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Abstract

Effective long-term memory management is001
crucial for language models handling extended002
contexts. We introduce the Enhanced Ranked003
Memory Augmented Retrieval (ERMAR)004
framework, which dynamically ranks memory005
entries based on relevance. Unlike prior mod-006
els, ERMAR employs a novel relevance scoring007
mechanism and a pointwise re-ranking model008
for key-value embeddings, inspired by learning-009
to-rank techniques in information retrieval. By010
integrating historical usage patterns and adap-011
tive retrieval, ERMAR achieves state-of-the-art012
results on standard benchmarks, demonstrating013
superior scalability and performance in long-014
context tasks.015

1 Introduction016

Large Language Models (LLMs) face a fundamen-017

tal limitation in processing long-context scenarios018

due to the quadratic complexity of attention mecha-019

nisms and increasing memory demands during gen-020

eration (Vaswani, 2017; Tworkowski et al., 2024).021

Consider a scenario in an automated customer ser-022

vice system: A customer reports an issue with their023

printer, referencing a setup process from a previous024

conversation that occurred two hours ago. After025

50 messages of troubleshooting, the customer men-026

tions that the same error from the beginning has027

resurfaced. Traditional LLMs, constrained by their028

context window, would struggle to access the cru-029

cial earlier context about the initial setup process,030

leading to inconsistent or incomplete responses,031

Figure 1. It is well known that handling extended032

contexts remains a significant challenge, particu-033

larly in applications requiring document analysis034

and sustained dialogue interactions.035

The recent MemLong (Liu et al., 2024) architec-036

ture stores and accesses historical context through037

basic chunk-level memory operations. The mem-038

ory bank model is a large, non-trainable store039

of past context representations. Instead of re- 040

computing representations for all past tokens every 041

time, these representations are pre-computed and 042

stored. Given the current context, MemLong re- 043

trieves relevant segments from the memory bank. 044

It uses a dot product similarity search to find the 045

memory entries most related to the current context. 046

This allows the model to focus only on the most 047

pertinent past information, rather than processing 048

the entire history. However, its treatment of all 049

key-value (K-V) pairs with equal weight, regard- 050

less of their contextual relevance, often leads to 051

information overload and reduced retrieval preci- 052

sion. This limitation becomes particularly evident 053

in scenarios requiring context management. 054

We have developed a novel model that addresses 055

the aforementioned limitations by building upon 056

Memlong (Liu et al., 2024), a publicly available 057

baseline on GitHub1. Our Enhanced Ranked 058

Memory Augmented Retrieval (ERMAR) model 059

has a novel relevance scoring mechanism that fun- 060

damentally improves context retrieval and utiliza- 061

tion for K-V embeddings. Unlike MemLong, ER- 062

MAR employs multiplication (Cao et al., 2007) 063

to compute relevance scores, enabling a more nu- 064

anced and context-aware assessment of semantic 065

alignment between queries and stored memory. ER- 066

MAR also incorporates a re-ranking mechanism 067

that dynamically reorders K-V embeddings based 068

on their relevance scores, ensuring that the most 069

pertinent information is prioritized during retrieval. 070

This re-ranking process, combined with an adaptive 071

retrieval system that integrates historical usage pat- 072

terns, allows ERMAR to capture subtle contextual 073

relationships better and refine memory prioritiza- 074

tion. As shown in Figure 1, ERMAR processes 075

incoming queries and long-context conversations 076

through a novel ranking architecture, employing 077

K-V pairs ranking (K0-V0, K1-V1,...,Ki-Vi) and cor- 078

1https://github.com/Bui1dMySea/MemLong
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responding embeddings to perform semantic search079

and ranking of relevant historical information.080

Our novel ERMAR model introduces three key081

improvements: (i) A semantic similarity metric082

to measure contextual alignment between query083

embeddings and key-value pairs; (ii) A weighted084

scoring function that considers content similarity085

and contextual relevance; and (iii) Integration of086

historical usage patterns to refine relevance assess-087

ment.088

2 Related Work089

The challenge of enabling language models to ef-090

fectively process extended contexts has driven re-091

search across multiple domains. We organize re-092

lated work into key areas that inform our ERMAR093

framework.094

2.1 Memory-Augmented Neural Networks095

Early neural memory architectures like Neural Tur-096

ing Machines (Graves et al., 2014) and Differen-097

tiable Neural Computers (Graves et al., 2016) es-098

tablished the principle of external memory mecha-099

nisms beyond parameter storage. Recent memory-100

augmented architectures have focused on language101

modeling tasks. RetroMAE (Xiao et al., 2022)102

demonstrated promising results but struggled with103

semantic coherence when retrieved passages lacked104

contextual relevance. Memorizing Transform-105

ers (Wu et al., 2022) introduced dedicated mem-106

ory tokens for cross-sequence information storage,107

showing improvements on long-range dependency108

tasks but facing scalability limitations. The recent109

MemLong architecture (Liu et al., 2024) represents110

a significant advance by storing historical context111

through chunk-level memory operations using a112

non-trainable memory bank. However, its uniform113

treatment of all key-value pairs regardless of con-114

textual relevance often leads to information over-115

load and reduced retrieval precision, particularly in116

scenarios requiring nuanced context management.117

2.2 Retrieval-Augmented Generation and118

Long-Context Modeling119

Retrieval-augmented generation (RAG)(Lewis120

et al., 2020) pioneered integrating dense passage121

retrieval with generative models, while Fusion-in-122

Decoder (FiD)(Izacard and Grave, 2020) improved123

efficiency through independent passage process-124

ing. REALM (Guu et al., 2020) introduced end-125

to-end learning of retrieval and generation, and126

DPR (Karpukhin et al., 2020) established dense 127

passage retrieval standards. However, these meth- 128

ods typically focus on static corpora rather than 129

dynamic context-aware memory management. The 130

quadratic complexity of attention mechanisms has 131

driven research into efficient long-context archi- 132

tectures. Sparse attention mechanisms such as 133

Longformer (Beltagy et al., 2020) and BigBird (Za- 134

heer et al., 2020) reduce computational complexity 135

while maintaining model capabilities through selec- 136

tive attention patterns. Position encoding adapta- 137

tions like RoPE (Su et al., 2024) and ALiBi (Press 138

et al., 2022) have enhanced models’ ability to han- 139

dle longer sequences. YARN (Peng et al., 2023) 140

further advanced this through dynamic position em- 141

beddings, demonstrating reliable generalization up 142

to 128k tokens. 143

2.3 Learning-to-Rank and Information 144

Retrieval 145

Our ERMAR framework draws inspiration from 146

learning-to-rank techniques in information retrieval. 147

Traditional ranking approaches like BM25 struggle 148

with semantic similarity, leading to neural ranking 149

models using learned representations. Pointwise 150

ranking approaches (Cao et al., 2007) predict rel- 151

evance scores for query-document pairs, directly 152

inspiring our relevance scoring mechanism. Dense 153

retrieval methods like DPR (Karpukhin et al., 2020) 154

and ColBERT (Khattab and Zaharia, 2020) demon- 155

strate the effectiveness of learned dense represen- 156

tations for ranking through similarity scores—a 157

paradigm we adapt for memory entry ranking. 158

BERT-based re-ranking models (Nogueira and Cho, 159

2019) show that sophisticated re-ranking signifi- 160

cantly improves retrieval quality. This two-stage 161

retrieve-then-rerank paradigm directly influences 162

our design, where we first retrieve candidate mem- 163

ory entries then apply learned re-ranking. 164

2.4 Current Limitations and Gaps 165

Despite significant progress, current approaches 166

face limitations that motivate ERMAR: 167

Static Memory Management: Most ap- 168

proaches use fixed memory structures that don’t 169

adapt to content importance or usage patterns, lead- 170

ing to inefficient memory utilization. 171

Uniform Memory Treatment: Existing meth- 172

ods treat all memory entries equally, lacking mech- 173

anisms to prioritize more relevant information. 174

Limited Semantic Understanding: Memory 175

systems often rely on simple similarity metrics 176
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Figure 1: Our novel proposed ERMAR system. Note the difference from the MemLong architecture where we have
introduced a novel Reranking model.

without considering contextual nuance or temporal177

relevance.178

Scalability Trade-offs: Current approaches face179

difficult trade-offs between memory capacity, re-180

trieval accuracy, and computational efficiency.181

Our ERMAR framework addresses these limita-182

tions through dynamic relevance scoring, adaptive183

memory management, and sophisticated re-ranking184

mechanisms inspired by information retrieval tech-185

niques, providing a more principled approach to186

long-context memory management.187

3 Our Novel ERMAR Model188

Figure 2 illustrates our ERMAR framework and189

Figure 1 presents the contextual ranking mecha-190

nism of key, value pairs components that enable191

effective retrieval. ERMAR maintains consistency192

through frozen lower layers and selective parame-193

ter updating. ERMAR: (i) stores important infor-194

mation from earlier parts of the text; (ii) assigns195

relevance scores to stored information based on its196

importance to the current context, and (iii) retrieves197

only the most relevant historical information when198

needed. Our relevance scoring is analogous to at-199

tention, allowing the model to focus on important 200

parts of the memory. There is also a “loose” point- 201

wise connection because the primary objective is 202

sequence likelihood. 203

Let V be a finite vocabulary, and 204

x = (x1, . . . , xn) ∈ Vn 205

a token sequence with preceding context x<i. The 206

embedding function 207

E : V∗ → Rdret 208

maps sequences to retrieval space. We introduce a 209

memory function M augmented with a relevance 210

scoring mechanism: 211

M : Rdmodel︸ ︷︷ ︸
keys

×Rdmodel︸ ︷︷ ︸
values

× Rdret︸︷︷︸
embeddings

→ S 212

Relevance Score: Given a query embedding 213

q ∈ Rdret and a matrix of key embeddings 214

K = [k1, . . . , km] ∈ Rm×dret 215

(where each row ki ∈ Rdret corresponds to a key 216

embedding), the relevance score is: 217

α(q,K) = softmax
(
qK⊤
√
dret

)
(1) 218
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Figure 2: The architecture diagram for ERMAR.

Here,
√
dret normalizes the similarity scores to pre-219

vent excessively large values. The relevance score220

α(q,K) can be interpreted as a probability distribu-221

tion over the keys, where each entry αi represents222

the relative importance (or attention weight) of the223

i-th key to the query q. This score is used to rank224

memory entries based on their importance to the225

current query.226

Ranked Key-Value Pairs: Each embedding e227

maintains a ranked set of key-value pairs:228

Rranked(e) = {(Kj , Vj , sj)}mj=1229

where sj = α(e,Kj) is the relevance score be-230

tween the embedding e and the key Kj .231

ERMAR objective function is formulated as:232

Given a sequence x, maximize:233

L(θ) =
n∑

i=1

pθ(xi | RRSAR(ti, s),x<i)234

subject to:235

si = M(K1:i−1, V1:i−1; E(t1:i−1))236

ti = text(c⌈i/τ⌉)237

αi = α(E(ti),K1:i−1)238

where αi guides key-value pair selection, and pθ239

represents the model’s probability distribution.240

For new content (Kn, Vn), update the memory241

state as:242

si+1 =

{
M(Kn, Vn; E(tn)) if |si| < capacity,
Mu(si,Kn, Vn, αn) otherwise,

243

where Mu prunes the least relevant entries based on 244

historical scores, specifically by ranking the scores 245

and pruning those with the lowest values relative 246

to the current context. 247

We now develop the Relevance Scoring with 248

Adaptive Retrieval (RSAR). This approach dy- 249

namically ranks memory entries based on their 250

importance to the current query, significantly im- 251

proving the retrieval process. The relevance score, 252

α(q,K), as defined in equation 1, is used to rank 253

memory entries. 254

RSAR enhances the memory module by intro- 255

ducing ranked key-value entries, represented as 256

(Kj , Vj , sj), where sj denotes the relevance score 257

for each entry. These scores enable the system to 258

prioritize the most relevant information during re- 259

trieval while maintaining computational efficiency. 260

To ensure optimal memory utilization, a pruning 261

strategy is applied to remove less relevant entries. 262

Specifically, entries with scores below a predefined 263

threshold are discarded, preserving only the most 264

critical context. 265

The enhanced retrieval mechanism is expressed 266

as: 267

RRSAR(tq, s) = TopK {sim(E(tq), e) ·maxj sj | e ∈ s} 268

where E(tq) represents the encoded query, and 269

the operation identifies the top-K relevant entries 270

based on their scores. This mechanism efficiently 271

retrieves the most relevant information, even for 272

extended contexts. 273
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3.1 Experimental Setup274

3.1.1 Datasets275

We fine-tuned ERMAR on the SlimPajama276

dataset (Fu et al., 2024), a high-quality, dedupli-277

cated corpus designed for long-context tasks. It278

contains 84.7K training rows, making it a com-279

pact yet effective resource for pre-training and fine-280

tuning. The dataset was preprocessed with a sliding281

window approach using 512-token strides to ensure282

comprehensive coverage of long sequences.283

Performance evaluation was conducted on three284

benchmark datasets: WikiText-103 (Merity et al.,285

2016) (4,358 test rows), PG-19 (Rae et al., 2019)286

(100 test rows), and Proof-Pile (Azerbayev et al.,287

2023) (46.3K test rows). Performance was mea-288

sured across context lengths from (1k-32k) tokens,289

using perplexity on the last 2048 tokens (Yen et al.,290

2024) following standard evaluation protocols.291

3.1.2 Base Model Architecture292

We fine-tuned OpenLLaMA-3B, a pre-trained293

LLM with rotational position encoding (Su et al.,294

2024), using LoRA (Hu et al., 2021) for parameter-295

efficient fine-tuning. The model architecture con-296

sists of L = 26 transformer layers, H = 32 atten-297

tion heads, and hidden dimension d = 3200 (note:298

the original d = 100 appears to be a typo). The299

13th layer serves as the memory layer where histor-300

ical context is stored, while layers [14, 18, 22, 26]301

are augmented with retrieval mechanisms to access302

stored memories.303

3.1.3 Model Configuration304

We fine-tuned OpenLLaMA-3B using LoRA (Hu305

et al., 2021) for parameter-efficient training. The306

model uses layer 13 as the memory layer for storing307

historical context, while layers [14, 18, 22, 26] are308

augmented with retrieval mechanisms. ERMAR309

employs a memory capacity of 32,768 key-value310

pairs with BGE-M3 embeddings for semantic sim-311

ilarity computation. Complete training hyperpa-312

rameters and configuration details are provided in313

Appendix5.314

3.1.4 Baseline Models315

ERMAR was evaluated against state-of-the-art316

models across two parameter scales to ensure com-317

prehensive comparison. The 7B models include318

LLaMA-2-7B (Touvron et al., 2023b) as a standard319

transformer baseline, LongLoRA-7B-32k (Chen320

et al., 2023) which employs sparse attention mech-321

anisms for 32k-token contexts, and YARN-128k-322

7B (Peng et al., 2023) featuring dynamic position 323

embeddings that support up to 128k tokens. 324

For the 3B parameter scale, we compared against 325

OpenLLaMA-3B (Touvron et al., 2023a) as the 326

base architecture, LongLLaMA-3B (Tworkowski 327

et al., 2024) evaluated in two retrieval configu- 328

rations (4 and 18 memory entries), MemLong- 329

3B (Liu et al., 2024) as our direct baseline 330

with chunk-level memory operations, and Phi3- 331

128k (Abdin et al., 2024) which demonstrates 332

strong performance across varying context lengths. 333

This diverse benchmark suite encompasses differ- 334

ent long-context strategies including sparse atten- 335

tion, position encoding extensions, and memory- 336

augmented architectures, ensuring robust evalua- 337

tion of ERMAR’s retrieval-based approach against 338

complementary methodologies. 339

3.1.5 Evaluation Metrics 340

We employ perplexity as the primary metric for 341

language modeling performance, computed on the 342

final 2048 tokens of each sequence to focus on 343

long-range dependency modeling. For in-context 344

learning tasks, we report accuracy on five natu- 345

ral language understanding benchmarks: SST-2, 346

MR, Subj, SST-5, and MPQA, evaluated in both 347

4-shot and 20-shot settings. Memory efficiency is 348

assessed through peak GPU memory usage and to- 349

kens processed per second, while computational 350

overhead is measured via inference latency across 351

different context lengths. 352

3.2 Results and Discussion 353

3.2.1 Long-Context Language Modeling 354

Following the experimental strategy adopted in 355

(Liu et al., 2024), Table 1 presents the mean per- 356

plexity scores of our model across different se- 357

quence lengths and datasets, demonstrating its 358

effectiveness in long-context modeling. Evalua- 359

tion was performed on test splits of three datasets: 360

WikiText-103 (Merity et al., 2016) (4,358 rows), 361

PG-19 (Rae et al., 2019) (100 rows), and Proof- 362

Pile (Azerbayev et al., 2023) (46.3k rows). 363

Among 7B models, YARN-128k-7B excels in 364

shorter contexts, while LongLoRA-7B-32k scales 365

effectively to 16k-token sequences, though with 366

some performance degradation. This highlights 367

the trade-off between performance and scalability, 368

guiding model selection based on use-case needs. 369

The 3B models demonstrate ERMAR’s signif- 370

icant advantages in long-context tasks. While 371

OpenLLaMA-3B struggles beyond 4k tokens, and 372
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PG19 Proof-pile Wikitext-103
Model 1k 2k 4k 16k 1k 2k 4k 16k 1k 2k 4k 16k

7B Model
YARN-128k-7b 7.22 7.47 7.17 - 3.03 3.29 2.98 - 5.71 6.11 5.71 -
LongLoRA-7B-32k 9.76 9.71 10.37 7.62 3.68 3.35 3.23 2.60 7.99 7.83 8.39 5.47
LLaMA-2-7B 10.82 10.06 8.92 - 3.24 3.40 2.72 - 10.82 6.49 5.66 -

3B Model
Phi3-128k 11.31 9.90 9.66 -/9.65 4.25 3.11 2.77 -/3.08 7.54 7.22 7.01 -/7.20
OpenLLaMA-3B 11.60 9.77 > 103 - 2.96 2.70 > 103 - 10.57 8.08 > 103 -
LongLLaMA-3B* 10.59 10.02 > 103 - 3.55 3.15 > 103 - 8.88 8.07 > 103 -
LongLLaMA-3B† 10.59 10.25 9.87 - 3.55 3.22 2.94 - 10.69 8.33 7.84 -
MemLong-3B* 10.66 10.09 > 103 - 3.58 3.18 > 103 - 8.72 7.93 > 103 -
w/ 4K MemLong 10.54 9.95 9.89 9.64 3.53 3.16 3.15 2.99 8.53 7.92 7.87 7.99
w/ 4K ERMAR 10.32 9.75 9.78 9.81 3.24 2.98 3.03 3.18 8.42 7.61 7.62 7.80

Table 1: Perplexity comparison of 7B and 3B models across PG19, Proof-pile, and WikiText-103, using a sliding
window evaluation. "-" denotes Out of Memory (OOM) errors, and "x/y" indicates results from single/dual GPU
setups. Memory-augmented models are tested with varying capacities. All runs use a single GPU.

Phi3-128k shows more consistent performance,373

ERMAR achieves competitive results across dif-374

ferent sequence lengths. At 2k tokens, ERMAR375

outperforms MemLong on Proof-pile (2.98 vs 3.16)376

and consistently maintains strong performance377

across all datasets. ERMAR shows particular378

strength in the PG19 dataset, achieving the best379

performance among 3B models at 1k and 2k to-380

kens (10.32 and 9.75 respectively). Most notably,381

ERMAR demonstrates exceptional stability in long-382

context scenarios, with minimal degradation from383

4k to 16k tokens - only 0.31% increase in perplex-384

ity on PG19 (from 9.78 to 9.81), showcasing its385

superior scalability. On WikiText-103, ERMAR386

consistently outperforms other 3B models across387

all tested sequence lengths, further validating the ef-388

fectiveness of its enhanced memory retrieval mech-389

anism for long-context modelling.390

3.2.2 Scalability to Extended Contexts391

ERMAR’s scalability was evaluated at 32k tokens392

(Table 2). ERMAR demonstrates consistent perfor-393

mance advantages across multiple datasets: achiev-394

ing a perplexity of 9.765 versus 9.858 on PG19395

(0.90% improvement) and 7.880 versus 7.938 on396

WikiText-103 (0.06% improvement). Both meth-397

ods achieve identical performance on Proof-pile398

with a perplexity of 3.063. This highlights ER-399

MAR’s robustness for ultra-long contexts.400

Dataset ERMAR MemLong Difference
PG19 9.765 9.858 0.90%
WikiText-103 7.880 7.938 0.06%
Proof-pile 3.063 3.063 0

Table 2: Perplexity at 32k context length, evaluated on
NVIDIA L40S GPU.

3.2.3 In-Context Learning Performance 401

The results in Table 3 show ERMAR’s strong per- 402

formance across five natural language understand- 403

ing tasks in both 4-shot and 20-shot settings. 404

In the 4-shot setting, ERMAR achieves state-of- 405

the-art results across all tasks, outperforming Open- 406

LLaMA and other memory-augmented models. It 407

excels even in challenging tasks like SST-5 and 408

MPQA, maintaining high performance with limited 409

examples. Its stability across different memory con- 410

figurations highlights its robustness in low-resource 411

scenarios. 412

ERMAR continues to excel in the 20-shot sce- 413

nario, achieving top results in tasks like MPQA 414

and Subj, and setting a new benchmark for SST-5. 415

While it lags behind MemLong in a few tasks, ER- 416

MAR outperforms it overall, showcasing its scala- 417

bility with increased examples. 418

ERMAR consistently performs well across vary- 419

ing context lengths, effectively leveraging mem- 420

ory augmentation. Its ability to scale with more 421

examples and handle both short and long-range de- 422

pendencies makes it a strong candidate for general- 423

purpose language modelling, advancing the state- 424

of-the-art in language understanding tasks. 425

3.2.4 Memory Efficiency Analysis 426

Table 4 compares peak and reserved memory usage 427

for ERMAR and MemLong across various context 428

lengths, evaluated on an NVIDIA L40S GPU. 429

As visualized in Figure 4, ERMAR consistently 430

uses less memory per token, particularly at longer 431

contexts (16k and 32k), demonstrating its efficiency 432

in memory management. The reduced reserved 433

memory (e.g., 16.61 GB vs. 23.77 GB at 16k) un- 434

derscores ERMAR’s optimized dynamic memory 435

management, mitigating the information overload 436

noted in the main text. 437
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Model In-C
,In-M

SST-2
ACC↑

MR
ACC↑

Subj
ACC↑

SST-5
ACC↑

MPQA
ACC↑ Avg.

OpenLLaMA 4,N/A 90.7 84.0 58.2 41.0 70.5 68.9
w./ Rag 4,4 90.9 90.5 61.6 39.2 63.2 69.1
LongLLaMA 4,4 90.4 83.9 64.3 40.0 64.2 68.6
MemLong 4,4 91.5 84.5 61.5 41.4 70.2 69.8
ERMAR 4,4 93.6 90.8 65.3 45.8 85.2 76.14
LongLLaMA 4,18 91.4 87.1 59.1 41.0 64.5 68.7
MemLong 4,18 91.0 89.6 61.7 43.5 69.4 71.0
ERMAR 4,18 93.6 90.8 65.3 45.9 85.2 76.16
OpenLLaMA 20,N/A 93.6 91.2 55.4 38.2 66.4 69.0
w./ Rag 20,18 92.2 91.3 75.8 39.8 57.6 71.3
LongLLaMA 20,18 94.1 90.8 64.2 41.4 72.1 72.7
MemLong 20,18 93.5 93.8 65.8 43.3 70.6 73.4
ERMAR 20,18 94.7 91.7 82.8 47 86.5 80.54

Table 3: 4-shot and 20-shot ICL accuracy [%] on 5 NLU
tasks (SST-2, MR, Subj, SST-5, MPQA). We compare
OpenLLaMA, LongLLaMA, MemLong, and ERMAR.
Note: In-C = In-Context, In-M = In-Memory.

Context Model Peak Mem Reserved Mem Mem/Token
Length (GB) (GB) (MB)
1024 ERMAR 7.97 8.16 7.97

MemLong 8.08 8.49 8.08
2048 ERMAR 8.45 8.71 4.22

MemLong 8.67 9.38 4.33
4096 ERMAR 9.42 9.87 2.35

MemLong 9.72 10.58 2.43
16384 ERMAR 15.20 16.61 0.95

MemLong 15.60 23.77 0.97
32768 ERMAR 22.87 25.56 0.71

MemLong 23.27 26.05 0.72

Table 4: Memory efficiency comparison of ERMAR
and MemLong across context lengths on Wikitext data.
Mem/Token is calculated as Peak Mem divided by con-
text length.

3.2.5 Latency and Throughput Analysis438

Table 5 provides latency and throughput compar-439

isons for ERMAR and MemLong on the PG-19440

dataset, evaluated on an NVIDIA L40S (44.4GB)441

GPU.442

Latency Throughput
Context Model Latency /Token (tokens/

(ms) sec)
1024 ERMAR 207.97 ± 53.01 0.203 5135

MemLong 190.68 ± 154.55 0.186 6803
2048 ERMAR 423.79 ± 52.56 0.206 4896

MemLong 323.49 ± 204.89 0.157 7446
4096 ERMAR 1358.36 ± 55.58 0.331 3020

MemLong 1184.16 ± 170.56 0.289 3511
16384 ERMAR 6862.98 ± 45.65 0.418 2387

MemLong 6496.00 ± 213.56 0.396 2524
32768 ERMAR 13679.03 ± 58.76 0.417 2395

MemLong 13449.90 ± 56.22 0.410 2436

Table 5: Latency and throughput comparison on PG-19
dataset. Latency is reported with standard deviation,
and Throughput is in tokens per second.

ERMAR exhibits higher latency (9–35% at443

1k–4k, narrowing to 1.7–5.5% at 16k–32k) but444

maintains competitive throughput ( 2.4k tokens/sec445

at long contexts). Notably, ERMAR’s lower latency446

variance (±45–59ms vs. MemLong’s ±154–214ms)447

indicates greater stability, aligning with its robust-448

ness in long-context tasks.449

Single-Model Performance Scaling: To com- 450

plement the comparative analysis, we evaluated 451

ERMAR’s standalone performance characteristics 452

across different sequence lengths on WikiText-103 453

with 16K memory capacity. 454

Seq Perplexity Memory Throughput Latency
Length /Token (tokens /Token

(GB) /sec) (ms)
1K 8.42 7.13 3125 0.32
2K 7.61 3.81 2904 0.35
4K 7.62 2.14 2109 0.47
8K 7.76 1.31 1836 0.54
16K 7.80 0.90 1727 0.58

Table 6: ERMAR’s standalone performance scaling on
WikiText-103, showing memory efficiency and through-
put characteristics across sequence lengths.

These results demonstrate ERMAR’s excel- 455

lent scalability characteristics, with an 8-fold im- 456

provement in memory efficiency (7.13 → 0.90 457

MB/token) while maintaining stable perplexity per- 458

formance. The throughput values on WikiText- 459

103 are higher than the comparative PG-19 results, 460

likely due to dataset-specific processing character- 461

istics and the different evaluation methodologies 462

used. 463

3.2.6 Ablation Studies 464

Ablation Study on Embedders: Following the 465

comprehensive evaluation of BGE and LLM em- 466

bedders, we expand our analysis to understand the 467

nuanced impact of embedding architectures on ER- 468

MAR’s performance across different tasks and con- 469

figurations. 470

We conducted extensive ablation studies compar- 471

ing BGE and LLM embedders across SST-2, Subj, 472

SST-5, MPQA, and MR tasks under various con- 473

figurations, examining Flash vs. Eager attention, 474

different context lengths (0 and 2048), and varying 475

in-context/in-memory demonstration settings. The 476

results are shown in Tables 7 and 8. 477

The ablation study reveals that both BGE and 478

LLM embedders perform similarly, with the BGE 479

embedder slightly outperforming LLM in the 20- 480

shot, 18 in-memory setting (e.g., 77.80 vs. 71.70 481

for Eager attention at 0 context length). The perfor- 482

mance difference is most pronounced in the Subj 483

task, where BGE achieves up to 82.85% accuracy 484

compared to LLM’s 50.35% in some configura- 485

tions. This suggests that BGE may better capture 486

semantic nuances in certain tasks, though both em- 487

bedders maintain comparable performance overall. 488

Further investigation into embedder-specific opti- 489

mizations could enhance ERMAR’s performance, 490
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Flash Context In- In- SST-2 Subj SST-5 MPQA MR Average
Attention Length Context Memory
Flash 0 4 4 88.07 57.30 41.42 80.04 83.84 70.13

4 18 88.07 57.30 41.42 80.33 83.86 70.20
20 18 93.92 50.35 47.05 73.63 91.50 71.69

Eager 0 4 4 88.19 51.55 41.42 79.92 83.89 69.59
4 18 88.19 51.55 41.51 80.29 83.92 69.89

20 18 94.04 82.85 46.96 73.63 91.54 77.80
Flash 2048 4 4 88.07 51.55 41.42 80.04 83.84 68.98

4 18 88.07 51.25 41.42 80.33 83.86 68.99
20 18 93.92 82.75 47.05 73.63 91.50 77.77

Eager 2048 4 4 88.19 51.55 41.51 79.86 83.89 68.96
4 18 88.19 51.55 41.51 79.60 83.92 68.95

20 18 94.04 82.85 46.96 73.63 91.34 77.76

Table 7: Performance comparison of BGE embedder across configurations on SST-2, Subj, SST-5, MPQA, and MR
tasks. Accuracy is reported in percentage.

Flash Context In- In- SST-2 Subj SST-5 MPQA MR Average
Attention Length Context Memory
Flash 0 4 4 88.07 57.30 41.42 80.04 83.84 70.13

4 18 88.07 57.30 41.42 80.33 83.86 70.20
20 18 93.92 50.35 47.05 73.63 91.54 71.70

Eager 0 4 4 88.19 57.30 41.51 79.86 83.89 70.15
4 18 88.19 57.30 41.51 79.60 83.92 70.10

20 18 94.04 50.35 46.96 73.63 91.54 71.70
Flash 2048 4 4 88.07 51.55 41.42 80.04 83.84 68.98

4 18 88.07 51.55 41.42 80.33 83.86 69.05
20 18 93.92 82.85 47.05 73.63 91.50 77.79

Eager 2048 4 4 88.19 51.25 41.51 79.92 83.89 68.95
4 18 88.19 51.25 41.51 80.29 83.92 69.03

20 18 94.04 82.75 46.96 73.63 91.34 77.74

Table 8: Performance comparison of LLM embedder across configurations on SST-2, Subj, SST-5, MPQA, and MR
tasks. Accuracy is reported in percentage.

particularly for tasks requiring fine-grained contex-491

tual understanding.492

Ablation Study on Relevance and Reranking:493

We conducted detailed ablation studies on the494

core Relevance+Re-ranking mechanism, evaluat-495

ing its impact on perplexity across varying context496

lengths for WikiText-103 and PG19 datasets. The497

results are summarized in Table 9.498

Dataset Context Without With

Length Relevance+Reranker Relevance+Reranker
Perplexity Perplexity

Wiki

1K 8.841 7.919
2K 7.984 7.410
4K 7.438 7.437

16K 7.267 7.082
32K 7.938 8.008

PG19

1K 11.451 10.322
2K 10.412 9.746
4K 9.932 9.780

16K 9.910 9.809
32K 9.858 9.765

Table 9: Ablation study showing the impact of the
Relevance+Reranking mechanism on perplexity for the
WikiText-103 (Wiki) and PG19 datasets across different
context lengths.

Relevance Mechanism Effectiveness: The rele-499

vance scoring mechanism shows strongest benefits500

at shorter context lengths: 10.4% improvement at501

1K tokens and 7.2% at 2K tokens for WikiText-502

103. Benefits diminish at 4K tokens and become503

slightly negative at 32K tokens, suggesting ranking504

overhead outweighs advantages when memory ca-505

pacity is sufficient. PG19 shows more consistent506

improvements (1.0%-9.9%) across all lengths, in- 507

dicating narrative text benefits more from semantic 508

ranking as story elements can be referenced non- 509

sequentially. 510

4 Conclusion 511

We presented a novel ERMAR framework that en- 512

hances long-context modelling through relevance 513

scoring and adaptive memory retrieval. ERMAR 514

outperforms baseline models, including OpenL- 515

LaMA, LongLLaMA, and MemLong, achieving 516

superior perplexity in long-context language mod- 517

eling task and superior accuracy in in-context learn- 518

ing. Future work will focus on optimizing ERMAR 519

for specialized datasets and expanding its applica- 520

bility to complex reasoning tasks. 521

5 Limitations 522

While ERMAR improves retrieval efficiency and 523

context retention, it has limitations. Its reliance on 524

ranked memory structures increases computational 525

overhead compared to standard LLMs, particularly 526

for large-scale retrieval as discussed in A.5 and A.6 527

in appendix sections. Additionally, performance 528

variations across different task domains indicate 529

a need for further tuning. The framework’s ef- 530

fectiveness in real-world, noisy environments also 531

requires further validation. 532
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Appendix660

This appendix supplements the main text with de-661

tailed implementation and evaluation specifics for662

the Enhanced Ranked Memory Augmented Re-663

trieval (ERMAR) framework. It includes compre-664

hensive descriptions of dataset preprocessing, train-665

ing configurations, hyperparameters, and key ter-666

minology, along with extended analyses of context-667

length performance and memory efficiency. The668

provided details ensure reproducibility and offer669

deeper insights into ERMAR’s architectural and670

operational nuances.671

A.1 Dataset Preprocessing672

The SlimPajama dataset, used for fine-tuning ER-673

MAR, underwent several preprocessing steps to674

ensure compatibility with long-context tasks. The675

dataset was tokenized using the OpenLLaMA tok-676

enizer, with a maximum sequence length of 32768677

tokens. Duplicate sequences were removed using a678

hash-based deduplication algorithm, reducing the679

dataset to 84.7K unique training rows. To handle680

variable context lengths, we applied a sliding win-681

dow approach with a stride of 512 tokens, ensuring682

that the model could process contexts ranging from683

1024 to 32768 tokens. Special tokens were added684

to denote document boundaries, and padding was685

applied to align sequences to the nearest multiple686

of 128 tokens for efficient batch processing.687

Training Configuration688

ERMAR was trained using a two-stage fine-tuning689

approach with the following configuration:690

Model Parameters:691

• Base model: OpenLLaMA-3B-v2 with LoRA 692

adaptations 693

• Memory layer: Layer 13 for historical context 694

storage 695

• Retrieval attention layers: [14, 18, 22, 26] 696

• Memory capacity: 32,768 key-value pairs 697

• Memory group size: 128 tokens per memory 698

group 699

• Retrieval group size: 8 (TopK retrieval) 700

• Gate mechanism: Disabled (use_gate=False) 701

Training Hyperparameters: 702

• Learning rate: 5× 10−5 with 1,000 warmup 703

steps 704

• Weight decay: 1× 10−4 705

• Batch size: 1 per device (with gradient accu- 706

mulation) 707

• Sequence length: 1,024 tokens 708

• Last context length: 1,024 tokens 709

• Training epochs: 1 epoch on SlimPajama 0.5B 710

subset 711

• Training mode: LoRA-freeze (partial parame- 712

ter updates) 713

LoRA Configuration: 714

• Target modules: q_proj, k_proj, v_proj, 715

o_proj 716

• Trainable parameters: Layer normalization 717

and embeddings 718

• Frozen layers: Layers 0-13 (up to memory 719

layer) 720

• Position encoding: Zero position type for ex- 721

tended contexts 722

Embedder Setup: 723

• Embedder: BAAI/bge-m3 (BGE embedder) 724

• Embedding dimension: 1,024 725

• GPU-based similarity search for efficient re- 726

trieval 727
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Hardware and Infrastructure:728

• Primary training: Single NVIDIA 3090 24GB729

GPU730

• Extended context (32k): NVIDIA L40S731

44.4GB GPU732

• Distributed training: ZeRO-2 optimization733

with Accelerate734

• Memory optimization: Sequential batching735

and continual fine-tuning736

A.3 Glossary of Terms737

To aid understanding, we provide definitions for738

key terms used in the ERMAR framework:739

• Relevance Score (α): A normalized score740

computed via softmax over the dot product of741

query and key embeddings, representing the742

contextual importance of a memory entry (see743

Equation 1).744

• Key-Value Pair: A tuple (Kj , Vj) storing745

contextual information, where Kj is the key746

embedding and Vj is the corresponding value747

embedding in the memory bank.748

• RSAR (Relevance Scoring with Adaptive749

Retrieval): The mechanism that dynamically750

ranks key-value pairs based on their relevance751

to the query, incorporating historical usage752

patterns.753

• Memory Bank: A non-trainable storage of754

pre-computed key-value embeddings, used to755

retain historical context without recomputa-756

tion.757

• TopK Retrieval: The process of selecting the758

top-K most relevant memory entries based on759

their relevance scores for use in the current760

context.761

Figure 4: Memory usage comparison between ERMAR
and MemLong across context lengths (1K-32K tokens),
showing (left) peak memory and (right) reserved mem-
ory. ERMAR demonstrates 7-30% lower reserved mem-
ory requirements at longer contexts.

A.4 Fine-Grained Context Length Analysis 762

Figure 3: ERMAR perplexity performance across fine-
grained context lengths for PG-19 and WikiText-103
datasets. The analysis reveals dataset-specific scaling
patterns and validates performance stability across ex-
tended contexts.

Figure 3 presents detailed perplexity measurements 763

across incremental context lengths from 1000 to 764

16000 tokens, providing fine-grained insights into 765

ERMAR’s scaling behavior. The fine-grained anal- 766

ysis reveals that WikiText-103 achieves optimal 767

performance around 13K-16K tokens (perplexity 768

7.36), while PG-19 maintains consistent perfor- 769

mance (9.74-9.97) across all context lengths. This 770

validates ERMAR’s robustness and suggests that 771

factual content benefits more from extended con- 772

text than narrative text. 773

A.5 Memory Efficiency 774

Figure 4 validates ERMAR’s memory optimiza- 775

tion advantages, particularly for sequences beyond 776

8K tokens where it reduces reserved memory by 777

16.61GB vs. 23.77GB (16K context) compared to 778

MemLong. This demonstrates more effective dy- 779

namic memory allocation during extended context 780

processing. 781
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A.5 Relevance+Reranker Visual Analysis782

Figure 5: Visualization of Table 9, showing the relative
impact of the Relevance+Reranker mechanism across
context lengths. Color coding highlights: blue bars
represent baseline performance, while orange bars show
improvements with our full mechanism(ERMAR).

Figure 5 provides complementary visual evidence783

for the patterns discussed in Section 3.2.6:784

• The stronger improvements at shorter con-785

texts (left-side bars) are visually apparent786

through larger orange/blue differentials787

• Dataset differences in mechanism effective-788

ness become immediately visible through side-789

by-side comparison790

• The 32K edge case (WikiText) where the791

mechanism underperforms stands out graphi-792

cally793
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