
Functional Alignment Can Mislead: Examining Model Stitching

Damian Smith 1 Harvey Mannering 1 Antonia Marcu 1

Abstract
A common belief in the representational compar-
ison literature is that if two representations can
be functionally aligned, they must capture simi-
lar information. In this paper we focus on model
stitching and show that models can be functionally
aligned, but represent very different information.
Firstly, we show that discriminative models with
very different biases can be stitched together. We
then show that models trained to solve entirely dif-
ferent tasks on different data modalities, and even
representations in the form of clustered random
noise, can be successfully stitched into MNIST or
ImageNet-trained models. We proceed by show-
ing that alignments can also be found in the case
of autoencoders where the encoder and decoder
are trained on different tasks. We end with a dis-
cussion of the wider impact of our results on the
community’s current beliefs. Overall, our paper
draws attention to the need to correctly interpret
the results of such functional similarity measures
and highlights the need for approaches that cap-
ture informational similarity.

1. Motivation
Measuring representational similarity is a complex task and
there is no consensus on how it should be done (Sucholut-
sky et al., 2023). More interestingly, there seems to be no
consensus on when two representations can be considered
similar. In this paper we do not consider two representations
to be similar if they do not capture the same information.
For example, if one model learns to classify birds by their
song and another learns to classify them by their visual ap-
pearance, we consider those models to be different. Equally,
if two models learn to visually classify birds but one of
them uses the birds’ shape to make predictions, while the
other uses plumage, we would consider those models to be

1Vision, Learning, and Control (VLC) Research Group, Uni-
versity of Southampton. Correspondence to: Antonia Marcu
<a.marcu@soton.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Do networks that learn to solve all these
tasks really represent the same information?

Birdsong

Clustered-
Noise

Stylized
ImageNet

ImageNet

Figure 1. Examples of inputs from 4 different tasks we consider.
We show that models trained on the first three tasks can be stitched
together with models trained on ImageNet despite depicting very
different input-level information.

different, since they also use different input patterns for their
predictions. Throughout the paper we refer to input-level
patterns as “semantic” information.

We argue that without capturing semantic similarity, some
of the existing model comparison measures can end up
considering a network that successfully distinguishes birds
based on their songs to be equivalent to one that successfully
distinguishes ImageNet images. In particular, we focus on
model stitching but we argue in our discussion section that
the same criticism might be extended to other measures and
hypotheses as well.

As an alternative to established model comparison methods
such as CKA (Kornblith et al., 2019), functional model com-
parison is gaining increasing attention (Bansal et al., 2021;
Hernandez et al., 2022; Klabunde et al., 2025; Csiszárik
et al., 2021). In this paper we focus on the functional per-
spective as an emerging direction and will therefore not
cover CKA, SVCCA (Raghu et al., 2017), or similar meth-
ods. Broadly speaking, the functional perspective argues
that two intermediate layers should be considered similar
if they lead to matching outputs. While this perspective
seems useful, especially in a classification setting, we argue
that there is one fundamental problem with deep learning
models which raises questions about its utility: shortcut
learning (Geirhos et al., 2020).

Shortcut learning is an umbrella term for learning decision

1

Functional Alignment Can Mislead: Examining Model Stitching

rules that rely on spurious correlations, causing the model
to perform poorly outside of the setting it was trained on.
Geirhos et al. (2020) argue that many challenges in deep
learning boil down to shortcut learning. Moreover, the
simplicity bias literature argues that SGD-trained models
have a tendency to learn simpler rules (e.g. Valle-Perez
et al., 2018; De Palma et al., 2019) (often shortcuts) over
more complex rules that capture some of the true, salient,
or intended information. Therefore, there is an increasing
consensus that models are prone to picking up shortcuts
in the data, whether we are aware of their existence or not.
As a result, it is important to be able to distinguish between
models that learn different patterns because some could fail
to generalise in the wild.

In this paper we look at model comparison starting from the
understanding that the models we compare have a propen-
sity for learning shortcuts. In particular, we focus on model
stitching (Lenc & Vedaldi, 2015), which is an increasingly
popular method for comparing models’ functional similarity.
Informally, model stitching compares models A and B by
“stitching” together the first part of model A (the sender)
with the last part of model B (the receiver) using a linear
transformation referred to as a “stitch”. The stitch is trained
such that it learns a mapping between representations of
models A and B. Model A is considered similar to model
B if their stitched combination achieves an accuracy com-
parable to that of model B. In other words, model stitching
assesses how compatible two models are from a functional
perspective by comparing how the function represented by
their stitched combination behaves compared to the B func-
tion when evaluated at the same input points. Functional
compatibility is often taken to indicate that models cap-
ture similar information (e.g. Lenc & Vedaldi, 2015; Bansal
et al., 2021; Hernandez et al., 2022).

In this paper we design experiments which demonstrate
that the stitching compatibility (or alignment) of models
is inappropriate for evaluating the extent to which two
networks capture similar information. Importantly, a model
that learns a spurious correlation can appear to be fully
compatible with one that learns the intended information.
Given the prevalence of shortcut learning, we argue that a
meaningful model comparison should distinguish between
models that capture different input patterns.

We first show that models that learn to use different infor-
mation can easily be stitched together. We start with a toy
problem where we can bias models towards learning to use
either colour or shape information. We show that the mod-
els are considered similar from a stitching perspective. We
then consider a more challenging setting where we ensure
that the sender uses different information from the receiver,
and also that its representations do not contain information
relevant for the original receiver network. We do this by

removing all shape information from the input data to be
represented, leaving only colour information. We then stitch
into a model that was trained on shape information alone
and that is unable to make correct predictions based on
colour information. We achieve full stitching compatibility
in this case as well. We then show that we can success-
fully stitch clustered, random noise into the models we train.
This, therefore, shows that we can easily construct cases
where the models’ stitching compatibility does not reflect
their informational similarity.

In the second part of the paper we demonstrate that the
problem is not restricted to simple settings by performing
similar experiments with more complex, “real-world” data.
For example, we show that we can stitch a model trained
on ImageNet (Russakovsky et al., 2015) to one trained to
recognise bird songs.

Our contributions are:

• We argue that accounting for the extracted input pat-
terns is of paramount importance when comparing rep-
resentations, and show that model stitching does not
achieve this;

• We show that we can construct problems where stitch-
ing cannot distinguish between models known to have
learned different shortcuts (i.e. they use different infor-
mation) (Section 4.1);

• We show that representations that depict entirely differ-
ent information or even clustered, random noise can be
stitched into a trained model, raising further questions
about the usefulness of stitching as a measure of model
similarity (Section 4.2);

• We extend our experiments to more complex, real-
world, and benchmark datasets, considering distinct
modalities and different tasks for both the discrimina-
tive and the generative case (Section 5);

• And, we end with a discussion of the wider implica-
tions of our results on functional alignment.

The code for our experiments is available at https://gi
thub.com/DHLSmith/stitching.git.

2. Model Stitching
Model stitching has seen many variants (e.g. Bansal et al.,
2021; Csiszárik et al., 2021; Hernandez et al., 2022) since it
was first proposed (Lenc & Vedaldi, 2015). For simplicity,
in this paper we only consider stitching between identical
architectures and at matching points in the network. Let A≤l

denote the composition of all layers in the trained network A
up to and including layer l. Following Bansal et al. (2021),

2

https://github.com/DHLSmith/stitching.git
https://github.com/DHLSmith/stitching.git

Functional Alignment Can Mislead: Examining Model Stitching

we choose the stitching layer s to be a randomly initialised
1× 1 convolutional layer preceded and followed by batch
normalisation (Ioffe & Szegedy, 2015). Bansal et al. (2021)
use a convolutional layer as it has restricted expressivity.
The untrained stitched model is therefore given by B>l ◦ s ◦
A≤l. We then train the stitched model by freezing the parts
taken from the models A (the sender) and B (the receiver)
and only optimising the stitching layer s. We then report the
performance of the stitched model on the test data. If the
test performance of the stitched model is greater or equal
to that of the receiver (which becomes the baseline), it is
considered that models A and B are compatible at layer l.

In this paper we focus on ResNet-18 and ResNet-50 (He
et al., 2016) models, but include results for VGG19 (Si-
monyan & Zisserman, 2015) in Appendix D.1. Note that
we stitch ResNet models before residual blocks and before
the linear classifier. Therefore we refer to stitching before
the first residual block as stitching “Res Block 1”; before
the second residual block as “Res Block 2”; and stitching
before the classifier as “Linear”.

Current stitching interpretation. This work is inspired
by Hernandez et al. (2022) who find that stitching can
reach high accuracy even when stitching from later lay-
ers in Model A to much earlier layers in a Model B. They
believe that this could either be because the common intu-
ition about how models process input is wrong, or because
model stitching is able to match representations which are
“different from what is expected”. Nonetheless, they con-
clude that functional similarity provides a meaningful way
of comparing models. Their intuition is that “if two repre-
sentations can be used for similar purposes then in some
sense they encode similar information” (Hernandez et al.,
2022). This agrees with Bansal et al. (2021) who argue “two
networks with identical architectures, but very different in-
ternal representations, would fail to be stitching connected”.

We argue that no meaningful conclusion can be drawn from
analysing the stitch connectivity. When stitching is not suc-
cessful, this could simply be because a good enough map-
ping between the representations was not found (Csiszárik
et al., 2021). We claim that when stitching is successful,
one cannot conclude that this is necessarily because the rep-
resentations capture the same information. The next section
shows the latter empirically.

3. Inducing a Learning Bias Through the Data
We choose to compare models on a typical shortcut learning
problem: a variant of colour MNIST (Bahng et al., 2020). In
essence, colour MNIST adds colour as an additional correla-
tion between the input variable and the target variable. We
choose to add colour as a fully-correlated background. For
example, all instances of digit “0” have a red background,

all instances of “1” have a green background, etc. We refer
to this dataset as “Correlated”.

We use this problem to show that stitching is unable to dis-
tinguish between models that use different features to make
the prediction. To do so, we want to simulate a scenario
where training various models leads to each learning a
different pattern. One possible way of biasing the model
towards picking up different rules is to modify the architec-
ture. However, modifying the architecture means that we
can’t perform a one-to-one model comparison. For this rea-
son, we choose to modify the training data instead as a way
of biasing the models. We therefore create different variants
of the dataset that lead to the model classifying based on
either colour information alone, shape information alone,
or different levels of relying on the combination between
colour and shape.

Importantly, note that we modify the data in such a way
that each model would still perform well (over 98% test
accuracy) on the original Correlated dataset. This means
that the models could have been trained on the original
Correlated data if we had an appropriate way of biasing
them in a controlled way through the training procedure
alone. Below we provide a brief description of the dataset
versions created (see Figure 2a for visual examples). For
full details on the creation of the datasets, see Appendix A.

Colour MNIST (Correlated): The colour of the back-
ground and class of the digit are correlated.

Digit with Uncorrelated Colour (Digit): Images contain-
ing random combinations of background colour and
digit. Target is given by the digit’s class. Note that the
colours were chosen from the same set of colours used
to generate the Correlated dataset.

Colour with Uncorrelated Digits (Colour): Images con-
taining random combinations of background colour
and digit. Target is given by the colour’s class. Im-
portantly, the model could learn to represent shape
information, but this cannot help the model classify.

Colour with no Digit (Colour-Only): Images containing
background colour and no digit. Target is the colour’s
class. The model cannot learn to base its predictions
on shape information.

For clarity, note that the short version of the dataset’s name
(e.g. Digit) refers to the part of the input that is correlated
with the label. We refer to the models by the name of
the dataset they were trained on. Unless otherwise stated,
the results are reported on ResNet-18 models. For full
experimental details see Appendix B.

3

Functional Alignment Can Mislead: Examining Model Stitching
Co

rr.
6 6 7 7 8 8

Di
gi

t
Co

lo
ur

Co
lo

ur
On

ly

(a)

Res Block 1 Res Block 2 Res Block 3 Res Block 4 Linear

0.980

0.985

0.990

0.995

1.000

Te
st

 A
cc

ur
ac

y

(b)

Res Block 1 Res Block 2 Res Block 3 Res Block 4 Linear

25

50

75

100

125

Fe
at

ur
e

Ra
nk

Stitched Model
Correlated
Digit
Colour
Baseline

(c)

Figure 2. (a) Two example images for classes ‘6’, ‘7’, and ‘8’ in each dataset type. (b) Stitching test accuracy when stitching at each of
the 5 layers we consider, for all four types of model stitched into Digit model with Correlated data. Baseline is given by the test accuracy
of the unstitched Digit model on the Correlated dataset, which is the task we assume to be given. Shaded area covers 100% of results
range, markers show each result across multiple initialisations. We find that we can achieve stitch compatibility across different layers for
all the models we consider. (For each stitched Digit model, accuracy remains above its own unstitched baseline) (c) Rank analysis of the
feature maps output by the receiver’s first layer upon stitching. Shaded areas mark 1 standard deviation.

4. Experiments
We start this section by adhering to Bansal et al. (2021)’s
original setting. Namely, we assume we are given the task
of classifying the Correlated dataset and we want to analyse
the similarity of multiple models trained to solve this task.
We show that stitching cannot distinguish between models
capturing different biases in the data. To rule out the pos-
sibility that the results we observed are due to information
leak, we then move away from the original stitching setting
(Section 4.2). We remove from the input (and as a conse-
quence, from the sender’s representations) any information
related to the receiver’s task and manage to achieve stitching
compatibility.

4.1. Stitching Cannot Distinguish Between Different
Biases

In this section we want to verify if stitching can help distin-
guish between models that learn to classify using different
information. We start by stitching various senders into the
Digit model (i.e. the digit is correlated with the label and
the background has a random colour). Note that for training
and evaluating the stitch, we use the Correlated dataset as
this is the data we assume we have access to, in accordance
with the typical stitching procedure. All other datasets were
created simply to train senders and receivers with different
biases. We find that at all layers, all models we consider can
easily be stitched into the Digit model (which becomes the
receiver), obtaining a higher accuracy than that of the orig-
inal Digit model (see Figure 2b). That is, even the Colour
with Uncorrelated Digits model, which learned to classify
based on colour information (ignoring shape), appears com-
patible with the model that learned to classify based on
shape information only.

Taking this further, we train a model on patches of colour
with no digit (‘Colour-Only’). As opposed to Colour (which

includes an uncorrelated digit), the model can only learn
to represent solid colour information. Nonetheless, when
stitching on the original task, we obtain a test accuracy
higher than that of the receiver alone, indicating stitching
compatibility (see Figure C.1a).

Numerical rank. We analyse the rank of the feature maps
after the first layer of the receiving network. This is a way
of gauging the linear dependence of the sender’s feature
maps as seen through the lens of the receiver’s representa-
tion. If two sender representations have similar rank when
processed by the receiver network, we cannot necessarily
claim that they are perceived in a similar way. We can
only say that the receiver represents them with a similar
level of linear dependence. However, if they do not have
the same rank, we take that as additional evidence that the
senders have learned different information according to
the receiver. Details of the numerical rank estimation are
provided in Appendix B.2.1.

In Figure 2c we show the rank computed when stitching at
each of the 5 layers we consider. We find that for stitching
before the 2nd and 3rd residual blocks there is a clear gap
between the rank of the processed representations of Digit
with Uncorrelated Colour and those of Correlated, for exam-
ple. This indicates that when fed into the receiving network,
the representations of Digit with Uncorrelated Colour have
a different degree of linear dependence from those of Cor-
related and therefore are not perceived as equivalent by the
receiver despite both being stitch-compatible.

The numerical rank of representations provides an estima-
tion of their compression. Note that alternative estimators of
compression could be considered. Each estimator, including
numerical rank, comes with its limitations. Our objective is
to include additional evidence that the various sender rep-
resentations are not entirely equivalent when processed by
the receiver. Following recent work (e.g. Masarczyk et al.,

4

Functional Alignment Can Mislead: Examining Model Stitching

2023; Feng et al., 2022), we choose to use numerical rank
to illustrate the difference in compression.

Arguably, in the stitching cases considered so far colour
information could still “leak” through a model that did
not learn to use it for classification. The same argument
holds for structured shape information potentially leaking.
We next perform two follow-up experiments: with a re-
ceiver model trained only on shape information, we obtain
full stitch compatibility on Colour-Only images (no digit
is depicted, Figure 2a), despite no shape information be-
ing present in the data; and stitching clustered, random
noise simulating a sender network’s representation (see Sec-
tion 4.2) into the receiving network. These experiments
strengthen our findings that models can be easily stitched to-
gether even when they represent very different information.

4.2. Representations of Very Different Information Can
Be Stitched Together

To check whether stitching between dissimilar models is due
to the sender model “leaking” information expected by the
receiver, we remove all information that could be expected
by the receiver from the images we train and evaluate the
stitch on. Concretely, we stitch Colour-Only models into
receivers trained on Greyscale MNIST data but this time
using Colour-Only data to train and test the stitch. There
is no digit-like structure in the Colour-Only data which (if
leaked) could be used by the MNIST receiver. The un-
stitched MNIST models have a baseline accuracy (when
tested with MNIST data) of 99.0± 0.1%; at every stitching
layer, the Colour-Only sender increases this to 100% accu-
racy, resulting in stitching compatibility. In other words,
despite the sender representations not containing any digit
information at all (as the input does not contain that infor-
mation in the first place) we are able to successfully stitch
those representations into a Greyscale MNIST model.

Lastly, we stitch clustered, random noise (Clustered-Noise)
into the receiver network. We create 10 random vectors
to represent the mean of each of the 10 classes. The vec-
tors have the same dimensionality as the representations
that would normally be expected by the stitching layer. For
each class we create 6K samples by adding random noise
to the mean class vector, obtaining a dataset of the same
size as the original Correlated dataset (see Appendix A).
Note that we do not use Clustered-Noise to train a sender.
Instead, Clustered-Noise simulates the representations of a
sender network. We then stitch these simulated representa-
tions onto the Digit receiver. We can achieve full stitching
compatibility when using randomly generated represen-
tations. As expected, the rank of these representations when
fed into the receiver network is different from that of the
learned representations (see Figure C.1b). We find similar
results with VGG19 models (see Appendix D.1).

In light of these results, we argue that models that extract
patterns from significantly different information can, in at
least some cases, be easily stitched together. While it may
be argued that the datasets chosen are too simple, it is known
that SGD-trained models find simple rules or shortcuts (e.g.
Valle-Perez et al., 2018; De Palma et al., 2019), and there is
no algorithm to decide when stitching is applicable. There-
fore, models’ stitching compatibility should not be taken
to mean that they learn similar rules or that they capture
similar information.

Note that these last experiments (starting Section 4.2) de-
liberately move away from Bansal et al. (2021)’s original
setting. The stitch is now trained and evaluated on a differ-
ent task to the one that the receiver was trained on. This
is necessary in order to rule out the effect of information
leak. This extended setting allows us to emphasise that
stitching alignment can abstract away from the input pat-
terns that produced the sender’s representations. Because
of this, stitching cannot reliably distinguish between two
models that capture different cues in the data. In the next
section, we are going to explore this extended setting fur-
ther by stitching together models that were trained to solve
different tasks altogether.

5. Other Successful Stitchings: Discriminative
Case

So far we focused on simple problems which allowed us to
control what information is available to the models. The
remainder of the paper focuses on “harder” problems. We
would like to highlight, however, that in such cases no clear
ground truth exists and constructing arguments based on
what “intuitively makes sense” can be deceptive. We simply
offer these as supporting evidence to our well-controlled
experiments on which all our claims are based.

Note that Bansal et al. (2021) consider the performance of
the receiver as the baseline. In our previous experiments,
although the sender and the receiver were trained on differ-
ent datasets they were still trained to be compatible with the
same task, which is Correlated (both the digit class and the
colour class are correlated with the label). As a reminder,
our goal was simply to induce a strong bias towards solv-
ing the task using either the digit or the background colour.
Naturally, when tested on fully correlated data, both models
were successfully solving the task.

In a non-toy setting, when trying to stitch between models
that are unlikely to represent the same input patterns, the
receiver will inevitably perform poorly on the sender’s task.
This means that the baseline will usually be very weak. We
choose to set a higher baseline, which is the performance of
the receiver on its own task. For example, in the case when
the ImageNet model is the receiver on Stylized data (which

5

Functional Alignment Can Mislead: Examining Model Stitching

Table 1. Results of stitching various models into and from ImageNet. We highlight in bold the representations that were stitch-compatible.
Note that “Block X” and “Linear” means that we are stitching before the Xth residual block and the classification layer respectively.
Despite choosing a more challenging baseline than typically considered for stitching, we are still able to find some models stitch-compatible
at various layers. *Accuracy results for this baseline are given by Stylized model’s performance on ImageNet data which, although
atypical, are higher than Stylized model’s performance on the Stylized task (56.18% top-1 and 78.96% top-5 accuracy). Note that with the
weaker baseline, we find compatibility at all layers.

Block 1 Block 2 Block 3 Block 4 Block 5 Linear Baseline

ImageNet to
Stylized

Top-1 58.39 58.61 61.53 65.31 70.43 74.34 60.18∗

Top-5 80.57 80.61 83.28 86.13 89.78 91.93 82.60∗

Stylized
to ImageNet

Top-1 10.61 11.23 17.60 30.26 45.45 49.17 76.13
Top-5 22.65 23.08 34.34 52.52 69.57 72.30 92.86

10-class ImageNet
to Birdsong

Top-1 15.40 19.00 25.00 46.20 75.60 88.40 77.98
Top-5 63.80 68.40 76.40 88.60 98.60 99.80 96.07

Clustered-Noise
to ImageNet

Top-1 4.77 4.11 96.59 100 100 100 76.13
Top-5 13.51 11.99 99.77 100 100 100 92.86

we introduce in Section 5.1), the weak baseline would be
the performance of the ImageNet model on the Stylized
data (16.4% top-5 accuracy). We choose the more compet-
itive baseline, which is the performance of ImageNet on
ImageNet data (92.86% top-5 accuracy). There is only one
exception to this choice of baseline, which we emphasise
when discussing the experiments. For completeness, we
include the weaker baseline in Table F.1 but show the more
challenging setting in the main body of the paper.

Note that since for most of the experiments in this section we
are using a pretrained ImageNet model, we only do one run
of the experiments. All discriminative models considered in
this section are ResNet-50. All stitches in this section are
trained for 20 epochs using a learning rate of 10−4 and we
do not perform any hyperparameter tuning for training the
stitches (full training details in Appendix B.4). All results
from Section 5.1 up to and including Section 5.4 are collated
together in Table 1.

5.1. Shape and Texture Bias

Geirhos et al. (2019) showed that standard-trained ImageNet
models are biased towards learning texture information.
They then constructed Stylized ImageNet (Stylized), a ver-
sion of the ImageNet dataset where local texture is no longer
predictive, forcing models to focus on shape information
(less localised patterns).

As a real-world version of our previous shape and colour
experiment, we take pretrained ImageNet and Stylized mod-
els and aim to stitch them together. Note that we cannot
successfully stitch Stylized into ImageNet. As we will dis-
cuss in more detail in Section 7, this is likely due to Stylized
model’s poor performance on the Stylized task. Stylized
only achieves 78.96% top-5 accuracy on the Stylized dataset,

which is close to the accuracy we achieve when stitching.
Note, however, that we achieve stitching compatibility ac-
cording to the alternative baseline (receiver’s performance
on the sender task), which in this case is only 16.4% top-5
accuracy. Nonetheless, we choose to consider the more chal-
lenging baseline and report stitch incompatibility instead.
On the other hand, we find that we can achieve stitch-
compatibility at several different layers when stitching
ImageNet into Stylized (see Table 1). We see this as ad-
ditional evidence that there are cases in which functional
alignment methods such as stitching cannot distinguish be-
tween models with different biases.

5.2. Clustered-Noise

Following the same procedure as in the case of stitch-
ing Clustered-Noise to MNIST-trained models, we stitch
Clustered-Noise to a model pretrained on ImageNet. Even
with no hyperparameter tuning, we achieve stitch compati-
bility after the second residual block (see Table 1).

5.3. Different Extracted Information

We next use one dataset and stitch such that we remap its
classes. This approach uses just one model and one dataset,
changing fewer variables than some other experiments. We
train a model on greyscale-MNIST, stitch it back together
at a chosen layer, and train the stitch on MNIST data but
with labels offset in a circular shift. The effect of this is
that the sender’s representation of, say, digit ‘0’ is stitched
so that the receiver classifies it as class ‘1’. Yet, an un-
stitched model trained on MNIST and presented with an
image for ‘0’ must represent different information from
the same model presented with a ‘1’ otherwise it could not
discriminate. Equivalently, in the Colour-Only dataset, red
would now be classified as green (see Figure A.1). This

6

Functional Alignment Can Mislead: Examining Model Stitching

Res Block 1 Res Block 2 Res Block 3 Res Block 4 Linear
0.8

0.9

1.0
Te

st
 A

cc
ur

ac
y

Class offset = 1
Correlated
Colour-Only
BW

Figure 3. Test accuracy when stitching a model to itself with the
dataset the model was trained on, but remapping class labels with
an offset of 1 (e.g. an image of ‘7’ is labelled as class ‘8’). Base-
line performance of Correlated and Colour-Only was 100% while
BW (greyscale-MNIST) was 99%, shown as green dotted line.
Shaded regions show full range of results. We again find stitch
compatibility, especially in the later layers.

experiment was successfully repeated for models trained on
Colour-Only, and Correlated datasets (see Figure 3). The
same models can be restitched with different shift offsets
and at different layers (see Appendix E for more details).

5.4. Different Tasks and Modalities

We then attempt to stitch a model trained to recognise bird
songs to a pretrained ImageNet model. For this we use
a 10-class version of the xeno-canto (Vellinga & Planqué,
2015) dataset. We use publicly available code to create a
version of the dataset with 10 bird classes, preprocess the
data into spectrograms and train a ResNet-50 to solve the
task (full training details in Appendix B.5). The model
achieves 77.98% accuracy on the birdsong recognition task.

To keep in line with the typical stitching regime, we restrict
the ImageNet dataset to a 10-class version. For simplicity,
we choose the first 10 classes of ImageNet. In this case,
we once again find we can successfully stitch models, yet
their representations are not semantically similar (i.e. do
not capture the same input patterns).

6. Stitching Other Embeddings: Autoencoders
Following Fumero et al. (2024) and Moschella et al. (2022),
we consider the case of mapping representations of autoen-
coders. Moschella et al. (2022) extend the definition of
model stitching to the generative case by stitching two au-
toencoders trained on MNIST from different initialisations.
Their intuition is that the two models should be compatible
since they are simply trained from different initialisations.

We train one autoencoder on MNIST and another one on
Fashion-MNIST (Xiao et al., 2017). We take the encoder of
Fashion-MNIST and the decoder of MNIST and stitch them
together. We consider two approaches to stitching between
inputs and reconstructions of two different datasets:

Class Mapping We match classes across datasets. For ex-
ample, with Fashion-MNIST and MNIST, we might
pair classes like ‘Bag’→‘0’, ‘Coat’→‘1’, etc. Within
each class pair, we match images randomly. The loss
is the L2 distance between the generated image and the
corresponding paired image from the other dataset.

Embedding Mapping We match embeddings in the latent
space of the autoencoders. We match the stitched em-
beddings of the sender against those of the original
encoder of the receiver and solve this as a linear sum
assignment problem. The loss is then given by the sum
of squared distances between mapped embeddings. It
can effectively be considered that we create a joint
dataset where we pair up each training sample from
dataset A (used to train encoder A) with another train-
ing sample from dataset B (used to train encoder B).
Training samples are paired up using the encodings (i.e.
in the embedding space). Specifically, we solve the
linear sum assignment problem in the autoencoders’
bottleneck to pair up samples from datasets A and B.
Passing an image from dataset A through encoder A,
the stitch is trained to map it to its corresponding sam-
ple from dataset B, passed through encoder B.

For full experimental details, see B.3. Following Moschella
et al. (2022), we perform a qualitative evaluation of the
generative stitch. We are able to reconstruct MNIST-like
digits from Fashion-MNIST test data using both mappings
we consider (see left-hand side of Figure 4), with clearer im-
ages obtained for the Embedding Mapping. We then stitch
a CIFAR-10 (Krizhevsky, 2009) encoder onto an MNIST
decoder (see right-hand side of Figure 4) and once again
obtain depictions of MNIST-like digits.

Although this setting differs significantly from Bansal et al.
(2021)’s original stitching proposal, it provides evidence
that more broadly representations can be aligned without
necessarily representing the same information.

7. Discussion and Observations
We believe building tools to meaningfully compare neu-
ral networks is an important objective in deep learning re-
search. Such tools are treated as potential ways of better
understanding neural networks and therefore can be seen as
part of the Explainable AI puzzle. For example, alignment
between models has been used in the attempt to better un-
derstand architectural differences (e.g. Nguyen et al., 2020;
Raghu et al., 2021), aspects of continual learning (Ramasesh
et al., 2021; Kim & Han, 2023), or training with different
types of data (e.g. McGuire et al., 2023), or even factors
that contribute to networks’ alignment with human percep-
tion (Demircan et al., 2024).

7

Functional Alignment Can Mislead: Examining Model Stitching

Input

Embedding
reconstr.
Class
reconstr.

Figure 4. Examples of reconstructions when stitching autoencoders trained on different datasets. Left: Fashion-MNIST. Right: CIFAR-10.
Top to bottom: Inputs given to the stitched autoencoders, reconstructions obtained with the Embedding Mapping method, reconstructions
obtained with the Class Mapping method. MNIST-like digits are generated from Fashion-MNIST and CIFAR-10 inputs.

The objective of our paper is to more closely analyse one
such tool proposed to measure similarity and alignment.
From this perspective, our work fits within the literature
exploring the limitations of representation comparison tools
(e.g. Ding et al., 2021; Davari et al., 2023). Most related to
our work but in the context of Representational Similarity
Analysis (RSA), Dujmović et al. (2022) construct artificial
datasets to argue that RSA cannot distinguish between mod-
els with “different feature encodings”.

Through a range of experiments we have shown that we can
stitch representations used to solve different tasks using dif-
ferent modalities. Alignments between different tasks (e.g.
Gygli et al., 2021) and even different modalities (e.g. Rad-
ford et al., 2021; Merullo et al., 2023; Koh et al., 2023) are
not new and have been exploited before, especially between
text and images in the context of image captioning.

To explain this type of alignment, which is typically seen as
an alignment of “semantic concepts”, Huh et al. (2024) pro-
pose the Platonic Representation Hypothesis. This hypothe-
sis states that models “are converging to a shared statistical
model of reality in their representation spaces” which makes
alignments such as stitching possible. While in the context
of image captioning this argument is intuitive, Huh et al.
(2024) take this hypothesis further and argue that represen-
tation alignment more generally, including across different
tasks and modalities, is explained by representational conver-
gence. This echoes the Anna Karenina Hypothesis (Bansal
et al., 2021) stating that “all successful models end up learn-
ing roughly the same internal representations”. Importantly,
note that Huh et al. (2024) simply use functional alignment
as supporting evidence for their hypothesis, but primarily
focus on structural alignment.

Are our results possible because models reached a shared
understanding of reality? No, we strongly disagree that
this is applicable here. We have shown that alignments can
be found between ImageNet models and birdsong recog-
nition models, or even Clustered-Noise. It is difficult to
imagine how there could be a shared understanding of real-
ity between these three datasets.

We believe a more plausible hypothesis is that we were able
to align the representations largely because they were well

clustered (but not necessarily using the same information
to assign samples to a cluster). While this is a straightfor-
ward observation, we include an experiment to intuitively
illustrate this. We take our Clustered-Noise experiment in
Section 4.2 and increase the level of noise around each clus-
ter. As we do so, the separability decreases and, as a result,
the stitching accuracy drops (see Table D.3).

Therefore, we believe our experiments cast a shadow on
the interpretation of functional alignment. While it might
be possible that models converge to a shared understanding
of reality, we believe our results show that one needs to
look beyond functional alignment to support this claim.
We urge the community to rethink the belief that mapping
between two clustered representations means that models
capture the same aspects about the world. Models that
converge to a shared statistical model of reality might be
functionally compatible, but functionally compatible models
do not necessarily capture the same patterns in the input.

Lastly, we believe controlled experiments where we can
create models that learn to solve a task using different input
cues are important for evaluating model comparison tools
more generally. We regard these as necessary for establish-
ing the validity of hypotheses around both functional and
structural similarity.

Can anything be stitched onto anything? No. We have
seen throughout the paper that some layers and even some
models (Section 5.1) cannot be successfully stitched to-
gether. There are several potential reasons for this. In some
cases, this could be a matter of learnability of the stitch.
Note that all the experiments in Section 5 were run with
the same learning rate, we did not do any hyperparameter
tuning and we only trained the stitch for 20 epochs. In the
case of stitching Clustered-Noise into the ImageNet model
for example, it might be the case that with slightly longer
training, we would be able to successfully stitch earlier lay-
ers. This highlights another limitation of stitching which
is that when models cannot be stitched together, it is un-
clear whether this is because a good linear mapping was
not found or because the representations are not linearly
mappable. This is a known issue with model stitching (e.g.
Hernandez et al., 2022).

8

Functional Alignment Can Mislead: Examining Model Stitching

The second reason why we were not able to stitch is because
of the difference in task difficulty and/or original model
performance and, as a result, achievable separability in the
representational space. For example, in the case of stitching
Stylized to ImageNet, the Stylized model achieves signifi-
cantly lower performance on the Stylized dataset than the
ImageNet model on the ImageNet dataset. So for the prob-
lems that the models were trained on, there is a big gap
in performance. This could be because Stylized might be
a harder problem to solve altogether but also because as
Geirhos et al. (2019) mention, they did not necessarily train
their Stylized model to achieve competitive performance on
the Stylized data. It might be the case that with a better-
performing model on Stylized we would be able to stitch
onto ImageNet but this is beyond the scope of the paper.

Should stitching then be used as a measure of model
quality? While there might be cases in which stitching is
insightful, we believe it is difficult to think of what stitching
can tell us about model quality that existing methods don’t
do already. If we cannot successfully stitch because of an
incompatibility in task performance, this can already be
seen by simply looking at the models’ accuracy on the task.
If two models cannot be stitched because the receiver does
not cluster the representations sufficiently well at intermedi-
ate layers, then we can simply look for direct measures of
representational clustering.

Finally, one of the reasons why stitching was proposed and
adopted as an alternative to methods like CKA is because it
allows us to identify when a representation is “better” than
another, rather than simply “different”. We challenge the
understanding that achieving higher stitching accuracy than
the baseline (receiver’s own accuracy) means the representa-
tion of the sender network is better than that of the receiver.
To this end, we simply swap the receivers and the senders
considered in the previous experiments. In Figure 2b we
observed a higher test accuracy for Colour and Correlated
compared to the Digit baseline, which would be taken to in-
dicate that their representations are “better” for discriminat-
ing samples on the problem we consider. However, stitching
Digit (as sender) into Colour or Correlated (as receivers)
also leads to higher accuracy for particular layers compared
to the baseline (see Table C.1 and Appendix C.1), which is
a contradiction. Finally, we stitch a model with itself (Digit
vs Baseline) and obtain an increase in accuracy (see Fig-
ure C.1a) as well as a change in the rank of representations
(see Figure C.1b). This further indicates that although the
stitching layer has reduced expressivity compared to a fully-
connected stitch, it still cannot be claimed that it simply
aligns the representations of the sender and receiver without
any additional processing. Therefore, given the contradic-
tory results, we do not think stitching accuracy is suitable
for comparing the quality of models’ representations either.

Where next? We believe that to meaningfully compare rep-
resentations we need to be able to both gauge what informa-
tion they are encoding and how that information is “mapped
out” in the embedding space. We have demonstrated that
the functional perspective alone, and stitching in particular,
cannot do that. Capturing these is of course not straight-
forward and the lack of ground truth makes this even more
challenging. We believe the field would benefit from care-
fully constructing controlled benchmark problems rather
than advancing based on what is “intuitively expected”. Our
work proposes a simple scenario for evaluating and reason-
ing about representational differences and similarities but
it is by no means comprehensive enough for constructing
a sufficiently varied baseline more generally. Nonetheless,
it provides a starting point for such a framework which we
believe is of paramount importance if we aim to create tools
that capture meaningful differences between models.

8. Conclusions
We showed that networks can use or represent very different
information, yet classify samples with similar accuracy. Im-
portantly, the different representations can easily be stitched
together. This leads us to question the usefulness of study-
ing models’ purely functional similarity, and in particular
their stitching compatibility, to determine whether or not
they capture similar information. Being able to distinguish
between models that make decisions based on different in-
put patterns is important, especially given the propensity of
deep learning models to learn shortcuts. We hope that our
work encourages the community to more carefully interpret
the results of model stitching, and understand what it is ac-
tually responding to. We also hope our work will encourage
researchers to focus on creating model comparison tools that
can reliably capture informational similarity. We propose
artificial shortcut learning problems as a starting point for
reasoning about this in a controlled way.

Acknowledgements
The authors acknowledge the use of the IRIDIS X High Per-
formance Computing Facility, the ECS Alpha Cluster, and
the Southampton-Wolfson AI Research Machine (SWARM)
GPU cluster generously funded by the Wolfson Foundation,
together with the associated support services at the Univer-
sity of Southampton in the completion of this work. H.M.
is funded by a PhD studentship provided by the School of
Electronics and Computer Science. The authors would like
to thank the members of the VLC research group for useful
discussions, feedback, support, snacks, and good fun.

9

Functional Alignment Can Mislead: Examining Model Stitching

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Bahng, H., Chun, S., Yun, S., Choo, J., and Oh, S. J. Learn-

ing de-biased representations with biased representations.
In International Conference on Machine Learning, 2020.

Bansal, Y., Nakkiran, P., and Barak, B. Revisiting model
stitching to compare neural representations. In Ranzato,
M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 225–236, 2021.

Csiszárik, A., Kőrösi-Szabó, P., Matszangosz, A., Papp,
G., and Varga, D. Similarity and matching of neural
network representations. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 34, pp. 5656–5668, 2021.

Davari, M. R., Horoi, S., Natik, A., Lajoie, G., Wolf, G.,
and Belilovsky, E. Reliability of CKA as a similarity
measure in deep learning. In International Conference
on Learning Representations, 2023.

De Palma, G., Kiani, B., and Lloyd, S. Random deep neu-
ral networks are biased towards simple functions. In
Advances in Neural Information Processing Systems, vol-
ume 32, 2019.

Demircan, C., Saanum, T., Pettini, L., Binz, M.,
Baczkowski, B., Doeller, C., Garvert, M., and Schulz,
E. Evaluating alignment between humans and neural
network representations in image-based learning tasks.
Advances in Neural Information Processing Systems, 37:
122406–122433, 2024.

Ding, F., Denain, J.-S., and Steinhardt, J. Grounding
representation similarity through statistical testing. Ad-
vances in Neural Information Processing Systems, 34:
1556–1568, 2021.

Dujmović, M., Bowers, J. S., Adolfi, F., and Malhotra, G.
Some pitfalls of measuring representational similarity
using representational similarity analysis. bioRxiv, pp.
2022–04, 2022.

Feng, R., Zheng, K., Huang, Y., Zhao, D., Jordan, M., and
Zha, Z.-J. Rank diminishing in deep neural networks.
In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,

Cho, K., and Oh, A. (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 33054–33065,
2022.

Fumero, M., Pegoraro, M., Maiorca, V., Locatello, F., and
Rodolà, E. Latent functional maps: a spectral framework
for representation alignment. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-
mann, F. A., and Brendel, W. Imagenet-trained CNNs are
biased towards texture; increasing shape bias improves
accuracy and robustness. In International Conference on
Learning Representations, 2019.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut learn-
ing in deep neural networks. Nature Machine Intelligence,
2(11):665–673, 2020.

Gygli, M., Uijlings, J., and Ferrari, V. Towards Reusable
Network Components by Learning Compatible Represen-
tations. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(9):7620–7629, May 2021. ISSN 2374-
3468. doi: 10.1609/aaai.v35i9.16932. Number: 9.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Hernandez, A., Dangovski, R., Lu, P. Y., and Soljacic, M.
Model stitching: Looking for functional similarity be-
tween representations. In SVRHM 2022 Workshop @
NeurIPS, 2022.

Huh, M., Cheung, B., Wang, T., and Isola, P. Position: The
platonic representation hypothesis. In Salakhutdinov, R.,
Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett,
J., and Berkenkamp, F. (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pp.
20617–20642. PMLR, 21–27 Jul 2024.

Ioffe, S. and Szegedy, C. Batch Normalization: Accelerating
deep network training by reducing internal covariate shift.
In Proceedings of the 32nd International Conference on
Machine Learning, pp. 448–456. PMLR, June 2015.

Kim, D. and Han, B. On the stability-plasticity dilemma
of class-incremental learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 20196–20204, 2023.

Klabunde, M., Schumacher, T., Strohmaier, M., and Lem-
merich, F. Similarity of neural network models: A survey

10

Functional Alignment Can Mislead: Examining Model Stitching

of functional and representational measures. ACM Com-
put. Surv., 57(9), May 2025. ISSN 0360-0300. doi:
10.1145/3728458.

Koh, J. Y., Salakhutdinov, R., and Fried, D. Grounding
language models to images for multimodal inputs and
outputs. In International Conference on Machine Learn-
ing, pp. 17283–17300. PMLR, 2023.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Sim-
ilarity of neural network representations revisited. In
Proceedings of the 36th International Conference on Ma-
chine Learning, pp. 3519–3529. PMLR, May 2019.

Krizhevsky, A. Learning multiple layers of features from
tiny images, January 2009.

Lenc, K. and Vedaldi, A. Understanding image representa-
tions by measuring their equivariance and equivalence. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 991–999, 2015.

Masarczyk, W., Ostaszewski, M., Imani, E., Pascanu, R.,
Miłoś, P., and Trzcinski, T. The Tunnel Effect: Building
Data Representations in Deep Neural Networks. Ad-
vances in Neural Information Processing Systems, 36:
76772–76805, December 2023.

McGuire, S., Jackson, S., Emerson, T., and Kvinge, H. Do
neural networks trained with topological features learn
different internal representations? In NeurIPS Workshop
on Symmetry and Geometry in Neural Representations,
pp. 122–136. PMLR, 2023.

Merullo, J., Castricato, L., Eickhoff, C., and Pavlick, E. Lin-
early mapping from image to text space. In The Eleventh
International Conference on Learning Representations,
2023.

Moschella, L., Maiorca, V., Fumero, M., Norelli, A., Lo-
catello, F., and Rodolà, E. Relative representations enable
zero-shot latent space communication. In International
Conference on Learning Representations, 2022.

Nguyen, T., Raghu, M., and Kornblith, S. Do wide and deep
networks learn the same things? uncovering how neural
network representations vary with width and depth. In
International Conference on Learning Representations,
2020.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J.
Svcca: Singular vector canonical correlation analysis for

deep learning dynamics and interpretability. Advances in
Neural Information Processing Systems, 30, 2017.

Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and
Dosovitskiy, A. Do vision transformers see like convolu-
tional neural networks? Advances in Neural Information
Processing Systems, 34:12116–12128, 2021.

Ramasesh, V. V., Dyer, E., and Raghu, M. Anatomy of
catastrophic forgetting: Hidden representations and task
semantics. In International Conference on Learning Rep-
resentations, 2021.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations, 2015.

Sucholutsky, I., Muttenthaler, L., Weller, A., Peng, A., Bobu,
A., Kim, B., Love, B. C., Grant, E., Groen, I., Achterberg,
J., et al. Getting aligned on representational alignment.
arXiv preprint arXiv:2310.13018, 2023.

Valle-Perez, G., Camargo, C. Q., and Louis, A. A. Deep
learning generalizes because the parameter-function map
is biased towards simple functions. arXiv preprint
arXiv:1805.08522, 2018.

Vellinga, W.-P. and Planqué, R. The Xeno-canto collection
and its relation to sound recognition and classification. In
Cappellato, L., Ferro, N., Jones, G. J. F., and SanJuan,
E. (eds.), CLEF (Working Notes), volume 1391 of CEUR
Workshop Proceedings. CEUR-WS.org, 2015.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

11

Functional Alignment Can Mislead: Examining Model Stitching

0 1 2 3 4 5 6 7 8 9

Figure A.1. Colour swatches for the base colour map. Digits are font-based labels here, not MNIST images

A. Datasets
The following variants were created:

MNIST This is simply MNIST data (monochrome handwritten digits) expanded to 3 channels and normalised.

There is no target-dependent colour information for the model to learn, so we expect it to recognise the digits based on
features such as shape, or the amount of white, or the texture of the white-grey-black edges. It cannot learn to use
colours to recognise classes as these are never present.

It is possible that kernel weights will learn to rely on the three colour channels always being equal.

Colour MNIST (Correlated) We wanted to provide an opportunity for some semantically different representations to be
learned. In this case, having the background colour correlate with the target digit being displayed.

We expect that the models trained on Correlated data will mostly learn to rely on the colour. However, they may learn
the shapes of the digits, or the amount of white caused by the digit. They may rely on pixels always being at one of two
rgb values (white/colour) in any one image, never at an intermediate value. They may learn to rely entirely on a small
number of pixels that are never white - e.g. corner pixels.

To generate the Correlated dataset, we used the colour MNIST package (Bahng et al., 2020) which uses MNIST data,
but changes the colour of the background depending on the digit being represented (Figure A.1). The package snaps
any non-zero pixels to white ([255,255,255]). This could be thought of as changing the greyscale information
to binary, and indeed reducing the information content as a result. The background colour is changed from black
([0,0,0]) to one of 10 values, always matching the data label.

For all of these datasets, to avoid the model learning something as simple as specific RGB values, the base RGB
background values are modified by a random 10% per image (such that the colour is always flat, but will vary slightly
from image to image within a class). The same variation is injected into the test datasets. This is analagous to requiring
that colour is learned in a generalised way.

Digit with Uncorrelated Colour (Digit) To encourage models to learn representations which recognise digits, but cope
with different background colours, we created a dataset with digits over laid on backgrounds whose base colours were
randomly selected. i.e. the digit does not correlate with the colour.

We expect models trained on Digit to learn features like shape. Assuming the randomisation is sufficient, they cannot
learn to rely on colour. The choice of base colours and inclusion of colour variation mean that the Digit models cannot
learn to rely on a single colour channel or pair of colour channels, and must learn to tolerate a range of colours being
used. Nonetheless, they may learn to rely on any or all pixels in an image being one of two colours.

Colour with Uncorrelated Digits (Colour) To encourage representations of colour information, but which are able to
tolerate the presence of digits, we generate a dataset in the same way as for Digit but in which the background colour
(not the uncorrelated digit) is the target.

Models trained on Colour cannot use the digits to classify because they are uncorrelated with the background colours.
Successful Colour models may rely on colour being sampled in specific locations which never contain digit pixels (e.g.
a corner), or might learn to average across the image. They may learn to rely on the presence of some white pixels as
the dataset does not contain any solid-colour images. But they may not be generally immune to non-digit-like patterns
of white pixels.

Background Colour Only (Colour-Only) To force the learning of different representations which cannot be related to
shape, size, or edge-effects of digits (and which may not be able to tolerate those features), the ‘Colour-Only’ dataset

12

Functional Alignment Can Mislead: Examining Model Stitching

Figure A.2. Simulated “Clustered-Noise” data sample for ResNet-18 at Res Block 2, showing 64 7x7 feature maps. If this represented
Class 0, all other Class 0 data instances would be noisy versions of this.

was created in which no digit image is present, only a solid background colour (plus 10% variation). As in ‘Colour’
(see Figure 2a), the base colour is the target.

The model may learn to rely on the colour in only one region of the image, or to assume the colour is constant
everywhere.

Clustered-Noise (Noise) To produce a high-quality representation, without relying on specific, image-related features, we
generate synthetic datasets in the form of Clustered-Noise.

Passing an image through the first layers of a sender model produces a set of activations specific to the final layer
before the cut. For example, with ResNet-18 cutting just before Res Block 2 of the receiver, the sender output will be
64 channels of size 7x7 (Figure A.2.) The synthetic dataset must be matched in shape to the layer it is being stitched
at. As such, it has to be regenerated depending on the layer in question. It does not produce images, rather synthetic
activations. Each data instance is represented by a point in activation space based on its class, plus a random offset
vector. Thus each class is located in a cloud or ϵ-ball. For example, in the Res Block 2 example, each of the ten classes
will be centred around a different random point in 3136-dimensions.

There is no attempt to create structure within or between the feature maps, and it is not derived from actual activation
data. The high-dimensionality means it is likely that the clusters of data points will be highly separable, though this is
not enforced and has not been verified.

To ensure the same base representations are used for train and test datasets for a given layer or test, a
generate_activations() function was created (Alg 1). A train and test dataset can then be generated (Alg 2)
and accessed via a dataloader.

B. Experimental details
B.1. Stitching Between Models

In an extension of the experiments by Bansal et al. (2021), we train models on different special datasets (Section A) and
then stitch between them, assessing the change in accuracy.

Hyperparameters for Model Training batch size=128, 4 Epochs, SGD, lr=1e-1, momentum=0.9, weight decay=1e-4.

13

Functional Alignment Can Mislead: Examining Model Stitching

Algorithm 1 Generate Base Activations

Procedure GENERATE ACTIVATIONS(num classes, representation shape)
for c← 0 to num classes− 1 do

activations[c]← rand(representation shape)
end for
return activations
End Procedure

Algorithm 2 Generate a dataset (unshuffled)

Procedure SYNTHETICDATASET(train, activations, noise)
if train then

SamplesPerClass← 6000
else
SamplesPerClass← 1000

end if
for c← 0 to num classes− 1 do

data[c ∗ SamplesPerClass : ((c+ 1) ∗ SamplesPerClass)]← activations[c]
targets[c ∗ SamplesPerClass : ((c+ 1) ∗ SamplesPerClass)]← c

end for
data← data+ noise ∗ randn
data← clamp(data, 0, 1)
End Procedure

Hyperparameters for Model Stitching batch size=128, 10 Epochs, SGD, lr=1e-4, momentum=0.9, weight decay=1e-2

Hyperparameters for Noise Stitching batch size=64, 4 Epochs, SGD, lr=1e-4, momentum=0.9, weight decay=1e-2

Two versions of this are performed, one stitching from each different model into the Digit with Uncorrelated Colour receiver
model, and the other stitching from that model as sender into each of the others. This will allow us to assess the symmetry of
the stitching process. Recall that models trained on each of the datasets represents a model that could have arisen naturally
by training on Correlated data, but with the advantage that we know something about features that may (or cannot) be
learned.

In this experiment, all image datasets are used to train models. Each of the models (including Digit) is then stitched into the
Digit model at each of 5 points: (e.g. see Figure B.1).

• Cut before Res Block 1

• Cut before Res Block 2

• Cut before Res Block 3

• Cut before Res Block 4

• Cut before Linear Layer

The accuracy and rank are then measured using the Correlated test dataset. Accuracy and rank are also measured for the
whole, unstitched ‘Digit’ model using the Correlated test dataset for comparison. This test configuration is different from
that used by Bansal et al. (2021) and Hernandez et al. (2022). They used the same dataset for training and testing their
models. We wanted to examine the case where:

1. The dataset for training and testing the stitch is correlated (biased) - i.e. it contains class-correlated features other than
the intended learning target (the written digit): in general this will be the case, even if unintentionally. Recall that the
bias is that the background colour is correlated with the labelled digit.

2. The sender models are likely to have learned different features from the receiver.

14

Functional Alignment Can Mislead: Examining Model Stitching

Training “Colour” model

Conv1 to
m

axpool

Res Block 1

Res Block 2

Res Block 3

Res Block 4

Avgpool to
Linear

“Colour”
dataset

Conv1 to
m

axpool

Res Block 1

Res Block 2

Res Block 3

Res Block 4

Avgpool to
Linear

“Digit”
dataset

Training “Digit” model

“Correlated”
dataset

“Colour” sender

Conv1 to
m

axpool

Res Block 1

“Digit” receiver

Res Block 2

Res Block 3

Res Block 4

Avgpool to
Linear

Stitch

M
easure
Rank

Training & Evaluating Stitch on “Correlated” data

Figure B.1. To illustrate the process, prior to any stitching, one model is trained on Colour dataset and another on the Digit dataset.
Because it will be used a receiver, the Digit model is then evaluated on the Correlated dataset as a baseline, without any stitch layer. For
stitching, the Correlated dataset is used: the train dataset for training the stitch, and the test dataset for evaluating functional performance.
In this example, the Colour model is the sender and the cut is before Res Block 2. The Digit model is the receiver and the stitch layer
connects just after its Res Block 2. Note that the Rank is measured at the first conv layer of the Digit receiver model

15

Functional Alignment Can Mislead: Examining Model Stitching

“Clustered-Noise”
dataset

Stitch

“Digit” model

Conv1 to
m

axpool

Res Block 1

Res Block 2

Res Block 3

Res Block 4

Avgpool to
Linear

M
easure
Rank

Figure B.2. In this example, the Digit model is the receiver and the cut is before Res Block 2. Note that the Rank is measured at the first
conv layer of the Digit receiver model. The shape of the ‘Clustered-Noise’ data must match the receiving layer.

B.2. Stitching from Clustered-Noise

We train ResNet-18 models for each of the image-based datasets described. For each model, the accuracy is recorded for the
associated test dataset. The model is cut before the first ResNet block, and prepended with the stitch to create a stitch +
receiver model. The stitch (only) is then trained on the Clustered-Noise dataset.

The stitch + receiver model (Figure B.2) is then tested against the synthetic test dataset. This is repeated, cutting before each
Res Block (a layer comprises 2 Basic Blocks. The skip connections are preserved), and before the final fully-connected
linear layer. We also record the rank of the activations for the Clustered-Noise test dataset at the first convolutional layer
in the receiver model after the stitch. This is to provide insight into how the stitched data is “perceived” by the different
models. Also how that compares to when dataset images are processed by the model. For each test at each stitch point the
synthetic dataset was regenerated to reduce the likelihood that results are due to one randomly selected set of points having a
significant structure.

B.2.1. EXAMINING THE RANK

To gain further insight into how the representations being sent are “perceived” by the receiver, we analyse the rank at the
first receiver layer. Note, however, that generally analysing the rank of two sets of representations cannot tell us anything
meaningful about their informational similarity. We are simply arguing that the receiver cannot map the various sender
representations in an entirely equivalent way if the rank in the first receiving layer is different.

1. Train several models each on a different, but related dataset. For example, Colour MNIST can create different
dataloaders of MNIST digits on coloured backgrounds where the colours correlate or do not correlate with the digit
class.

2. Stitch models to each other such that sender is from layer 1 to L, and receiver is from layer L+1 to Classifier. Train the
stitch.

3. Collect the representations at layer L+1 obtained using the test dataset. For estimating the rank, we follow Masarczyk
et al. (2023), who compute the singular values of the sample covariance matrix and threshold these at 1e-3 of the largest
singular value.

B.3. Stitching Autoencoders

We tested whether two autoencoders, trained on different datasets, could be stitched at their bottlenecks. In our experiments
the stitching is placed immediately after the encoder. Autoencoders are typically trained using reconstruction loss, usually

16

Functional Alignment Can Mislead: Examining Model Stitching

based on L1 or L2 distance between input and output images. However, when the input and output images come from
different datasets, reconstruction loss becomes inappropriate since the images won’t match. To address this, we use two
methods for learning to map images from one dataset to another, we refer to these approaches as class mapping and
embedding mapping.

Class Mapping When datasets have class labels, we can match corresponding classes across datasets. For example, with
CIFAR-10 and MNIST, we might pair classes like ‘Airplane’→‘0’, ‘Horse’→‘1’, etc. Within each class pair, we match
images randomly. During training, an image from one dataset is passed through its encoder, then through the stitch,
and finally through the decoder corresponding to the other dataset to generate an image. Our loss function is then the
L2 distance between the generated image and the image that has been paired with our input image.

Embedding Mapping Alternatively we can match points one-to-one in the latent space of the autoencoders and train the
stitch to map points from one latent space onto points of the other. This involves first encoding batches from both
datasets through the respective encoders, producing features e1 and e2. The encodings e1 are then passed though
the stitch, producing features s. We then match points s to points e2 in a one-to-one manner such that the sum of
the distances is minimised. This mapping challenge is known as the linear sum assignment problem, which can be
efficiently solved using SciPy. Once this mapping has been found, our loss function is simply the sum of squared
distances between paired points in s and e2. The full calculation of this loss is detailed in Algorithm 3.

Algorithm 3 One-to-One Autoencoder Stitching (Loss Calculation)

Procedure CALCULATE LOSS(AE1, AE2, stitch, dataset1, dataset2)
d1 ∼ dataset1
d2 ∼ dataset2
e1← AE1.encoder(d1)
e2← AE2.encoder(d2)
s← stitch(e1)
cost matrix← PairwiseDistances(s, e2)
i, j ← LinearSumAssignment(cost matrix)
return

∑
cost matrix[i, j]

End Procedure

We trained autoencoders to map Fashion-MNIST to MNIST and CIFAR-10 to MNIST using these techniques. The
architecture of our encoder includes convolutional layers, ReLU activations, and max pooling layers for downsampling.
Following this, features are flattened and passed through a series of linear layers. The decoder follows the same structure but
in reverse. The bottleneck is a vector of length 128 for all experiments. All parameters were frozen except for the stitch,
which connected the encoder of one model to the decoder of the other. All autoencoders were trained for 25 epochs with a
learning rate of 1e-4 using the Adam optimiser. Embedding Map stitching was trained for 25 epochs using SGD with a
learning rate of 1e-5, momentum of 0.9, and weight decay of 0.01. The class mapping stitching was trained for 20 epochs
using SGD with the same parameters except the learning rate was set to 1e-2. The learning rate and total epochs for each
setting were tuned manually through analysis of the corresponding loss curves.

Results can be seen in Figure 4. We can see that MNIST-like digits can be reconstructed even when inputs are from a
different dataset. Class Mapping stitching tends to produce blurrier images. This is likely because, within each class pairing,
images are matched randomly, which leads to an output that is essentially an average of all images in the class. Embedding
Mapping stitching can produce cleaner MNIST images.

B.4. Stitching on Real-world Datasets

All stitches in Section 5 are trained for 20 epochs using SGD with learning rate and weight decay of 10−4, momentum of
0.9, batch size of 128.

B.5. Training for Birdsong Recognition

We use publicly available code to train a ResNet-50 for birdsong recognition. We start with a random initialised ResNet-50
(unlike the original code) and use SGD to train for 20 epochs. We perform a hyperparameter search over the learning rate

17

Functional Alignment Can Mislead: Examining Model Stitching

Table B.1. Results of stitching two ResNet18 model together at different layers with different amounts of regularization λ. Model A was
trained to predict the background colour on Colour-MNIST, whereas model B was trained to predict the digit.

Sender Model Receiver Model λ Block 1 Block 2 Block 3 Block 4 Block 5 Linear

A B
0.01 99.90% 99.96% 100.00% 100.00% 100.00% 100.00%
0.1 96.06% 99.09% 99.83% 59.96% 66.07% 99.92%
1 53.43% 22.23% 49.04% 96.66% 9.74% 9.74%

A A
0.01 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
0.1 98.74% 93.12% 88.16% 85.74% 23.07% 88.97%
1 54.12% 38.46% 81.59% 86.72% 10.28% 10.28%

(10−4 to 10−1), weight decay (10−4 to 10−3) and momentum values (0.8 to 0.9). We believe that tuning the hyperparameters
further would neither increase nor decrease the support for the point we are trying to make. If model stitching is a reliable
model comparison method, it should work for a range of models from high-performing ones all the way to models trained
without hyperparameter tuning.

For training the final model the following configuration was used: learning rate of 10−2, weight decay of 10−4 and
momentum of 0.9. Note that in the original manuscript we accidentally reported a higher baseline for the birdsong model.
However, in terms of layer stitch compatibility, all results remain the same (top-1 compatibility starts before the linear layer
and top-5 compatibility starts before the 5th residual block).

B.6. Regularizing the Stitch

To explore different types of stitching, we experiment with training a stitching with additional regularization. The first
network A is a ResNet18 trained on Colour-MNIST digits, but with the label corresponding to the background colour. The
second network B, also a ResNet18, is trained on the same images, but now the labels correspond to the digit instead of the
background colour. We will stitch these networks together with a stitch S at layer l such that A is our sender network and B
is our receiver. For the sake of comparison we will also look at stitching network A into itself.

These stitches will be trained using BCE loss with an additional L1 regularization term on the parameters of the stitch. So
our loss for this will be:

L = LBCE + λ∥θS∥1, (1)

where LBCE is our original loss function, λ is a scalar controlling the strength of our regularization, and θS are the
parameters of the stitch. Results of additional L1 regularization are shown Table B.1 where Block 3, Block 4, and so on
refer to the layer at which the stitching took place. Percentages refer to accuracy of the final model. When our regularization
strength is λ = 0.01 we are still able to stitch A into B. This is not true for larger values of λ, but larger values also prevents
A being stitched into itself, suggesting that the regularization is too strong. In practice, we see that even for λ = 0.01, the
regularization term still dominates the loss. This demonstrates that even with relatively strong L1 regularization our stitching
results are still valid.

We repeat this experiment with weight decay and λ both set to 0. Weight decay is L2 regularization, so this setting
corresponds to training the stitch with no regularization at all. For this setting we achieve above 99% stitching accuracy for
all layers, suggesting that our results are robust across different types of stitches, both with and without regularization.

C. Different Senders to Digit Receiver under Various Architectures
C.1. ResNet-18: Stitching to Digit

As mentioned in Section 7 and Appendix B we used the Digit with Uncorrelated Colour (Digit) model as both receiver and
sender in the stitch, and also used Clustered-Noise as a synthetic sender model. Here we present those extended results.

In Table C.1 we can see that the base accuracy of the Digit network is 0.978. When stitching Colour-Only into this, accuracy
improves to 0.999, indicating that Colour-Only is “better than” Digit. However, the base accuracy (against the same test set

18

Functional Alignment Can Mislead: Examining Model Stitching

Table C.1. Accuracy of trained ResNet-18 models against ‘Correlated’ dataset (average of 5 initialisations).

Acc. with stitch before Res Block 1

Model Base Accuracy ‘Digit’ is Receiver ‘Digit’ is Sender

Correlated 0.999 0.999 0.981
Digit 0.978 0.995 0.996
Colour 1.000 0.999 1.000
Colour-Only 0.686 0.999 0.985

Res Block 1 Res Block 2 Res Block 3 Res Block 4 Linear

0.980

0.985

0.990

0.995

1.000

Te
st

 A
cc

ur
ac

y

(a) Accuracy

Res Block 1 Res Block 2 Res Block 3 Res Block 4 Linear
0

50

100

150

200

250

Fe
at

ur
e

Ra
nk

Stitched Model
Correlated
Digit
Colour
Baseline
Colour-Only
Noise

(b) Rank

Figure C.1. (a) Test accuracy on Correlated data when the ‘Noise’, and each of the trained ResNet-18 models are stitched into the Digit
receiver (baseline is the accuracy of the original Digit model on test Correlated data). This extends Figure 2b by including Colour-Only and
Clustered-Noise. Shaded areas cover 100% of results to highlight the variability. (b) Rank analysis of the stitched models’ representations.
Shaded areas mark 1 standard deviation.

of Correlated) of the Colour-Only network is 0.686, but when stitching Digit into it as a sender, the accuracy improves to
0.985, indicating that Digit is “better than” Colour-Only. This contradiction constitutes a problem for the claim that model
stitching can be used to ascertain relative quality. Note also that stitching the Digit model into itself produces a performance
improvement from 0.978 to 0.995 which challenges the belief that the 1× 1 convolution with batchnorms stitch (Bansal
et al., 2021) does not add capacity.

In Figure C.2 we illustrate the fact that for each initialisation the stitched Digit model outperforms the unstitched baseline.
Shown on the plot are the highest baseline to the lowest stitch accuracy in one model. Baseline = 0.985, Acc min = 0.986.
Also show is lowest accuracy of any stitch in any experiment from its baseline. Baseline = 0.978, Acc min = 0.984. All
stitched Correlated and Colour models perform above all baseline results.

C.2. VGG19: Stitching to Digit

In a variant of the ResNet-18 experiment from 4.1 we stitched from differently biased VGG19 models into ones trained on
Digit data, using Correlated data to train and test the stitch (repeated for 4 differently initialised models). This is indicative
of comparing models which have learned different biases and are evaluated on biased data. As can be seen in Figure C.3
most models show approximately equivalent, or improved performance at all stitch points even though the information
represented is different.

We believe that being unable, sometimes, to stitch differently biased models is irrelevant: the issue is that if it is sometimes
possible to form such a stitch then one cannot use stitch-compatibility to identify equivalent information.

C.3. LeNet-like Models: Stitching to Digit

During the rebuttal period we started extending the stitching experiments from Section 4.1 with a LeNet-like architecture
compatible with 28 × 28 input size. Note that we only train the stitch for 10 epochs so more stitch compatibilities could be
found. However, for the purpose of our paper it suffices to show that stitching compatibility exists. Results are presented
in Table C.2

Note that during the rebuttal we also tried stitching randomly initialised senders in the LeNet-like case. For the setting we

19

Functional Alignment Can Mislead: Examining Model Stitching

Res Block 1 Res Block 2 Res Block 3 Res Block 4 Linear

0.980

0.985

0.990

0.995

1.000
Te

st
 A

cc
ur

ac
y Min Stitch Gain from Best Baseline

Min Stitch Gain for Worst Acc

Figure C.2. As in Figure 2b we show the same Correlated, Colour and Digit results. We mark the stitched performance compared with
baseline as Stitch Gain (i.e. negative Stitch Penalty) for two cases.

features.2 features.10
features.23

features.30 classifier.0
0.980

0.985

0.990

0.995

1.000

Te
st

 A
cc

ur
ac

y

Stitched Model
Correlated
Digit
Colour
Colour-Only
Mix
BW

Figure C.3. Accuracy of variously trained VGG19 Sender models stitched into Digit model at 5 different points in the network using
Correlated dataset. Dashed grey line shows baseline performance of whole Digit model against Correlated dataset. Shaded areas cover
100% of results to highlight the variability. Mix is a dataset comprising examples from MNIST, Correlated, and Colour-Only. BW is
greyscale-MNIST

20

Functional Alignment Can Mislead: Examining Model Stitching

Table C.2. Accuracy (%) when stitching the model trained purely on colour patches (Colour) and the model trained on correlated digit and
colour (Correlated) with a receiver trained on grayscale MNIST (Digit). Stitching compatibility can be easily found when stitching at at
least one layer.

Conv 1 Avg Pool 1 Conv2 Avg Pool 2 Reference

Colour to Digit 76.94 76.68 97.94 97.34 88.19
Correlated to Digit 79.11 78.66 93.24 92.90 88.19

Table D.1. Accuracy (%) of trained models against same test dataset (average of 3 initialisations). Values shown to aid reading of
Figure D.1a

Model Test Accuracy

‘Correlated’ 100
‘Digit’ 98
‘Colour’ 100
‘Colour-Only’ 100

ran, we found that the trained sender was successfully stitching, whereas the randomly initialised sender failed to stitch.
Re-running the experiment with different seeds after the rebuttal period we found that there were cases where randomly
reinitialising also led to a successful stitch. See Appendix G.5 for a discussion on stitching with randomly initialised senders.

D. Further Experiments with Clustered-Noise
D.1. VGG19 Results for Clustered-Noise Senders

There is a reasonable question about whether ResNet architectures may respond to model stitching in a particular way
because of the skip connections. To address this, we extended the testing with Clustered-Noise data to include VGG19
models. 3 initialisations were run. 50 Epochs for model and stitch training: batch size=64, SGD, lr=1e-2, momentum=0.9,
weight decay=1e-4.

Each trained model was cut and stitched at the following points. We decided to take a sample rather than testing every
convolutional layer to reduce experimental duration (Figure D.1a):

• Whole Model (image data)

• Cut before features.2 (Noise data)

• Cut before features.10

• Cut before features.23

• Cut before features.30

• Cut before classifier.0

We record the rank of the activations for the Clustered-Noise test dataset at the first convolutional layer in the receiver model
after the stitch (Figure D.1b).

Figure D.1a and Table D.1 show that ‘Digit’ has improved results with stitching in the ‘Clustered-Noise’ dataset. ‘Correlated’
maintains accuracy. This is in accordance with the results for ResNet.

Most notably, ‘Colour’ and ‘Colour-Only’ show very varied results with stitching. It is not clear from this limited experiment
whether that is due to the network not being stitching-compatible with the synthetic Clustered-Noise data, or if it is a
manifestation of the random variability shown by Csiszárik et al. (2021) (i.e. stitching from different stitch initialisations
can yield very different stitching-penalties).

21

Functional Alignment Can Mislead: Examining Model Stitching

Whole features.2features.10
features.23

features.30classifier.0
0.7

0.8

0.9

1.0
Te

st
 A

cc
ur

ac
y

(a) Accuracy

features.2 features.10
features.23

features.30 classifier.0
0

100

200

300

Fe
at

ur
e

Ra
nk

RCV Model
Correlated
Digit
Colour
Colour-Only
Baseline

(b) Rank

Figure D.1. (a) Accuracy of VGG19 models trained on the four dataset variants when Clustered-Noise is stitched at each of 5 different
points in the model. The first sample shown (‘Whole’) is for the uncut models tested with their own test datasets. Shaded areas cover
100% of results to highlight the variability. Markers show individual measurements. (b) Ranks of activations just after the stitch from
Clustered-Noise test dataset. ‘Baseline’ shows ranks at the same points of the uncut ‘Digit’ trained VGG19 models when presented with
‘Digit’ test data. Shaded areas mark 1 standard deviation.

We carried out a small investigation using the model which performed worst at features.2 stitching. Trying multiple stitch
initialisations gave accuracies in the range ∼ 40% − 80%. Trying multiple Clustered-Noise dataset initialisations gave
similar results. Lower and Higher learning rates were also tried with no change. It may be that the training parameters
are wrong as sometimes a good stitch-training loss increases between epochs, and we did not optimise stitch training
hyperparameters. However, it may be that some models reach points in the loss landscape which it is hard to match when
stitching from ‘Noise’ data.

This may represent a difference between ResNet-18 and VGG19 architectures. Two possible reasons (which deserve to be
investigated) are:

Skip Connections ResNet skip connections may make stitching easier.

Dimensionality VGG19 at features.2 has 64 feature maps of size 32x32, whereas Res Block 2 of ResNet-18 has 64 feature
maps of size 7x7. The 1x1 Convolutional stitch layer can only learn to create linear combinations of its input feature
maps and it may be harder to create necessary patterns of activation when (in VGG19) the maps have ∼ 21 times as
many units.

The most obvious feature of the rank information in Figure D.1b is the difference between ranks in the unstitched ‘Digit’
network (presented with ‘Digit’ data) and the stitched networks presented with ‘Noise’ data. This demonstrates that being
stitched to a sender can produce similar functional results in terms of overall accuracy, while internal information is different.

D.2. ResNet-50: Stitching ‘Clustered-Noise’ into ImageNet

It can be argued that Colour MNIST-trained ResNet-18 models can be stitched from ‘Noise’ only because they are simple.
To investigate this, we use ResNet-50 from torchvision pretrained on IMAGENET1K V1. The model is cut after the avgpool
layer, before the final fully-connected linear layer, and prepended with the stitch to create a stitch + receiver model. The
stitch (only) is then trained on the ‘Noise’ dataset, generated for 1000 classes. The stitch + receiver model is then tested
against the synthetic test dataset. This is repeated, cutting before other ResNet-50 Res Blocks (Table 1). At each Res Block
from 3 onwards, accuracy exceeded the ImageNet baseline.

The experiment was repeated for some of the later layers for IMAGENET1K V2 (see Table D.2). Top-1 results only. Again,
at these layers stitch performance exceeded the baseline (80.86%)

D.3. ResNet-18: Increasing the Cluster Size of ‘Clustered-Noise’

In the ‘Noise’ stitching experiments described above (Appendix B.2, D.1, D.2), the radius of each cluster was 0.1, resulting
in tightly grouped class representations which are likely to be separable. We hypothesise that it is this separability which
leads to high performance when stitching. To investigate, stitching was repeated with ResNet-18 for one MNIST and one

22

Functional Alignment Can Mislead: Examining Model Stitching

Table D.2. Accuracy of ImageNet pretrained ResNet-50 models (IMAGENET1K V2) against ‘Noise’ dataset. Numbers of epochs adjusted
to reduce processing time.

Cut before layer Acc. (%) Epochs

Res Block 3 99.8 3
Res Block 4 100 3
AvgPool 100 10
Linear 100 10

Table D.3. Varying the radius of noise clusters at one stitch point for two trained models. Original model accuracy = MNIST: 98%,
Colour-Only: 100%

Acc. (%)

Radius MNIST Colour-Only

0.5 99.7 99.8
0.9 97.3 97.8
0.99 96.4 96.3
1.0 96.0 96.6

Colour-Only model cut before Res Block 3 for varying noise radii. For each model, the cluster centre positions were kept
consistent while the data points around them were regenerated. Increasing the Clustered-Noise radius decreased accuracy
(see Table D.3) meaning that it is possible to tune noise to have a stitching penalty above, below, or matching the original
network. We argue that representational cluster shape may account for the quality of stitches between real-world networks.

D.4. Misaligned Class Size

During the rebuttal period we experimented with stitching a smaller number of clusters (classes) into the pretrained Stylized
and ImageNet receivers. We considered 10, 5, and 2 random noise clusters and successfully managed to stitch these into the
receiver. As expected, the fewer classes represented, the easier it was to achieve stitch compatibility. In the case of stitching
two classes to the ImageNet model, for example, 100% accuracy was achieved within only one epoch of training.

E. Different Offsets for Remapping Classes
In subsection 5.3 we describe experiments in which a trained network is cut and self-stitched; the original model’s dataset is
used to train the stitch, but with an offset in the class labels. We present and discuss further results here.

Performance was sometimes reduced in earlier layers (see Figure E.1) for some datasets, but note that Colour-Only could
sometimes achieve perfect performance even when stitching before Res Block 1.

BW (greyscale-MNIST) always suffered some degradation at early layers, but later in the network was successful. As a short
investigation, we ran the MNIST offset tests for a single model at all 10 offsets and found similar curves for all offsets other
than zero. We hypothesise that this is due to different classes having very varied clustering at early layers, but investigating
this is beyond the scope of this paper.

F. Alternative Baselines
As described in section 5, we present stitching data with reference to both baselines in Table F.1. Note that in the main body
of the paper we choose the most competitive between the two. While this is usually the performance of the receiver network
on the receiver task, there exists one exception. Stylized performs better on ImageNet than on Stylized and therefore we
choose the performance on sender’s task as the baseline. Note that with the alternative baseline we observe full stitch
compatibility.

23

Functional Alignment Can Mislead: Examining Model Stitching

Res Block 1 Res Block 2 Res Block 3 Res Block 4 Linear
0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Class offset = 1
Correlated
Colour-Only
BW

(a) Offset 1

Res Block 1 Res Block 2 Res Block 3 Res Block 4 Linear
0.8

0.9

1.0

Class offset = 2
Correlated
Colour-Only
BW

(b) Offset 2

Res Block 1 Res Block 2 Res Block 3 Res Block 4 Linear
0.8

0.9

1.0

Class offset = 3
Correlated
Colour-Only
BW

(c) Offset 3

Figure E.1. Test accuracy shown for three initialisations of three datasets stitching before each of 5 layers and for different class offsets.
Shaded regions cover 100% of results to highlight variability

Table F.1. Results of stitching various models into and from ImageNet. We highlight in bold the representations that were stitch-compatible.
Note that “Block X” and “Linear” means that we are stitching before the Xth residual block and the classification layer respectively.
Sender Baseline is the performance of the receiver on the given task (sender’s task), while Receiver Baseline is the performance of the
receiver on the receiver task. *These are the accuracy measurements we obtain when resizing the test samples to 256, as described in the
paper. We can only match (Geirhos et al., 2019)’s reported top-5 accuracy of 16.4% (with a corresponding 73.8% top-1 accuracy) when
removing the resize operation.

Block 1 Block 2 Block 3 Block 4 Block 5 Linear
Sender

Baseline
Receiver
Baseline

ImageNet to
Stylized

Top-1 58.39 58.61 61.53 65.31 70.43 74.34 60.18 56.18
Top-5 80.57 80.61 83.28 86.13 89.78 91.93 82.60 78.96

Stylized
to ImageNet

Top-1 10.61 11.23 17.60 30.26 45.45 49.17 7.15∗ 76.13
Top-5 22.65 23.08 34.34 52.52 69.57 72.30 15.87∗ 92.86

10-class ImageNet
to Birdsong

Top-1 15.40 19.00 25.00 46.20 75.60 88.40 6.59 77.98
Top-5 63.80 68.40 76.40 88.60 98.60 99.80 50.40 96.07

Clustered-Noise
to ImageNet

Top-1 4.77 4.11 96.59 100 100 100 – 76.13
Top-5 13.51 11.99 99.77 100 100 100 – 92.86

G. Comparison with Randomly Initialised Sender Networks
As part of the evaluation of the potency of the stitching architecture, Bansal et al. (2021) examined the performance when
stitching from a randomly initialised sender network, showing that stitching penalty increases (accuracy decreases) as one
stitches at later points in the networks.

Importantly, note that this is not given as a precondition for the application of stitching to model comparisons. Bansal
et al. (2021) simply perform this experiment for one of the many architectures they consider as a way of confirming that the
stitching layer “is not performing learning”. Nonetheless, we examined it in some of our settings. We conclude this series of
experiments with a discussion (Appendix G.5) on how they align with the perspective presented in this paper.

G.1. ResNet-18: Randomly Initialised Sender to Digit

We extend the setting of Figure C.1 by attempting to stitch randomly initialised (untrained) networks into a Digit receiver
using Correlated dataset. This was repeated for the same receiver but using a different seed for the random network and
stitch process (see Figure G.1).

As was seen in Figure C.1a, stitching improves performance relative to the baseline. The randomly initialised models
perform better than the Digit model, but less well than Correlated, Colour, Colour-Only and Clustered-Noise.

G.2. ResNet-18: Randomly Initialised Sender to BW Receiver with Colour-Only Dataset (and to Colour-Only
Receiver with BW Dataset)

In subsection 4.2 we indicated that using Colour-Only senders and stitch training datasets with Greyscale-MNIST receivers
results in 100% accuracy. For comparison, we tested for a single Greyscale-MNIST receiver stitching a randomly initialised

24

Functional Alignment Can Mislead: Examining Model Stitching

Layer 1 Layer 2 Layer 3 Layer 4 Linear

0.980

0.985

0.990

0.995

Te
st

 A
cc

ur
ac

y

Stitched Model
Digit
Randomly Initialised
Baseline

Figure G.1. ResNet-18 trained on Digit compared with stitching from two randomly initialised sender networks. Stitch training and
evaluation used Correlated dataset. Digit plots are for self-stitching. Baseline is whole Digit model tested with Correlated dataset

Layer 1 Layer 2 Layer 3 Layer 4 Linear

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Stitched Model
Randomly Initialised
Colour-Only
BW

Figure G.2. ResNet-18 trained on Colour-Only stitching from a randomly initialised sender network - compared with a sender trained on
BW data. Stitch training and evaluation used Greyscale-MNIST (BW) dataset. Also shown is self-stitching with Colour-Only as its own
sender, also on BW dataset.

sender with Colour-Only data and found that it also achieved 100% accuracy at each layer. The same result was obtained
self-stitching the same Greyscale-MNIST model as its own sender.

We also did the complementary experiment Colour-Only receiver, and Greyscale-MNIST datasets for the stitching (Fig-
ure G.2). The Randomly initialised model underperforms relative to the BW sender model as expected, given that the
BW-trained sender model should be able to separate BW data. It also outperforms the Colour-Only sender stitched into
itself as a receiver.

G.3. VGG19: Randomly Initialised Sender to Digit with Digit Dataset

For an arbitrarily selected VGG19 model trained on Digit dataset, we found baseline performance was very similar to
stitching the network to itself at each layer (Figure G.3). By comparison, stitching with Digit dataset from an uninitialised
sender shows performance degrades with the depth of stitch as expected.

Varying the experiment to more closely mirror the ResNet-18 work in Figure G.1 and the VGG19 work in Figure C.3, we
find that training the Digit stitch on the Correlated dataset gives an improvement in performance relative to the baseline of
Digit model tested on Correlated dataset. However, this is outperformed by the uninitialised sender (see Figure G.4).

G.4. Linear Probing Randomly Initialised Senders

To give more perspective on the results obtained in this section, we carry out an additional set of experiments where we
verify the level of linear separability of representations obtained by passing datasets through randomly initialised senders.

25

Functional Alignment Can Mislead: Examining Model Stitching

features.2 features.10
features.23

features.30 classifier.0

0.90

0.92

0.94

0.96

0.98

Te
st

 A
cc

ur
ac

y

Stitched Model
Digit
Randomly Initialised
baseline

Figure G.3. VGG19 model (trained on Digit) stitched to itself (using Digit dataset) compared with stitching in an uninitialised network
using the same dataset. Baseline is whole Digit model on Digit dataset.

features.2 features.10
features.23

features.30 classifier.0

0.985

0.990

0.995

1.000

Te
st

 A
cc

ur
ac

y Stitched Model
Digit
Randomly Initialised
baseline

Figure G.4. VGG19 model (trained on Digit) stitched to itself (using Correlated dataset) compared with stitching in an uninitialised
network using the same dataset. Baseline is whole Digit model tested with Correlated dataset.

26

Functional Alignment Can Mislead: Examining Model Stitching

Conv 1 Avg Pool 1 Conv2 Avg Pool 2

Colour-Only 95.33±6.00 98.88±0.76 96.94±2.68 88.20±9.07

Greyscale MNIST 95.12±0.85 92.78±0.42 90.04±0.43 86.15±0.91

Table G.1. Test accuracy when probing untrained LeNet-like senders for Colour-Only and Grayscale MNIST data.

Block 1 Block 2 Block 3 Block 4 Block 5 Linear

Colour-Only 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00

Greyscale MNIST 97.94±0.07 98.33±0.09 98.26±0.11 97.01±0.21 93.77±0.40 82.88±0.49

Table G.2. Test accuracy when probing untrained ResNet-18 senders for Colour-Only and Grayscale MNIST data.

To do so, we linearly probe these representations. That is, we put the representations through a linear layer and attempt to
classify these. We train the probe (linear layer) for 20 epochs, using SGD with a momentum of 0.9 and weight decay of
10−4, learning rate of 10−3, batch size of 128. We perform 5 runs and report the mean and standard deviation.

Note that we did not perform any hyperparameter tuning and it is possible that training for longer or with more carefully
chosen hyperparameters, a higher degree of linear separability might be found. We simply want to show that good separability
can be found. We perform these experiments for the Colour-Only and Greyscale MNIST datasets. The results for LeNet-like
untrained senders are given in Table G.1, while those for untrained ResNet-18 senders can be found in Table G.2.

G.5. Discussion on Randomly Initialised Senders

In this section we have seen that there are cases in which untrained versions of the models we considered can be successfully
stitched (and also cases in which this was not achieved with the standard hyperparameters and training budget.) Are our
results diminished by cases where stitching from an untrained model was possible? We believe they further amplify the
central message of our paper.

Consider the case of putting Colour-Only data through untrained convolutions. As we have seen, there are many cases
where colour information leaks through untrained convolutions, and representations remain clustered (see Appendix G.4
where we verify this in a couple of cases with a linear probe). In the light of the experiments in Section 5, we argue that
stitch compatibility of untrained senders can be understood from the perspective of clustering. As long as a mapping can
be found, we can abstract away from the information that the representational clusters were originally based on. Whether
it is birdsongs, natural images, stylised images, random clustered noise, or even colour patches passed through untrained
convolutions, the stitch need only find a mapping to the receiver. The stitch and receiver become a complex but fixed probe.

27

