
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REVERSIBLE LIFELONG MODEL EDITING VIA SEMAN-
TIC ROUTING-BASED LORA

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
natural language processing. However, the dynamic evolution of real-world
knowledge necessitates continual editing of specific knowledge within LLMs.
While existing model editing methods explore modular isolation or parameter-
efficient strategies, they often suffer from semantic drift or knowledge forgetting
during sequential editing due to the continual updating of semantic content. To ad-
dress these challenges, we propose SoLA, a Semantic routing-based LoRA frame-
work for reversible lifelong model editing. In SoLA, each edit is encapsulated as
an independent LoRA module which is frozen after training and a semantic rout-
ing record is established to map it to the input semantic representation, allowing
dynamic activation of LoRA modules via semantic matching. This mechanism
avoids semantic drift caused by clustering updating and mitigates catastrophic
forgetting from parameter sharing. Importantly, SoLA supports both insertion and
deletion of edits. By simply removing key from the semantic routing, specific
edits can be precisely revoked, restoring the model’s original behavior. To our
knowledge, this reversible rollback editing capability is the first to be achieved
in existing literature. Furthermore, SoLA integrates the decision-making process
into the edited layer itself, eliminating the need for auxiliary routing networks
and enabling end-to-end decision-making process. Extensive experiments across
three representative tasks (document classification, question answering, and hal-
lucination correction) demonstrate that SoLA effectively learns and retains edited
knowledge, achieving accurate, efficient, and reversible lifelong model editing.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in the field of natural
language processing, attracting the attention of numerous researchersBrown et al. (2020)Achiam
et al. (2023)Radford et al. (2019)Touvron et al. (2023). However, LLMs also face severe challenges,
including hallucinationsHuang et al. (2025), biasesHartvigsen et al. (2022), and the generation of
harmful contentDe Cao et al. (2021). Moreover, the dynamic nature of real-world knowledge re-
quires the continuous updating of specific information in LLMsLazaridou et al. (2021). Re-training
these models from scratch is both expensive and time-consumingBiderman et al. (2023). In this
scenario, the demand for model editing is increasing with aims to modify specific knowledge in the
training model continuously without re-training the model or affecting its performance on unrelated
inputs, which is known as lifelong model editingYao et al. (2023)Hartvigsen et al. (2022)Yu et al.
(2024).

The lifelong model editing aims to continuously update the model to adapt to the constantly chang-
ing world. However, most of the existing model editing methods are designed for single, isolated
editingMitchell et al. (2021)Meng et al. (2022a). When applied to a continuous environment, these
methods often lead to catastrophic forgetting of the previously learned knowledge in the LLMs, re-
sulting in performance degradation and reduced model reliabilityYao et al. (2023)Gu et al. (2024).
To solve this problem, recent methods propose freezing the original model parameters and introduc-
ing lightweight trainable modules to inject new knowledge. These methods usually retain most of
the model’s knowledge by keeping the base parameters fixed and combining the learnable modules
for specific task updates. For example, MeloYu et al. (2024) determines the clustering centres of
editors by building a neuron index and dynamically updates its semantic representation based on the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

distance from the clustering centres. ELDERLi et al. (2025) adopts the Mixture-of-Experts (MoE)
approach, assigning scores to each LoRA expert through a set of learnable LoRA allocation codes
and selecting the top-k LoRA for calculation.

(a) Trainable parameters and ERR accuracy compar-
ison.

(b) Number of mismatches of LoRA allocation and
ERR/TRR in MELO.

Figure 1: Figure(a) presents the comparison of trainable parameters and ERR accuracy between
SoLA (Ours) and other methods. Figure(b) indicates the number of mismatches in LoRA allocation
with ERR/TRR accuracy in MELO. All experiments are conducted on Scotus datasets with the same
backbone.

Although these methods show potential in improving parameter efficiency and reducing interfer-
ence, they face inherent limitations when applied to lifelong model editing. Specifically, MELOYu
et al. (2024) improves module separability through semantic clustering, but its clustering centers are
updated during the editing process, which may lead to semantic drift and module matching errors.
ELDERLi et al. (2025) employ MoE and selects the top-k routes to activate each editing subset,
although this strategy has high parameter efficiency, shared and continuously updated parameters
can lead to catastrophic forgetting - new editing may overwrite or interfere with existing editing.

To address these limitations, we propose SoLA, a Semantic routing-based LoRA framework for
reversible lifelong model editing. In SoLA, we allocate an independent LoRA module for each
edit and establish semantic routing to record the mapping relationship between LoRA module and
the input semantic representation. During editing, the LoRA module fully learns for the current
task and then remains frozen to retain the learned knowledge. The corresponding key is also not up-
dated. During inference, the semantic representation of the input is calculated, and the corresponding
LoRA module is dynamically activated through semantic routing. Since the LoRA module and the
semantic representation have not been updated, we fundamentally avoid catastrophic forgetting
and semantic drift problems caused by continual updating. At the same time, each edit only
requires training for the current LoRA module, significantly reducing the computational resource
consumption. As shown in Fig.1a, SoLA achieves optimal performance with only 0.08M additional
parameters, significantly outperforming previous methods, highlighting SoLA’s exceptional param-
eter efficiency and editing accuracy.

More importantly, by removing the semantic key from the mapping memory table, we can precisely
revoke specific edits, allowing the model to recover its original behavior without re-training. This
means we can freely add and delete edits, and truly achieve controllable rollback and restoration
of editing. To our knowledge, this is the first time that controllable rollback of editing has been
achieved in existing literature. Moreover, existing works usually require introducing auxiliary rout-
ing network outside the edited layer to determine whether to enable the LoRA module. In this paper,
we propose a master decision-making mechanism that aggregates the decision-making process into
the edited layer, avoiding the reliance on auxiliary routing network and achieving an end-to-end
decision-making process.

Extensive experiments validate the effectiveness of our approach. Our main contributions are sum-
marized as follows:

• We propose SoLA, a novel framework for reversible lifelong model editing, which incor-
porates a controllable LoRA mechanism guided by semantic routing. After each edit, both

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the LoRA modules and the corresponding keys in the mapping memory are frozen, effec-
tively mitigating catastrophic forgetting and semantic drift. Moreover, only the currently
active LoRA modules are trained during editing, significantly reducing computational over-
head.(Fig.1a).

• We employs semantic routing to establish a precise mapping between LoRA modules and
semantic representations. By removing the associated key, any specific edit can be precisely
revoked, enabling flexible addition and deletion of edits.

• we propose a master decision-making mechanism that aggregates the decision-making pro-
cess into the edited layer, avoiding the reliance on an auxiliary routing network and achiev-
ing an end-to-end decision-making process.

Figure 2: Main framework of our method. a) indicates the edit layer in model, where we retain the
Transformer Block of base model frozen and add trainable LoRA module to the edited layer of base
model. b) show the editing process, where every edit will be assigned LoRA module and the query
of input will be mapped to assigned LoRA module. c) present the matching process between query
of input and LoRA module in reference. Colour green indicates trainable, while color grey is frozen.

2 RELATED WORK

2.1 MODEL EDITING

Model Editing aims to update specific knowledge within LLMs while preserving their previous
knowledge. Current model editing methods can be broadly categorized into three paradigms: Meta-
Learning methods, Locate-then-Edit methods, and Memory-Based methods. Meta-Learning Meth-
ods employ a hypernetwork to predict the necessary gradients for editing and apply these gradients
to the base model to achieve the updateMitchell et al. (2021). However, this approach typically
requires additional data for training the hypernetwork. Locate-then-Edit methods first identify the
neurons most critical for the current input via minor perturbations and then directly modify these
neurons to update the model’s knowledgeMeng et al. (2022a)Meng et al. (2022b). While effective,
these methods are often cumbersome and exhibit limitations when handling a large volume of simul-
taneous knowledge updates. Memory-Based methods store the information associated with edits in
an buffer, which acts as a patch model augmenting the original modelMitchell et al. (2022). A sig-
nificant drawback is that each edit necessitates retraining, making it difficult to adapt to continuous
editing scenarios, and the memory bank grows incrementally with each edit, leading to escalating
storage overhead. Recent studies have also explored editing constraints to maintain model behavior
stability. AlphaEditFang et al. (2024) introduces a null-space constrained approach. It aims to apply
edits more precisely by constraining changes to the null space of irrelevant knowledge.

However, these methods primarily address static editing, suitable for one-time modifications, and
struggle to accommodate sequential editing demands over time. To address these limitations,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

GRACEHartvigsen et al. (2023) replace hidden states with vectors retrieved from a learned code-
book. MELOYu et al. (2024) introduces a vector database and leverages a clustering mechanism
to dynamically assign LoRA modules. ELDERLi et al. (2025) adopts a MoE framework, where
a learnable neural network weights shared LoRA modules. However, these approaches inevitably
update the semantic representation in sequential edits, leading to semantic drift or knowledge for-
getting.

3 METHOD

3.1 PRELIMINARIES

Lifelong Model Editing The purpose of lifelong model editing, as described by GraceHartvigsen
et al. (2023), is to make continual edits to the knowledge of the initial base model without degrading
the performance of the base model and without negating previous edits. Consider an initial base
model fbase, After n edits Dedit = {d1, ..., dn}, some of the model’s knowledge is updated and
model is transformed into fn, where di = (xi,yi), For lifetime model editing, the edited model
fn should be able to correctly output y within the edited inputs x ∈ Dedit, i.e., fn(xi) = yi.
Furthermore, for inputs x′ /∈ Dedit that are semantically similar to the edited instances, such as
rephrased sentences, the model fn is expected to generalize the updated knowledge appropriately,
like fn(x

′
i) = yi. Moreover, after editing, the model fn should also retain the previous knowledge

of fbase, that is, for data samples xj /∈ Dedit that have not been edited, there should be fn(xj) =
fbase(xj) = yj .

LoRA for Lifelong Model Editing Low-Rank Adaptation (LoRA) Hu et al. (2022) is an efficient
finetuning method for LLMs that optimizes model outputs by projecting features into a low-rank
subspace. In the context of efficient LLM finetuning, LoRA modules are typically inserted into
specific layers of the pre-trained model. During editing, the base LLM parameters W0 ∈ Rd×k

remain frozen, while only the LoRA module ∆W ∈ Rd×k is updated. The parameter update ∆W
can be represented as a low-rank decomposition of the pretrained weight matrix. Specifically, ∆W
is factorized into two smaller matrices A ∈ Rr×k and B ∈ Rd×r, such that ∆W = BA, where
r ≪ min(d, k) and r is the LoRA rank. Given the original h = W0x, the forward propagation
process is modified as:

h = W0x+∆Wx = W0x+BAx (1)

where A is initialized using a zero mean Gaussian distribution and B is initialized as a zero ma-
trix. This approach significantly reduces the number of trainable parameters while maintaining the
expressive power of the full-rank update.

3.2 CLUSTER UPDATING IN LIFELONG MODEL EDITING

In the context of lifelong model editing, when multiple adapter modules are involved, the model
needs to dynamically manage the association between edits and the corresponding adapter module.
MELO addresses this by employing a clustering mechanism that assigns edits to clusters based on
the hidden representations of the inputs, with cluster centres being continuously updated throughout
editing. However, this continual updating of cluster centers alters their semantic representation,
leading to semantic drift and incorrect module assignments. Moreover, repeated training of LoRA
modules can result in forgetting previously acquired knowledge. Varying the cluster radius in MeLO
results in a different number of generated cluster centres, thereby affecting the frequency of cluster
centre updates. We record MeLO’s performance under different numbers of cluster centre updates,
as shown in Fig.1b. The experiment is conducted on SCOTUS dataset. In Fig.1b, the number of
updates refers to the number of cluster centre updates during the editing process, and the number of
mismatches indicates how many times, during inference, the retrieved LoRA module differs from
the one assigned during editing. ERR and TRR represent the model’s accuracy on the edited and
unedited datasets, respectively, after all editing tasks are completed.

As shown in the Fig.1b, for the same datasets SCOTUS of editing, increasing the number of cluster
centre updates leads to a rise in mismatches during inference, and a corresponding decline in model
performance on both the edited and unedited datasets. This demonstrates that cluster centre up-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

dates can cause semantic drift, resulting in incorrect LoRA match, while repeated training of LoRA
modules contributes to knowledge forgetting. Therefore, in SoLA, we freeze both the LoRA mod-
ules and their associated keys once the current task is completed. These components are no longer
updated in subsequent edits, thereby maximizing knowledge retention across editing iterations.

Table 1: Comparison of SoLA to existing methods. All the results are obtained after sequential
edits. ERR indicates Edit Reliability Rate, TRR presents Task Retention Rate, and ARR is Accuracy
Attention Rate. The best performance is shown in bold.

SCOTUS (BERT; Acc ↑) zsRE (T5; F1 ↑) Hallucination (GPT2-XL; PPL ↓)

Method ERR TRR Avg. ERR TRR Avg. ERR TRR ARR

EWC 0.51 0.82 0.66 0.67 0.50 0.58 1485.7 29.24 109.59
CMR 0.52 0.52 0.52 0.56 0.82 0.69 1449.3 28.14 107.76
CLEAR 0.67 0.83 0.75 0.27 0.99 0.63 2394.3 35.34 195.82
MEND 0.19 0.27 0.23 0.25 0.27 0.26 1369.8 1754.9 2902.5
SERAC 0.33 0.41 0.37 0.72 0.31 0.52 8183.7 133.3 10.04
ROME - - - - - - 30.28 103.82 14.02
GRACE 0.81 0.82 0.82 0.69 0.96 0.83 15.84 7.14 10.00
ELDER 0.89 0.86 0.88 0.72 0.97 0.84 16.12 5.87 8.42
MELO 0.96 0.92 0.94 0.72 0.98 0.85 17.45 1.04 2.66
SoLA 0.97 0.95 0.96 0.73 0.99 0.86 15.15 1.01 7.35

3.3 SEMANTIC ROUTING-BASED CONTROLLABLE LORA

In the layer where the model needs to be edited, we keep the parameters of the original model
frozen and insert the learnable LoRA module for editing, as shown in Fig.2 a). In SoLA, each
editing operation is encapsulated within an independent LoRA module. During sequential editing,
for a given editing task di = (xm

i ,ym
i )nm=1, a dedicated LoRA module LoRAi is assigned. For each

data instance xm
i ∈ di, the corresponding LoRA id i is recorded, and a semantic routing entry is

established by associating LoRA module with a semantic key derived from the input representation,
as shown in Fig.2 b). Following prior workHartvigsen et al. (2023), we use the hidden representation
of the last token in the input sequence as the key e ∈ Rd vector. During editing, the assigned LoRA
module LoRAi will fully learn the task di, yielding the output:

h = h0 + LoRAi(x) (2)

where h0 ∈ Rl×d is the frozen base model representation, l is the sequence length, d is the hidden
state dimension. At this stage, all other LoRA modules and the stored key vectors remain frozen.
Upon completion of the editing process, the trained LoRAi module is frozen and will be stored
with its associated key ei as a fixed mapping for future reference. Neither the LoRA module nor
the key will be updated in subsequent editing. Since only the current LoRA module is involved
in training during each edit, SoLA significantly reduces the number of trainable parameters, as
shown in Fig.1a. Furthermore, freezing both the LoRA module and its corresponding key after
editing prevents semantic drift and mitigates catastrophic forgetting, thereby maximizing knowledge
retention. During inference, the hidden representation of the last token in the input sequence will
serve as a query vector q ∈ Rd from the input x and matches against the stored keys K ∈ RN×d,
as shown in Fig.2 c). If a match is found, the corresponding LoRA module is retrieved from stored
LoRA pool R ∈ RM and incorporated into the computation.

3.4 MASTER DECISION MECHANISM

During inference, existing approaches usually need to introduce an auxiliary routing network outside
the target edited layer to decide whether to activate the LoRA module or notYu et al. (2024)Li et al.
(2025), which hampers the end-to-end decision-making process. To address this limitation, we
propose a master decision-making mechanism that does not require an auxiliary routing component.
Specifically, we designate the first edited layer as the master decision layer where input features
are dynamically evaluated to activate the relevant LoRA module without the need for an auxiliary

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) ES (b) ERR

(c) TRR (d) Model visualization of zsRE datasets.

Figure 3: Figure(a–c) presents every edit accuracy on SCOTUS datasets with BERT. Figure(d)
shows visualization of zsRE dataset encoder output from T5-small with t-SNE and the dots with
same color and shape are input and rephrase sentence. All experiment settings are the same as
Tab. 1.

network. In this framework, the master decision layer He computes the distance metric between
the input feature embedding q and the stored key K to determine the activation of the module:
d = He(argmini(dist(q, ki))), i = (1, 2, ..., N), dist(·) denotes the distance function and each
key ki associated with the LoRA module. Then in the master layer He, we decide the edit layer
behaviour:

He =

{
H(W0) if d ≥ α

H(W0,WRm
) if d < α

(3)

where α is the threshold, in this work we set it as 0.01, WRm
represents the weight of m-th LoRA

module associated with the key nearest to the query. This binary decision is propagated to the sub-
sequent edited layers, ensuring consistent module activation throughout the network. By integrating
the decision-making process to the first edited layer, our approach achieves complete end-to-end
decision-making capability while maintaining architectural simplicity.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Baselines We first compare several recent methods designed for lifelong model editing.
GraceHartvigsen et al. (2023) replaces model outputs with key-value pairs and matches features
to keys based on deferral radius. MELOYu et al. (2024) leverages LoRA for finetuning and dynam-
ically retrieves relevant LoRA modules via neuron index. ELDERLi et al. (2025) employs MoE to
dynamically combine multiple LoRA modules. Additionally, we evaluate other baseline methods.
MENDMitchell et al. (2021) uses a hypernetwork trained on auxiliary data to predict the required
gradients for model editing. SERACMitchell et al. (2022) learns a scope classifier and a counterfac-
tual model, coordinating between modules to determine editing behavior. ROMEMeng et al. (2022a)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

identifies the most influential weights in the model through perturbation analysis, localizes knowl-
edge to specific layers of GPT, and modifies the corresponding weights. Since ROME is specifically
designed for GPT, it is only evaluated on the hallucination correction task. EWC(Kirkpatrick et al.,
2017) imposes constraints on the weights updating so that the model continuously learns new knowl-
edge and retains previous knowledge. CMRLin et al. (2022) performs continuous finetuning of the
model to continuously learn new knowledge. CLEARRolnick et al. (2019) builds a memory buffer
to restore old tasks information, and replays them in subsequent edits to retain previous knowledge.

Evaluation Metric In this work, followingHartvigsen et al. (2023), we use three basic metrics to
assess model performance: ES, ERR and TRR, which are applicable to all model experiments.
Where Edit Success(ES) measures the ability of the model to edit the target sample. Edit Reliability
Rate(ERR) assesses the validity of the model on the edited dataset, indicating the extent to which the
required knowledge updates are successfully incorporated. Task Retention Rate(TRR) quantifies the
model’s performance on unedited datasets and reflects the model’s ability to retain previous knowl-
edge. Additionally, in the hallucination correction task, we also use the Accuracy Attention Rate
(ARR) to assess the performance of the already accurate output. Accuracy is measured differently
for different tasks. For the document classification task of SCOTUS, we use the Average Accuracy
Rate (ACC); for the question answering task of zsRE, we measure it using the average F1, and for
the hallucination correction task, we measure it using the standard average complexity (PPL)Brown
et al. (1992).

Table 2: Model Performance Comparison on UniEdit and WikiBigEdit datasets in hallucination
correction tasks. All the scores are PPL metric and the best result is in bolded.

UniEdit (PPL ↓) WikiBigEdit (PPL ↓)

Model Method ERR TRR ARR ERR TRR ARR

LLaMA-3-8B

EWC 2.43 1134 22.08 3.58 251117 4.93
CMR 2.79 2239 25.24 2.86 169452 4.49
CLEAR 1.04 982 29.79 1.03 74384 1.52
SERAC 37.10 246 93 60.17 215 59
GRACE 1.00 244 89 1.00 216 58
ELDER 1.00 173 74 1.00 178 48
MELO 1.00 153 68 1.00 165 47
Ours 1.00 144 66 1.00 162 44

DeepSeek-R1-8B

EWC 2.38 4451 42.13 2.86 47846 3.89
CMR 2.34 7211 36.19 3.60 34623 5.51
CLEAR 1.06 3365 44.86 1.02 28110 1.48
SERAC 46.76 451 834 82.72 493 831
GRACE 1.00 407 803 1.00 487 793
ELDER 1.03 241 482 1.03 304 492
MELO 1.09 204 407 1.05 263 445
Ours 1.07 188 374 1.00 248 412

Qwen2-7B

EWC 4.62 7648 48.62 5.61 61834 14.65
CMR 4.12 11583 40.56 6.28 48629 16.89
CLEAR 1.03 5021 54.98 1.05 35396 4.26
SERAC 58.51 329 1261 62.12 304 523
GRACE 2.05 316 1065 16.88 299 518
ELDER 1.00 201 266 1.00 225 197
MELO 1.00 170 201 1.00 203 143
Ours 1.00 156 110 1.00 199 109

4.2 MAIN RESULTS

We evaluate the performance of the proposed SoLA method on three benchmark datasets and com-
pare it with several state-of-the-art model editing approaches. The results are summarized in Tab.1.
As observed, SoLA achieves excellent performance on most of the benchmark datasets, with SoLA
outperforming the strongest baseline, MELO, by 3% on the SCOTUS dataset. These demonstrate
SoLA’s enhanced effectiveness in editing target knowledge while better preserving previously ac-
quired knowledge. Furthermore, existing methods such as MEND and SERAC perform poorly under
the sequential editing setting, suggesting that they are primarily designed for static editing scenarios
and are not well-suited for sequential model editing tasks.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We also report task-wise accuracy progression to analyze model performance throughout the se-
quential editing process. The experimental results are based on the SCOTUS dataset and the results
are shown in Fig.3. As illustrated in Fig.3a, Fig.3b and Fig.3c, SoLA consistently maintains supe-
rior accuracy across tasks, without exhibiting substantial performance degradation or volatility. This
indicates the robustness and stability of SoLA when applied to sequential knowledge editing.

Method performance may vary across different model sizes and datasets. To further evaluate the
robustness of our approach, we conduct hallucination correction experiments on the UniEditChen
et al. (2025) and WikiBigEditThede et al. (2025) datasets using larger-scale backbone models. The
results are presented in Tab.2. As shown in Tab.2, SoLA consistently achieves the best or near-best
performance across most settings, demonstrating its robustness and effectiveness under diverse task
configurations. During editing, larger backbone models generally exhibit more stable ERR values,
suggesting that such models have learned stronger semantic representations during pretraining, lead-
ing to better generalization and editability. Furthermore, continuous learning related methods tend
to overfit in edited data, thus showing better ARR in the retention set, but large TRR values in the
upstream set, indicating severe forgetting of previous knowledge.

4.3 CONTROLLABLE ROLLBACK EDITING

In SoLA, each edit instance is associated with a unique key stored in both the memory and the
routing table. This design enables reversible editing, as the model can revert to its original behavior
by removing the key corresponding to a specific edit. To demonstrate this property, we conduct
an illustrative experiment on the zsRE dataset. The results are shown in Tab.3. In the Tab.3, each
row corresponds to an input instance consisting of a ”Text” (the question need to be edited) and
its ”Labels” (the correct answer). ”Del” indicates whether the key corresponding to the edit is
removed after editing. For each input, Predbase, Prededit and Preddel denote the prediction of base
model, edited model and model after removing the corresponding key. When ”Del” is false, the key
is retained, serving as a baseline comparison. As shown in Tab.3, for each instance, the original
prediction (Predbase) does not match the correct label, indicating the necessity for editing. After
editing, the model correctly produces Prededit consistent with the ground-truth label, demonstrating
that SoLA successfully updates the model’s knowledge. When the associated key is deleted, the
model reverts to its original prediction (Prededit = Predbase), verifying that our method can effectively
roll back specific edits. More critically, for edits where the key is not deleted, the model continues to
output Prededit, showing that the rollback operation does not interfere with other edits. This confirms
that SoLA supports fine-grained, selective undo of knowledge edits without disrupting unrelated
modifications.

Table 3: Controllable edit in SoLA on zsRE datasets. ”Text” is the question need to be edited,
”Labels” is the true answer, ”Del” indicates whther delete associated key and Predbase, Prededit and
Preddel is the prediction of base model, edited model and delted model.

Text Labels Del Predbase Prededit Preddel

The date of Tsetserleg earthquake in 1905? 9 July 1905 True 20 February 1905 9 July 1905 20 February 1905
What constellation has Nu Cancri? Cancer True Hydra Cancer Hydra
On what date did the Bahrain Grand Prix 2015 occur? 19 April 2015 True 6 April 2017 19 April 2015 6 April 2017
What position does Charles-Joseph Coursol have? Mayor of Montreal True Positioning Mayor of Montreal Positioning
Who acted in Blow Dry? Alan Rickman False Jim Carrey Alan Rickman Alan Rickman

4.4 ABLATION STUDY

Effect of Edit Layer Location In semantic representation learning, different layers of a model fo-
cus on different aspects of semantic information. Therefore, the position of the edited layer can
significantly influence the effectiveness of model editing. To investigate this, we evaluate the perfor-
mance of model when edits are applied at different layers, while keeping all other settings fixed. The
experiments are conducted on the SCOTUS dataset with a Nvidia A100 40G GPU, and the results
are shown in Tab.4a. In the Tab.4a, ”Layer” denotes the layer range used for editing. For example,
”0–2” indicates that edits are applied to layers 0, 1, and 2 of the BERT model. As shown in the
table, editing at shallower layers results in suboptimal performance. This observation aligns with
prior findingsGeva et al. (2020), which suggest that shallow layers primarily capture the shallow
sentence patterns, whereas deeper layers encode richer semantic features, thereby enabling more ef-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

fective knowledge editing. Moreover, editing at shallow layers significantly increases the time used
for editing, which means that editing for semantics is more difficult in shallow layers. Furthermore,
we observe that varying the editing layer has negligible impact on performance over the unedited
portion of the dataset, indicating that SoLA is capable of preserving previously learned knowledge
regardless of the editing depth, which further supports the robustness of SoLA.

Table 4: Ablation studies on (a) location of edited layers and (b) LoRA rank. Here, ”Layer” indicates
the edited layer location. For example, ”0-2” presents edited layer is layers 0, 1 and 2. ”LoRA Rank”
indicates the rank value of every LoRA in model.

(a) Effect of location of edited layer.

Layer ES ERR TRR Edit Time(min)

0-2 0.77 0.61 0.96 9.21

3-5 1.00 0.68 0.96 8.06

6-8 0.81 0.70 0.97 7.03

9-11 0.94 0.95 0.97 5.97

(b) Effect of LoRA rank.

LoRA Rank ES ERR TRR Edit Time(min)

1 0.90 0.84 0.96 5.88
2 0.94 0.91 0.97 5.90
3 1.00 0.91 0.97 5.86
4 1.00 0.95 0.97 5.97
5 1.00 0.92 0.96 5.86

10 1.00 0.71 0.96 5.85

Effect of LoRA Rank The LoRA module projects semantic representations into a low-rank sub-
space for parameter-efficient learning. Consequently, the choice of rank will effect the module’s
performance. To investigate this, we analyze the impact of different LoRA rank values on model
performance, keeping all other settings fixed. Experiments are conducted on the SCOTUS dataset
using a NVIDIA A100 40GB GPU, and the results are presented in Tab.4b. As shown in the Tab.4b,
simply increasing the LoRA rank does not lead to improved performance and may even degrade
model performance. This indicates that expanding the learnable parameter space does not necessar-
ily enhance the model’s capacity for effective knowledge editing. On the contrary, excessive rank
values may even result in performance degradation due to overfitting, suggesting the importance of
carefully selecting an appropriate rank to balance capacity and generalization. Based on the experi-
ment results, we set 4 as LoRA rank for all the experiments in this paper.

4.5 MODEL VISUALIZATION

To gain deeper insight into the model’s behavior, we conduct a t-SNE visualization Maaten & Hin-
ton (2008) of the learned feature representations. The experiment is conducted on the zsRE dataset
using the T5-small model . Specifically, after all whole editing tasks are completed on question an-
swering task, we select five input instances along with their rephrase sentence as 5 group, and extract
the encoder output features from the edited T5-small model for visualization. The resulting plot is
shown in Fig.3d. As illustrated in the Fig.3d, SoLA is able to encode semantically similar inputs
into nearby representations, indicating that it effectively captures and preserves semantic informa-
tion while maintaining meaningful relative distances in the representation space. This supports the
model’s ability to generalize edits based on semantic similarity.

5 CONCLUSION

In this paper, we propose SoLA, a Semantic routing-based LoRA framework for reversible lifelong
model editing. In SoLA, each edit is encapsulated as an independent LoRA module which is frozen
after training and a semantic routing record is established to map LoRA module to the input semantic
representation, allowing dynamic activation of LoRA modules via semantic matching. This design
not only avoids semantic drift caused by clustering updating but also mitigates catastrophic forget-
ting from parameter sharing. More importantly, SoLA supports precisely revoking edit by removing
the corresponding key from the routing table, enabling reversible model editing. This allows for
flexible addition and deletion of edits, offering fine-grained control over model behavior. To the best
of our knowledge, this is the first work to achieve reversible model editing in the literature. Further-
more, we introduce a master decision-making mechanism by integrating decision-making into the
edited layer, enabling end-to-end decision-making process. By building a strict mapping between
edits and LoRA modules, SoLA achieves efficient and reversible lifelong model editing, providing
a novel perspective for future research.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work presents a novel algorithm in the field of Lifelong Model Editing. We are not aware of any
direct ethical issues arising from this research, as it does not involve human subjects, private data,
or foreseeable immediately harmful applications. We have reviewed and adhered to the ICLR Code
of Ethics.

REPRODUCIBILITY STATEMENT

• Code: Upon acceptance of this paper, the source code will be made publicly available.

• Experiments: The complete experimental setup, including hyperparameter values and
training details, is described in Section 4.

• Data: All experiments in this paper were performed on the (publicly available bench-
mark dataset. A complete list of the datasets used and their respective citations can be
found in Section 4.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Peter F Brown, Stephen A Della Pietra, Vincent J Della Pietra, Jennifer C Lai, and Robert L Mercer.
An estimate of an upper bound for the entropy of english. Computational Linguistics, 18(1):
31–40, 1992.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Ilias Chalkidis, Tommaso Pasini, Sheng Zhang, Letizia Tomada, Sebastian Felix Schwemer, and An-
ders Søgaard. Fairlex: A multilingual benchmark for evaluating fairness in legal text processing.
arXiv preprint arXiv:2203.07228, 2022.

Qizhou Chen, Dakan Wang, Taolin Zhang, Zaoming Yan, Chengsong You, Chengyu Wang, and
Xiaofeng He. Uniedit: A unified knowledge editing benchmark for large language models. arXiv
preprint arXiv:2505.12345, 2025.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. arXiv
preprint arXiv:2104.08164, 2021.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and
Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. arXiv
preprint arXiv:2410.02355, 2024.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun
Peng. Model editing can hurt general abilities of large language models. CoRR, 2024.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detec-
tion. arXiv preprint arXiv:2203.09509, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural
Information Processing Systems, 36:47934–47959, 2023.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European conference on computer vision, pp. 709–727.
Springer, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya, Devang Agrawal, Adam Liska, Tayfun
Terzi, Mai Gimenez, Cyprien de Masson d’Autume, Tomas Kocisky, Sebastian Ruder, et al. Mind
the gap: Assessing temporal generalization in neural language models. Advances in Neural In-
formation Processing Systems, 34:29348–29363, 2021.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. arXiv preprint arXiv:1706.04115, 2017.

Jiaang Li, Quan Wang, Zhongnan Wang, Yongdong Zhang, and Zhendong Mao. Elder: Enhancing
lifelong model editing with mixture-of-lora. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 24440–24448, 2025.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Bill Yuchen Lin, Sida Wang, Xi Victoria Lin, Robin Jia, Lin Xiao, Xiang Ren, and Wen-tau Yih. On
continual model refinement in out-of-distribution data streams. arXiv preprint arXiv:2205.02014,
2022.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box hallu-
cination detection for generative large language models. arXiv preprint arXiv:2303.08896, 2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in neural information processing systems, 35:17359–17372, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. arXiv preprint arXiv:2110.11309, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
based model editing at scale. In International Conference on Machine Learning, pp. 15817–
15831. PMLR, 2022.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Lukas Thede, Karsten Roth, Matthias Bethge, Zeynep Akata, and Tom Hartvigsen. Understanding
the limits of lifelong knowledge editing in llms. arXiv preprint arXiv:2503.05683, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities. arXiv
preprint arXiv:2305.13172, 2023.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
dynamic lora. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 19449–19457,
2024.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A THE USE OF LLM

In accordance with ICLR 2026’s policy on the use of Large Language Models (LLMs), we disclose
that we used OpenAI GPT-4o for writing embellishment. The model was prompted to ”help me
polish this paragraph, using academic style of expression.” the LLM was used for language touch-
ups only and did not generate any new content, experimental results, or analysis. All results were
reviewed and verified by the authors, who are solely responsible for the final manuscript.

B ADDITIONAL RELATED WORK

B.1 PARAMETER-EFFICIENT FINE-TUNING

Parameter-efficient fine-tuning (PEFT) approaches adjust pretrained LLMs by incorporating
lightweight modules, while keeping the base model frozen. Optimization is performed
solely through updates to these lightweight components. Representative approaches include
AdaptersHoulsby et al. (2019)Zaken et al. (2021), PromptsLi & Liang (2021)Jia et al. (2022), and
Low-Rank Adaptation (LoRA)Hu et al. (2022)Valipour et al. (2022). Adapters are compact bot-
tleneck modules located after transformer blocks; Prompts are learnable vectors prepended to the
input sequence; and LoRA uses low-rank decomposition matrices to modify model weights during
training. Recent progress explores applying PEFT to lifelong model editing, where the base model
remains unchanged and new parameter modules are introduced to manage sequential edits over time.

B.2 ROUTING MECHANISMS IN MODULAR LANGUAGE MODELS

When multiple modular components (e.g., LoRA modules) are present, a key challenge lies in rout-
ing input queries to the appropriate subset of modules during inference. Recent work explore various
strategies to support dynamic module selection. MELOYu et al. (2024) introduces a clustering mech-
anism to assign edits to clusters based on input hidden states. During inference, the nearest cluster
center is used to retrieve relevant LoRA modules. However, cluster centers are inevitably updated
during the sequential editing, which may lead to semantic drift and incorrect matching. As shown
in Fig.1b, the number of incorrect matches increases significantly as the number of cluster centre
updating increases, which leads to a deterioration in model performance. ELDERLi et al. (2025)
employs MoE approach in which a learnable neural network scores a set of LoRA modules, activat-
ing the top-k modules. This strategy offers parameter efficiency but introduces soft entanglement in
routing, and due to shared module usage, new edits may interfere with or overwrite previously ed-
its. Furthermore, both strategies rely on auxiliary routing networks, adding architectural complexity
and computational overhead. They also offer limited control over edit selection, making rollback
and deletion of edits challenging.

C ADDITIONAL EXPERIMENT DETAILS

Benchmarks We evaluate the performance of the model in three representative tasks: Document
Classification, Question Answering(QA), and Hallucination Correction. Among them, the docu-
ment classification task is performed based on the SCOTUS datasetChalkidis et al. (2022). SCOTUS
is a subset of Fairlex, which collects documents from the U.S. Supreme Court and classifies them
into 11 topics. In practice, the topics corresponding to the documents will change, so it is necessary
to update the model knowledge to classify the documents into new topics. We divide SCOTUS into
an edit set and an upstream set, where models are edited on the edit set and the upstream set is
not involved in editing, only testing. The question answering task is then conducted on the zsRE
datasetLevy et al. (2017), and NQ datasetsKwiatkowski et al. (2019) serves as upstream dataset.
Specifically, we perform editing in zsRE, and the NQ dataset is again not involved in editing, only
testing. For hallucination correction, we adopted the framework introduced byManakul et al. (2023),

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

aiming to address the tendency of GPT models to generate factually inconsistent outputs. Follow-
ing GRACEHartvigsen et al. (2023), we employ SelfCheckGPTManakul et al. (2023) for editing.
SelfCheckGPT is a Wikipedia-style biography that is first generated using GPT3 on 256 topics,
e.g., ”Bon Jovi”, and then checked to see which of the generated biographies are hallucinations.
SelfCheckGPT contains 1392 hallucinatory sentences to be edited, which serves as the editing set,
and 516 already correct sentences as the retention set, which is used to measure model’s post-edit
perplexity on the already correct sentences. WebTextNakano et al. (2021) is used as the upstream
set, remaining unedited and reserved for testing. In addition to this, in order to test the performance
of the model approach with different sized models as well as datasets, we conducted hallucination
correction experiments on UnieditChen et al. (2025) and WikiBigEditThede et al. (2025) to evaluate
the generalization performance of the models. Uniedit is based on open domain knowledge covering
information from 25 common domains in 5 major categories. The WikiBigEdit dataset is based on
regular updates of the knowledge graph in Wikipedia and contains 5 months of extensive factual
editing and improvement. The Uniedit and WikiBigEdit datasets already have edit set, retention set
and upstream set that can be used directly for hallucination correction tasks.

Training details FollowingHartvigsen et al. (2023), we employ BERT, T5-small, and GPT2-XL as
the base models for the three tasks—document classification, question answering, and hallucina-
tion correction, respectively. Among these, BERT and T5-small are the official pre-trained models,
while GPT2-XL is obtained from Hartvigsen et al. (2023) which finetuned from the official re-
leaseHartvigsen et al. (2023). For training, we adopt Stochastic Gradient Descent (SGD) as the
optimizer with a cosine decay learning rate schedule. The learning rates is 0.05, training epochs is
40, and LoRA rank is 4. In the three tasks, we edit the models and the edited layers of the individual
model edits are shown in the Tab.5.

Table 5: Edited layers of different model

Model Edit layer

BERT bert.encoder.layer.9.output.dense
bert.encoder.layer.10.output.dense
bert.encoder.layer.11.output.dense

T5-Small encoder.block.5.layer.1.DenseReluDense.wi 0
encoder.block.5.layer.1.DenseReluDense.wi 1
encoder.block.5.layer.1.DenseReluDense.wo
encoder.block.6.layer.1.DenseReluDense.wi 0
encoder.block.6.layer.1.DenseReluDense.wi 1
encoder.block.6.layer.1.DenseReluDense.wo

GPT2-XL transformer.h.36.mlp.c fc
transformer.h.37.mlp.c fc

Table 6: Experiments results on long sequential edits(a) and different α values(b). The best results
are shown in bold.

(a) Performance comparison of models on the long
sequential edits(5000 edits).

zsRE (T5; F1 ↑)

Methods ERR TRR Avg.

GRACE 0.66 0.94 0.80

MELO 0.71 0.97 0.84

SolA 0.73 0.98 0.86

(b) Model performance at different α values on the
zsRE datasets.

zsRE (T5; F1 ↑)
α ERR TRR Avg.

0.01 0.73 0.99 0.86
0.1 0.73 0.99 0.86
1 0.73 0.99 0.86
5 0.72 0.99 0.85
10 0.71 0.99 0.85

D ADDITIONAL EXPERIMENT RESULTS

To evaluate the model’s performance in long sequence editing scenarios, we conducted tests in-
volving 5000 edits, with the results summarized in Tab.6a. As shown in Tab.6a, SoLA continues

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

to outperform other methods in long sequence editing tasks, demonstrating its robust capability to
maintain superior performance even under extended editing sequences.

Furthermore, to assess the sensitivity of the model to the threshold parameter α, we examined its per-
formance across different α values, as presented in Tab.6b. The results indicate that SoLA maintains
consistent stability across varying α values, further confirming its strong robustness.

15


	Introduction
	Related Work
	Model Editing

	Method
	Preliminaries
	Cluster Updating in Lifelong Model Editing
	Semantic Routing-Based Controllable LoRA
	Master Decision Mechanism

	Experiments
	Implementation Details
	Main Results
	Controllable Rollback Editing
	Ablation Study
	Model Visualization

	Conclusion
	The Use of LLM
	Additional Related Work
	Parameter-Efficient Fine-Tuning
	Routing Mechanisms in Modular Language Models

	Additional Experiment Details
	Additional Experiment Results

