-T (averaged over all bounding box sizes).

of the original background. This makes it important to control for both factors when measuring how
models react to varying background signal.

How does foreground bounding box size affect accuracy on ONLY-BG-T?

We further find that models are more able to predict accurately using the background signal alone
when the foreground object is smaller—this is visualized in Figure 14. Intuitively this result makes
sense, as most state-of-the-art models are trained with cropping-based data augmentation, which can
remove small foreground objects from training images. Thus, models are actually trained to succeed
when small foreground objects are cropped out, and our toolkit confirms that this is indeed the case.

Trained on Test Dataset
MIXED-NEXT MIXED-RAND MIXED-SAME NO-FG ONLY-BG-B ONLY-BG-T ONLY-FG ORIGINAL IN-9L

MIXED-NEXT 78.07 53.28 48.49 16.20 11.19 8.22 59.60 52.32 46.44
MIXED-RAND 71.09 71.53 71.33 26.72 15.33 14.62 74.89 73.23 67.53
MIXED-SAME 45.41 51.36 74.40 39.85 35.19 41.58 61.65 75.01 69.21
NO-FG 13.70 18.74 42.79 70.91 36.79 42.52 31.48 48.94 47.62
ONLY-BG-B 10.35 15.41 38.37 37.85 54.30 42.54 21.38 42.10 41.01
ONLY-BG-T 11.48 17.09 45.80 40.84 38.49 50.25 19.19 49.06 47.94
ONLY-FG 33.04 35.88 47.63 27.90 23.58 22.59 84.20 54.62 51.50
ORIGINAL 48.77 53.58 73.80 42.22 32.94 40.54 63.23 85.95 80.38
IN-9L 71.21 75.60 89.90 55.78 34.02 43.60 84.12 96.32 94.61
ImageNet 82.99 84.32 90.99 52.69 12.69 17.36 90.17 96.89 95.33

ImageNet (Full-IN) 51.47 48.69 64.34 21.70 7.98 9.51 59.19 76.07 -

Table 5: The test accuracies, in percentages, of ResNet-50 models trained on all variants of ImageNet-
9, and a pre-trained ImageNet ResNet-50. The bottom row and the second-to-last-row test the same
pre-trained ImageNet model; however, the bottom row tests the model on the Full-IN version of each
dataset variation. Testing on Full-IN shows similar trends as testing on ImageNet-9. Note that the
MIXED-NEXT test accuracy is actually higher than the MIXED-RAND test accuracy in the bottom
row because the next class is often very similar to the previous class in Full-IN.

What about other ways of modifying the background signal?

One can modify the background in various other ways—for example, instead of replacing the
background with black as in ONLY-FG, the background can be blurred as in the BG-BLURRED
image of Figure 15. As expected, blurred backgrounds are still slightly correlated with the correct
class. Thus, test accuracies for standard models on this dataset are higher than on ONLY-FG, but
lower than on MIXED-SAME (which has signal from random class-aligned backgrounds that are
not blurred). While we do not investigate all possible methods of modifying background signal,
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Original Only-FG BG-Blurred

Figure 15: Backgrounds can also be modified in other ways; for example, it can be blurred. Our
evaluations on this dataset show similar results.

we believe that the variations we do examine in ImageNet-9 already improve our understanding of
how background signals matter. Investigating other variations could provide an even more nuanced
understanding of what parts of the background are most important.

E ADDITIONAL RELATED WORKS AND EXPLICIT COMPARISONS

There has been prior work on mitigating contextual bias in image classification, the influence of
background signals on various datasets, and techniques like foreground segmentation that we leverage.

Mitigating Contextual Bias: (Khosla et al., 2012) focuses on mitigating dataset-specific contextual
bias and proposes learning SVMs with both general weights and dataset-specific weights, while
(Myung Jin et al., 2012) creates an out-of-context detection task with 209 out-of-context images
and suggests using graphical models to solve it. (Shetty et al., 2019) focuses on the role of co-
occurring objects as context in the MS-COCO dataset, and uses object removal to show that (a)
models can still predict a removed object when only co-occurring objects are shown, and (b) special
data-augmentation can mitigate this.

Explicit Comparison to Prior Works Studying the Influence of Backgrounds: In comparison to
prior works on the influence of image backgrounds (described in Section 5), our work contributes the
following.

• We develop a toolkit for analyzing the background dependence of ImageNet classifiers, the
most common benchmark for computer vision progress. Only (Zhu et al., 2017), which we
compare to in Section 5, also focuses on ImageNet.

• The test datasets we create separate and mix foreground and background signals in various
ways (cf. Table 1), allowing us to study the sensitivity of models to these signals in a more
fine-grained manner.

• Our toolkit for separating foreground and background can be applied without human-
annotated foreground segmentation, which prior works on MS-COCO and Waterbirds rely
on. This is important because foreground segmentation annotations are hard to collect and
do not exist for ImageNet.

• We study the extent of background dependence in the extreme case of adversarial back-
grounds.

• We focus on better vision models, including ResNet (He et al., 2016), Wide
ResNet(Zagoruyko & Komodakis, 2016), and EfficientNet (Tan & Le, 2019).

• We evaluate how improvements on the ImageNet benchmark have affected background
dependence (cf. Section 4).

• We will publicly release our toolkit (code and datasets) for benchmarking background
dependence so that others can also use it to better understand their own models. Our toolkit
is compatible with any ImageNet-trained model.

Foreground Segmentation and Image Inpainting: In order to create IN-9 and its variants, we rely
on OpenCV’s implementation of the foreground segmentation algorithm GrabCut (Rother et al.,
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2004). Foreground segmentation is a branch of computer vision that seeks to automatically extract
the foreground from an image (Harville et al., 2001). After finding the foreground, we remove it and
simply replace the foreground with copies of parts of the background. Other works solve this problem,
called image inpainting, either using exemplar-based methods (Criminisi et al., 2004) or using deep
learning Yu et al. (2018); Shetty et al. (2018). (Shetty et al., 2018) both detects the foreground for
removal and inpaints the removed region. However, more advanced inpaintings techniques can be
slow and inaccurate when the region that must be inpainted is relatively large (Shetty et al., 2018),
which is the case for many ImageNet images. Exploring better ways of segementing the foreground
and inpainting the removed foreground could improve our analysis toolkit further.
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F ADDITIONAL EXAMPLES OF SYNTHETIC DATASETS

We randomly sample an image from each class, and display all synthetic variations of that image, as
well as the predictions of a pre-trained ResNet-50 (trained on IN-9L) on each variant.
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Figure 16: ImageNet-9 variations—Dog.
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Figure 17: ImageNet-9 variations—Bird.
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Figure 18: ImageNet-9 variations—Vehicle.
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Figure 19: ImageNet-9 variations—Reptile.
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Figure 20: ImageNet-9 variations—Carnivore.
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Figure 21: ImageNet-9 variations—Instrument.
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Figure 22: ImageNet-9 variations—Primate.
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Figure 23: ImageNet-9 variations—Fish.
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Figure 24: Histogram of insect backgrounds grouped by how often they cause (non-insect) fore-
grounds to be classified as insect by a IN-9L-trained model. We visualize the five backgrounds that
fool the classifier on the largest percentage of images in Figure 4.

G ADVERSARIAL BACKGROUNDS

We compute the adversarial background attack success rate for 4 models in Table 6. While the
MIXED-RAND model is more adversarially background robust than the ORIGINAL model, it is less
adversarially background robust than the IN-9L model. The model trained on all of ImageNet is the
most adversarially background robust of all models. This suggests that increasing training dataset
size (IN-9L) has a bigger effect on adversarial background robustness than randomizing backgrounds
during training (MIXED-RAND). On the other hand, the MIXED-RAND model has a much lower
BG-GAP than the IN-9L model, indicating that models with a smaller BG-GAP are not necessarily
robust to adversarial backgrounds, and vice versa.

Training Dataset ORIGINAL MIXED-RAND IN-9L ImageNet

Attack Success Rate 99.0% 93.5% 88.0% 77.7%

Table 6: Adversarial backgrounds attack success rates for 4 models analyzed in this paper. The
ORIGINAL and the MIXED-RAND are trained on equally small datasets, IN-9L is trained on 4x more
data, and the ImageNet model is trained on the most data.

Next, we visualize the attack success rate distribution of the different backgrounds from the insect
class in Figure 24. The long tail of the distribution indicates that many backgrounds are especially
capable of fooling models.

Finally, we include the 5 most fooling backgrounds for all classes, the fool rate for each of those 5
backgrounds, and the total fool rate across all backgrounds from that class (on the left of each row)
below.
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Figure 25: Most adversarial backgrounds—Dog.
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Figure 26: Most adversarial backgrounds—Bird.
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Figure 27: Most adversarial backgrounds—Vehicle.
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Figure 28: Most adversarial backgrounds—Reptile.
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Figure 29: Most adversarial backgrounds—Carnivore.
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Figure 30: Most adversarial backgrounds—Instrument.
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Figure 31: Most adversarial backgrounds—Primate.
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Figure 32: Most adversarial backgrounds—Fish.
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H EXAMPLES OF FOOLING BACKGROUNDS IN UNMODIFIED IMAGES

We visualize examples of images where the background of the full original image actually fools
models in Figure 33. For these images, models classify the foreground alone correctly, but they
predict the same wrong class on the full image and the background. We denote these images as “BG
Fools” in Table 3 and Figure 7. While this category is relatively rare (accounting for just 3% of the
ORIGINAL-trained model’s predictions), they reveal a subset of original images where background
signal hurts classifier performance. Qualitatively, we observe that these images all have confusing or
misleading backgrounds.

insect
bird

Original Classification:

With Random Background:

instrument
vehicle

fish
reptile

fish
insect

vehicle
instrument

Figure 33: Images that are incorrectly classified (as the class on the top row, which is the same class
that their background alone from ONLY-BG-T is classified as), but are correctly classified (as the
class on the bottom row) when the background is randomized. Note that these images have confusing
backgrounds that could be associated with another class.
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