Long Context Modeling with Ranked Memory-Augmented Retrieval

Anonymous ACL submission

Abstract

Effective long-term memory management is
crucial for language models handling extended
contexts. We introduce the Enhanced Ranked
Memory Augmented Retrieval (ERMAR)
framework, which dynamically ranks memory
entries based on relevance. Unlike prior mod-
els, ERMAR employs a novel relevance scoring
mechanism and a pointwise re-ranking model
for key-value embeddings, inspired by learning-
to-rank techniques in information retrieval. By
integrating historical usage patterns and adap-
tive retrieval, ERMAR achieves state-of-the-art
results on standard benchmarks, demonstrating
superior scalability and performance in long-
context tasks.

1 Introduction

Large Language Models (LLMs) face a fundamen-
tal limitation in processing long-context scenarios
due to the quadratic complexity of attention mecha-
nisms and increasing memory demands during gen-
eration (Vaswani, 2017; Tworkowski et al., 2024).
Consider a scenario in an automated customer ser-
vice system: A customer reports an issue with their
printer, referencing a setup process from a previous
conversation that occurred two hours ago. After
50 messages of troubleshooting, the customer men-
tions that the same error from the beginning has
resurfaced. Traditional LLMs, constrained by their
context window, would struggle to access the cru-
cial earlier context about the initial setup process,
leading to inconsistent or incomplete responses,
Figure 1. It is well known that handling extended
contexts remains a significant challenge, particu-
larly in applications requiring document analysis
and sustained dialogue interactions.

The recent MemLong (Liu et al., 2024) architec-
ture stores and accesses historical context through
basic chunk-level memory operations. The mem-
ory bank model is a large, non-trainable store

of past context representations. Instead of re-
computing representations for all past tokens every
time, these representations are pre-computed and
stored. Given the current context, MemLong re-
trieves relevant segments from the memory bank.
It uses a dot product similarity search to find the
memory entries most related to the current context.
This allows the model to focus only on the most
pertinent past information, rather than processing
the entire history. However, its treatment of all
key-value (K-V) pairs with equal weight, regard-
less of their contextual relevance, often leads to
information overload and reduced retrieval preci-
sion. This limitation becomes particularly evident
in scenarios requiring context management.

We have developed a novel model that addresses
the aforementioned limitations by building upon
Memlong (Liu et al., 2024), a publicly available
baseline on GitHub!. Our Enhanced Ranked
Memory Augmented Retrieval (ERMAR) model
has a novel relevance scoring mechanism that fun-
damentally improves context retrieval and utiliza-
tion for K-V embeddings. Unlike MemLong, ER-
MAR employs multiplication (Cao et al., 2007)
to compute relevance scores, enabling a more nu-
anced and context-aware assessment of semantic
alignment between queries and stored memory. ER-
MAR also incorporates a re-ranking mechanism
that dynamically reorders K-V embeddings based
on their relevance scores, ensuring that the most
pertinent information is prioritized during retrieval.
This re-ranking process, combined with an adaptive
retrieval system that integrates historical usage pat-
terns, allows ERMAR to capture subtle contextual
relationships better and refine memory prioritiza-
tion. As shown in Figure 1, ERMAR processes
incoming queries and long-context conversations
through a novel ranking architecture, employing
K-V pairs ranking (Ko-Vy, K1-V4,....K;-V;) and cor-

"https://github.com/BuildMySea/MemLong

responding embeddings to perform semantic search
and ranking of relevant historical information.

Our novel ERMAR model introduces three key
improvements: (i) A semantic similarity metric
to measure contextual alignment between query
embeddings and key-value pairs; (ii) A weighted
scoring function that considers content similarity
and contextual relevance; and (iii) Integration of
historical usage patterns to refine relevance assess-
ment.

2 Related Work

The challenge of enabling language models to ef-
fectively process extended contexts has driven re-
search across multiple domains. We organize re-
lated work into key areas that inform our ERMAR
framework.

2.1 Memory-Augmented Neural Networks

Early neural memory architectures like Neural Tur-
ing Machines (Graves et al., 2014) and Differen-
tiable Neural Computers (Graves et al., 2016) es-
tablished the principle of external memory mecha-
nisms beyond parameter storage. Recent memory-
augmented architectures have focused on language
modeling tasks. RetroMAE (Xiao et al., 2022)
demonstrated promising results but struggled with
semantic coherence when retrieved passages lacked
contextual relevance. Memorizing Transform-
ers (Wu et al., 2022) introduced dedicated mem-
ory tokens for cross-sequence information storage,
showing improvements on long-range dependency
tasks but facing scalability limitations. The recent
MemlLong architecture (Liu et al., 2024) represents
a significant advance by storing historical context
through chunk-level memory operations using a
non-trainable memory bank. However, its uniform
treatment of all key-value pairs regardless of con-
textual relevance often leads to information over-
load and reduced retrieval precision, particularly in
scenarios requiring nuanced context management.

2.2 Retrieval-Augmented Generation and
Long-Context Modeling

Retrieval-augmented generation (RAG)(Lewis
et al., 2020) pioneered integrating dense passage
retrieval with generative models, while Fusion-in-
Decoder (FiD)(Izacard and Grave, 2020) improved
efficiency through independent passage process-
ing. REALM (Guu et al., 2020) introduced end-
to-end learning of retrieval and generation, and

DPR (Karpukhin et al., 2020) established dense
passage retrieval standards. However, these meth-
ods typically focus on static corpora rather than
dynamic context-aware memory management. The
quadratic complexity of attention mechanisms has
driven research into efficient long-context archi-
tectures. Sparse attention mechanisms such as
Longformer (Beltagy et al., 2020) and BigBird (Za-
heer et al., 2020) reduce computational complexity
while maintaining model capabilities through selec-
tive attention patterns. Position encoding adapta-
tions like RoPE (Su et al., 2024) and ALiBi (Press
et al., 2022) have enhanced models’ ability to han-
dle longer sequences. YARN (Peng et al., 2023)
further advanced this through dynamic position em-
beddings, demonstrating reliable generalization up
to 128k tokens.

2.3 Learning-to-Rank and Information
Retrieval

Our ERMAR framework draws inspiration from
learning-to-rank techniques in information retrieval.
Traditional ranking approaches like BM25 struggle
with semantic similarity, leading to neural ranking
models using learned representations. Pointwise
ranking approaches (Cao et al., 2007) predict rel-
evance scores for query-document pairs, directly
inspiring our relevance scoring mechanism. Dense
retrieval methods like DPR (Karpukhin et al., 2020)
and ColBERT (Khattab and Zaharia, 2020) demon-
strate the effectiveness of learned dense represen-
tations for ranking through similarity scores—a
paradigm we adapt for memory entry ranking.
BERT-based re-ranking models (Nogueira and Cho,
2019) show that sophisticated re-ranking signifi-
cantly improves retrieval quality. This two-stage
retrieve-then-rerank paradigm directly influences
our design, where we first retrieve candidate mem-
ory entries then apply learned re-ranking.

2.4 Current Limitations and Gaps

Despite significant progress, current approaches
face limitations that motivate ERMAR:

Static Memory Management: Most ap-
proaches use fixed memory structures that don’t
adapt to content importance or usage patterns, lead-
ing to inefficient memory utilization.

Uniform Memory Treatment: Existing meth-
ods treat all memory entries equally, lacking mech-
anisms to prioritize more relevant information.

Limited Semantic Understanding: Memory
systems often rely on simple similarity metrics

23/

\
: Customer (2 hours |
: ago): "I purchased :
I the XYZ-2000 |
: printer :
I last week. The setup !
| L |
| went fine initially..." |
: [... 50 messages of :
| troubleshooting later :
I |

]

(
: Customer (now): "So i
I now it's showing
| that same error |
: from the beginning." :

| see the error has resurfaced. From
your earlier message, you
mentioned the setup process for the
XYZ-2000 ...

T Memory Fusion Generation

Ranked Memory-
Augmented Retrieval

|
Chunck * Long
Level | Range
Memory | | Retrieval
(. Reranking) |
e i Y=t
| v | v I |
' Ko-Vo Ke-Ve
| \ I \ o
| - __ -0
Unranked Ranked |
| ' I
4 -
Query
Key-Value " Embddings
. Embeddings || search
pairs of Current
Inputs
Chunck* I Long
Level | | Range
Memory | * Retrieval

~——» Long Memory Retrieval

Memory Fusion Generation
——_——

\
["I'm sorry to hear the error has come |

followed during the initial setup? :
This will help m..." |

Figure 1: Our novel proposed ERMAR system. Note the difference from the MemLong architecture where we have

introduced a novel Reranking model.

without considering contextual nuance or temporal
relevance.

Scalability Trade-offs: Current approaches face
difficult trade-offs between memory capacity, re-
trieval accuracy, and computational efficiency.

Our ERMAR framework addresses these limita-
tions through dynamic relevance scoring, adaptive
memory management, and sophisticated re-ranking
mechanisms inspired by information retrieval tech-
niques, providing a more principled approach to
long-context memory management.

3 Our Novel ERMAR Model

Figure 2 illustrates our ERMAR framework and
Figure 1 presents the contextual ranking mecha-
nism of key, value pairs components that enable
effective retrieval. ERMAR maintains consistency
through frozen lower layers and selective parame-
ter updating. ERMAR: (i) stores important infor-
mation from earlier parts of the text; (ii) assigns
relevance scores to stored information based on its
importance to the current context, and (iii) retrieves
only the most relevant historical information when
needed. Our relevance scoring is analogous to at-

tention, allowing the model to focus on important
parts of the memory. There is also a “loose” point-
wise connection because the primary objective is
sequence likelihood.

Let V be a finite vocabulary, and

x=(x1,...,Ty) € V"

a token sequence with preceding context x;. The
embedding function

E:V* — R

maps sequences to retrieval space. We introduce a
memory function M augmented with a relevance
scoring mechanism:

M : Rdmodel X Rdmodel X Rdrel — S

keys values embeddings

Relevance Score: Given a query embedding
q € R% and a matrix of key embeddings

K = [ki1,..., ky] € RmXde

(where each row k; € R%= corresponds to a key
embedding), the relevance score is:

qK'’)
dret

a(q, K) = softmax < (1)

% Frozen | 00 0T T T e — —
|) \ | . Retrieved
MﬁT?TafblfJ | ’—V{ RetrievaIO\l Output |
Output |
T (6 | Dret » Reranking :
—
Feed Forward : E E, |
T E: i |
| Embeddings . . |
Retrieval Causal Attention <¢i— . .
4 E Es |
p———]
S | Dmodel ‘ .
Feed Forward | ‘H K3,V
K, Vi
t | | et i
Causal Attention ‘ ‘ ‘
4 Dense Embedder H_KQ'V_’

=
Input Text
L

Figure 2: The architecture diagram for ERMAR.

Here, v/dye normalizes the similarity scores to pre-
vent excessively large values. The relevance score
a(q, K) can be interpreted as a probability distribu-
tion over the keys, where each entry «; represents
the relative importance (or attention weight) of the
i-th key to the query q. This score is used to rank
memory entries based on their importance to the
current query.

Ranked Key-Value Pairs: Each embedding e
maintains a ranked set of key-value pairs:

Rranked(e) = {(Kj7 Vj? sj)};n:l

where s; = «(e, K;) is the relevance score be-
tween the embedding e and the key K.
ERMAR objective function is formulated as:
Given a sequence X, maximize:

L(0) = po(zi | Rrsar(ti,s), X<i)
=1

subject to:

si = M(K1:i-1, Visi—1; E(t1:i-1))
t;, = tGXt(C[i/T])
a; = a(E(t;), Ki:-1)

where «; guides key-value pair selection, and py
represents the model’s probability distribution.

For new content (K, V), update the memory
state as:

M(Kna Vas g(tn))
Mu(3i7 Kna V;la an)

if |s;| < capacity,
Sit1 = :
otherwise,

where M, prunes the least relevant entries based on
historical scores, specifically by ranking the scores
and pruning those with the lowest values relative
to the current context.

We now develop the Relevance Scoring with
Adaptive Retrieval (RSAR). This approach dy-
namically ranks memory entries based on their
importance to the current query, significantly im-
proving the retrieval process. The relevance score,
a(q, K), as defined in equation 1, is used to rank
memory entries.

RSAR enhances the memory module by intro-
ducing ranked key-value entries, represented as
(K;,Vj,s;), where s; denotes the relevance score
for each entry. These scores enable the system to
prioritize the most relevant information during re-
trieval while maintaining computational efficiency.
To ensure optimal memory utilization, a pruning
strategy is applied to remove less relevant entries.
Specifically, entries with scores below a predefined
threshold are discarded, preserving only the most
critical context.

The enhanced retrieval mechanism is expressed
as:

RRSAR(tzp S) = TopK {Sim(E(ifq)7 e) - 1Max; S; ‘ e e S}

where E(t,) represents the encoded query, and
the operation identifies the top-K relevant entries
based on their scores. This mechanism efficiently
retrieves the most relevant information, even for
extended contexts.

3.1 Experimental Setup
3.1.1 Datasets

We fine-tuned ERMAR on the SlimPajama
dataset (Fu et al., 2024), a high-quality, dedupli-
cated corpus designed for long-context tasks. It
contains 84.7K training rows, making it a com-
pact yet effective resource for pre-training and fine-
tuning. The dataset was preprocessed with a sliding
window approach using 512-token strides to ensure
comprehensive coverage of long sequences.
Performance evaluation was conducted on three
benchmark datasets: WikiText-103 (Merity et al.,
2016) (4,358 test rows), PG-19 (Rae et al., 2019)
(100 test rows), and Proof-Pile (Azerbayev et al.,
2023) (46.3K test rows). Performance was mea-
sured across context lengths from (1k-32k) tokens,
using perplexity on the last 2048 tokens (Yen et al.,
2024) following standard evaluation protocols.

3.1.2 Base Model Architecture

We fine-tuned OpenLLaMA-3B, a pre-trained
LLM with rotational position encoding (Su et al.,
2024), using LoRA (Hu et al., 2021) for parameter-
efficient fine-tuning. The model architecture con-
sists of L = 26 transformer layers, I = 32 atten-
tion heads, and hidden dimension d = 3200 (note:
the original d = 100 appears to be a typo). The
13th layer serves as the memory layer where histor-
ical context is stored, while layers [14, 18, 22, 26]
are augmented with retrieval mechanisms to access
stored memories.

3.1.3 Model Configuration

We fine-tuned OpenLLaMA-3B using LoRA (Hu
et al., 2021) for parameter-efficient training. The
model uses layer 13 as the memory layer for storing
historical context, while layers [14, 18, 22, 26] are
augmented with retrieval mechanisms. ERMAR
employs a memory capacity of 32,768 key-value
pairs with BGE-M3 embeddings for semantic sim-
ilarity computation. Complete training hyperpa-
rameters and configuration details are provided in
Appendix5.

3.1.4 Baseline Models

ERMAR was evaluated against state-of-the-art
models across two parameter scales to ensure com-
prehensive comparison. The 7B models include
LLaMA-2-7B (Touvron et al., 2023b) as a standard
transformer baseline, Longl.oRA-7B-32k (Chen
et al., 2023) which employs sparse attention mech-
anisms for 32k-token contexts, and YARN-128k-

7B (Peng et al., 2023) featuring dynamic position
embeddings that support up to 128k tokens.

For the 3B parameter scale, we compared against
OpenLLaMA-3B (Touvron et al., 2023a) as the
base architecture, LongLLLaMA-3B (Tworkowski
et al., 2024) evaluated in two retrieval configu-
rations (4 and 18 memory entries), MemLong-
3B (Liu et al., 2024) as our direct baseline
with chunk-level memory operations, and Phi3-
128k (Abdin et al., 2024) which demonstrates
strong performance across varying context lengths.
This diverse benchmark suite encompasses differ-
ent long-context strategies including sparse atten-
tion, position encoding extensions, and memory-
augmented architectures, ensuring robust evalua-
tion of ERMAR’s retrieval-based approach against
complementary methodologies.

3.1.5 Evaluation Metrics

We employ perplexity as the primary metric for
language modeling performance, computed on the
final 2048 tokens of each sequence to focus on
long-range dependency modeling. For in-context
learning tasks, we report accuracy on five natu-
ral language understanding benchmarks: SST-2,
MR, Subj, SST-5, and MPQA, evaluated in both
4-shot and 20-shot settings. Memory efficiency is
assessed through peak GPU memory usage and to-
kens processed per second, while computational
overhead is measured via inference latency across
different context lengths.

3.2 Results and Discussion

3.2.1 Long-Context Language Modeling

Following the experimental strategy adopted in
(Liu et al., 2024), Table 1 presents the mean per-
plexity scores of our model across different se-
quence lengths and datasets, demonstrating its
effectiveness in long-context modeling. Evalua-
tion was performed on test splits of three datasets:
WikiText-103 (Merity et al., 2016) (4,358 rows),
PG-19 (Rae et al., 2019) (100 rows), and Proof-
Pile (Azerbayev et al., 2023) (46.3k rows).
Among 7B models, YARN-128k-7B excels in
shorter contexts, while Longl.oRA-7B-32k scales
effectively to 16k-token sequences, though with
some performance degradation. This highlights
the trade-off between performance and scalability,
guiding model selection based on use-case needs.
The 3B models demonstrate ERMAR’s signif-
icant advantages in long-context tasks. While
OpenLLaMA-3B struggles beyond 4k tokens, and

PG19 Proof-pile Wikitext-103

Model 1k 2k 4k 16k 1k 2k 4k 16k 1k 2k 4k 16k

7B Model
YARN-128k-7b 7.22 7.47 7.17 3.03 3.29 2.98 - 5.71 6.11 5.71 -
LongLoRA-7B-32k 9.76 9.71 10.37 7.62 3.68 3.35 3.23 2.60 7.99 7.83 8.39 5.47
LLaMA-2-7B 10.82 10.06 8.92 - 3.24 3.40 2.72 10.82 6.49 5.66 -

3B Model
Phi3-128k 11.31 9.90 9.66 -9.65 | 4.25 3.11 2.77 -3.08 | 7.54 7.22 7.01 -/7.20
OpenLLaMA-3B 11.60 9.77 >10% - 2.96 2.70 >10° 10.57 8.08 >10% -
LongLLaMA-3B* 1059 10.02 >10° 3.55 3.15 >10° 8.88 8.07 >10°%
LongLLaMA-3B* 1059 1025 9.87 3.55 3.22 2.94 10.69 8.33 7.84
MemLong-3B* 1066 10.09 >10%° - 358 318 >10° 872 793 >10° -
w/ 4K MemLong 10.54 9.95 9.89 9.64 3.53 3.16 3.15 2.99 8.53 7.92 7.87 7.99
w/ 4K ERMAR 1032 9.75 9.78 9.81 3.24 2.98 3.03 3.18 8.42 7.61 7.62 7.80

Table 1: Perplexity comparison of 7B and 3B models across PG19, Proof-pile, and WikiText-103, using a sliding
window evaluation. "-" denotes Out of Memory (OOM) errors, and "x/y" indicates results from single/dual GPU
setups. Memory-augmented models are tested with varying capacities. All runs use a single GPU.

Phi3-128k shows more consistent performance,
ERMAR achieves competitive results across dif-
ferent sequence lengths. At 2k tokens, ERMAR
outperforms MemLong on Proof-pile (2.98 vs 3.16)
and consistently maintains strong performance
across all datasets. ERMAR shows particular
strength in the PG19 dataset, achieving the best
performance among 3B models at 1k and 2k to-
kens (10.32 and 9.75 respectively). Most notably,
ERMAR demonstrates exceptional stability in long-
context scenarios, with minimal degradation from
4k to 16k tokens - only 0.31% increase in perplex-
ity on PG19 (from 9.78 to 9.81), showcasing its
superior scalability. On WikiText-103, ERMAR
consistently outperforms other 3B models across
all tested sequence lengths, further validating the ef-
fectiveness of its enhanced memory retrieval mech-
anism for long-context modelling.

3.2.2 Scalability to Extended Contexts

ERMAR’s scalability was evaluated at 32k tokens
(Table 2). ERMAR demonstrates consistent perfor-
mance advantages across multiple datasets: achiev-
ing a perplexity of 9.765 versus 9.858 on PG19
(0.90% improvement) and 7.880 versus 7.938 on
WikiText-103 (0.06% improvement). Both meth-
ods achieve identical performance on Proof-pile
with a perplexity of 3.063. This highlights ER-
MAR’s robustness for ultra-long contexts.

Dataset ERMAR MemLong | Difference
PGI19 9.765 9.858 0.90%
WikiText-103 7.880 7.938 0.06%
Proof-pile 3.063 3.063 0

Table 2: Perplexity at 32k context length, evaluated on
NVIDIA L40S GPU.

3.2.3 In-Context Learning Performance

The results in Table 3 show ERMAR’s strong per-
formance across five natural language understand-
ing tasks in both 4-shot and 20-shot settings.

In the 4-shot setting, ERMAR achieves state-of-
the-art results across all tasks, outperforming Open-
LLaMA and other memory-augmented models. It
excels even in challenging tasks like SST-5 and
MPQA, maintaining high performance with limited
examples. Its stability across different memory con-
figurations highlights its robustness in low-resource
scenarios.

ERMAR continues to excel in the 20-shot sce-
nario, achieving top results in tasks like MPQA
and Subj, and setting a new benchmark for SST-5.
While it lags behind MemLong in a few tasks, ER-
MAR outperforms it overall, showcasing its scala-
bility with increased examples.

ERMAR consistently performs well across vary-
ing context lengths, effectively leveraging mem-
ory augmentation. Its ability to scale with more
examples and handle both short and long-range de-
pendencies makes it a strong candidate for general-
purpose language modelling, advancing the state-
of-the-art in language understanding tasks.

3.24

Table 4 compares peak and reserved memory usage
for ERMAR and MemLong across various context
lengths, evaluated on an NVIDIA L40S GPU.

As visualized in Figure 4, ERMAR consistently
uses less memory per token, particularly at longer
contexts (16k and 32k), demonstrating its efficiency
in memory management. The reduced reserved
memory (e.g., 16.61 GB vs. 23.77 GB at 16k) un-
derscores ERMAR’s optimized dynamic memory
management, mitigating the information overload
noted in the main text.

Memory Efficiency Analysis

Model In-C [SST2 MR Subj SST5 MPQAT -
ode In-M | ACCT ACCt ACCt ACCt Acct| V&
OpenLLaMA | 4,N/A | 90.7 840 582 410 705 | 689

w./ Rag 4.4 909 905 616 392 632 69.1
LongLLaMA | 44 904 839 643 400 642 68.6
MemLong 44 91.5 845 615 414 702 69.8
ERMAR 4.4 93.6 908 653 458 85.2
LongLLaMA | 4,18 914 87.1 59.1 410 645 68.7
MemLong 4,18 91.0 89.6 61.7 435 694 71.0
ERMAR 4,18 93.6 908 653 459 85.2

Single-Model Performance Scaling: To com-
plement the comparative analysis, we evaluated
ERMAR'’s standalone performance characteristics
across different sequence lengths on WikiText-103
with 16K memory capacity.

OpenLLaMA | 20,N/A| 93.6 912 554 382 664 69.0
w./ Rag 20,18 | 922 913 758 398 576 71.3
LongLLaMA | 20,18 | 94.1 908 642 414 721 72.7
MemLong 20,18 | 935 938 658 433 70.6 73.4
ERMAR 20,18 | 947 917 828 47 86.5 80.54

Table 3: 4-shot and 20-shot ICL accuracy [%] on S NLU
tasks (SST-2, MR, Subj, SST-5, MPQA). We compare
OpenLLaMA, LongLLaMA, MemLong, and ERMAR.
Note: In-C = In-Context, In-M = In-Memory.

Context Model Peak Mem Reserved Mem | Mem/Token
Length (GB) (GB) (MB)
1024 ERMAR 797 8.16 7.97
MemLong 8.08 8.49 8.08
2048 ERMAR 8.45 8.71 422
MemLong 8.67 9.38 4.33
4096 ERMAR 9.42 9.87 2.35
MemLong 9.72 10.58 243
16384 ERMAR 15.20 16.61 0.95
MemLong 15.60 23.77 0.97
32768 ERMAR 22.87 25.56 0.71
MemLong 23.27 26.05 0.72

Table 4: Memory efficiency comparison of ERMAR
and MemLong across context lengths on Wikitext data.
Mem/Token is calculated as Peak Mem divided by con-
text length.

3.2.5 Latency and Throughput Analysis

Table 5 provides latency and throughput compar-
isons for ERMAR and MemLong on the PG-19
dataset, evaluated on an NVIDIA L40S (44.4GB)
GPU.

Latency Throughput

Context Model Latency /Token (tokens/
(ms) sec)
1024 ERMAR 207.97 £ 53.01 0.203 5135
MemLong 190.68 + 154.55 0.186 6803
2048 ERMAR 423.79 £+ 52.56 0.206 4896
MemLong 323.49 + 204.89 0.157 7446
4096 ERMAR 1358.36 £ 55.58 0.331 3020
MemLong 1184.16 £ 170.56 0.289 3511
16384 ERMAR 6862.98 £ 45.65 0.418 2387
MemLong | 6496.00 &+ 213.56 0.396 2524
32768 ERMAR 13679.03 + 58.76 0.417 2395
MemLong 13449.90 + 56.22 0.410 2436

Table 5: Latency and throughput comparison on PG-19
dataset. Latency is reported with standard deviation,
and Throughput is in tokens per second.

ERMAR exhibits higher latency (9-35% at
1k—4k, narrowing to 1.7-5.5% at 16k-32k) but
maintains competitive throughput (2.4k tokens/sec
at long contexts). Notably, ERMAR’s lower latency
variance (+45-59ms vs. MemLong’s +154-214ms)
indicates greater stability, aligning with its robust-
ness in long-context tasks.

Seq Perplexity = Memory Throughput Latency
Length /Token (tokens /Token
(GB) /sec) (ms)
1K 8.42 7.13 3125 0.32
2K 7.61 3.81 2904 0.35
4K 7.62 2.14 2109 0.47
8K 7.76 1.31 1836 0.54
16K 7.80 0.90 1727 0.58

Table 6: ERMAR’s standalone performance scaling on
WikiText-103, showing memory efficiency and through-
put characteristics across sequence lengths.

These results demonstrate ERMAR’s excel-
lent scalability characteristics, with an 8-fold im-
provement in memory efficiency (7.13 — 0.90
MB/token) while maintaining stable perplexity per-
formance. The throughput values on WikiText-
103 are higher than the comparative PG-19 results,
likely due to dataset-specific processing character-
istics and the different evaluation methodologies
used.

3.2.6 Ablation Studies

Ablation Study on Embedders: Following the
comprehensive evaluation of BGE and LLM em-
bedders, we expand our analysis to understand the
nuanced impact of embedding architectures on ER-
MAR’s performance across different tasks and con-
figurations.

We conducted extensive ablation studies compar-
ing BGE and LLM embedders across SST-2, Subj,
SST-5, MPQA, and MR tasks under various con-
figurations, examining Flash vs. Eager attention,
different context lengths (0 and 2048), and varying
in-context/in-memory demonstration settings. The
results are shown in Tables 7 and 8.

The ablation study reveals that both BGE and
LLM embedders perform similarly, with the BGE
embedder slightly outperforming LM in the 20-
shot, 18 in-memory setting (e.g., 77.80 vs. 71.70
for Eager attention at O context length). The perfor-
mance difference is most pronounced in the Subj
task, where BGE achieves up to 82.85% accuracy
compared to LLM’s 50.35% in some configura-
tions. This suggests that BGE may better capture
semantic nuances in certain tasks, though both em-
bedders maintain comparable performance overall.
Further investigation into embedder-specific opti-
mizations could enhance ERMAR’s performance,

Flash Context In- In- SST-2 Subj SST-5 MPQA MR Average

Attention Length Context Memory

Flash 0 4 4 88.07 57.30 41.42 80.04 83.84 70.13
4 18 88.07 57.30 41.42 80.33 83.86 70.20
20 18 93.92 50.35 47.05 73.63 91.50 71.69

Eager 0 4 4 88.19 51.55 41.42 79.92 83.89 69.59
4 18 88.19 51.55 41.51 80.29 83.92 69.89
20 18 94.04 82.85 46.96 73.63 91.54 77.80

Flash 2048 4 4 88.07 51.55 41.42 80.04 83.84 68.98
4 18 88.07 51.25 41.42 80.33 83.86 68.99
20 18 93.92 82.75 47.05 73.63 91.50 7177

Eager 2048 4 4 88.19 51.55 41.51 79.86 83.89 68.96
4 18 88.19 51.55 41.51 79.60 83.92 68.95
20 18 94.04 82.85 46.96 73.63 91.34 77.76

Table 7: Performance comparison of BGE embedder across configurations on SST-2, Subj, SST-5, MPQA, and MR

tasks. Accuracy is reported in percentage.

Flash Context In- In- SST-2 Subj SST-5 MPQA MR Average

Attention Length Context Memory

Flash 0 4 4 88.07 57.30 41.42 80.04 83.84 70.13
4 18 88.07 57.30 41.42 80.33 83.86 70.20
20 18 93.92 50.35 47.05 73.63 91.54 71.70

Eager 0 4 4 88.19 57.30 41.51 79.86 83.89 70.15
4 18 88.19 57.30 41.51 79.60 83.92 70.10
20 18 94.04 50.35 46.96 73.63 91.54 71.70

Flash 2048 4 4 88.07 51.55 41.42 80.04 83.84 68.98
4 18 88.07 51.55 41.42 80.33 83.86 69.05
20 18 93.92 82.85 47.05 73.63 91.50 77.79

Eager 2048 4 4 88.19 51.25 41.51 79.92 83.89 68.95
4 18 88.19 51.25 41.51 80.29 83.92 69.03
20 18 94.04 82.75 46.96 73.63 91.34 77.74

Table 8: Performance comparison of LLM embedder across configurations on SST-2, Subj, SST-5, MPQA, and MR

tasks. Accuracy is reported in percentage.

particularly for tasks requiring fine-grained contex-
tual understanding.

Ablation Study on Relevance and Reranking:

We conducted detailed ablation studies on the
core Relevance+Re-ranking mechanism, evaluat-
ing its impact on perplexity across varying context
lengths for WikiText-103 and PG19 datasets. The
results are summarized in Table 9.

Dataset | Context Without With
Relevance+Reranker Relevance+Reranker
Length - -
Perplexity Perplexity

1K 8.841 7.919

2K 7.984 7.410

Wiki 4K 7.438 7.437
16K 7.267 7.082

32K 7.938 8.008
1K 11.451 10.322

2K 10.412 9.746

PG19 4K 9.932 9.780
16K 9.910 9.809

32K 9.858 9.765

Table 9: Ablation study showing the impact of the
Relevance+Reranking mechanism on perplexity for the
WikiText-103 (Wiki) and PG19 datasets across different
context lengths.

Relevance Mechanism Effectiveness: The rele-
vance scoring mechanism shows strongest benefits
at shorter context lengths: 10.4% improvement at
1K tokens and 7.2% at 2K tokens for WikiText-
103. Benefits diminish at 4K tokens and become
slightly negative at 32K tokens, suggesting ranking
overhead outweighs advantages when memory ca-
pacity is sufficient. PG19 shows more consistent

improvements (1.0%-9.9%) across all lengths, in-
dicating narrative text benefits more from semantic
ranking as story elements can be referenced non-
sequentially.

4 Conclusion

We presented a novel ERMAR framework that en-
hances long-context modelling through relevance
scoring and adaptive memory retrieval. ERMAR
outperforms baseline models, including OpenL-
LaMA, LonglLLaMA, and MemLong, achieving
superior perplexity in long-context language mod-
eling task and superior accuracy in in-context learn-
ing. Future work will focus on optimizing ERMAR
for specialized datasets and expanding its applica-
bility to complex reasoning tasks.

5 Limitations

While ERMAR improves retrieval efficiency and
context retention, it has limitations. Its reliance on
ranked memory structures increases computational
overhead compared to standard LLMs, particularly
for large-scale retrieval as discussed in A.5 and A.6
in appendix sections. Additionally, performance
variations across different task domains indicate
a need for further tuning. The framework’s ef-
fectiveness in real-world, noisy environments also
requires further validation.

References

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed
Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, et al. 2024. Phi-3 technical report: A highly ca-
pable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Zhangir Azerbayev, Edward Ayers, and Bartosz Pi-
otrowski. 2023. Proofpile: A pre-training dataset
of mathematical texts.

1z Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the
24th international conference on Machine learning,

pages 129-136.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023. Longlora:
Efficient fine-tuning of long-context large language
models. arXiv preprint arXiv:2309.12307.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Han-
naneh Hajishirzi, Yoon Kim, and Hao Peng. 2024.
Data engineering for scaling language models to 128k
context. arXiv preprint arXiv:2402.10171.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwiniska, Sergio Goémez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al.
2016. Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626):471—
476.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929-3938. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Gautier Izacard and Edouard Grave. 2020. Leverag-
ing passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2007.01282.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research

and development in Information Retrieval, pages 39—
48.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in neu-
ral information processing systems, 33:9459-9474.

Weijie Liu, Zecheng Tang, Juntao Li, Kehai Chen, and
Min Zhang. 2024. Memlong: Memory-augmented
retrieval for long text modeling. arXiv preprint
arXiv:2408.16967.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Pas-
sage re-ranking with bert. arXiv preprint
arXiv:1901.04085.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context window
extension of large language models. arXiv preprint
arXiv:2309.00071.

Ofir Press, Noah A. Smith, and Mike Lewis. 2022.
Train short, test long: Attention with linear bi-
ases enables input length extrapolation. Preprint,
arXiv:2108.12409.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
and Timothy P Lillicrap. 2019. Compressive trans-
formers for long-range sequence modelling. arXiv
preprint arXiv:1911.05507.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Szymon Tworkowski, Konrad Staniszewski, Mikotlaj
Pacek, Yuhuai Wu, Henryk Michalewski, and Piotr
Mitos. 2024. Focused transformer: Contrastive train-
ing for context scaling. Advances in Neural Informa-
tion Processing Systems, 36.

https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and
Christian Szegedy. 2022. Memorizing transformers.
arXiv preprint arXiv:2203.08913.

Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao.
2022. Retromae: Pre-training retrieval-oriented
language models via masked auto-encoder. arXiv
preprint arXiv:2205.12035.

Howard Yen, Tianyu Gao, and Dangi Chen. 2024. Long-
context language modeling with parallel context en-
coding. arXiv preprint arXiv:2402.16617.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283-17297.

Appendix

This appendix supplements the main text with de-
tailed implementation and evaluation specifics for
the Enhanced Ranked Memory Augmented Re-
trieval (ERMAR) framework. It includes compre-
hensive descriptions of dataset preprocessing, train-
ing configurations, hyperparameters, and key ter-
minology, along with extended analyses of context-
length performance and memory efficiency. The
provided details ensure reproducibility and offer
deeper insights into ERMAR’s architectural and
operational nuances.

A.1 Dataset Preprocessing

The SlimPajama dataset, used for fine-tuning ER-
MAR, underwent several preprocessing steps to
ensure compatibility with long-context tasks. The
dataset was tokenized using the OpenLLaMA tok-
enizer, with a maximum sequence length of 32768
tokens. Duplicate sequences were removed using a
hash-based deduplication algorithm, reducing the
dataset to 84.7K unique training rows. To handle
variable context lengths, we applied a sliding win-
dow approach with a stride of 512 tokens, ensuring
that the model could process contexts ranging from
1024 to 32768 tokens. Special tokens were added
to denote document boundaries, and padding was
applied to align sequences to the nearest multiple
of 128 tokens for efficient batch processing.

Training Configuration

ERMAR was trained using a two-stage fine-tuning
approach with the following configuration:
Model Parameters:

* Base model: OpenLLaMA-3B-v2 with LoRA
adaptations

* Memory layer: Layer 13 for historical context
storage

 Retrieval attention layers: [14, 18, 22, 26]
* Memory capacity: 32,768 key-value pairs

* Memory group size: 128 tokens per memory
group

* Retrieval group size: 8 (TopK retrieval)

* Gate mechanism: Disabled (use_gate=False)

Training Hyperparameters:

* Learning rate: 5 x 1075 with 1,000 warmup
steps

* Weight decay: 1 x 1074

* Batch size: 1 per device (with gradient accu-
mulation)

* Sequence length: 1,024 tokens
* Last context length: 1,024 tokens

* Training epochs: 1 epoch on SlimPajama 0.5B
subset

* Training mode: LoRA-freeze (partial parame-
ter updates)

LoRA Configuration:

* Target modules: q_proj, k_proj, v_proj,
0_proj

* Trainable parameters: Layer normalization
and embeddings

* Frozen layers: Layers 0-13 (up to memory
layer)

* Position encoding: Zero position type for ex-
tended contexts

Embedder Setup:

* Embedder: BAAI/bge-m3 (BGE embedder)
* Embedding dimension: 1,024

* GPU-based similarity search for efficient re-
trieval

Hardware and Infrastructure:

* Primary training: Single NVIDIA 3090 24GB
GPU

e Extended context (32k): NVIDIA L40S

44.4GB GPU

* Distributed training: ZeRO-2 optimization
with Accelerate

* Memory optimization: Sequential batching
and continual fine-tuning

A.3 Glossary of Terms

To aid understanding, we provide definitions for
key terms used in the ERMAR framework:

¢ Relevance Score («): A normalized score
computed via softmax over the dot product of
query and key embeddings, representing the
contextual importance of a memory entry (see
Equation 1).

* Key-Value Pair: A tuple (K, Vj) storing
contextual information, where Kj is the key
embedding and Vj is the corresponding value
embedding in the memory bank.

* RSAR (Relevance Scoring with Adaptive
Retrieval): The mechanism that dynamically
ranks key-value pairs based on their relevance
to the query, incorporating historical usage
patterns.

* Memory Bank: A non-trainable storage of
pre-computed key-value embeddings, used to
retain historical context without recomputa-
tion.

* TopK Retrieval: The process of selecting the
top- K most relevant memory entries based on
their relevance scores for use in the current
context.

11

Figure 4: Memory usage comparison between ERMAR
and MemLong across context lengths (1K-32K tokens),
showing (left) peak memory and (right) reserved mem-
ory. ERMAR demonstrates 7-30% lower reserved mem-
ory requirements at longer contexts.

A.4 Fine-Grained Context Length Analysis

—e— PG Dataset
Wiki Dataset

N

Validation Perplexity

1 2 3 4 H 6 0 1 12 13 14 15 16

7 9
Context Length (k tokens)

Figure 3: ERMAR perplexity performance across fine-
grained context lengths for PG-19 and WikiText-103
datasets. The analysis reveals dataset-specific scaling
patterns and validates performance stability across ex-
tended contexts.

Figure 3 presents detailed perplexity measurements
across incremental context lengths from 1000 to
16000 tokens, providing fine-grained insights into
ERMAR’s scaling behavior. The fine-grained anal-
ysis reveals that WikiText-103 achieves optimal
performance around 13K-16K tokens (perplexity
7.36), while PG-19 maintains consistent perfor-
mance (9.74-9.97) across all context lengths. This
validates ERMAR’s robustness and suggests that
factual content benefits more from extended con-
text than narrative text.

A.5 Memory Efficiency

Figure 4 validates ERMAR’s memory optimiza-
tion advantages, particularly for sequences beyond
8K tokens where it reduces reserved memory by
16.61GB vs. 23.77GB (16K context) compared to
MemLong. This demonstrates more effective dy-
namic memory allocation during extended context
processing.

A.5 Relevance+Reranker Visual Analysis

WikiText-103 Dataset PG19 Dataset

—without
—vith

Figure 5: Visualization of Table 9, showing the relative
impact of the Relevance+Reranker mechanism across
context lengths. Color coding highlights: blue bars
represent baseline performance, while orange bars show
improvements with our full mechanism(ERMAR).

Figure 5 provides complementary visual evidence
for the patterns discussed in Section 3.2.6:

* The stronger improvements at shorter con-
texts (left-side bars) are visually apparent
through larger orange/blue differentials

* Dataset differences in mechanism effective-
ness become immediately visible through side-
by-side comparison

e The 32K edge case (WikiText) where the
mechanism underperforms stands out graphi-
cally

12

	Introduction
	Related Work
	Memory-Augmented Neural Networks
	Retrieval-Augmented Generation and Long-Context Modeling
	Learning-to-Rank and Information Retrieval
	Current Limitations and Gaps

	Our Novel ERMAR Model
	Experimental Setup
	Datasets
	Base Model Architecture
	Model Configuration
	Baseline Models
	Evaluation Metrics

	Results and Discussion
	Long-Context Language Modeling
	Scalability to Extended Contexts
	In-Context Learning Performance
	Memory Efficiency Analysis
	Latency and Throughput Analysis
	Ablation Studies

	Conclusion
	Limitations

