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ABSTRACT

A code retrieval-augmented generation (RAG) framework that accepts natural
language (NL) queries and generates responses from relevant code contexts is
crucial for enhancing developer productivity. However, building a code RAG
system is inherently challenging due to the hierarchical structure and complex
semantics of source code, especially with resource-constrained infrastructures.
To address this, we introduce CODE2JSON, a zero-shot technique that lever-
ages LLLMs for extracting NL representations from code via semantic parsing.
CODE2JSON serves as a programming language (PL)-agnostic feature extrac-
tor. We evaluate CODE2JSON on six programming languages—Python, Ruby,
C++, Go, Java, and JavaScript—using approximately 125K records from eight
widely used benchmark datasets, including HumanEval-X, MBPP, COIR, DS-
1000, CSN, and ODEX. We examine the performance of CODE2JSON in differ-
ent RAG setups for code retrieval and code generation tasks from NL queries. We
explore nine retrieval models, encompassing sparse retrieval (e.g., BM25), text
embeddings (e.g., BGE-Large), and code embeddings (e.g., CodeBERT), along
with three LLMs: DeepSeekCoder-7B, Llama-3-8B, and Phi-2. Our findings indi-
cate that CODE2JSON-assisted RAG outperforms the baseline approach in more
than 50% of code retrieval and code generation tasks.

1 INTRODUCTION

The unique challenge in code RAG (Lu et al., [2022) is that it requires both knowledge-intensive
retrieval of a standard RAG (Lewis et al., |2020b) and feature extraction, which generates NL fea-
tures from a code document (Code — NL Features). The feature extraction is essential because
of the relatively low representation of code data in LLM pre-training datasets— resulting in many
out-of-vocabulary (OOV) tokens (Tao et al.,|2024) and limited context length of LLMs—inadequate
for addressing hierarchical structures and complex semantics in codebases (Liu et al.| [2021}; |[Sad-
owski et al., [2015). One of the traditional code retrieval approaches designs domain-specific models
trained on code comments, documentation, and discussions (Di Grazia & Pradel, [2023)). However,
this approach lacks generalizability across different codebases. The second approach, which uses
abstract syntax tree (AST) (Lazar et al., 2017} (Cui et al., [2010; |Duracik et al., 2020)), is limited by
the lack of semantic context (Hu et al., [2018)), sensitivity (Cambronero et al.,|2019), and complexity
in traversal and matching (Allamanis et al., 2018).

Recent advancements in large language models (LLMs) have demonstrated remarkable proficiency
in the {text — code} transformation task, wherein natural language descriptions are translated into
executable code (Chen et al.l 2021a; Nijkamp et al.l 2022). These models exhibit robust multilin-
gual capabilities and can generate syntactically and semantically correct code across various pro-
gramming languages, often generalizing beyond their training data (Chen et al., [2021d)). However,
the inverse operation, {code — text}, for example code summarization/documentation generation,
remains a significant challenge (Haldar & Hockenmaier, 2024). Tasks such as code summariza-
tion, explanation, and intent prediction often yield inconsistent results, largely due to the inherent
ambiguity and context dependence of programming logic (Zhang et al.l [2023b). While fine-tuning
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and retrieval-augmented techniques have shown some promise, current models still struggle to pro-
duce consistently high-quality natural language descriptions of code, highlighting a key limitation
in bidirectional text-code understanding.

LLMs have shown promise over previous symbolic Al (Smolensky, |1987) and deep reinforcement
learning techniques (Van Hasselt et al.,|2016) due to their rich priors (Requeima et al., [2024), infer-
ence time scalability (Kwon et al.l |2023)), and ability to generalize through natural language (Yuan
et al.|[2023). They are used in both zero-shot (Huang et al.| [2022; Kojima et al., 2022)) and few-shot
settings (Brown & Mann, |2020)—supporting both reasoning (Shinn et al., 2024} |Wei et al., [2022)),
planning (Yao et al.| 2023} |Chen et al., 2023 |[Huang et al.,[2024), and of late tool usage (Patil et al.|
2024; Li et al., [2023).

Building upon recent advancements with LLM, we introduce CODE2JSON, a zero-shot LLM
framework designed for automated code feature extraction via semantic parsing. This study inves-
tigates the effectiveness of CODE2JSON in handling multiple programming languages, assessing
its performance for both code retrieval and code generation from NL prompts. While our primary
focus is on benchmark datasets, Code2JSON is also applicable to unstructured codebases where
the mapping between prompts and code bodies is less defined. The application of Code2JSON to
unstructured codebases is discussed in the Appendix (Section[A.2).

2 METHOD

2.1 CODE2JSON

Figure|l{shows a schematic architecture for the CODE2JSON-assisted code RAG pipeline. Given a
code chunk (c;), CODE2JSON generates a semantic feature set d;, consisting of four fields {Sum-
mary, Function Description, Class Description, Data Description}. Figure [2]shows the zero-shot
prompt template used in CODE2JSON with a focus on composability and flexibility, conceptually
similar to Meta Prompting (Zhang et al.,[2024b). It is composed of three units. The first unit (high-
lighted in red) on the top is designed to extract a general representation of the code body. The second
unit (highlighted in brown) is designed to specify different artifacts (e.g., function, class, data) in the
code body. Finally, the third unit (highlighted in green) is designed to extract granular code features.
It includes abstract reference fields such as LANGUAGE (for defining PL choices) and OBJECT
(for defining artifacts such as function, etc.).

The features generated from CODE2JSON are stacked up vertically to produce a feature store in
the JSON format. On the upstream side, CODE2JSON is capable of handling both structured and
unstructured datasets. For a structured dataset, such as MBPP (Austin et al., [2021)), it takes the
field with code chunks (e.g., “code in MBPP) and index them for the downstream code RAG.
An index is a structured representation of a document collection that enables efficient retrieval of
relevant information. It organizes and preprocesses text data to facilitate fast and accurate search.
The corresponding text field (e.g., “text* in MBPP) act as the source of queries. The examples for
CoDE2JSON outputs of different types are shown in Table 4]

2.2 CODE RAG PIPELINE

We explore code RAG that uses a NL input sequence ¢ to retrieve code documents d from a collection
D and use them as an additional context when generating the target sequence y. Our code RAG
pipeline follows the traditional RAG system in leveraging two components: (i) a pre-trained retriever
model, R(D|q) that returns d (top-K documents) from D given a query ¢ and (ii) a pre-trained
generator, G(y;|q, d, y1.,—1) that generates a current token based on a context of the previous 7 — 1
tokens y;.;,—1, the original input ¢, and retrieved documents d. The sole distinction of our system
compared to the traditional RAG system (Lewis et al.|[2020a) is that we use Code2JSON to transform
every code document, d; into a NL feature set, d.

2.2.1 RETRIEVAL PROCESS

We use a dense encoder E'p(-) to index for all the code documents offline. At run-time, we apply
encoder Eq(-) that maps an input question to a dense vector and retrieves k documents which are
similar to the query vector.
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Figure 1: Schematic architecture of the CODE2JSON-assisted code RAG pipeline on benchmark
datasets. The pipeline consists of three workflows. First, offline knowledge base creation: it pro-
cesses all code snippets from a benchmark dataset, converting them into natural language (NL) sum-
mary features using the CODE2JSON prompt template, as illustrated in Figure[2] These NL features
are subsequently embedded and indexed into a knowledge base, making them readily accessible dur-
ing the code RAG runtime. Second, code RAG runtime: Each prompt from the benchmark dataset
is processed sequentially and matched with the Top-K relevant features in the knowledge base. The
ranked features serve two key functions: (1) retrieving the corresponding Top-K code snippets for
retrieval evaluation, and (2) facilitating the generation of a new code snippet by serving as context.
Finally evaluation for each query: we measure retrieval accuracy using NDCG@ 10(Normalized
Discounted Cumulative Gain)|Yining et al.| (2013) and generation accuracy using pass@ 1, consid-
ering the corresponding code snippet as the ground truth. The code fields of the benchmark dataset
remain inaccessible during the RAG runtime, mitigating the risk of data leakage.

R(D | q) = {d; € D | Eg(q) " Ep(d;) is among the top k scores} (1)

where Eq(q) " Ep(d;) quantifies the similarity. This is essentially a maximum inner product search
(MIPS) problem (Bruch et al.,|2024) which has been widely studied (Johnson et al.,2019).

2.2.2 GENERATION PROCESS

The retrieved code documents R(D | ¢) are then concatenated with the query ¢ to form the model
input for the generation model to produce the response.

N
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3 EXPERIMENT DESIGN

The primary research objective was to evaluate the effectiveness of CODE2JSON in code retieval
and code generation from NL prompts.
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summary: Summarize the code in short. Without taking specific function/variable names, talk about its
purpose/fimplementation/features at a high level.

an executional piece of code that performs a certain task or a set of tasks using various algorithms/logic

often giving an output or changing some variable state. May include macros, virtual functions, methods, lambda
functions, templates, etc

constructs that contain data structures and methods to operate on data, often comprising complex behavior into
a single entity. May include classes, structs, interfaces, traits, and other analogues.

any structure that stores some important value used by the code and is not generic in nature like an indexing or
temp variable, like a constant literal or a variable, often carrying the “state’ of the code. Can include security
tokens/gflags/paths/config variables/stream objects, etc

You are a language model trained to understand LANGUAGE code and give OBJECT descriptions based on the code
provided to you.

Your job is to analyze the provided LANGUAGE code and give a description of each OBJECT in a new line from this
code.

You have to follow the instructions below while answering.

Instructions:

1. You will examine the code context in the 'Code’ field to find all OBJECTs used in the code.

2. Consider all OBEJECT-like constructs in this LANGUAGE code, named or anonymous, that represent
OBJ_DESCRIPTION.

3. Describe the OBJECT itself, or how it is being used in the code, whichever is more relevant in the given code.
4. The response should be in the following format -

OBJECT_name - description

5. Every OBJECT should be in a new line, dont leave any empty lines in between any two OBJECTs.

6. Your response has to be clear, well structured and accurate, without repetitions.

7. Do not include any arguments, parameters, types, headers, namespaces in the response, only the name of
the OBJECT has to be there in the OBJECT_name field and its description based on your understanding in the
‘description’ field.

8. Do not respond with any other conversational pre-text, only respond with the required format.

9. You will focus only on answering the question.

10. If there are no OBJECT s in the code, the response should be '---None---".

11. If no description is provided in the code, give the best description from your analysis of the code.

12. Start writing your response after the 'Response’ field.

Figure 2: Prompt template used for zero-shot learning in CODE2JSON. It is composed of three
units. The top unit gives the prompt used to obtain the summary for the whole code chunk. The
middle unit denotes the abstract definitions used for function, class, and data. The bottom unit
drives the extraction with the specific instantiations of a LANGUAGE (PL) and an OBJECT which
is an programming artifact such as a function. Its abstract nature makes CODE2JSON PL agnostic.

3.1 CODE2JSON-ASSISTED RAG SETUP

Most code benchmarks consist of pairs of {prompt, code}, where the prompt represents a query or
question, and the corresponding code contains the relevant implementation. To extract NL features,
we apply the CODE2JSON prompt template to the code fields. These extracted NL features are
then embedded and indexed into a knowledge base for efficient retrieval. Note that since these code
snippets are typically standalone function definitions or smaller functional units, we omit granular
features for functions, classes, and data descriptions for these datasets, which is needed for larger
files and complete programs as done for code repositories (Section[A.2).

During the retrieval-augmented generation (RAG) runtime, the embedded prompt is matched against
the indexed feature set, and the Top-k NL features are retrieved. These retrieved features are sub-
sequently used in two ways: (1) they are mapped to their corresponding code snippets for retrieval
evaluation, and (2) they are leveraged to generate a new code snippet. The overall workflow is
illustrated in Figure[I]
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Figure 3: Example usage of CODE2JSON for code generation evaluation using pass@ 1 metric

For evaluation, we assess the quality of the retrieved code snippets using the NDCG@ 10 metric
and the generated code snippet using the pass@1 metric. Figure [3]shows how pass@]1 metric is
computed for an example case.

The baseline approach (building on work done in CodeRAG-Bench (Wang et al 2024)) directly
indexes the code fields from a benchmark dataset, structured as {prompt, code}, into a knowledge
base. The knowledge base is then utilized within the standard RAG workflow, as illustrated by the
yellow boxes in Figure [T} The effectiveness of Code2JSON is measured as the relative improvement
in code retrieval (measured in NDCG@10) and code generation (measured in pass@1) from NL
prompts compared to the baseline approach.

3.2 BENCHMARKS

Due to its widespread use, ample public data, and popularity in both research and industry, Python
enjoys abundant, easily accessible resources and is frequently leveraged in training code-focused
language models, placing it squarely in the “high-resource” category (Cassano et al., [2024). By
contrast, languages such as Ruby and Go are typically regarded as “low-resource” because they lack
similarly extensive datasets. To ensure comprehensive coverage, robust performance, and broad
generalizability, we therefore evaluated CODE2JSON on both Python and non-Python benchmarks.

* For Python dataset, we use 72,655 records from HumanEval (Chen et al.,[2021c), MBPP (Austin
et al.l 2021), DS-1000 (Lai et al.l 2023), ODEX (Wang et al., |2023c), COIR (Li et al.| |2024b)
CodeFeedback-MT dataset, and COIR (Li et al., 2024b) CodeTrans-Contest. The dataset is dom-
inated by DS-1000 and ODEX.

* For non-Python dataset, we use 53,656 records from HumanEval-X (C++, Go, Java, JavaScript)
(Zheng et al.,[2023)), and CodeSearchNet (Ruby) (Husain et al., [2019). The dataset is dominated
by CodeSearchNet (Ruby). Overall, the evaluation datasets are rich in complexity and diversity.

3.3 LLMs IN CODE2JSON

Given the resource constraints of our setup, we use Llama-3-70B-Instruct-AWQ-4bit (ext) with an
8,000 context length for feature extraction, along with the prompt template shown in Figure 2} In
the ablation study presented in the Appendix (Section[A.4), we compare the CODE2JSON results
obtained from Llama-3-70B-Instruct-AWQ-4bit with those from Llama-3-8B-Instruct. Both models
achieve similar levels of performance.

3.4 INDEXING STRATEGIES FOR CODE RETRIEVAL

The comparative study has been conducted with nine different indexing strategies, including key-
word matching (BM25), text embedding (BGE-Base, BGE-Large (Luo et al., 2024a), GIST-Base,
GIST-Large (Solatorio, |2024), MPNET (Song et al.| [2020)), and code embedding (Instructor (Su
et al.,[2023)), CodeBert (Feng et al.,[2020a)), CodeT5-small (Wang et al., 2021b))).
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3.5 LLMs FOR CODE GENERATION

In the downstream NL2code generation phase, we compare the results from DeepSeekCoder-7B-
Instruct (Guo et al.| [2024)), Llama-3-8b-Instruct ((lla)), and Phi-2 ((phi)). Phi-2 is a smaller model
compared to the rest, having 2.7B parameters in floating-point 16 precision, and 2048 context length.
All models are open-source with permissible licenses (gen). We use minimal prompting, since the
data is already in a query — response format. A simple one line instruction directing the LLM to
generate the code based on given context is provided.

4 RESULTS

We evaluate CODE2JSON for ~125K records, collected both from Python and non-Python bench-
mark datasets. We assess CODE2JSON’s performance following both retrieval and generation
stages in our Code RAG pipeline.

4.1 CODE2JSON EVALUATION FOR RETRIEVAL

We evaluate retrieval performance using NDCG@ 10 for both Python and non-Python datasets, as
described in Section [3] Table [1| presents the results across six Python benchmarks (columns) and
nine different indexing techniques (rows). Each value in the table indicates the percentage improve-
ment of CODE2JSON over the baseline. The last row shows Win Percentage of CODE2JSON,
defined as the number of times CODE2JSON is winning over the baseline. The weighted average
of the Win Percentage across all benchmarks is equal to 55.7% and the weighted standard deviation
is equal 6.55%. We include HumanEval as a benchmark despite its primary design for code-to-code
retrieval rather than NL2code, since it is a widely used dataset in code-specific tasks (Zhang et al.,
2025} |Qian et al.l [2025; [Luo et al., [2024b). In HumanEval, CODE2JSON is winning only once,
with keyword-matching, due to its code-to-code retrieval nature rather than NL2code. But, for the
six out of remaining eight indexing models the NDCG@ 10 drop in Code@JSON is less than 1%.
For BM25, NDCG@ 10 drops for more complex datasets such as DS-1000. Text Embedding models
like MPNET do well for Python code becgentuse Python is highly readable and structured, making
it easier for embeddings to capture meaning. In addition, the modular nature of Python (functions,
classes, modules) fits well with Transformer-style tokenization and embeddings. CodeFeedback-
MT has a blend of code snippets interspersed with descriptive text, which could explain its poorer
performance with keyword and code embedding-based methods. A closer scrutiny of Table |1|sug-
gests relative superiority of CODE2JSON for smaller embedding models such as BGE-base and
GIST-base. This indicates potential for greater resource efficiency.

Table 2] presents the results for five non-Python benchmarks (columns) across four indexing tech-
niques (rows). The weighted average Win Percentage across all benchmarks is 50.1%, with a
weighted standard deviation of 1.95%.For the non-Python datasets, it is observed that both keyword-
matching and code-embedding models, such as CODE2JSON, perform comparably to or even out-
perform the baseline. Notably, CodeT5-small (Wang et al.| 2021b) demonstrates strong perfor-
mance, even on non-Python datasets. This can be attributed to its encoder-decoder architecture and
training on data that includes non-Python programming languages. Interestingly, BM25 performs
significantly better on non-Python datasets compared to Python datasets, likely due to the more ver-
bose nature of non-Python languages, which facilitates better keyword matching between queries
and code snippets. A comprehensive analysis, including text embedding results, is presented in
Table[6]in Appendix.

4.2 CODE2JSON EVALUATION AFTER GENERATION

To fully capture the effectiveness of CODE2JSON on the RAG task, we evaluate how it affects the
generation of subsequent responses. We compare the relative quality of the final code produced by
CODE2JSON compared to the baseline. Due to the limited budget, we focus on evaluation only on
the Python benchmarks such as HumanEval, MBPP, DS-1000, and ODEX. We use DeepSeekCoder-
7B-Instruct (Guo et al.,2024), Llama-3-8b-Instruct (lla), and Phi-2 (phi), as the evaluator model. We
use the pass@ 1 metric for evaluating code quality. The results are shown in Table
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Table 1: Relative improvement in NDCG@10 from using CODE2JSON feature extraction on
Python datasets. Each cell shows the percentage change (positive or negative) relative to index-
ing raw code. The final row indicates how often the CODE2JSON-based approach outperforms
direct code indexing.

HumanEval MBPP DS-1000 ODEX CodeFeedback-MT CodeTrans-Contest

(164) (964) (34K) (34K) (3319) (1008)
Keyword Matching
BM25 +22.6% +1204.4%  -53.5%  -22.4% -23.4% -62.2%
Text Embedding
BGE-base -0.68% +8.2% +0.54%  +11.4% +0.7% +1.2%
BGE-large 0.0% +6.4% +6.7%  +17.5% -0.13% +3.5%
GIST-base -0.67% +7.6% +6.7%  -0.07% +2.25% +5.3%
GIST-large -0.45% +8.0% -1.92% -2.0% +0.08% +5.1%
MPNET -0.22% +3.8% +17.7%  +11.3% -7.7% +5.1%
Code Embedding
Instructor -0.22% +7.6% +257%  +31.1% -0.14% +1.8%
CodeBert -41.7% +43.7% 0.0% 0.0% +62.5% 0.0%
CodeT5-small -69.5% -20.0% -100.0%  +43.9% -72.9% -15.3%
Win Percentage 11.1% 88.9% 55.6% 55.6% 33.3% 66.7%

Table 2: Relative improvement in NDCG @10 from using CODE2JSON feature extraction on non-
Python datasets. Each cell shows the percentage change (positive or negative) relative to indexing
raw code. The final row indicates how often the CODE2JSON-based approach outperforms direct
code indexing.

CSN(Ruby) HumanEval-X(cpp) HumanEval-X(go) HumanEval-X(java) HumanEval-X(js)

(53K) (164) (164) (164) (164)
Keyword Matching
BM25 +213.7% -17.3% +14.6% +29.9% +7.2%
Code Embedding

Instructor -6.98% -7.59% -10.7% -10.9% -6.7%
CodeBert -75.0% +25.7% -7.88% +50.6% +4.9%
CodeT5-small +32.4% +9.5% +8.9% +2.4% +94.6%
Win Percentage 50.0% 50.0% 50.0% 75.0% 75.0%

We see that barring MBPP, using featurized code is atleast as good as indexing raw code, if not
better. HumanEval and DS-1000 shows very positive results with majority cases benefiting from
code-features. For ODEX, there are many instances of CODE2JSON performing on par with the
baseline. Diving into LLM-specific analysis, we see that DeepSeekCoder-7B-Instruct and Llama-3-
8B-Instruct perform better than Phi-2, largely because of its smaller size of 2.7B parameters. These
results highlight a strong evidence for using featurized descriptions as proxies for code in RAG and
other related tasks.

No-retrieval generation (or the zero-shot setting) results are also provided in Appendix (Figure
along with exact pass@1 values, to compare with the RAG performance.

5 RELATED WORK

The retrieval-augmented generation (RAG) paradigm has gained significant traction in natural lan-
guage processing (NLP) and code intelligence. Traditional RAG models augment language mod-
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Table 3: Relative improvement in code generation (pass@1) scores. Each cell shows the percentage
increase (or decrease) in performance when using CODE2JSON (descriptions) over the baseline
(raw code). The final row indicates the proportion of instances where CODE2JSON outperforms
the regular RAG workflow.

Method HumanEval MBPP DS-1000 ODEX
DeepSeekCoder-7B-Instruct

BM25 +8.15% -031%  +65.41%  +6.78%

GIST-Large -16.35% -16.72%  +46.48%  +5.77%

MPNET +13.82% -16.88% +33.49% +10.31%

Llama-3-8B-Instruct

BM25 +4.63% +42.36% +24.00% 0.00%
GIST-Large -15.17% +50.70% +46.43% 0.00%
MPNET -28.41% +41.50% +22.73%  -4.60%
Phi-2
BM25 +77.36% -96.77% 0.00% 0.00%
GIST-Large +68.93% -99.40% +11.11% 0.00%
MPNET +67.18% -99.69% +15.56% -100.00%
Win percentage 66.7% 33.3% 88.9% 33.3%

els by retrieving relevant documents from an external corpus to improve contextual awareness and
response quality. While RAG is well-explored for textual queries, its application in code-based
retrieval and generation poses additional challenges due to the hierarchical structure and syntactic
complexity of code (Lu et al.,[2022).

Early approaches to code retrieval relied on information retrieval techniques such as keyword-based
search and classical retrieval models like BM25. However, these approaches often fail to capture the
deep semantics of code. More recent works leverage embeddings-based retrieval using models such
as CodeBERT (Feng et al., |2020b), GraphCodeBERT (Guo et al.l 2021), and CodeT5 (Wang et al.,
2021al), which train on large-scale code datasets to improve contextual retrieval.

Feature extraction from code has also been explored in different ways. Abstract Syntax Trees (ASTs)
(Allamanis et al., [2018)) and static analysis-based methods (Hu et al.| [2018)) extract structured rep-
resentations from code, but they often lack semantic generalizability across different programming
languages. Large language models (LLMs) have shown strong capabilities in zero-shot and few-shot
learning for code tasks (Chen et al.,[2021d; Gao et al., [2023)), making them ideal candidates for code
feature extraction. Studies such as (Su et al.,|2024; |Zhang et al.|[2023a) explore LLM-assisted code
retrieval and summarization, but they typically require fine-tuning or prompting strategies optimized
for specific datasets.

Recent research highlights the advantages of using LLMs for code intelligence tasks. Models like
Codex (Chen et al., [2021d), CodeLlama (Roziere et al. [2023), and DeepSeekCoder (Guo et al.,
2024) demonstrate strong code generation and reasoning abilities, enabling applications such as
automatic documentation, debugging, and code summarization. However, the effectiveness of zero-
shot feature extraction for RAG-based code retrieval remains underexplored.

Our work introduces CODE2JSON, for feature extraction from code, designed to be programming
language-agnostic. Unlike prior work that relies on supervised training of embedding models or
AST-based representations, etc., CODE2JSON aims to bridge the gap between structured feature ex-
traction and effective RAG-based retrieval. We demonstrate its efficacy across diverse programming
languages and retrieval models, highlighting its potential for improving code search and retrieval in
resource-constrained settings.
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6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We presented CODE2JSON, a zero-shot LLM-based framework for generating natural language
summaries and structured code representations. Our experiments on ~125K code snippets across
multiple programming languages demonstrate that indexing CODE2JSON-generated features,
rather than raw code, can improve or at least match retrieval and code generation quality in many
scenarios, even under resource constraints. Below, we discuss some key limitations and future re-
search directions:

* Prompt Sensitivity: Operating in a zero-shot setting, CODE2JSON’s performance is strongly
influenced by the LLM’s general-purpose capabilities. In some cases, it may generate incomplete
or incorrect descriptions due to hallucinations. Advanced prompt optimization techniques such as
"LLM as optimizers" (Yang et al |2024) or self-consistency (Wang et al.l 2023b) could mitigate
this.

» Data Leakage: A critical challenge in evaluating LLM-based code retrieval and generation mod-
els is data leakage—where test queries may have direct or indirect overlap with pre-training data
(L1 et al.l [2024a). This can result in inflated performance metrics that do not reflect real-world
generalization and possible security threats (Zeng et al., [2024). Future work should rigorously
audit benchmark datasets to detect such leakages and explore deduplication strategies (Lee et al.,
2022)) to ensure fair evaluations.

* Lack of Ground Truth Annotations: While our experiments were conducted on widely used
benchmark datasets, real-world adoption requires further validation on diverse and unstructured
repositories. Expanding the evaluation to additional datasets and introducing human-in-the-loop
assessments could improve robustness.

* Context Length Constraints: For large codebases or long snippets, the LLM’s context window
poses a limitation. Splitting code into smaller chunks for processing can lead to loss of contextual
dependencies, necessitating hierarchical retrieval methods or chunk-aware generation strategies
(Wang et al.,[2023a)).

* Computational Cost: Indexing large codebases using LLMs can be computationally intensive,
especially for real-time retrieval systems. Exploring efficient distillation techniques (Hinton et al.|
20135) or lightweight retrieval augmentation (Borgeaud et al., |2022) may offer more scalable al-
ternatives.

Despite these challenges, CODE2JSON demonstrates a promising step toward structured feature
extraction for code retrieval-augmented generation (code RAG) systems. We recommend future re-
search should focus on hybrid approaches that integrate symbolic reasoning with LLM-based meth-
ods, aiming to improve efficiency, generalizability, and interpretability in automated code under-
standing.
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A APPENDIX

A.1 EXAMPLE OF CODE2JSON

Another example is provided in Table [5] where we show the full feature set extracted by
CODE2JSON, including the summary, function, class, and data descriptions.

A.2 RESULTS FOR UNSTRUCTURED CODE DATA FROM GIT REPOSITORIES

Figure M]shows schematic architecture of the CODE2JSON-assisted code RAG pipeline on Git
repositories. Algorithm [T|shows the chunking strategy used.

The real-world raw codebases (e.g., HuggingFace’s Transformers repository), however, are not
structured with no distinct code or text fields. To resolve this, we use Algorithm E] which con-
verts an unstructured raw code body into manageable code chunks. Algorithm |l leverages AST
with the tree-sitter library (tre) and depth-first tree traversal.

For the evaluation of CODE2JSON on unstructured code data sources, we use Transformers
v4 .42 .3 library (tra), commit# 2033 for the Peft library (pef), commit# 9330 of the Diffusers
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Table 4: Examples outputs from CODE2JSON on code samples from MBPP dataset with Llama-3-
70B as the extraction LLM.

Raw Code Natual Language Feature Set
def is_upper (string): This code defines a function that takes a string
return string.upper () as input and returns the uppercase version of that
string.
def check_permutation (strl, str2): | The code defines a function to check if two in-
nl=len (strl) put strings are permutations of each other. It first
n2=len (str2) checks if the strings are of equal length, and if
if (nl!=n2): not, returns False. If they are of equal length, it
return False sorts the characters in each string and then com-
a=sorted(strl) pares the sorted strings character by character. If
strl=\" \".join(a) all characters match, it returns True, indicating the
b=sorted (str2) strings are permutations of each other, otherwise,
str2=\" \".join (b) it returns False.
for i in range (0, nl, 1):
if(strl[i] !'= str2f[il]):

return False
return True

import re This code defines a function that checks if a
def match_num(string) : given string starts with the digit "5" using reg-
text = re.compile (r\"~5\") ular expression. The function takes a string as
if text.match(string): input, compiles a regular expression pattern that
return True matches the digit "5" at the start of the string, and
else: returns True if the string matches the pattern, and
return False False otherwise.

Algorithm 1 Depth-First Search (DFS)-based Chunking on AST

1: Imput: Raw unstructured code, C, and chunk size threshold, £

Output: Code chunks, ¢;

Build Abstract Syntax Tree (AST) from Raw Code, C

Traverse the AST using DFS to identify semantic components (e.g., classes)

for each node in the AST do
Identify code segments that belong together based on structure and hierarchy.
Aggregate related nodes to form chunks, ¢;, of size < ¢

end for

(dif) library, and commit# 1952 of the TRL (trl) library. Files with extensions .csv, .tsv, .png, and
ipynb were ignored. We use Tree-sitter library (tre) for chunking using Algorithm [T, BM25 for
retrieval, and Llama3-8B-Instruct with temperature 0.1 for generation. For the baseline, we directly
indexed the code chunked generated by the Tree-sitter library.

For evaluating CODE2JSON on unstructured code data, we curated a dataset of 486 questions: {255
from Transformers, 100 from Diffusers, 98 from TRL , 33 from Peft}, with the help of authoritative
domain experts. We examine the RAG performance with CODE2JSON and without CODE2JSON,
and also with zero shot inference. Figure [5| shows how CODE2JSON stacks up against a vanilla
approach without CODE2JSON and zero-shot learning. It is remarkable that even with BM25-based
indexing and Llama3-8B-Instruct (BF16), CODE2JSON performs on par with the default approach.
In popular libraries such as Transformers and Diffusers, zero shot learning with Llama3-8B-Instruct
(BF16) outperforms both RAG approaches. This can be attributed to training data leakage (L1 et al.,
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Table 5: Example outputs from CODE2JSON on code samples from the Transformers dataset with
Llama-3-70B as the extraction LLM.

Feature Details
from ..utils import DummyObject,
requires_backends

SLOW_TO_FAST_CONVERTERS = N
Raw Code - - ene

def convert_slow_tokenizer (xargs, =*xkwargs):
requires_backends (convert_slow_tokenizer,
["sentencepiece", "tokenizers"])

Summary Feature This code appears to be part of a larger project and seems to be auto-

generated. It imports some utility functions and defines a converter

function for a specific type of tokenizer, which requires certain back-

end dependencies to be present.

Function Description convert_slow_tokenizer - Converts a slow tokenizer to a
fast tokenizer using SentencePiece and Tokenizers backends.

Class Description DummyObject - A utility class used to create dummy objects,
likely used as placeholders or for testing purposes.

Data Description SLOW_TO_FAST_CONVERTERS - A converter for slow tokeniz-

ers, currently set to None.

DummyObject - A dummy object used in the code.
requires_backends - A function to check if required backends
are available.

2024a). We expect CODE2JSON to perform better with Text Embedding models such as MPNET
or Code Embedding models such as CodeT5-small.

A.3 DETAILED RAG RESULTS

The full results for retrieval using CODE2JSON on different datasets using different retrieval strate-
gies is provided in Table [f] We present these results as an ordered pair "baseline/CODE2JSON”,
with green cells indicating CODE2JSON’s superiority and red cells indicating the baseline’s supe-
riority.

Table 6: Comparative retrieval performance (NDCG@10) between CODE2JSON and a baseline
(CodeRAG-Bench pipeline). The NDCG@ 10 scores are displayed as ’baseline/CODE2JSON’,
with green cells indicating CODE2JSON’s superiority and red cells indicating the baseline’s
superiority.

Python Non-Python
HumanEval ~ MBPP DS-1000 ODEX  CodeFeedback-MT ~ CodeTrans-Contest | CSN(Ruby) HumanEval-X(cpp) HumanEval-X(zo) HumanEval-X(java) HumanEval-X(js)
(164) (964) (34K) (34K) (3319) (1008) (53K) (164) (164) (164) (164)

Keyword Matching

BM25 100.0/81.39  3.67/47.89 5217242 6.7/52 73.69 /56.40 30.59/11.57 5.56/17.45 69.77/57.72 46.22/52.94 45.31/58.88 53.65/57.49

Text Embedding

BGE-base 99.78/99.1  76.45/82.74 25.99/26.13 22.06/24.57 58.84/59.25 64.28 / 65.06 64.63/59.24 97.8/90.12 95.33/89.01 97.92/91.85 97.82/89.96
BGE-large 100.0/100.0 78.32/83.31 25.28/26.98 21.87/25.69 61.70/61.62 69.07/71.47 65.61/62.19 97.82/91.97 97.98/91.15 97.59/90.08 98.65/92.91
GIST-base 100.0/99.33  78.37/84.35 27.29/29.13  26.8/26.78 60.78 /62.15 67.19/70.77 64.81/60.05 97.82/91.04 96.33/91.88 98.22/95.36 96.94/91.07
GIST-large | 100.0/99.55 79.08/85.44 30.17/29.59 28.08/27.51 61.75/61.80 69.30/72.83 65.19/62.33 97.86/92.68 97.85/92.91 98.27/94.35 96.33/93.37

MPNET 100.0/99.78 78.72/81.75 24.36/28.69 21.83/24.30 62.73/57.9 70.57/74.15 52.24/49.38 94.44/90.19 98.35/93.45 97.51/96.61 93.04/94.37

Code Embedding

Instructor 100.0/99.78 73.73/79.35 16.23/204 16.94/2222 56.02/55.94 69.30/70.55 54.21/50.42 97.33/89.92 96.98 / 86.63 96.06/85.5 93.02/86.83

CodeBert 9.6/5.59 0.96/1.38 0.0/0.0 0.0/0.0 0.16/0.26 0.15/0.15 0.04/0.01 342/43 5217479 3.26/491 3.82/4.01
CodeT5-small | 30.47/9.3 8.12/6.49 0.06/0.0 1.64/2.36 0.85/0.23 2.88/2.44 0.74/0.98 7.01/7.68 6.61/72 6.26/6.41 557107

We largely see a superior performance for CODE2JSON on Python datasets. However, when using
text-embedding models, the performance takes a hit for non-Python datasets. While still compara-

17



Published as a conference paper at ICLR 2025

. Generated
<«
Human Evaluation @

LLM Generation

Code

A

Retrieved Mapping
»| (Top K) Code Ranked

Chunks Features

Nearest Neighbor
Search
Embedding/
Code2JSON Indexin,
CodeiRees) Chunkin, Feature i
from GitHub 9

Embedded
Prompt Query
@
[

Knowlede
Base

Embedding Legends
Offline LLM
Knowledge
RAG Base Offiine @
Runtime Creation Evaluation

Figure 4: Schematic architecture of the CODE2JSON-assisted code RAG pipeline on Git reposito-
ries. The pipeline consists of three workflows. First, offline knowledge base creation: it processes
the code repo by chunking it to small fragments and then converting them into natural language (NL)
features using the CODE2JSON prompt template, as illustrated in Figure 2] These NL features are
subsequently embedded and indexed into a knowledge base, making them readily accessible during
the code RAG runtime. Second, code RAG runtime: Each NL prompt from a user is embedded
and matched with the Top-K relevant features in the knowledge base (summary, function, class, data
descriptions). The ranked features serve as the context in RAG pipeline for generation. Finally
evaluation for each prompt: we measure the accuracy of the generated code as a response to the NL
prompt using a human-in-the-loop.

Source: Transformers Source: Peft Source: Trl Source: Diffusers

= code2jsON - = CodezjsoN - = Code2jsON = CodezjsoN
= vithout Code2JSON B without Code2]SON B without Code2JSON 40 { BB without Code2)SON

== Zero-Shot o = Zero-Shot = Zero-Shot = Zero-Shot

Figure 5: Distribution of ratings (0-6) across different sources: Transformers (N=255), PEFT
(N=33), TRL (N=98), and Diffusers (N=100). The figure illustrates the frequency of ratings for
code RAG with CODE2JSON (green), code RAG without CODE2JSON (red), and zero-shot infer-
ence (blue) for each source.

ble, this highlights the inability of text-embedding models to capture rich semantic information in
code data. This pattern could be attributed to the relatively lower representation of programming
languages other than Python in the training data used for LLMs.
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Figure 6: Schematic architecture of the CODE2JSON-assisted code RAG pipeline on Git reposito-
ries. The pipeline consists of three workflows. First, offline knowledge base creation: it processes
the code repo by chunking it to small fragments and then converting them into natural language (NL)
features using the CODE2JSON prompt template, as illustrated in Figure 2| These NL features are
subsequently embedded and indexed into a knowledge base, making them readily accessible during
the code RAG runtime. Second, code RAG runtime: Each NL prompt from a user is embedded
and matched with the Top-K relevant features in the knowledge base. The ranked features retrieve
the corresponding Top-K code chunks which serve as the context in RAG pipeline. The retrieved
context together with prompt generate response with a zero shot prompt as shown in Figure [§]

Detailed results for code generation after retrieval are also presented in Figure[7] We show the results
as an ordered pair “baseline/CODE2JSON’. For code generation, we use minimal prompting, since
the data is already in a query-response format. A simple one line instruction directing the LLM to
generate the code based on given context is used.

A.4 ABLATION STUDY USING DIFFERENT EXTRACTION LLMS ON PYTHON BENCHMARK
DATASETS

The retrieval performance (NDCG@10) of CODE2JSON, when evaluated with two distinct fea-
ture extraction LLMs—Llama-3-70b-instruct-awq-4bit and Llama-3-8B-Instruct, both with an 8K
context length—demonstrates comparable effectiveness, as shown in Figure [/l This suggests that
increasing the model size at the expense of numerical precision does not necessarily translate into
better performance.

A.5 PROMPT TEMPLATE FOR CODE GENERATION

Figure [§] shows the prompt template used for the generation of code for hand-made queries for
unstructured code repositories.
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Table 7: Generation performance (pass@1). The zero-shot performance (highlighted in yellow) is
obtained by prompting the LLM with just the question without any retrieval. The pass@1 scores are
displayed as ’baseline/CODE2JSON’, with green cells indicating CODE2JSON’s superiority and
red cells indicating the baseline’s superiority. Best retrieval performance for each dataset are in bold.

Method ‘ HumanEval MBPP DS-1000 ODEX
DeepSeekCoder-7B-Instruct
Zero-shot 25.00 62.8 0.0 41.46
BM25 59.76/64.63 63.6/63.4 7.3/21.1 33.49/35.76
GIST-Large 63.41/53.05 80.2/66.8 11.4/21.3 35.54/37.59
MPNET 61.59/70.12 77.0/64.0 143/21.5 35.31/38.95
Llama-3-8B-Instruct
Zero-shot 48.78 40.0 0.0 4.56
BM25 65.85/68.90 288/41.0 19/25 5.01/5.01
GIST-Large 68.29/57.93 28.4/42.8 1.5/2.8 4.78 /4.78
MPNET 66.46/47.56 29.4/416 1.7/22 4.78 1 4.56
Phi-2
Zero-shot 41.46 0.4 0.0 0.0
BM25 11.59/51.22 124/04 3.8/3.8 0.0/0.0
GIST-Large 14.02/45.12  66.2/0.4 321/3.6 0.0/0.0
MPNET 13.41/40.85 64.6/0.2 3.8/45 0.23/0.0
Win percentage 66.7% 33.3% 88.9% 33.3%
HumankEval MBPP DS-1000 ODEX

BM2> BM25 BM25 BM25

-base MPN -base MPN -base MPNE

GIST-IaXge, BGE-large  GIST-Ia large  GIST-Ia arge GIST-Ia E-large

GIST-base GIST-base GIST-base GIST-base

Figure 7: Ablation study comparing extraction models Llama-3-70b-instruct-awq-4bit and Llama-
3-8B-Instruct across four datasets: HumanEval, MBPP, DS-1000, and ODEX. Each radar plot
displays NDCG @10 values across six indexing strategies—BM?25, BGE-Base, BGE-Large, GIST-
Base, GIST-Large, and MPNET (clockwise). Results demonstrate comparable performance between
the LLMs.

A.6 SUPERVISED FINE TUNING

SFT (Supervised Fine-tuning) is used to adjust a model’s parameters to improve its performance on
specific downstream tasks. Recently, there has been work towards comparing ((Gupta et al., [2024;
Alghisi et al., 2024)) and even combining ((Zhang et al., |2024a; Rangan & Yin, 2024)) RAG and
fine-tuning approaches for similar tasks and evaluating their usefulness and efficiency.

To further validate the quality of representations generated by LLMs, we perform experiments by
finetuning smaller LLMs (<10B parameters) in a supervised manner. Our focus here is to study
the impact when we use LLM generated features to fine tune another LLM, in isolation to RAG.
Concretely, we compare two fine tuning approaches, (i) Fine-tuning with the raw question-answer
pairs, and (ii) Fine-tuning with LLM generated descriptions as additional context for the question-
answer pair. For (i), we simply fine tune the LLM to generate the answer code snippet in response
to the question provided in the dataset. For (ii), the LLM-generated description of the code snippet
is used as additional context in addition to the question. During inference, in both the cases, we
only provide the question without the context and evaluate the quality of the generated output using
pass@1 ((Chen et al.| [2021b)) score, to test the code on functional effectiveness. To optimize for

20



Published as a conference paper at ICLR 2025

~

system: |
You are a language model trained to understand code and answer questions based on
the code files provided to you. Your job is to analyze the provided files and answer the
question specified in the "Question" field using relevant information from these files.
You must follow the instructions below while answering the question.

Instructions:
1. You will review the "Question" field to understand what is being asked.
2. You will then examine the files listed in the "Context" field to gather necessary
information.
3. You will then identify and focus on the relevant portions of the code that help
answer the question.
4. All files may not be required to answer the question.
6. If providing a code block from the files could be relevant to answer the question,
please do so.
7. If the question is irrelevant to the context provided, "l don't know the answer to the
question.”
8. You will focus only on answering the question.
9. Your response will be succinct and to the point.
10. Start writing your response after the "Response" field.
user: |
Question:
<QUESTION>

Context:
<CONTEXT>

Response:

Figure 8: Prompt template (in yaml) used for downstream code generation.

GPU resources, and considering the size of the datasets used for our SFT, we use LoRA ((Hu et al}
2022))), and perform ablations with different values of the rank variable.

The fine tuning experiments were done on an NVIDIA-A100 GPU (Ubuntu 22.04) with 40GB GPU
RAM and Intel(R) Xeon(R) Gold 6354 CPU @ 3.00GHz chips with 125GB GPU RAM. The results
are shown in Figure[9] The alpha value used was 16. We also used a lora dropout of 0.05, learning
rate Se-5, weight decay Se-2, and 3 epochs as hyperparamters. Detailed configuration settings can
be found in our code.

As highlighted in Figure [0 fine-tuning with additional LLM-generated context can help during
inference, even when a similar context is not available for test data. Although the increase in pass@ 1
score is not as significant for all cases, and even drops occasionally, we argue that this experiment
shows the potential of LLM-generated context in improving fine-tuning procedures and perhaps
alignment as well.

A.7 COST ANALYSIS

This section provides a detailed analysis of the costs associated with various experiments for feature
extraction using an LLM. We do not discuss costs associated with retrieval, generation, or fine-
tuning here, since we believe those are widely discussed in literature ((Purwar et all,[2024}; [Musser],
2023} [Laban et al., [2024)). Instead our focus is to provide estimate costs for processsing a dataset
with an LLM, to make it easier for researchers and developers to plan and budget any work they
may wish to reproduce with our methodology.
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Figure 9: pass@1 score after SFT with LoRA on different datasets.

Our first analysis is done for Llama3-8B-Instruct as the LLM used for feature extraction. We hosted
the model on a g5.4xlarge instance with 24GB GPU RAM, with the help of a vllm server, and
batching for upto 4 sequences. On the same machine which calls the LLM server and stores the
results, we use multiprocessing to retrieve results in parallel. Concretely, we use 16 jobs (number
of CPUs) for best results. We compare 3 datasets, namely Humaneval (Python version), MBPP,

and ODEX for which we used an open retrieval corpus (Wang et al., [2024). The summary for the
experiments is given in Table§]

We consider the storage and GPU cost for determining the overall cost for each experiment. The
network cost is negligible since our requests do not exceed the IOPS threshold (3000) of the instance,
for any experiments. We provision 1000GB EBS gp3 volume which costs $80/month. The GPU cost
for g5.4xlarge at the time of the experiments was $0.974/hr. We consider the wall time to account
towards the volume and GPU costs. We summarize the costs in Table [0l

Table 8: Llama3-8B-Instruct feature extraction logs

Dataset (size) Time(s) | Total input tokens | Total generated tokens
HumanEval (164) 86.1 35.3K 129K
MBPP (964) 470.1 85.7K 69.6K
ODEX (34003) 23.7K 11.4M 3.0M

Table 9: Llama3-8B-Instruct feature extraction costs

Dataset (size) Total cost($) | Cost (1M tokens)($)
HumanEval (164) 0.03 0.54
MBPP (964) 0.14 0.91
ODEX (34003) 7.14 0.5
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We also give costs for running a Llama3-70B-Instruct-awq model hosted on a g5.12xlarge instance
with 96GB GPU RAM, with the help of a vllm server, batching for upto 4 sequences, and max GPU
memory utilization of 0.8. We compare Humaneval, MBPP, and CodeSearchNet (ruby split) for
these costs. The summary for these costs is given in Table[I0]

For per token cost, we consider the prompt + generation token count. The higher per-token cost
for MBPP can be attributed to higher generation tokens to prompt tokens ratio compared to other

datasets.

Table 10: Llama3-70B-Instruct-awq feature costs

Dataset (size) Time(s) | Input/ Output tokens | Total Cost($) | Cost (1M tokens)($)
HumanEval (164) 86.11 35.3K/12.8K 0.23 478

MBPP (964) 470.14 85.7K / 63.2K 0.93 6.24

CSN (53270) 72486.08 7.6M / 6.4M 69.66 5.70

Apart from computational complexity, we also analyze space requirements when creating an index
on raw code data and featurized descriptions. In Table it is clear that a feature index is more
efficient that a raw index for HumanEval, DS-1000, and ODEX, when using BM25.

Table 11: BM25 index sizes for various datasets using raw code/features as documents

Dataset Raw Code Index size | Feature Index size
HumanEval 248KB 176KB
MBPP 396KB 584KB
DS-1000 72MB 22MB
ODEX 72MB 22MB
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