

000
001
002
003

SCORE DISTILLATION OF FLOW MATCHING MODELS

004
005
006
007
008**Anonymous authors**

Paper under double-blind review

ABSTRACT

Diffusion models achieve high-quality image generation but are limited by slow iterative sampling. Distillation methods alleviate this by enabling one- or few-step generation. Flow matching, originally introduced as a distinct framework, has since been shown to be theoretically equivalent to diffusion under Gaussian assumptions, raising the question of whether distillation techniques such as score distillation transfer directly. We provide a simple derivation—based on Bayes’ rule and conditional expectations—that unifies Gaussian diffusion and flow matching without relying on ODE/SDE formulations. Building on this view, we extend Score identity Distillation (SiD) to pretrained text-to-image flow-matching models, including SANA, SD3-MEDIUM, SD3.5-MEDIUM/LARGE, and FLUX.1-DEV, all with DiT backbones. Experiments show that, with only modest flow-matching- and DiT-specific adjustments, SiD works out of the box across these models, in both data-free and data-guided settings, without requiring teacher finetuning or architectural changes. This provides the first systematic evidence that score distillation applies broadly to text-to-image flow matching models, resolving prior concerns about stability and soundness and unifying acceleration techniques across diffusion- and flow-based generators.

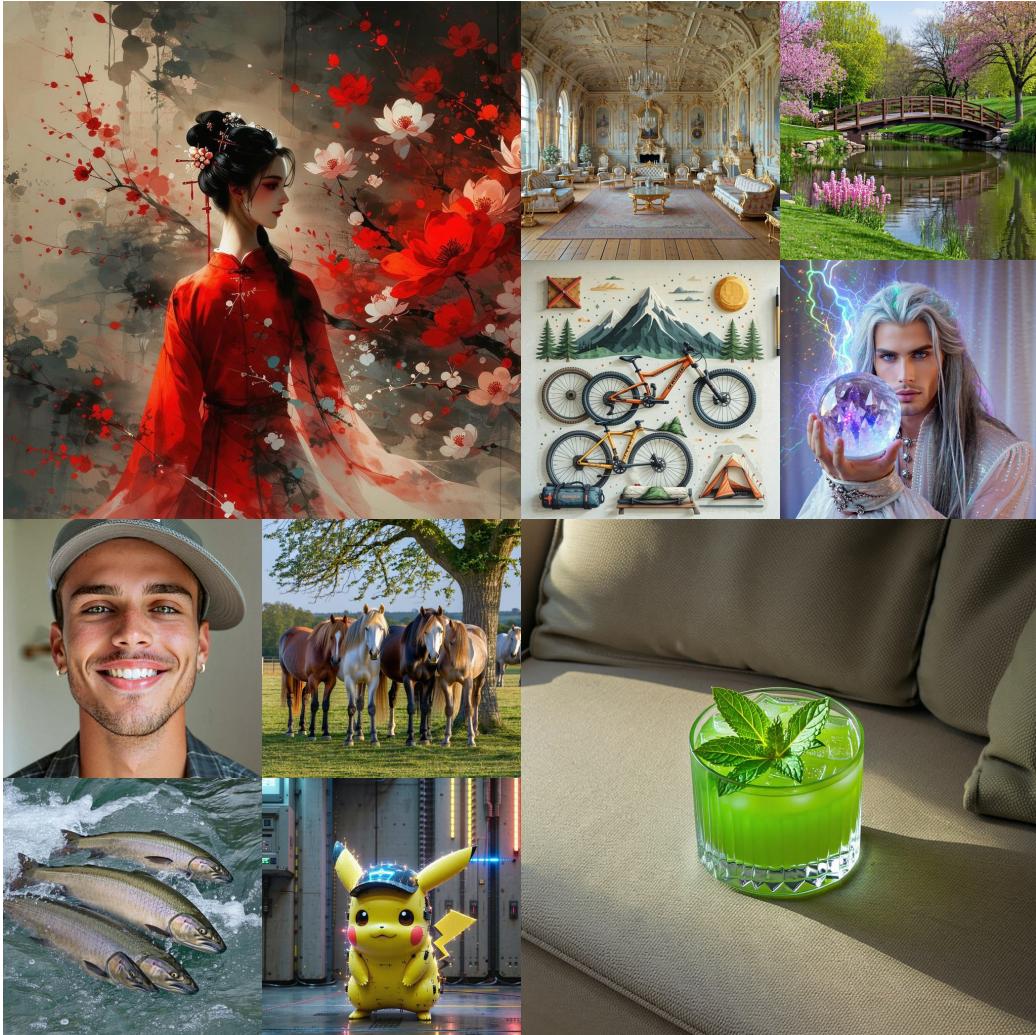
1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019) have achieved remarkable image generation quality, but their slow inference speed remains a longstanding challenge, as sampling requires solving an SDE or ODE through iterative refinement. Early models required hundreds or even thousands of steps (Ho et al., 2020b; Song et al., 2021), though recent work has accelerated generation by improving samplers for pretrained models (Song et al., 2020; Lu et al., 2022; Liu et al., 2022a; Karras et al., 2022) or distilling them into one- or few-step generators (Luhman & Luhman, 2021; Zheng et al., 2022; Salimans & Ho, 2022; Luo et al., 2023b; Yin et al., 2024b; Zhou et al., 2024). Flow matching was later introduced as an alternative framework, motivated by the hope that straighter ODE trajectories would require fewer integration steps—most notably in rectified flow (Liu et al., 2022b; Lipman et al., 2022). Although initially formulated with different objectives, rectified flow has since been shown theoretically interchangeable with diffusion models under Gaussian assumptions (Kingma & Gao, 2023; Ma et al., 2024; Gao et al., 2024). Nevertheless, practical differences remain, including variations in noise schedules, loss weighting, and architectures.

This theoretical equivalence raises a natural question: can diffusion distillation techniques—broadly divided into trajectory and score distillation (Fan et al., 2025), and proven effective for compressing pretrained diffusion models into one- or few-step generators—be directly applied to flow-matching models? Prior work has begun to explore this. The continuous-time consistency model (Lu & Song, 2024) introduced TrigFlow and demonstrated trajectory distillation for pretrained TrigFlow models. Extending this to text-to-image (T2I) generation, Chen et al. (2025) developed SANA-Sprint by reformulating SANA (Xie et al., 2024) from rectified flow into TrigFlow and applying consistency distillation. While effective, this approach requires nontrivial finetuning of rectified-flow checkpoints into TrigFlow counterparts, making it inapplicable to pretrained rectified-flow models without additional adaptation.

Score distillation relaxes the constraint of strictly following the teacher’s sampling trajectory and has shown consistent gains over trajectory-based consistency distillation on diffusion benchmarks such as CIFAR-10 and ImageNet (Zhou et al., 2025c). Yet its applicability to flow-matching T2I models remains unclear. If effective, a further question is whether additional adaptation steps—such as

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086



087
088
Figure 1: Qualitative results produced by the four-step SiD-DiT generator distilled from SD3.5-LARGE.
089

090 finetuning, as in SANA-Sprint—are necessary. This uncertainty is compounded by a sensitive design
091 space, including noise schedules, loss weighting, network preconditioning (Karras et al., 2022),
092 and architecture. Small changes in these factors can significantly affect performance, as evidenced
093 by methods like SCM, which require careful adaptation during pretraining (Lu & Song, 2024) or
094 finetuning (Chen et al., 2025). Concerns about stability further complicate matters: consistency
095 distillation was favored in SANA-Sprint partly due to instability observed in Distribution Matching
096 Distillation (DMD) (Yin et al., 2024c;a). However, it remains unclear whether this instability is
097 unique to DMD’s KL-based formulation or reflects broader issues in score distillation, which can
098 also be defined with divergences such as Fisher divergence (Zhou et al., 2024) or f -divergences (Xu
099 et al., 2025). Huang et al. (2024) argue flow matching does not explicitly model probability density,
raising doubts about the soundness of applying distribution-divergence-based objectives directly.

100 In this work, we revisit these questions and clarify common misconceptions surrounding diffusion
101 and flow matching. We present a unified perspective showing that, under Gaussian assumptions,
102 their optimal solutions are theoretically equivalent, differing primarily in the weight-normalized
103 distribution of time steps. Our derivation avoids ODE/SDE formulations and instead relies on Bayes’
104 rule, conditional expectations, and properties of the squared Euclidean distance to reconcile diverse
105 loss functions. This analysis underscores the equivalence of diffusion and flow-matching objectives
106 while also highlighting practical differences in weighting, scheduling, and architectural design.

107 To validate this view, we adopt the few-step Score identity Distillation (SiD) framework (Zhou et al.,
2025a), previously shown effective for diffusion models such as SD1.5 and SDXL with U-Net

108 backbones. Here, we extend SiD to pretrained flow-matching models with Diffusion Transformer
 109 (DiT) (Peebles & Xie, 2023) backbones, including SANA (Xie et al., 2024; Chen et al., 2025), SD3-
 110 MEDIUM, SD3.5-MEDIUM, SD3.5-LARGE, and FLUX.1-DEV (Labs, 2024), spanning 0.6B–12B
 111 parameters (2.4–48 GB in fp32). We show that SiD works out of the box across these models
 112 in both data-free and data-guided settings: the former requires no additional images beyond the
 113 teacher, while the latter incorporates adversarial learning by pooling discriminator features along
 114 the spatial dimension from a suitable DiT layer without introducing new parameters.

115 We provide a review of related work in Appendix B. **Our code is provided in the Supplementary**
 116 **Material.** Importantly, a single codebase and hyperparameter configuration suffice across all T2I
 117 flow-matching models, underscoring the robustness and applicability of the SiD-DiT framework.
 118

119 2 A UNIFIED VIEW OF DIFFUSION AND FLOW MATCHING

120 The pretraining objective of a diffusion model can be framed as predicting different targets—such
 121 as the score function, the clean image x_0 , the noise ϵ , or the velocity—all of which are theoretically
 122 equivalent under certain assumptions and perspectives (Albergo et al., 2023; Kingma & Gao, 2023;
 123 Ma et al., 2024; Gao et al., 2024; Geffner et al., 2025). We make these equivalences explicit by
 124 conditioning on the noisy observation x_t . Given the conditional expectation of one target (e.g.,
 125 $\mathbb{E}[x_0 | x_t]$), the others (e.g., $\mathbb{E}[\epsilon | x_t]$) follow through linear transformations. The key distinction
 126 across these formulations lies in the weighting of timesteps within the training loss, which drives
 127 differences in learning dynamics and empirical performance despite their shared structure.
 128

129 2.1 TWEEDIE’S FORMULA IN DIFFUSION AND FLOW-MATCHING MODELS

130 We deliberately avoid the standard SDE/ODE formulation, unnecessary for score distillation. This
 131 simplifies the discussion and lets us focus on training losses, independent of their motivations or
 132 parameterizations. Specifically, we rewrite both diffusion and flow matching losses as expectations
 133 under $p(x_0 | x_t)$, the conditional distribution of the clean image x_0 given the corrupted one x_t , and
 134 then apply Tweedie’s formula together with a standard identity for the squared Euclidean distance.
 135

136 All Gaussian-based diffusion and flow matching models corrupt the data according to
 137

$$138 x_t = \alpha_t x_0 + \sigma_t \epsilon, \quad x_0 \sim p_{\text{data}}(x_0), \quad \epsilon \sim \mathcal{N}(0, I), \quad (1)$$

139 where $\alpha_t, \sigma_t > 0$, and the signal-to-noise ratio (SNR), defined as $\text{SNR}_t = \frac{\alpha_t^2}{\sigma_t^2}$, decreases monotonically
 140 from infinity to zero as t increases from zero to its maximum value (e.g., 1 for continuous
 141 time or $T = 1000$ for discrete time). Despite the varied parameterizations of α_t and σ_t —such as
 142 $\alpha_t^2 + \sigma_t^2 = 1$ in variance-preserving diffusion and TrigFlow, or $\alpha_t + \sigma_t = 1$ in rectified flow—all
 143 formulations can be reconciled by aligning their implied SNR_t trajectories over the diffusion pro-
 144 cess, up to scaling differences. These scaling factors can be absorbed into the preconditioning of the
 145 underlying neural networks (Karras et al., 2022).
 146

147 In Gaussian diffusion, the marginal distribution of the forward-diffused variable x_t is given by
 148

$$148 p(x_t) = \int q(x_t | x_0) p_{\text{data}}(x_0) dx_0, \quad q(x_t | x_0) = \mathcal{N}(x_t; \alpha_t x_0, \sigma_t^2). \quad (2)$$

149 The conditional distribution of the clean data x_0 given the noisy observation x_t can be written as
 150

$$151 p(x_0 | x_t) = \frac{q(x_t | x_0) p_{\text{data}}(x_0)}{p(x_t)}, \quad (3)$$

152 which follows directly from Bayes’ rule, and the conditional expectation of x_0 given x_t is given by
 153

$$153 \mathbb{E}[x_0 | x_t] = \int x_0 p(x_0 | x_t) dx_0. \quad (4)$$

154 A key property of Gaussian diffusion is that the score of the marginal distribution $p(x_t)$, given by
 155 $\nabla_{x_t} \log p(x_t)$, is related to the conditional expectation $\mathbb{E}[x_0 | x_t]$ as
 156

$$157 \nabla_{x_t} \log p(x_t) = -\frac{x_t - \alpha_t \mathbb{E}[x_0 | x_t]}{\sigma_t^2}.$$

158 This identity, known as Tweedie’s formula (Robbins, 2020; Efron, 2011; Chung et al., 2022), can
 159 be derived by interchanging differentiation and integration in (2), using the fact that the score of
 160 Gaussian is analytic: $\nabla_{x_t} \ln q(x_t | x_0) = -\frac{x_t - \alpha_t x_0}{\sigma_t^2}$, and applying Bayes’ rule in (3) and conditional
 161 expectation in (4). Therefore, the score estimation problem is equivalent to estimating $\mathbb{E}[x_0 | x_t]$.
 162

162 2.2 EQUIVALENCE OF DIFFUSION AND FLOW-MATCHING OBJECTIVES AND VARIANTS
163164 **Diffusion with x_0 -Prediction.** Estimating the true x_0 given x_t is often called x_0 -prediction, though
165 a more precise term is x_0 -mean-prediction: the mapping from x_t to x_0 is one-to-many, and the best
166 one can do is to recover the conditional mean of all possible x_0 values that could have produced x_t
167 under the forward diffusion process. The corresponding loss used in diffusion to serve this purpose is

168
$$L_\phi(x_t) = \mathbb{E}_{x_0 \sim p(x_0 | x_t)} \left[\|f_\phi(x_t, t) - x_0\|_2^2 \right]. \quad (5)$$

169

170 To estimate $\mathbb{E}_{x_t \sim p(x_t)} [L_\phi(x_t)]$, we draw (x_0, x_t) in practice not from $p(x_0 | x_t) p(x_t)$, but from
171 $q(x_t | x_0) p_{\text{data}}(x_0)$, which defines the same joint distribution and is straightforward to sample from.
172

173 One can show that the optimal solution to the above loss is

174
$$f_{\phi^*}(x_t, t) = \mathbb{E}[x_0 | x_t]. \quad (6)$$

175

176 This can be established in two ways. One approach is to observe that the squared Euclidean distance
177 is a Bregman divergence and apply Lemma 1 from Banerjee et al. (2005); see also Zhou et al. (2023)
178 for a more detailed discussion from this perspective. Another approach is to decompose this loss as:

179
$$180 L_\phi(x_t) = \mathbb{E}_{x_0 \sim p(x_0 | x_t)} \left[\|(f_\phi(x_t, t) - \mathbb{E}[x_0 | x_t]) - (x_0 - \mathbb{E}[x_0 | x_t])\|_2^2 \right]$$

181
$$182 = \mathbb{E}_{x_0 \sim p(x_0 | x_t)} \left[\|f_\phi(x_t, t) - \mathbb{E}[x_0 | x_t]\|_2^2 \right] + C,$$

183 where $C = \mathbb{E}_{x_0 \sim p(x_0 | x_t)} \left[\|x_0 - \mathbb{E}[x_0 | x_t]\|_2^2 \right]$ is a constant independent of ϕ .
184185 **Diffusion with ϵ -Prediction.** Similarly, we have the ϵ -prediction loss (Ho et al., 2020a):
186

187
$$\mathbb{E}_{x_0 \sim p(x_0 | x_t)} \left[\|\epsilon_\phi(x_t, t) - \epsilon\|_2^2 \right] = \frac{\alpha_t^2}{\sigma_t^2} L_\phi(x_t), \quad (7)$$

188

189 whose optimal solution is the conditional expectation of the noise added into x_t :

190
$$\epsilon_{\phi^*}(x_t, t) = \mathbb{E}[\epsilon | x_t] = \frac{x_t - \alpha_t f_{\phi^*}(x_t, t)}{\sigma_t}.$$

191

192 **Diffusion with v -Prediction.** For the v -prediction loss (Salimans & Ho, 2022):
193

194
$$\mathbb{E}_{x_0 \sim p(x_0 | x_t)} \left[\|v_\phi(x_t, t) - (\alpha_t \epsilon - \sigma_t x_0)\|_2^2 \right] = \frac{(\alpha_t^2 + \sigma_t^2)^2}{\sigma_t^2} L_\phi(x_t), \quad (8)$$

195

196 the optimal solution is

197
$$198 v_{\phi^*}(x_t, t) = \mathbb{E}[\alpha_t \epsilon - \sigma_t x_0 | x_t] = \alpha_t \epsilon_{\phi^*}(x_t, t) - \sigma_t f_{\phi^*}(x_t, t) = \frac{\alpha_t x_t - (\alpha_t^2 + \sigma_t^2) f_{\phi^*}(x_t, t)}{\sigma_t}.$$

199

200 **Rectified Flow.** In rectified flow (Liu et al., 2022b; Lipman et al., 2022), the objective expressed as

201
$$\mathbb{E}_{x_0 \sim p(x_0 | x_t)} \left[\|v_\phi^{\text{FM}}(x_t, t) - (\epsilon - x_0)\|_2^2 \right] = \sigma_t^{-2} L_\phi(x_t) \quad (9)$$

202

203 is referred to as a velocity-prediction loss, whose optimal solution is
204

205
$$206 v_{\phi^*}^{\text{FM}}(x_t, t) = \mathbb{E}[\epsilon - x_0 | x_t] = \epsilon_{\phi^*}(x_t, t) - f_{\phi^*}(x_t, t) = \frac{x_t - (\alpha_t + \sigma_t) f_{\phi^*}(x_t, t)}{\sigma_t}$$

207
$$208 = \frac{(\sigma_t - \alpha_t) x_t + (\alpha_t + \sigma_t) v_{\phi^*}(x_t, t)}{\alpha_t^2 + \sigma_t^2}. \quad (10)$$

209 For rectified flow, it is conventional to set $\sigma_t = t$ and $\alpha_t = 1 - t$, under which the identities hold:

210
$$211 v_{\phi^*}^{\text{FM}}(x_t, t) = \frac{x_t - f_{\phi^*}(x_t, t)}{t} = \frac{\epsilon_{\phi^*}(x_t, t) - x_t}{1-t} = \frac{(2t-1)x_t + v_{\phi^*}(x_t, t)}{t^2 + (1-t)^2} = -\frac{x_t + t S_{\phi^*}(x_t, t)}{1-t}. \quad (11)$$

212 This also implies that, in rectified flow, $f_{\phi^*}(x_t, t) = x_t - t v_{\phi^*}^{\text{FM}}(x_t, t)$.
213214 **TrigFlow.** In TrigFlow (Lu & Song, 2024), the data corruption process is modified to
215

$$x_{t_{\text{Trig}}} = \cos(t_{\text{Trig}}) \sigma_d x_0 + \sin(t_{\text{Trig}}) \sigma_d \epsilon,$$

216 and the corresponding loss becomes
 217

$$218 L_{\phi, \text{Trig}}(x_{t_{\text{Trig}}}) = \mathbb{E}_{p(x_0 | x_{t_{\text{Trig}}})} \left[\left\| \sigma_d F_{\phi}(x_{t_{\text{Trig}}}, t_{\text{Trig}}) - (\cos(t_{\text{Trig}}) \sigma_d \epsilon - \sin(t_{\text{Trig}}) \sigma_d x_0) \right\|_2^2 \right].$$

220 As in SANA-Sprint (Chen et al., 2025), to make $\frac{(1-t)^2}{t^2} = \frac{\cos^2(t_{\text{Trig}})}{\sin^2(t_{\text{Trig}})}$, we set $t =$
 221 $\frac{\sin(t_{\text{Trig}})}{\sin(t_{\text{Trig}}) + \cos(t_{\text{Trig}})}$, $\sin(t_{\text{Trig}}) = \frac{t}{\sqrt{t^2 + (1-t)^2}}$, $\cos(t_{\text{Trig}}) = \frac{1-t}{\sqrt{t^2 + (1-t)^2}}$, resulting in a v -prediction
 222 loss with $\alpha_{t_{\text{Trig}}} = \frac{1-t}{\sqrt{t^2 + (1-t)^2}}$ and $\sigma_{t_{\text{Trig}}} = \frac{t}{\sqrt{t^2 + (1-t)^2}}$. Denoting $x_t = \frac{\sqrt{t^2 + (1-t)^2}}{\sigma_d} x_{t_{\text{Trig}}}$, we have
 223

$$224 \frac{L_{\phi, \text{Trig}}(x_{t_{\text{Trig}}})}{\sigma_d^2} = \frac{t^2 + (1-t)^2}{t^2} L_{\phi}(x_t) = (t^2 + (1-t)^2) \mathbb{E}_{x_0 \sim p(x_0 | x_{t_{\text{Trig}}})} \left[\left\| v_{\phi}^{\text{FM}}(x_t, t) - (\epsilon - x_0) \right\|_2^2 \right].$$

229 2.3 A UNIFIED PERSPECTIVE VIA LOSS REWEIGHTING

230 The relationships among these quantities, which are linear transformations of one another given x_t ,
 231 can be summarized by expressing the optimal score function $S_{\phi^*}(x_t, t)$ in multiple equivalent forms:
 232

$$233 S_{\phi^*}(x_t, t) = \begin{cases} -\frac{x_t - \alpha_t f_{\phi^*}(x_t, t)}{\sigma_t^2} & (x_0\text{-prediction}) \\ -\frac{\epsilon_{\phi^*}(x_t, t)}{\sigma_t} & (\epsilon\text{-prediction}) \\ -\frac{\sigma_t x_t + \alpha_t v_{\phi^*}(x_t, t)}{\sigma_t(\alpha_t^2 + \sigma_t^2)} & (v\text{-prediction}) \\ -\frac{x_t + \alpha_t v_{\phi^*}^{\text{FM}}(x_t, t)}{\sigma_t(\alpha_t + \sigma_t)} = -\frac{x_t + (1-t)v_{\phi^*}^{\text{FM}}(x_t, t)}{t} & (\text{flow matching}) \end{cases} \quad (12)$$

240 It is now clear that whether one uses x_0 -, ϵ -, or v -prediction in diffusion, or velocity-prediction in
 241 rectified flow or TrigFlow, all approaches optimize the same underlying objective, differing only in
 242 how each timestep $t \sim p(t)$ is weighted in the overall loss. Although these weightings do not affect
 243 the optimal solution for any fixed t in theory, in practice both the timestep distribution $p(t)$ and
 244 any additional factor w_t determine which timesteps exert greater influence on optimizing the shared
 245 parameter set ϕ . More specifically, letting $L_{\phi, t} = \mathbb{E}_{x_t \sim p(x_t)} [L_{\phi}(x_t)]$, the overall loss for pretraining
 246 a diffusion or flow-matching model can be written as

$$247 L_{\phi} = \mathbb{E}_{t \sim p(t)} \mathbb{E}_{x_t \sim p(x_t)} \left[w_t \cdot \frac{\alpha_t^2}{\sigma_t^2} L_{\phi}(x_t) \right] = \int w_t p(t) \cdot \frac{\alpha_t^2}{\sigma_t^2} L_{\phi, t} dt = C_{\pi} \cdot \mathbb{E}_{t \sim \pi(t)} \left[\frac{\alpha_t^2}{\sigma_t^2} L_{\phi, t} \right], \quad (13)$$

249 where $C_{\pi} = \int w_t p(t) dt = \mathbb{E}_{p(t)}[w_t]$ is a constant independent of ϕ , and

$$251 \pi(t) = \frac{w_t p(t)}{\int w_t p(t) dt} \quad (14)$$

253 is the weight-normalized distribution of t . For example, in DDPM (Ho et al., 2020a) we have
 254 $w_t = 1$, so $\pi(t) = p(t)$; in rectified flow we have $w_t = (1-t)^{-2}$, giving $\pi(t) = \frac{(1-t)^{-2} p(t)}{\int (1-t)^{-2} p(t) dt}$.
 255

256 Thus, any claim that a particular w_t is superior without controlling for $p(t)$ may be misleading, since
 257 the expected loss depends jointly on both. To illustrate, Figure 2 shows, for each column, the re-
 258 sulting distribution $\pi(t)$ when a typical $p(t)$ —determined by the noise schedule—is combined with
 259 different w_t . Notably, even when w_t and $p(t)$ differ substantially, the resulting $\pi(t)$ distributions can
 260 look quite similar. A more detailed description of Figure 2 is provided in Appendix C.

261 In summary, Gaussian-based diffusion and flow matching models share the same theoretical optimal
 262 solutions. Their practical differences arise from the weight-normalized timestep distribution, as
 263 shown in (14). This insight supports the extension of diffusion distillation techniques—originally
 264 developed for diffusion models—to flow matching models, with the caveat that one must account
 265 for the differences in their respective weight-normalized timestep distributions, $\pi(t)$.

266 3 SCORE DISTILLATION OF DiT-BASED FLOW-MATCHING MODELS

268 Diffusion distillation typically relies on access to the teacher’s score estimates or x_0 -predictions
 269 given x_t , which are readily available from pretrained diffusion models. These quantities can also

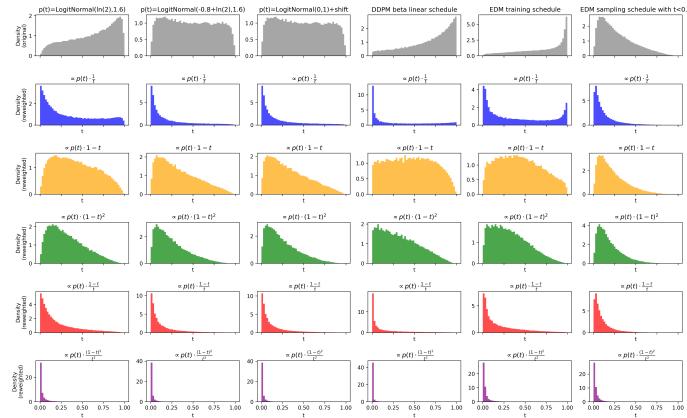


Figure 2: The first row shows density plots of various noise schedules mapped to $t \in (0, 1)$ by aligning their signal-to-noise ratio (SNR), $\text{SNR}_t = \alpha_t^2/\sigma_t^2$, with $(1-t)^2/t^2$, which corresponds to setting $t = 1/(1 + \sqrt{\text{SNR}_t})$. The remaining rows show the weight-normalized distribution of t under different weighting schemes: $1/t$, $1-t$, $(1-t)^2$, $(1-t)/t$, and $(1-t)^2/t^2$. The first column corresponds to the default schedule used in this paper and in TrigFlow training of SANA-Sprint; the second to the default TrigFlow schedule; the third to the discretized schedule of SANA; the fourth to the DDPM beta linear schedule; the fifth to EDM's training schedule; and the sixth to EDM's sampling schedule restricted to $t < 0.8$, as in SiD for score distillation.

be obtained from velocity predictions in flow-matching models via a simple linear relation between the predicted velocity and x_t . Specifically, for T2I flow-matching models, as shown in (11), if $v_\phi^{\text{FM}}(x_t, t, c)$ denotes the estimated velocity given x_t and text condition c , then the teacher's x_0 -prediction $\mathbb{E}[x_0 | x_t, c]$ can be approximated as

$$f_\phi(x_t, t, c) = x_t - tv_\phi^{\text{FM}}(x_t, t, c).$$

Classifier-free guidance (CFG, Ho & Salimans (2022)) is critical for strong T2I performance. Unless otherwise noted, we redefine $f_\phi(x_t, t, c)$ under CFG with a scale of 4.5:

$$f_\phi(x_t, t, c) = (x_t - tv_\phi^{\text{FM}}(x_t, t, \emptyset)) + 4.5 \left[(x_t - tv_\phi^{\text{FM}}(x_t, t, c)) - (x_t - tv_\phi^{\text{FM}}(x_t, t, \emptyset)) \right]. \quad (15)$$

To distill the pretrained teacher, we adopt Fisher divergence minimization, extending the few-step SiD method (Zhou et al., 2025a) into **SiD-DiT**. A four-step generator is defined as

$$x_g^{(k)} = G_\theta \left((1 - t_k) \text{sg}(x_g^{(k-1)}) + t_k z_k, t_k, c \right), \quad t_k = \left(1 - \frac{k-1}{4}\right) T, \quad z_k \sim \mathcal{N}(0, \mathbf{I}), \quad (16)$$

where $\text{sg}(\cdot)$ is the stop-gradient operator, $T = 1000$, and $k = 1, 2, 3, 4$.

We sample $k \in \{1, 2, 3, 4\}$ uniformly and $t \sim p(t)$, and forward-diffuse $x_g^{(k)}$ as

$$x_t^{(k)} = (1 - t_k) x_g^{(k)} + t_k \epsilon_k, \quad \epsilon_k \sim \mathcal{N}(0, \mathbf{I}). \quad (17)$$

Operating in a data-free manner, SiD-DiT alternates between updating θ given ψ (a “fake” flow-matching network) and updating ψ given θ . The fake network f_ψ is initialized from f_ϕ and trained on a uniform mixture of $x_g^{(k)}$ across the four generation steps using a flow-matching loss. The generator loss is defined as

$$L_\theta(x_t^{(k)}) = w_t (f_\phi(x_t^{(k)}, t_k, c) - f_\psi(x_t^{(k)}, t_k, c))^T (f_\psi(x_t^{(k)}, t_k, c) - x_g^{(k)}), \quad (18)$$

where w_t is a weighting factor, set to $1-t$ by default. We apply CFG with a scale of 4.5 to f_ψ during both its own training and the update of θ , following the long-and-short guidance (LSG) strategy of Zhou et al. (2025b).

When additional data are available, we incorporate the Diffusion GAN (Wang et al., 2023a) adversarial loss, steering generation toward the target distribution. Unlike adversarial enhancement in SiD for U-Net, where the encoder-decoder architecture provides a natural bottleneck for extracting discriminator features via channel pooling (Zhou et al., 2025c), DiT backbones lack such a bottleneck. We empirically find that pooling along the spatial dimension after the final normalization layer but before the projection and unpatchifying layers provides an effective discriminator feature representation. This strategy is simple, effective, and introduces no additional parameters.

Figure 3: Comparison of distilled Sana_600M_512px_diffusers by restricting t to different ranges. The text prompts are: ‘a dog and a cat laying on the red carpet on the floor.’, ‘an old blue car with a surfboard on top’, ‘a lady is about to put an automatic tooth brush in her mouth’, and ‘a good luck plant is in a round vase.’

4 EXPERIMENTAL RESULTS

We conduct comprehensive experiments across DiT-based flow-matching models with varying architectures, noise schedules, and model sizes, showcasing the efficiency and robustness of SiD-DiT. All experiments, except for FLUX1.DEV at 1024×1204 resolution, are conducted on a single node equipped with eight A100 or H100 GPUs (each with 80GB memory). Initial development employs AMP (via `torch.autocast`) together with Fully Sharded Data Parallel (FSDP), which provides robust performance on SANA-0.6B/1.6B, SD3-MEDIUM, and SD3.5-MEDIUM. However, this configuration runs into memory limitations for larger models such as SD3.5-LARGE and FLUX1.DEV, where CPU offloading becomes necessary but significantly slows training.

To overcome this bottleneck, we switch to a pure BF16-based distillation pipeline. BF16 achieves higher throughput and lower memory usage but requires more aggressive settings—specifically, a learning rate of 10^{-5} and Adam $\epsilon = 10^{-4}$ —to avoid gradient underflow. While other parameterizations are possible, this setting suffices for all DiT models in this paper. In addition, we decouple the main training loop from the VAE and text encoder, which are periodically loaded to preprocess text prompts—and optionally real images—in a streaming fashion. These enhancements enable effective distillation of both SD3.5-LARGE and FLUX1.DEV under the same hardware constraints.

We begin with the lightweight SANA (Xie et al., 2025) as a case study, leveraging publicly available checkpoints trained under both Rectified Flow and TRIGFLOW. In contrast to SANA-Sprint, which requires real data and can only distill TrigFlow-based checkpoints, SiD-DiT operates entirely without real data, enabling fully data-free distillation for both formulations. This provides a more faithful assessment of teacher–student knowledge transfer, free from the confounding effects of downstream fine-tuning, and establishes a broadly applicable distillation framework.

We further extend SiD-DiT with adversarial learning. For this variant, we incorporate additional data from MidJourney-v6-llava, a fully synthesized dataset that ensures reproducibility without copyright or licensing concerns. We denote this variant as SiD₂^a, which initializes from a SiD-distilled generator and continues training with an additional DiffusionGAN-based adversarial loss.

While the quality of this dataset is limited, it demonstrates that the utilization of additional data can increase sample diversity, improving FID. However, it does not substantially enhance visual quality, and the MJ-style generations it induces may not align with user preferences. We therefore recommend its use only for evaluation purposes, while emphasizing that high-quality real data is preferable when adversarial learning is employed.

Finally, we evaluate both the data-free and adversarial variants on additional flow-matching models, adapting the codebase to their architectural specifics. Notably, only minimal hyperparameter tuning and model-specific customization are required, as summarized in Tables 4 and 5. **As shown in Figure 4, SiD-DiT achieves rapid improvements in both FID and CLIP scores during distillation across all nine DiT models.** Full implementation details are provided in the supplementary code release.

4.1 UNDERSTANDING THE ROLE OF LOSS REWEIGHTING

We first examine three extreme forms of loss reweighting, where the generator loss is restricted to one of three disjoint intervals: $t \in (0, \frac{1}{3})$, $t \in (\frac{1}{3}, \frac{2}{3})$, or $t \in (\frac{2}{3}, 1)$. Qualitative generations are shown in Figure 3(a–c).

378 We find that restricting to $t \in (\frac{2}{3}, 1)$
 379 is sufficient to produce visually ap-
 380 pealing images, though these often
 381 lack high-frequency details and di-
 382 versity. In contrast, $t \in (\frac{1}{3}, \frac{2}{3})$
 383 yields finer detail but with a duller,
 384 hazier appearance, while restricting
 385 to $t \in (0, \frac{1}{3})$ fails to produce rea-
 386 sonable generations. We then con-
 387 sider less extreme reweighting with
 388 partially overlapping intervals: $t \in$
 389 $(0, \frac{1}{2})$, $t \in (\frac{1}{4}, \frac{3}{4})$, and $t \in (\frac{1}{2}, 1)$.
 390 The corresponding qualitative results
 391 are shown in Figure 3(d-f). Similar
 392 trends are observed, though the ef-
 393 fects are less pronounced.

394 These empirical findings provide in-
 395 tuition for designing $p(t)$ and w_t .
 396 Since the effective timestep dis-
 397 tribution $\pi(t)$ depends only on their
 398 product, adjusting both is not strictly
 399 necessary to preserve the loss struc-
 400 ture. In this paper, we fix $p(t) =$
 401 $\text{Logit } \mathcal{N}(t; \ln 2, 1.6^2)$ to match the
 402 schedule used for finetuning the
 403 SANA-Sprint teacher. We set $w_t =$
 404 $1 - t$. The resulting weight-
 405 normalized distribution $\pi(t)$ is shown
 406 in the first column, third row of Fig-
 407 ure 2. While a systematic study of how
 408 varying $p(t)$ and $w(t)$ affects performance
 409 is beyond the scope of this paper, our obser-
 410 vation is consistent with Figure 2: stronger
 411 emphasis on larger t values (heavier noise)
 412 produces visually appealing but less detailed
 413 images, and smaller t highlights fine-
 414 grained detail at the cost of vividness.
 415 Overall, the chosen combination of $p(t)$ and w_t yields a $\pi(t)$
 416 with full coverage over t , which we find to perform well across all T2I
 417 flow-matching models tested in this paper.

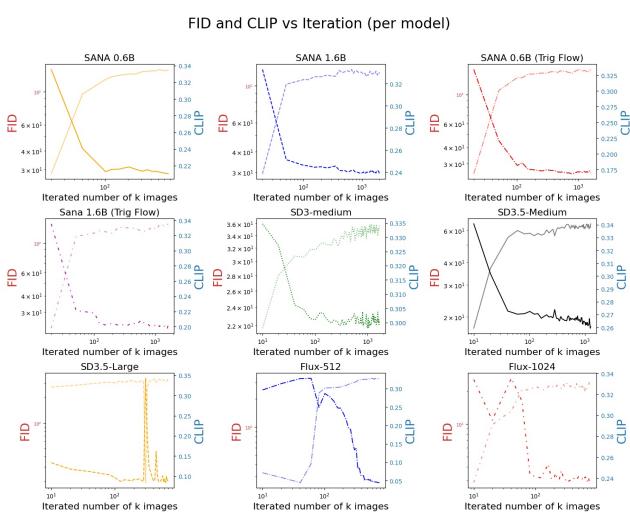


Figure 4: This plot shows the evolution of FID (solid lines, left y-axis) and CLIP score (matching line styles with reduced opacity, right y-axis) as a function of the number of iterated images (in thousands) for SiD-DiT. Because the x-axis is log-scaled, the near-linear trends in many panels reflect a rapid initial decline in FID accompanied by a corresponding rise in CLIP score, followed by progressively smaller gains as training continues. This consistent behavior across architectures and model sizes shows that SiD-DiT quickly improves both image fidelity and semantic alignment during the early stages of distillation.

4.2 DISTILLATION OF FLOW-MATCHING-BASED SANA MODELS

We apply SiD-DiT to SANA and compare it against both SANA and SANA-SPRINT. Unlike SANA-SPRINT, which requires finetuning rectified flow checkpoints into TrigFlow, SiD-DiT is natively compatible with both frameworks. In practice, the same SiD-DiT code used for TrigFlow can be applied to rectified flow SANA by simply scaling the time variable t by 1000.

Rectified-Flow SANA: We evaluate two rectified-flow checkpoints: Sana.600M_512px_diffusers and Sana.1600M_512px_diffusers. These models cannot be distilled by SANA-SPRINT without prior adaptation, whereas SiD-DiT can be applied directly. **TrigFlow SANA:** We also evaluate two TrigFlow checkpoints: SANA_Sprint_0.6B_1024px_teacher_diffusers and SANA_Sprint_1.6B_1024px_teacher_diffusers. Both are finetuned under TrigFlow to enable SANA-SPRINT, whereas SiD-DiT applies directly, either with or without teacher finetuning.

Quantitative results for both rectified-flow- and TrigFlow-based SANA are reported in Table 1. We evaluate performance on the SANA backbone using zero-shot FID, CLIP score (Radford et al., 2021), and GenEval (Ghosh et al., 2023), with FID and CLIP computed on the 10k COCO-2014 validation subset employed by DMD2 (Yin et al., 2024a). We also evaluate human preference using LAION Aesthetics (Schuhmann et al., 2021), HPSv2 (Wu et al., 2023), ImageReward (Xu et al., 2023), and PickScore (Kirstain et al., 2023) on 2048 Pick-a-Pic (Kirstain et al., 2023) validation prompts.

432 Table 1: Comparison of SiD-DiT, SiD_2^a -DiT, and SANA/SANA-Sprint in performance and efficiency. **Bold**
 433 indicates the best score.

Model	#Steps	Params (B)	FID ↓	CLIP ↑	GenEval ↑	Aesth. ↑	HPSv2 ↑	ImgRwd ↑	PickScore ↑
SANA 0.6B									
SANA (Xie et al., 2024)	20	0.6	28.01	0.329	0.641	6.320	0.287	1.111	22.125
SiD-DiT (SANA)	4	0.6	29.43	0.333	0.652	6.168	0.306	1.117	21.685
SiD_2^a -DiT (SANA)	4	0.6	25.82	0.330	0.643	6.160	0.305	1.111	21.666
SANA 1.6B									
SANA (Xie et al., 2024)	20	1.6	28.71	0.328	0.655	6.151	0.306	1.254	21.984
SiD-DiT (SANA)	4	1.6	26.94	0.331	0.670	6.245	0.317	1.283	21.883
SiD_2^a -DiT (SANA)	4	1.6	26.31	0.331	0.665	6.185	0.308	1.092	22.035
SANA TrigFlow 0.6B									
SANA Sprint Teacher	20	0.6	25.64	0.335	0.780	6.222	0.299	1.115	21.78
SANA Sprint (Chen et al., 2025) (TrigFlow, 1 step)	1	0.6	24.60	0.336	0.770	6.361	0.286	1.006	21.805
SANA Sprint (Chen et al., 2025) (TrigFlow, 4 steps)	4	0.6	26.32	0.335	0.766	6.325	0.301	1.111	22.125
SiD-DiT (SANA, TrigFlow)	4	0.6	25.81	0.340	0.763	6.243	0.308	1.049	21.561
SiD_2^a -DiT (SANA, TrigFlow)	4	0.6	22.46	0.330	0.772	6.188	0.295	0.924	21.625
SANA TrigFlow 1.6B									
SANA Sprint Teacher	20	1.6	25.64	0.335	0.776	6.209	0.304	1.163	21.93
SANA Sprint (Chen et al., 2025) (TrigFlow, 1 step)	1	1.6	24.60	0.335	0.768	6.362	0.293	1.030	22.006
SANA Sprint (Chen et al., 2025) (TrigFlow, 4 steps)	4	1.6	24.79	0.335	0.768	6.338	0.300	1.081	22.123
SiD-DiT (SANA, TrigFlow)	4	1.6	23.81	0.340	0.774	6.305	0.307	1.102	21.897
SiD_2^a -DiT (SANA, TrigFlow)	4	1.6	22.58	0.335	0.768	6.200	0.303	1.073	21.936

448 Table 2: Comparison of SiD-DiT, SiD_2^a -DiT, and SD3/FLUX baselines in performance and efficiency. **Bold**
 449 indicates the best score within each block.

Model	#Steps	Params (B)	FID ↓	CLIP ↑	Aesth. ↑	HPSv2 ↑	ImgRwd ↑	PickScore ↑
SD3-Medium								
SD3-Medium (base)	28	2.0	24.40	0.336	5.870	0.297	1.051	21.574
Flash SD3 (Chadebec et al., 2025)	4	2.0	22.70	0.338	5.820	0.289	0.997	21.326
SiD-DiT (SD3-Medium)	4	2.0	22.05	0.341	6.054	0.301	1.017	21.686
SiD_2^a -DiT (SD3-Medium)	4	2.0	21.64	0.327	6.050	0.305	1.022	21.836
SD3.5-Medium								
SD3.5-Medium (base)	40	2.5	22.51	0.342	5.973	0.300	1.089	21.974
SD3.5-Medium-Turbo	8	2.5	21.15	0.337	5.971	0.263	0.633	21.478
SiD-DiT (SD3.5-Medium)	4	2.5	21.07	0.340	6.187	0.308	1.097	22.037
SiD_2^a -DiT (SD3.5-Medium)	4	2.5	20.92	0.331	6.077	0.291	0.967	21.870
SD3.5-Large								
SD3.5-Large (base)	28	8.1	20.81	0.341	6.097	0.305	1.127	22.245
SD3.5-Turbo-Large	4	8.1	26.11	0.340	6.198	0.302	1.086	22.171
SiD-DiT (SD3.5-Large)	4	8.1	21.10	0.341	6.132	0.309	1.214	22.097
SiD_2^a -DiT (SD3.5-Large)	4	8.1	22.10	0.337	6.167	0.316	1.275	22.407
FLUX-1 Family								
FLUX-1-Dev (base)	28	12.0	22.89	0.344	6.184	0.297	0.897	21.862
Flux-Schnell (Black Forest Labs)	4	12.0	23.42	0.345	6.173	0.302	1.109	21.796
FLUX-1-Turbo (Black Forest Labs)	4	12.0	24.92	0.332	6.192	0.302	1.012	21.977
Hyper-FLUX (ours)	4	12.0	25.44	0.332	6.257	0.310	1.028	22.090
SiD-DiT (FLUX-1-Dev)	4	12.0	27.86	0.330	5.964	0.305	1.203	21.583

468 For rectified-flow SANA (0.6B and 1.6B), SiD-DiT achieves comparable FID to the original teacher
 469 while slightly improving CLIP and maintaining GenEval. With adversarial learning, SiD_2^a reduces
 470 FID substantially (25.82 vs. 28.01 at 0.6B, and 26.31 vs. 28.71 at 1.6B) while preserving CLIP and
 471 GenEval scores. For TrigFlow-based SANA, SiD outperforms SANA-Sprint across both scales. At
 472 0.6B, SiD improves FID from 26.97 to 25.34, and further down to 22.46 with adversarial learning,
 473 while maintaining higher CLIP and GenEval scores. At 1.6B, SiD reduces FID from 24.60 to 23.81
 474 (and 22.58 with SiD_2^a) and also achieves the best CLIP (0.336) without sacrificing GenEval (0.77).
 475 SiD also achieves competitive human preference performance relative to both the teacher model
 476 and other distillation baselines for both rectified-flow and TrigFlow-based SANA. On rectified-flow
 477 SANA, SiD notably surpasses the teacher in HPSv2 (0.287 vs. 0.306 at 0.6B, and 0.306 vs. 0.317
 478 at 1.6B), while maintaining comparable performance on the other preference metrics.

479 Overall, SiD-DiT delivers consistent improvements over SANA-Sprint on TrigFlow checkpoints,
 480 despite being data-free, while SiD_2^a -DiT provides the strongest FID reductions across all settings.
 481 These results underscore the robustness of our method in both data-free and data-aided distillation.

4.3 DISTILLATION OF MMDiT MODELS (SD3-MEDIUM, SD3.5-MEDIUM, SD3.5-LARGE)

483 We evaluate SiD-DiT on SD3-MEDIUM (2B parameters) and SD3.5-MEDIUM (2.5B parameters),
 484 both based on the MMDiT architecture (Esser et al., 2024), which improves visual fidelity, typogra-

486 phy, complex prompt comprehension, and computational efficiency. Using the same teacher noise
 487 schedule as SANA and the $w_t = 1 - t$ reweighting, we observe consistent success across both
 488 models, with results summarized in Table 2.

489 On SD3-MEDIUM, SiD-DiT matches the teacher in FID and CLIP, while the adversarial variant
 490 SiD_2^α -DiT achieves a substantial FID reduction to **21.64**. On SD3.5-MEDIUM, SiD-DiT not only
 491 surpasses the teacher but also outperforms SD-Turbo, with SiD_2^α -DiT delivering the best FID of
 492 **20.92**, [LAION Aesthetics of 6.187](#), [HPSv2 of 0.308](#) (Sauer et al., 2024; Chadebec et al., 2025).
 493 These results underscore the robustness of SiD-DiT as a data-free framework, while demonstrating
 494 that adversarial training with additional data can further enhance performance via Diffusion GAN.
 495

496 Building on these successes, we extend SiD-DiT to SD3.5-LARGE (8.1B parameters), the largest
 497 open-source MMDiT model currently available in the Stable Diffusion family and more than three
 498 times larger than SD3.5-MEDIUM (2.5B). Scaling to this size introduces substantial memory chal-
 499 lenges; however, our FSDP+FP16+streaming strategy alleviates these constraints, enabling distilla-
 500 tion on a single $8 \times 80\text{GB}$ A100/H100 node without CPU offloading. As shown in Table 2, SiD-DiT
 501 achieves an FID of **20.57**, substantially outperforming SD3.5-Turbo-Large (26.11) and slightly sur-
 502 passing the teacher baseline (20.81). Its CLIP score (0.341) matches that of the teacher. [For human](#)
 503 [preference, SiD-DiT surpasses the teacher on LAION Aesthetics, HPSv2 and Image Reward, and](#)
 504 [can even outperform teacher in all 4 preference metrics with \$\text{SiD}_2^\alpha\$ -DiT.](#) These results demonstrate
 505 that SiD-DiT scales effectively to large MMDiTs, providing a practical, out-of-the-box solution for
 506 distilling models at this scale.

507 4.4 DISTILLATION OF FLUX.1-DEV

509 The SiD-DiT framework delivers competitive generation quality and serves as an out-of-the-box DiT
 510 distillation method that is robust across diverse architectures. In our implementation, SiD-DiT em-
 511 ploys CFG as formalized in Equation (15), consistent with the Stable Diffusion T2I family. In con-
 512 trast, FLUX.1-DEV adopts a learned guidance embedding by default and does not provide an ex-
 513 plicit unconditional branch for CFG. We partially attribute the modest performance gap of SiD-DiT
 514 on FLUX.1-DEV to this guidance-mechanism mismatch. Importantly, we did not introduce any
 515 Flux-specific modifications beyond the minimal adjustments required to make the model runnable.
 516 Even under this direct application, SiD-DiT achieves strong qualitative results (Figure 5) and com-
 517 petitive quantitative metrics (Table 2), while efficiently distilling the 12B-parameter FLUX.1-DEV
 518 model at 512×512 resolution on a single node with eight 80GB GPUs, and at 1024×1024 resolu-
 519 tion on a single node with eight 192GB GPUs. Further improvements are likely possible by tailoring
 520 SiD-DiT more closely to the unique design of FLUX.1-DEV, for example by integrating its learned
 521 guidance embeddings into the distillation objective or developing a hybrid approach that blends CFG
 522 with model-specific guidance. Such targeted extensions may help close the remaining performance
 523 gap and demonstrate the flexibility of SiD-DiT across emerging flow-matching architectures.

525 5 CONCLUSION

527 In this work, we revisited the theoretical foundations of diffusion and flow matching models, show-
 528 ing that under Gaussian assumptions, their optimal solutions are equivalent despite differences in
 529 loss weighting and practical implementations. Building on this unified perspective, we demon-
 530 strated that score distillation—originally developed for diffusion models—can be effectively and
 531 robustly extended to flow matching models without requiring model-specific adaptations or teacher
 532 finetuning. Through the use of few-step Score identity Distillation (SiD), we successfully distilled
 533 a wide range of pretrained text-to-image flow matching models, including SANA, SD3, SD3.5, and
 534 FLUX.1-dev, into efficient four-step generators. Our approach uses a single, shared codebase and
 535 training configuration across models of varying architectures and parameter scales, showcasing the
 536 generality and stability of score distillation in this new context. These findings not only clarify
 537 misconceptions in prior work regarding the applicability of score distillation to flow-based models,
 538 but also open new directions for compressing and accelerating modern text-to-image generators.
 539 By bridging the gap between diffusion and flow matching, our work provides a solid theoretical and
 empirical foundation for future research on unified generative modeling and fast sampling strategies.

540 REPRODUCIBILITY STATEMENT
541

542 We release the full anonymized codebase and training scripts in the supplementary material to facil-
543 itate reproduction of all experiments. All algorithmic derivations are detailed in the main text, while
544 hyperparameter settings and precision configurations (AMP vs. BF16) are reported in Tables 4 and 5
545 of the Appendix.

546
547 REFERENCES
548

549 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
550 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

551 Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, Joydeep Ghosh, and John Lafferty. Cluster-
552 ing with Bregman divergences. *Journal of machine learning research*, 6(10), 2005.

553 Clément Chadebec, Onur Taşar, Eyal Benaroche, and Benjamin Aubin. Flash diffusion: Accelerat-
554 ing any conditional diffusion model for few steps image generation. In *Proceedings of the AAAI*
555 *Conference on Artificial Intelligence*, 2025. doi: 10.1609/aaai.v39i15.33722. AAAI 2025 Oral.

556 Junsong Chen, Shuchen Xue, Yuyang Zhao, Jincheng Yu, Sayak Paul, Junyu Chen, Han Cai, Song
557 Han, and Enze Xie. Sana-sprint: One-step diffusion with continuous-time consistency distillation,
558 2025. URL <https://arxiv.org/abs/2503.09641>.

559 Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
560 inverse problems using manifold constraints. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
561 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
562 <https://openreview.net/forum?id=nJJjv0JDJju>.

563 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Associa-
564 tion*, 106(496):1602–1614, 2011.

565 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
566 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
567 high-resolution image synthesis. In *International Conference on Machine Learning*, pp. 12606–
568 12633. PMLR, 2024.

569 Xuhui Fan, Zhangkai Wu, and Hongyu Wu. A survey on pre-trained diffusion model distillations.
570 *arXiv preprint arXiv:2502.08364*, 2025.

571 Ruiqi Gao, Emiel Hoogeboom, Jonathan Heek, Valentin De Bortoli, Kevin P. Murphy, and Tim
572 Salimans. Diffusion meets flow matching: Two sides of the same coin. 2024. URL <https://diffusionflow.github.io/>.

573 Tomas Geffner, Kieran Didi, Zuobai Zhang, Danny Reidenbach, Zhonglin Cao, Jason Yim, Mario
574 Geiger, Christian Dallago, Emine Kucukbenli, Arash Vahdat, et al. Proteina: Scaling flow-based
575 protein structure generative models. *arXiv preprint arXiv:2503.00710*, 2025.

576 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
577 for evaluating text-to-image alignment. In *NeurIPS 2023 Datasets and Benchmarks Track*, 2023.
578 URL https://proceedings.neurips.cc/paper_files/paper/2023/file/a3bf71c7c63f0c3bcb7ff67c67b1e7b1-Paper-Datasets_and_Benchmarks.pdf.

579 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
580 arXiv:2207.12598*, 2022.

581 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
582 Neural Information Processing Systems*, 33:6840–6851, 2020a.

583 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. *Advances in
584 Neural Information Processing Systems*, 33, 2020b.

594 Zemin Huang, Zhengyang Geng, Weijian Luo, and Guo-jun Qi. Flow generator matching. *arXiv*
 595 *preprint arXiv:2410.19310*, 2024.

596

597 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
 598 diffusion-based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
 599 Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
 600 <https://openreview.net/forum?id=k7FuTWMOC7>.

601 Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
 602 Yutong He, Yuki Mitsuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
 603 bility flow ode of diffusion. *arXiv preprint arXiv:2310.02279*, 2023.

604 Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
 605 augmentation. *Advances in Neural Information Processing Systems*, 36:65484–65516, 2023.

606

607 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 608 a-pic: An open dataset of user preferences for text-to-image generation. In *Advances in Neural*
 609 *Information Processing Systems*, 2023.

610 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

611

612 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 613 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

614 Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
 615 on manifolds. In *International Conference on Learning Representations*, 2022a. URL <https://openreview.net/forum?id=P1KWVd2yBkY>.

616

617 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 618 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022b.

619

620 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
 621 *arXiv preprint arXiv:2410.11081*, 2024.

622

623 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A
 624 fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Alice H. Oh,
 625 Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information*
 626 *Processing Systems*, 2022. URL https://openreview.net/forum?id=2uAAGw1P_V.

627

628 Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
 629 sampling speed. *arXiv preprint arXiv:2101.02388*, 2021.

630

631 Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Syn-
 632 thesizing high-resolution images with few-step inference. *ArXiv*, abs/2310.04378, 2023a.

633

634 Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
 635 Instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
 636 *arXiv preprint arXiv:2305.18455*, 2023b.

637

638 Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
 639 Instruct: A universal approach for transferring knowledge from pre-trained diffusion models. In
 640 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023c. URL <https://openreview.net/forum?id=MLIs5iRq4w>.

641

642 Weijian Luo, Zemin Huang, Zhengyang Geng, J Zico Kolter, and Guo-jun Qi. One-step diffusion
 643 distillation through score implicit matching. *Advances in Neural Information Processing Systems*,
 644 37:115377–115408, 2024.

645

646 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
 647 ing Xie. SiT: Exploring flow and diffusion-based generative models with scalable interpolant
 648 transformers. In *European Conference on Computer Vision*, pp. 23–40. Springer, 2024.

649

650 Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
 651 Tim Salimans. On distillation of guided diffusion models. In *Proceedings of the IEEE/CVF*
 652 *Conference on Computer Vision and Pattern Recognition*, pp. 14297–14306, 2023.

648 Thuan Hoang Nguyen and Anh Tran. SwiftBrush: One-step text-to-image diffusion model with vari-
 649 ational score distillation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 650 (*CVPR*), 2024.

651

652 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 653 *the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

654 Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. DreamFusion: Text-to-3D using 2D
 655 diffusion. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 656 <https://openreview.net/forum?id=FjNys5c7Vyy>.

657

658 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 659 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 660 models from natural language supervision. In *International conference on machine learning*, pp.
 661 8748–8763. PMLR, 2021.

662

663 Herbert Robbins. *An empirical Bayes approach to statistics*. University of California Press, 2020.

664

665 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
 666 *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=TIdIXIpzhoI>.

667

668 Axel Sauer, Dominik Lorenz, A. Blattmann, and Robin Rombach. Adversarial diffusion distillation.
 669 *ArXiv*, abs/2311.17042, 2023.

670

671 Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rom-
 672 bach. Fast high-resolution image synthesis with latent adversarial diffusion distillation. *arXiv*
 673 *preprint arXiv:2403.12015*, 2024.

674

675 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
 676 Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
 677 clip-filtered 400 million image-text pairs. *arXiv preprint arXiv:2111.02114*, 2021.

678

679 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 680 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learn-*
 681 *ing*, pp. 2256–2265. PMLR, 2015.

682

683 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 684 *preprint arXiv:2010.02502*, 2020.

685

686 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv*
 687 *preprint arXiv:2310.14189*, 2023.

688

689 Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribu-
 690 tion. In *Advances in Neural Information Processing Systems*, pp. 11918–11930, 2019.

691

692 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 693 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 694 national Conference on Learning Representations*, 2021. URL [https://openreview.net/](https://openreview.net/forum?id=PxTIG12RRHS)
 695 *forum?id=PxTIG12RRHS*.

696

697 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *arXiv preprint*
 698 *arXiv:2303.01469*, 2023.

699

700 Fu-Yun Wang, Ling Yang, Zhaoyang Huang, Mengdi Wang, and Hongsheng Li. Rectified diffu-
 701 sion: Straightness is not your need in rectified flow. In *International Conference on Learning*
 702 *Representations*, ICLR '25, Vienna, Austria, 2025.

703

704 Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-
 705 GAN: Training GANs with diffusion. In *The Eleventh International Conference on Learning*
 706 *Representations*, 2023a. URL <https://openreview.net/forum?id=HZf7UbpWHuA>.

702 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. ProlificDreamer: High-fidelity and diverse text-to-3D generation with variational score distillation. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023b. URL <https://openreview.net/forum?id=ppJuFSOAnM>.

703

704

705

706 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.

707 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-

708 image synthesis. *arXiv preprint arXiv:2306.09341*, 2023.

709

710 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang

711 Li, Ligeng Zhu, Yao Lu, et al. Sana: Efficient high-resolution image synthesis with linear diffu-

712 sion transformers. *arXiv preprint arXiv:2410.10629*, 2024.

713

714 Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng Zhu, Yujun Lin, Zhekai Zhang,

715 Muyang Li, Junyu Chen, Han Cai, et al. Sana 1.5: Efficient scaling of training-time and

716 inference-time compute in linear diffusion transformer, 2025. URL <https://arxiv.org/abs/2501.18427>.

717

718 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao

719 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.

720 In *Advances in Neural Information Processing Systems*, 2023.

721 Yilun Xu, Weili Nie, and Arash Vahdat. One-step diffusion models with f -divergence distribution

722 matching. *arXiv preprint arXiv:2502.15681*, 2025.

723

724 Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin

725 Meng, Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with

726 velocity consistency. *arXiv preprint arXiv:2407.02398*, 2024.

727 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and

728 William T. Freeman. Improved distribution matching distillation for fast image synthesis. In

729 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024a. URL

730 <https://openreview.net/forum?id=tQukGCDaNT>.

731 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,

732 and Taesung Park. One-step diffusion with distribution matching distillation, 2024b.

733

734 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,

735 and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of*

736 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6613–6623, 2024c.

737 Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion proba-

738 bilistic models. *arXiv preprint arXiv:2202.09671*, 2022.

739

740 Mingyuan Zhou, Tianqi Chen, Zhendong Wang, and Huangjie Zheng. Beta diffusion. In *Neural*

741 *Information Processing Systems*, 2023. URL <https://arxiv.org/abs/2309.07867>.

742 Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score iden-

743 tity distillation: Exponentially fast distillation of pretrained diffusion models for one-step gen-

744 eration. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=QhqQJqe0Wq>.

745

746 Mingyuan Zhou, Yi Gu, and Zhendong Wang. Few-step diffusion via score identity distillation.

747 *arXiv preprint arXiv:2505.12674*, 2025a.

748

749 Mingyuan Zhou, Zhendong Wang, Huangjie Zheng, and Hai Huang. Guided score identity distilla-

750 tion for data-free one-step text-to-image generation. In *ICLR 2025: International Conference on*

751 *Learning Representations*, 2025b.

752

753 Mingyuan Zhou, Huangjie Zheng, Yi Gu, Zhendong Wang, and Hai Huang. Adversarial score

754 identity distillation: Rapidly surpassing the teacher in one step. In *International Conference on*

755 *Learning Representations*, 2025c.

756 A USE OF LARGE LANGUAGE MODELS (LLMs)
757758 Large Language Models (LLMs) were used to improve grammar, clarity, and readability of the text.
759 They also assisted with code debugging, annotation, and anonymization.
760761 B RELATED WORK
762764 Acceleration strategies for pretrained diffusion models generally fall into two categories: training-
765 free methods and diffusion distillation. Training-free methods, such as DDIM (Song et al., 2020),
766 DPM-Solver (Lu et al., 2022), and EDM Heun’s sampler (Karras et al., 2022), reduce the number
767 of function evaluations (NFEs) without retraining. These approaches have successfully lowered
768 NFEs from hundreds to just a few dozen, although performance typically degrades when NFEs drop
769 below 20.770 Diffusion distillation, on the other hand, leverages the estimated score function from pretrained
771 models to train faster generators (Luhman & Luhman, 2021; Salimans & Ho, 2022; Meng et al.,
772 2023). It comprises two main branches: trajectory distillation (Song et al., 2023; Song & Dhariwal,
773 2023; Luo et al., 2023a; Kim et al., 2023), which requires access to real or teacher-synthesized data,
774 and score distillation (Poole et al., 2023; Wang et al., 2023b; Luo et al., 2023c; Yin et al., 2024b;
775 Nguyen & Tran, 2024; Zhou et al., 2024), which can be performed in a data-free setting but may also
776 benefit from using real or synthetic data. Some score distillation methods, such as Diff-Instruct (Luo
777 et al., 2023c) and SiD (Zhou et al., 2024; 2025b), are designed to operate without real data, while
778 others require access to real or teacher-synthesized data (Yin et al., 2024b;a; Sauer et al., 2023), or
779 are enhanced by incorporating such data (Zhou et al., 2025c).780 A wide variety of score distillation methods can be used to distill the teacher model into one or
781 few-step T2I generators, such as DMD (Yin et al., 2024b;a) and SwiftBrush (Nguyen & Tran, 2024)
782 that are based on minimizing the KL divergence between the generator’s distribution in the diffused
783 space and the data distribution in the diffused space estimated by the teacher (Poole et al., 2023;
784 Wang et al., 2023b; Luo et al., 2023c). One can also utilize other divergence, including Fisher
785 divergence (Zhou et al., 2024; 2025c;b;a), a variant of Fisher divergence (Luo et al., 2024), and
786 f-divergence (Xu et al., 2025).787 Flow matching has recently emerged as a promising alternative for generative modeling (Liu et al.,
788 2022b; Lipman et al., 2022; Albergo et al., 2023). A key example is *rectified flow* (Liu et al.,
789 2022b), also known as flow matching with an optimal transport path (Lipman et al., 2022). Rectified
790 flow encourages straighter trajectories between noise and data, reducing the number of function
791 evaluations (NFEs) needed for sampling and enabling one- or few-step generation via ReFlow (Liu
792 et al., 2022b). Another representative approach is *TrigFlow* (Lu & Song, 2024), now the preferred
793 framework for continuous consistency distillation and successfully applied by Chen et al. (2025) to
794 develop SANA-Sprint, which distills SANA T2I models after finetuning rectified flow teachers into
795 TrigFlow. In contrast, our method works directly with SANA models trained under either rectified
796 flow or TrigFlow, without requiring such finetuning.797 Although originally proposed as a faster and simpler alternative to diffusion, recent theoretical in-
798 sights have shown that, under Gaussian assumptions, rectified flow is fundamentally equivalent to
799 diffusion: training a Gaussian noise-based rectified flow model is mathematically equivalent to train-
800 ing a Gaussian diffusion model, and their corresponding SDE/ODE sampling procedures are inter-
801 changeable (Albergo et al., 2023; Kingma & Gao, 2023; Ma et al., 2024; Gao et al., 2024; Geffner
802 et al., 2025), and thus the distillation techniques proposed for diffusion models can be adapted to
803 Gaussian-based rectified flow, such as consistency models (Yang et al., 2024; Lu & Song, 2024).
804 Nevertheless, practical differences remain, such as in noise schedules, loss formulations, and net-
805 work architectures.806 Although score distillation has proven highly effective in reducing diffusion models to one- or few-
807 step generators (Luo et al., 2023c; Zhou et al., 2024; Yin et al., 2024c;a; Zhou et al., 2025c), its
808 application to flow matching remains largely unexplored. Methods like ReFlow construct noise-
809 image pairs by solving a pretrained flow model’s ODE and then use these pairs to train a fast gener-
810 ator. Rectified flow is often considered more amenable to one-step distillation due to its “straighter”
811 paths, but this claim has been challenged. Theoretically, optimal score and velocity functions are

810 interchangeable under Gaussian assumptions. Empirically, Wang et al. (2025) introduce *rectified*
 811 *diffusion*, demonstrating that high-quality noise-image pairs generated by diffusion models perform
 812 as well as those produced by flow matching to train ReFlow models. This suggests that the quality
 813 of the supervision pairs, rather than the geometry of the sampling path, is the key factor determining
 814 the success of ReFlow-based distillation methods. However, these approaches remain fundamentally
 815 bounded by the teacher model’s generation quality (Wang et al., 2025). In contrast, score distillation
 816 has demonstrated the ability to outperform the teacher model, even when using only one sampling
 817 step (Zhou et al., 2024; 2025c). Another related line of work is Flow Generator Matching (Huang
 818 et al., 2024), which mirrors the derivation of SiD by employing flow-related identities in place of
 819 score-based ones. Our unified view of diffusion and flow matching suggests that such reformulations
 820 may not always be necessary, as velocity and x_0 -predictions are linear transformations of each other
 821 given the same x_t , leading to equivalent training losses used during distillation up to differences in
 822 weighting schemes.

823 C WEIGHT NORMALIZED TIME SCHEDULE

824 We illustrate in Figure 2 the differences between various noise schedules when mapped into the
 825 continuous interval $t \in (0, 1)$, assuming an SNR defined as

$$826 \text{SNR}(t) = \frac{\alpha_t^2}{\sigma_t^2} = \frac{(1-t)^2}{t^2}.$$

827 The first schedule we consider is the one used by TrigFlow.

828 The second schedule we consider is the one used by SANA-Sprint.

829 The third schedule we consider is the one used by SANA, which samples $t \sim \text{logit } \mathcal{N}(0, 1)$, but
 830 applies a time-step shift to induce a lower SNR compared to the standard rectified-flow schedule at
 831 the same t . While this schedule still satisfies the identity

$$832 \alpha_t + \sigma_t = 1,$$

833 it no longer maintains $\sigma_t = t$. Nonetheless, the resulting distribution of σ_t effectively reflects the
 834 corresponding distribution of t in rectified flow.

835 The fourth schedule we consider is the one used by DDPM, for which it is common to apply the
 836 ϵ -prediction loss shown in (7), without any additional loss weighting. This is also equivalent to
 837 x_0 -prediction loss shown in (5) weighted by $\text{SNR}(t)$.

838 The fifth and sixth are the training and inference ones used by EDM.

839 Comparing the v -prediction loss shown in (9) and the ϵ -prediction loss shown in (7), we observe
 840 that they differ by a time-dependent scaling factor α_t^2 . However, as discussed earlier, one must
 841 consider both the distribution of $p(t)$ and the weighting function $w(t)$ when evaluating how each t
 842 contributes to the overall loss. From this perspective, while the DDPM schedule appears to place
 843 more emphasis on values of t closer to one (i.e., by sampling them more frequently), it down-weights
 844 the corresponding x_0 -prediction loss more than the SANA schedule does.

851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **D ALGORITHMIC PSEUDO-CODE**
865866 **Algorithm 1** Score Distillation of DiT-Based Flow-Matching T2I generation

867

```

868 1: Input: Pretrained DiT  $v_\phi$ , generator DiT  $G_\theta$ , fake score DiT  $v_\psi$ ,  $t_{\text{init}} = 999$ , training timestep distribution
869  $p(t) = \text{Logit} \mathcal{N}(t; \mu, \sigma)$ , learning rate  $\eta$ .
870 2: Initialization  $\theta \leftarrow \phi, \psi \leftarrow \phi$ 
871 3: repeat
872 4:   Update Fake Score
873 5:   Sample  $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$  and  $\mathbf{x}_g = G_\theta(t_{\text{init}}, \mathbf{z})$ 
874 6:   Sample  $t \sim p(t)$ ,  $\epsilon_t \sim \mathcal{N}(0, \mathbf{I})$  and  $\mathbf{x}_t = (1 - t) \mathbf{x}_g + t \epsilon_t$ 
875 7:   Use (15) to compute CFG modified  $f_\psi(\mathbf{x}_t, \mathbf{c})$  base on flow prediction  $v_\psi(\mathbf{x}_t, \mathbf{c})$ 
876 8:   Update  $\psi$  with:
877 9:    $\mathcal{L}_\psi = \|f_\psi(\mathbf{x}_t, \mathbf{c}) - \mathbf{x}_g\|_2^2, \quad \psi = \psi - \eta \nabla_\psi \mathcal{L}_\psi$ 
878 10:  Update Generator
879 11:  Sample  $t \sim p(t)$  and compute  $\omega_t$  using any combinations listed in the caption of Figure 2; Unless
880 specified otherwise, we used  $p(t) = \text{Logit} \mathcal{N}(\ln 2, 1.6^2)$  and  $w_t = 1 - t$  for all models in the paper.
881 12:  Sample generator update step uniformly at random from  $k \in \{1, 2, 3, 4\}$ . Generate  $\mathbf{x}_t^{(k)}$  as in (16) and
882 forward diffuse  $\mathbf{x}_t^{(k)}$  as in (17)
883 13:  Compute  $f_\phi(\mathbf{x}_t, \mathbf{c})$  base on flow prediction  $v_\phi(\mathbf{x}_t, \mathbf{c})$  following (15)
884 14:  Compute  $f_\psi(\mathbf{x}_t, \mathbf{c})$  base on flow prediction  $v_\psi(\mathbf{x}_t, \mathbf{c})$  following (15)
885 15:  Update  $G_\theta$  with:
886 16:   $\mathcal{L}_\theta(\mathbf{x}_t^{(k)}) = w_t (f_\phi(\mathbf{x}_t^{(k)}, t_k, \mathbf{c}) - f_\psi(\mathbf{x}_t^{(k)}, t_k, \mathbf{c}))^T (f_\psi(\mathbf{x}_t^{(k)}, t_k, \mathbf{c}) - \mathbf{x}_g^{(k)})$ 
887 17:   $\theta = \theta - \eta \nabla_\theta \mathcal{L}_\theta$ 
888 18: until the FID plateaus or the training budget is exhausted
889 19: Output:  $G_\theta$ 
890
```

889 **E DETAILED GENEVAL SCORES**
890891
892 Table 3: GenEval scores and per-task accuracies (single_object, counting, color_attr, colors, position,
893 two_object) for SANA, SANA Sprint, SiD-DiT, and SiD 2 -DiT across 0.6B and 1.6B backbones.

894 Model	895 GenEval	single_object	counting	color_attr	colors	position	two_object
SANA 0.6B							
SANA (Xie et al., 2025)	0.64087	1.0000	0.6281	0.4225	0.8910	0.2044	0.6992
SiD-DiT (SANA)	0.65212	0.9812	0.5969	0.4475	0.8484	0.2800	0.7727
SiD 2 -DiT (SANA)	0.64307	0.9812	0.6312	0.4375	0.8617	0.2700	0.7626
SANA 1.6B							
SANA (Xie et al., 2025)	0.65501	0.9969	0.5782	0.3925	0.8856	0.2770	0.7998
SiD-DiT (SANA)	0.67013	0.9781	0.5437	0.4950	0.8590	0.3000	0.8333
SiD 2 -DiT (SANA)	0.66472	0.9812	0.6219	0.4450	0.8484	0.2425	0.7601
SANA TrigFlow 0.6B							
SANA Sprint Teacher	0.78018	1.0000	0.7000	0.5575	0.9069	0.5975	0.9192
SANA Sprint (TrigFlow, 1 step)	0.77074	0.9938	0.6469	0.4650	0.8883	0.5300	0.8005
SANA Sprint (TrigFlow, 4 steps)	0.76591	1.0000	0.6812	0.5150	0.8803	0.6300	0.8889
SiD-DiT (SANA, TrigFlow)	0.76289	1.0000	0.5594	0.5050	0.8936	0.5700	0.9116
SiD 2 -DiT (SANA, TrigFlow)	0.77251	0.9906	0.6938	0.4875	0.8803	0.6275	0.9141
SANA TrigFlow 1.6B							
SANA Sprint Teacher	0.77571	1.0000	0.6719	0.5725	0.8830	0.5875	0.9394
SANA Sprint (TrigFlow, 1 step)	0.76796	0.9938	0.5219	0.5025	0.8936	0.5425	0.8535
SANA Sprint (TrigFlow, 4 steps)	0.76769	1.0000	0.5844	0.5275	0.9149	0.5525	0.8889
SiD-DiT (SANA, TrigFlow)	0.77421	0.9875	0.6219	0.5350	0.9096	0.6350	0.9369
SiD 2 -DiT (SANA, TrigFlow)	0.76829	0.9906	0.6562	0.5175	0.8617	0.5775	0.9015

912
913
914
915
916
917

918 F HYPERPARAMETER SETTINGS

920
921 Table 4: Comparison of distillation time and memory usage for training four-step generators from SANA Rec-
922 tified Flow (0.6B or 1.6B) or SANA TrigFlow teachers. Measurements exclude the overhead of text encoding.

924 Computing platform	925 Hyperparameters	926 0.6B 512x512	927 1.6B 512x512	928 0.6B 1024x1024	929 1.6B 1024x1024
925 General Settings	Teacher Model	Rectified Flow	Rectified Flow	TrigFlow	TrigFlow
	# of learnable parameters (fp32 model size in GB)				
	VAE Size (fp32 model size in GB)				
	Text Encoder Size (fp32 model size in GB)				
	Learning rate			5e-6	
	Optimizer			Adam ($\beta_1 = 0, \beta_2 = 0.999, \epsilon = 1e-8$)	
	α			1	
	λ_{sid}			100	
	# of GPUs			8xH100 (80G)	
	Batch size			256	
930 SiD-DiT (4 steps)	VAE offload to CPU			Yes	
	Batch size per GPU	16	16	8	4
	# of gradient accumulation round	2	2	4	8
	AMP+FSDP	Max memory in GB allocated	38	65	66
	Max memory in GB reserved	42	74	70	77
	Time in seconds per 1k images	16	19	49	108
	Time in hours per 1M images	5	5	14	30

931
932
933
934
935
936
937 Table 5: Comparison of distillation time and memory usage for training four-step generators from four teacher
938 models: SD3-Medium, SD3.5-Medium, SD3.5-Large, and FLUX.1-dev (under both 512x512 and 1024x1024
939 resolutions). We evaluate two methods: four-step SiD-DiT, a data-free approach that requires no real images,
940 and four-step SiD a_2 -DiT, which initializes from a SiD-DiT-distilled generator and continues training with an
941 additional Diffusion-GAN-based adversarial loss using user-provided data. Measurements exclude the over-
942 head of text encoding in SiD and both text and image encoding in SiD a_2 , which can be either precomputed or
943 batch-processed outside the main distillation loop; the latter strategy is used in this work.

944 Computing Platform	945 Method	946 SD3-Medium	947 SD3.5-Medium	948 SD3.5-Large	949 FLUX.1-dev	950 FLUX.1-dev
945 General Settings	Resolution	1024x1024	1024x1024	1024x1024	512x512	1024x1024
	# of learnable parameters (fp32 model size in GB)					
	VAE Size (fp32 model size in GB)					
	Text Encoder Size (fp32 model size in GB)					
	α			1		
	λ_{sid}			100		
	# of GPUs	8xH100 (80G)	8xH100 (80G)	8xH100 (80G)	8xH100 (80G)	8xB200 (192G)
	Batch Size	256				
950 SiD-DiT (4 steps)	Learning Rate			1e-6		
	Optimizer			Adam ($\beta_1 = 0, \beta_2 = 0.999, \epsilon = 1e-8$)		
	Gradient Clipping			No		
	CPU Offloading	No	No	Yes	–	–
	Batch Size per GPU	2	2	1	–	–
	# of Gradient Accumulation Rounds	16	16	32	–	–
	AMP + FSDP: Max Memory Allocated (GB)	57	62	72	–	–
	AMP + FSDP: Max Memory Reserved (GB)	67	73	77	–	–
	Time per 1k Images (s)	150	230	1000	–	–
	Time per 1M Images (h)	42	64	277	–	–
955 SiD-DiT (4 steps)	Learning Rate			1e-5		
	Optimizer			Adam ($\beta_1 = 0, \beta_2 = 0.999, \epsilon = 1e-4$)		
	Gradient Clipping			Yes		
	CPU Offloading			No		
	Batch Size per GPU	4	4	1	1	2
	# of Gradient Accumulation Rounds	8	8	32	32	16
	AMP + FSDP: Max Memory Allocated (GB)	47	69	56	60	146
	AMP + FSDP: Max Memory Reserved (GB)	55	78	70	74	165
	Time per 1k Images (s)	120	200	550	650	720
	Time per 1M Images (h)	33	56	153	181	200
961 SiD a_2 -DiT (4 steps)	Learning Rate			1e-6		
	Optimizer			Adam ($\beta_1 = 0, \beta_2 = 0.999, \epsilon = 1e-8$)		
	Gradient Clipping			No		
	CPU Offloading	No	No	Yes	–	–
	Batch Size per GPU	4	4	1	–	–
	# of Gradient Accumulation Rounds	8	8	32	–	–
	AMP + FSDP: Max Memory Allocated (GB)	47	69	62	–	–
	AMP + FSDP: Max Memory Reserved (GB)	56	78	73	–	–
	Time per 1k Images (s)	138	240	670	–	–
	Time per 1M Images (h)	38	67	186	–	–

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992

993 **Table 6: Estimated training cost of SiD-DiT with different teacher models, measured in thousands of images**
 994 **processed (*k* *imgs*) and in estimated machine hours, shown for both training to the final checkpoint and for**
 995 **reaching near-converged metrics. All estimates are based on a single node with eight H100 GPUs, except**
 996 **for FLUX 1024 Res, which used eight B200 GPUs. The near-converged points are inferred from Figure 4.**
 997 **Estimated training times (in hours) are computed as the number of images iterated (in millions) multiplied by**
 998 **the time-per-million-images values reported in Tables 4 and 5.**

999

Model	k imgs to checkpoint	k imgs to near convergence	Hours to checkpoint	Hours to near convergence
SANA 0.6B (512 res)	665	100	3.325	0.5
SANA 1.6B (512 res)	1996	400	9.98	2
SANA 0.6B (1024 res, TrigFlow)	1587	200	22.218	2.8
SANA 1.6B (1024 res, TrigFlow)	1638	150	49.14	4.5
SD3 Medium	1669	200	55.077	6.6
SD3.5 Medium	1269	400	71.064	22.4
SD3.5 Large	696	130	106.488	19.89
Flux 512 Res	778	778	140.818	140.818
Flux 1024 Res	699	300	139.8	60

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

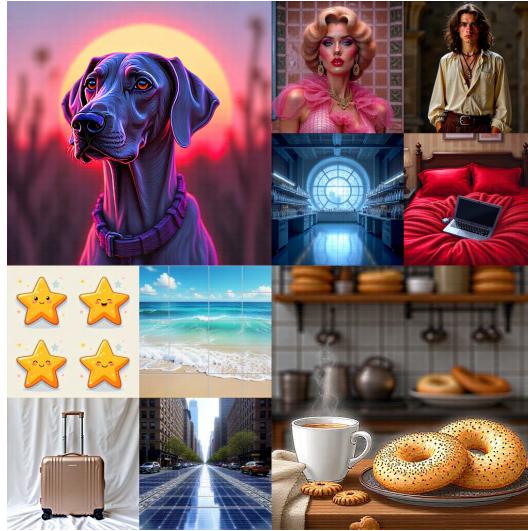
1021

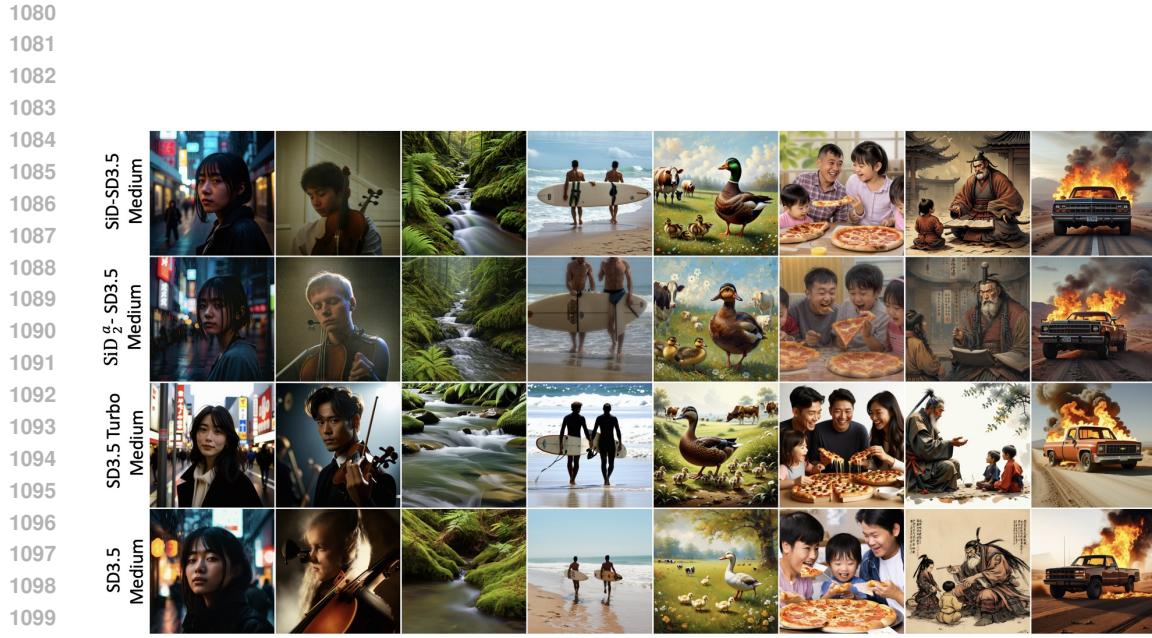
1022

1023

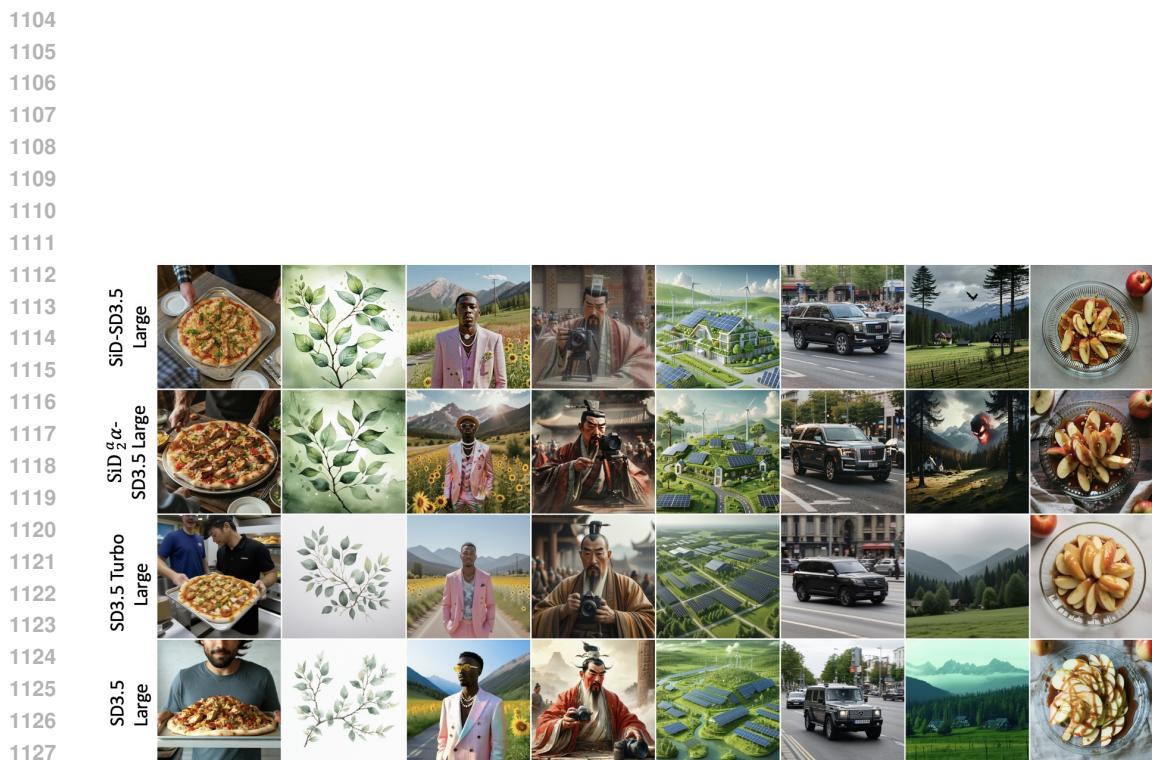
1024

1025

1026
1027 **G ADDITIONAL QUALITATIVE EXAMPLES**
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
10451046
1047 Figure 5: Qualitative results produced by the four-step SiD-DiT generator distilled from
FLUX-1.DEV.1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066 Figure 6: Qualitative results from the four-step SiD-DiT, SiD2-DiT, Flash Diffusion SD3, and the
1067 teacher model SD3-MEDIUM.1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079



1101 Figure 7: Qualitative results from the four-step SiD-DiT and SiD_2^a -DiT generators distilled from
1102 SD3.5-MEDIUM, compared against SD3.5-TURBO-MEDIUM and the teacher model SD3.5-
1103 MEDIUM.



1129 Figure 8: Qualitative results from the four-step SiD-DiT and SiD_2^a -DiT generators distilled from
1130 SD3.5-LARGE, compared against SD3.5-TURBO-LARGE and the teacher SD3.5-LARGE.

1131
1132
1133

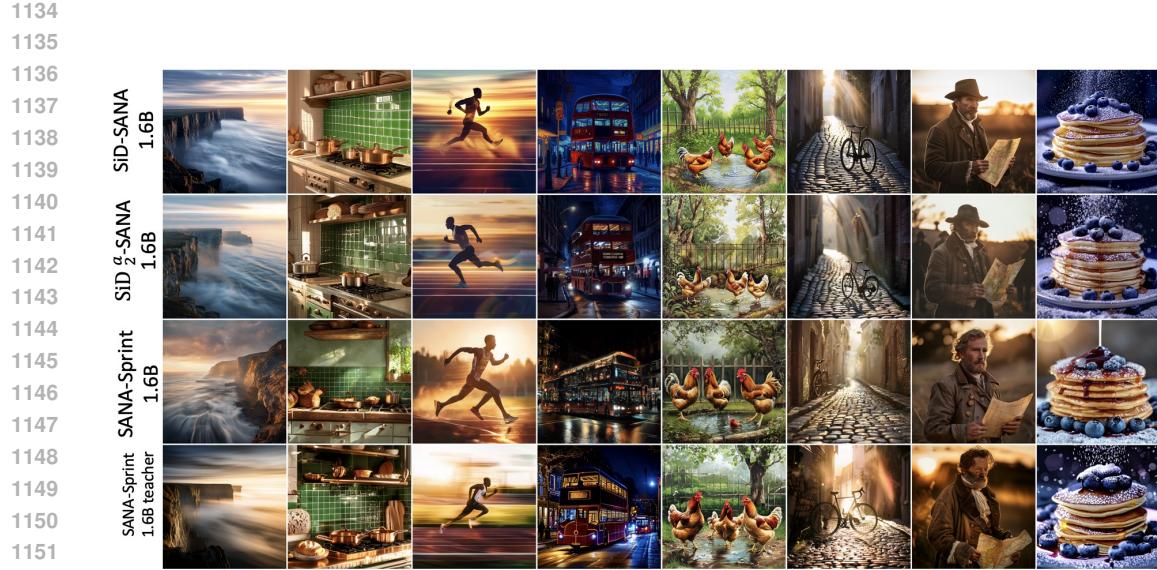
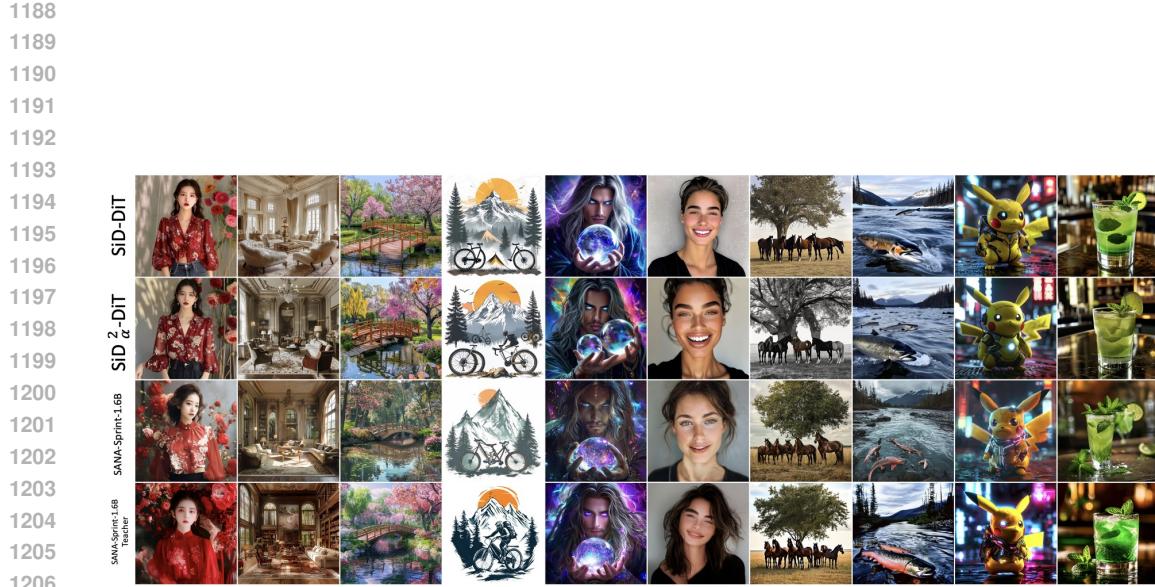


Figure 9: Qualitative results from the four-step SiD-DiT and SiD_2^a -DiT generators distilled from the SANA-SPRINT teacher (1.6B), compared against SANA-SPRINT 1.6B and the teacher.

Figure 10: Qualitative results from the four-step SiD-DiT (row 1) and SiD_2^a -DiT (row 2) generators distilled from the SANA-SPRINT teacher (1.6B). The prompt used for generation is: “A little girl is posing for a picture and holding an umbrella.”

Figure 11: Qualitative results from the four-step SiD-DiT (row 1) and SiD_2^a -DiT (row 2) generators distilled from the SANA-SPRINT teacher (1.6B). The prompt used for generation is: “stars in the night sky, majestic green forest trees, guy in a hoodie at a computer.”



1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

SiD-DiT
SiD 2 -DiT
SD3.5-Large
SD3.5-Large
Turbo

1234
1235
1236
1237
1238
1239
1240
1241

Figure 12: Additional Qualitative results from the four-step SiD-DiT and SiD 2 -DiT generators distilled from the SANA-SPRINT teacher (1.6B), using prompts for generating Figure 1.

1242 **H PROMPT DETAILS**

1243

1244 Prompts used for generating Figure 1:

1245

1. chinese red blouse, in the style of dreamy and romantic compositions, floral explosions –ar 24:37 –stylize 750 –v 6
2. ”A large room with furniture in the style of Ludwig 14. ”
3. ”a park with a beautiful wooden bridge over a pond, flowering trees around the banks, beautiful color correction, 16 k, pastel ”
4. ”design graphic mountain ,camping and bike , white background, no mockup ”
5. ”beautiful man with long hair and silver eyes holding a huge ornate crystal ball, magical, electric, vivid colors”
6. ”Portrait of a instagram model, face facing straight towards the camera, looking into the camera, man, smiling, chic modernist style, unsplash, I cant believe how beautiful this is ”,
7. ”a group of horses standing next to a tree in an open field”
8. ”river in alaska with salmon”
9. ”pikachu from the future, Cyberpunk, TRON, 8k, octane render, hyper realistic, photo realistic ”
10. ”a cocktail made of a green herbal liqueur with fresh peppermint, nice lounge atmosphere, real photo”

1264 Prompts used for generating Figure 5:

1265

1. ”Weimaraner synthwave, 80s sunset in background”,
2. ”james bidgood style image of hollywood female ingenue of the year 1982 ”,
3. ”27 year old man, with necklength brown wavy hair, in medieval shirt and trousers, fantasy, dramatic lighting, 169”,
4. ”panorama photography shot of a science lab bright light in window”,
5. ”A bed with red sheets on it and messy blanket and a laptop.”,
6. ”star badges for children, similar style but different variations, flat illustration, cute, dribbble, behance, very cute, happy star ”,
7. ”Clear distinct beach waves pattern HD tile caribbean1”,
8. ”Two small suitcase is sitting in front of a white sheet.”,
9. ”Manhattan streets paved with glossy solar panels”,
10. ”A counter filled with coffee, cookies, and bagels.”,

1281 Prompts used for generating Figure 6:

1282

1. ”High altitude photo of a planet, cloud layer, tall peaked towers surrounded by water reflecting starlight, and rocky deserts. Fisheye lens. Milkyway background. ”,
2. ”afroamerican household, hiphop themed living room, a bit messy, high resolution, 4k, 5 v”,
3. ”Modern jet airplanes lined up on the runway ready for take off”,
4. ”Pink lunch box with compartments for all types of food”,
5. ”young woman playing the guitar on Venice Beach in 1994, she’s wearing denim shorts and a flannel, In the style of Petra Collins, 90s, grunge fashion, pastel coloring, cinematic color grading. ”,
6. ”a cat climbing up a LARGE, letter C, pixar, white background ”,
7. ”The horse is grazing in the fenced coral.”,
8. ”a logo of wolf, blue light shadow, ultra realistic, 4k hd, full moon, mountains ”,

1296
1297

Prompts used for generating Figure 7:

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310

1. "some kind of chicken, rice, and vegetable dish on a pizza tray being served to a man.",
2. "a dainty watercolor twig with leaves in sage green, on white background, simplistic",
3. "Portrait of man wearing pastel colored fancy suit, tyler the creator inspired, round bead jewlery necklace, sun flower field mountain with a road in between the mountatins. Photo is taken with a 12mm f1.2 canon lens",
4. "a hyper realistic image of Confucious speaking on the camera in ancient times ",
5. "renewable energy, green, sustainable, ecology, community, 3d, concept art, long shot",
6. "The large SUV drives along a busy street.",
7. "serene countryside vista with detail of homes, forest, mountains with something evil lurking amongst the trees hidden in shadows, 8k v5 ",
8. "A glass plate topped with sliced apples and caramel. ",

1311
1312

Prompts used for generating Figure 8:

1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1. Street portrait in Shibuya at dusk, shallow DOF, neon bokeh, light rain on pavement, candid framing",
2. "Editorial portrait of a violinist backstage, tungsten rim light, light haze, shallow DOF, subtle grain",
3. "Mossy canyon stream, slow shutter silky water, fern details, cool color grade",
4. "Two surfers walk down the beach holding their boards.",
5. "A hyper detail painting in richard macneil style of a duck with her ducklings, walking through a field were there are cows grazing ",
6. "An Asian family that is eating pizza together.",
7. "old samurai telling stories to his children",
8. "car magazine advertising photography, 80s pickup truck, engulfed in flames, high noon, apocalyptic desert, empty road, cinematic composition and lighting, cinematic photography. ",