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ABSTRACT

Human visual experience is markedly different from the large-scale computer vi-
sion datasets consisting of internet images. Babies densely sample a few 3D
scenes with diverse variations such as object viewpoints or illuminations, while
datasets like ImageNet contain one single snapshot from millions of 3D scenes.
We investigated how these differences in input data composition (i.e., visual diet)
impact the Out-Of-Distribution (OOD) generalization capabilities of a visual sys-
tem. Training models on a dataset mimicking attributes of the human-like visual
diet improved generalization to OOD lighting, material, and viewpoint changes
by up to 18%. This observation held despite the fact that the models were trained
on 1, 000-fold less training data. Furthermore, when trained on purely synthetic
data and tested on natural images, incorporating these visual diet attributes in the
training dataset improved OOD generalization by 17%. These experiments are en-
abled by our newly proposed benchmark—the Human Visual Diet (HVD) dataset,
and a new model (Human Diet Network) designed to leverage the attributes of a
human-like visual diet. These findings highlight a critical problem in modern day
Artificial Intelligence—building better datasets requires thinking beyond dataset
size and rather focus on improving data composition. All data and source code
will be made available upon publication.

1 INTRODUCTION

The development of the visual system is intricately tied to the visual experiences encountered from
infancy (Kandel et al. (2000); Kreiman (2021); Arcaro et al. (2017); Hubel & Wiesel (1964); Daw
& Wyatt (1976); Wood & Wood (2018; 2022); Bambach et al. (2018); Lee et al. (2021)). Growing
evidence highlights the importance of visual experience (Smith & Slone (2017); Wood & Wood
(2018; 2022); Sheybani et al. (2023; 2024); Tsotsos (1992); Tsotsos et al. (2019)). These visual
experiences are constrained by the statistics of natural scenes (Simoncelli & Olshausen (2001)),
resulting in data significantly different from large-scale datasets used in computer vision.

Fig. 1a illustrates two such differences. First, children learn from the physical space they occupy—a
few 3D scenes and objects viewed under diverse real-world transformations including viewpoints,
lighting, object textures, and occlusions. Second, children always view objects in the context of
their surroundings. We refer to these as real-world transformational diversity (RWTD) and scene
context, respectively. Here we investigate how these differences in input data composition impact
Out-Of-Distribution (OOD) generalization performance.

Here we show that incorporating these visual diet attributes improves generalization. Models trained
with a human-like visual diet achieve up to 18% improvement on OOD lighting, materials, and view-
point changes. Training with such data outperforms training models on 1,000-fold larger internet
datasets. Furthermore, when trained on synthetic images and tested on natural images, incorporating
attributes of the human visual diet improved OOD generalization performance by up to 17%. These
experiments are enabled by two key technical contributions. First, we introduce the Human Visual
Diet (HVD) dataset, which mimics the input data during visual development and contains both trans-
formational diversity and scene context (Sheybani et al. (2023); Smith & Slone (2017)) as shown
in Fig. 2. Second, we propose the Human Diet Network (HDNet)—a model designed to leverage
the attributes present in HVD (Fig. 1c). HDNet exploits transformational diversity by employing
a contrastive loss over real-world transformations (lighting, material, 3D viewpoint changes), and
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viewing sofa from 

multiple viewpoints
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context of surrounding objects

Bedsheet, !ooring,
wall paint (materials) 

di"er across rooms

Room layouts change,
resulting in di"erent
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lighting changes
with the time 
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Figure 1: Comparing the input data composition for humans and machines. (a) Humans view
the sofa in the context of its surroundings. Furthermore, the sofa is viewed under a variety of real-
world transformations including variations in object viewpoints, changes to room lighting depending
the time of the day, and material variations in the form of upholstery. (b) Both scene context and
real-world transformational diversity (RWTD) are missing in internet scraped images of sofas.

uses a two-stream architecture to jointly reason over target and scene context to perform context
aware visual recognition. To summarize, our work has three main contributions:

• We present three new benchmarks for measuring OOD generalization across disentangled,
real-world transformations in lighting, materials, and viewpoint changes: the Human Visual
Diet (HVD) dataset, Semantic-iLab dataset, and the Syn2Real dataset.

• We assess generalization capabilities of multiple computer vision architectures and domain
generalization approaches on disentangled, semantic OOD shifts in these benchmarks.

• We show that incorporating real-world transformational diversity (RWTD) and scene con-
text improves OOD generalization by large margins (as high as 17-18%), and present a new
architecture, Human Diet Network (HDNet), designed to leverage these attributes.

2 RELATED WORK

Out-of-Distribution (OOD) generalization continues to be the Achilles heel of modern AI (Engstrom
et al. (2018); Chaman & Dokmanic (2021); Zhang (2019)). Failure modes include OOD rotations
and translations (Engstrom et al. (2018); Chaman & Dokmanic (2021); Zhang (2019)), real-world
transformations including 3D viewpoints (Barbu et al. (2019); Liu et al. (2018); Zeng et al. (2019);
Madan et al. (2021c); Sakai et al. (2022); Zheng et al. (2023)), changes in lighting (Madan et al.
(2021c); Beery et al. (2018); Zhang et al. (2021)), and color changes (Joshi et al. (2019); Shamsabadi
et al. (2020)), among other transformations.

Existing approaches to counter this generalization gap include—specialized architectures (Shah-
talebi et al. (2021); Sun & Saenko (2016); Arjovsky et al. (2019); Kim et al. (2021); Vedantam
et al. (2021); Krueger et al. (2021); Blanchard et al. (2017a)), novel pre-processing and data aug-
mentation strategies (Yun et al. (2019); Hendrycks et al. (2019); Zhang et al. (2017); Madan et al.
(2021b;a)), and generative modeling (Ilse et al. (2020); Wang et al. (2020)), among others. Lately,
investigators introduced billion scale datasets like LAION-5B (Schuhmann et al. (2022)) and IG-1B
Targeted (Yalniz et al. (2019)) hoping that they will leave little out of the distribution. However,
despite progress, OOD samples remain an unsolved problem (Radford et al. (2021); Wortsman et al.
(2022); Pham et al.). We introduce a new dataset and model inspired by the human visual diet.

Some recent work has emphasized the importance of training with more human-like data ( Bambach
et al. (2018); Lee et al. (2021); Wood & Wood (2018; 2022)). These efforts include incorporating
scene context (Zhang et al. (2020)), temporal structure (Sheybani et al. (2024)), binocular vision
(Orhan et al. (2020); Orhan & Lake (2024)), and goal-directed/active sampling (Tsotsos (1992);
Tsotsos et al. (2019); Bajcsy et al. (2018); Bajcsy (1988); Pelgrim et al. (2024)), among others. Our
work extends these efforts to Out-of-Distribution generalization.
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Original Image Lighting Change Material Change Viewpoint Change

(b) Semantic-iLab Dataset

ScanNet (test image)

(c)Syn2Real Test Dataset

HVD (train images)

(a) Human  Visual Diet (HVD) Dataset

Lighting Change

Material Change

Viewpoint Change

Target (Sofa) viewed in
context of surrouding objects

Figure 2: Datasets with real-world transformations. (a) Sample images from the Human Vi-
sual Diet (HVD) dataset. We created 15 photo-realistic domains with 3, disentangled real-world
transformations—lighting, material, and viewpoint changes. Each 3D scene was created by recon-
structing an existing ScanNet (Dai et al. (2017)) scene using the OpenRooms framework (Li et al.
(2020b)), followed by introducing controlled changes in scene parameters before rendering. (b)
Sample images from the Semantic-iLab dataset. We modified the iLab dataset (Borji et al. (2016)),
augmenting images with changes in lighting and material by modifying the white balance and us-
ing AdaIN-based style transfer (Huang & Belongie (2017a)). (c) Sample images from the Syn2Real
benchmark. HVD training images (left) and ScanNet testing images (right) show the same 3D scene.
Models are trained on the purely synthetic HVD images, and tested on the natural ScanNet images.

3 DATASETS WITH CONTROLLED VARIATIONS IN LIGHTING, MATERIALS
AND VIEWPOINTS

We present three new benchmarks for measuring OOD generalization across real-world transforma-
tions in lighting, materials, and viewpoint changes.
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3.1 HUMAN VISUAL DIET (HVD) DATASET

3D scenes from ScanNet (n=1,288) (Dai et al. (2017)) were reconstructed using the OpenRooms
framework (Li et al. (2020a;b)), and 15 photo-realistic domains were constructed with these scenes
by introducing 3 real-world transformations—lighting, material, and viewpoint changes. For each
domain, 19, 800 images were rendered resulting in a total of 300, 000 images containing 1 million
object instances with controlled variations in lighting, materials, and viewpoints (Fig. 2a).

Light shift domains: Outdoor lighting was controlled using 250 High Dynamic Range (HDR) envi-
ronment maps from the Laval Outdoor HDR Dataset ( Hold-Geoffroy et al. (2019)) and OpenRooms.
These were split into 5 sets of 50 each to create 5 light shift domains. We split the HSV color space
into chunks of disjoint hue values. Each domain sampled indoor light color and intensity from one
chunk. One domain was held out for testing (OOD Light), and never used for training (see sample
images in Fig. S1).

Material shift domains: 250 procedural materials from Adobe Substances were used, including
different types of wood, fabrics, floor and wall tiles, and metals, among others. These were split
into sets of 50 materials each to create 5 different material domains. For each material domain, one
of these 50 materials were randomly assigned to each scene object. One domain was held out for
testing (OOD Materials), and never used for training (see sample images in Fig. S2).

Viewpoint shift domains: Disjoint viewpoint domains were constructed by changing the height at
which the camera focuses, i.e., the zenith angle. Five viewpoint domains were constructed, and one
was held out for testing (OOD Viewpoints, see sample images in Fig. S3).

3.2 SEMANTIC-ILAB DATASET

Images from iLab (Borji et al. (2016)) were modified to create a natural image dataset with variations
in lighting, material and viewpoints (Fig. 2b). iLab contains objects from 15 categories placed on a
turntable and photographed from varied viewpoints. Fist, a foreground detector was used to extract
the object. Then, material variations were implemented using AdaIN-based style transfer (Huang
& Belongie (2017b)) on these object masks and the style transferred object was overlaid onto the
original background. Lighting changes were simulated by modifying the white balance. Unlike
HVD, this dataset does not contain scene context (see Sec. B for more details).

3.3 SYN2REAL DATASET: NATURAL IMAGE TEST SET FROM SCANNET

The Syn2Real dataset is composed of a test set of natural images from the ScanNet dataset, and a
training set of only synthetic images from HVD. The natural image test set was created by annotating
images from ScanNet ( Dai et al. (2017)). To capture distinct images, one frame was sampled every
100 frames from ScanNet’s raw video footage. These frames were then annotated using LabelMe
(see Sec. H for further details).

4 HUMAN DIET NETWORK (HDNET)

A schematic of HDNet is shown in Fig 3. There are two main components to this model. First,
a two-stream network inspired by the eccentricity dependence of human vision that jointly reasons
over target object and context. Second, a contrastive loss over real world transformations.

Two-stream network inspired by human vision: Given the training dataset D = {xi, yi}ni=1,
HDNet is presented with an image xi with multiple objects and the bounding box for a single target
object location. The target (Ii,t) is obtained by cropping the input image xi to the bounding box
whereas Ii,c covers the entire contextual area of the image xi. yi is the ground truth class label
for Ii,t. The first stream processes only the target object (It, 224 ⇥ 224) and outputs yt, while the
second stream processes the periphery (Ic, 224⇥ 224) and outputs yt,c. Based on the confidence in
the prediction yt (denoted p), HDNet computes a confidence-weighted average of yt and yt,c to get
the final prediction yp. If the model makes a confident prediction with the object only, it overrules
the context reasoning stage.
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(a) Context-aware Feature Extraction

monitor

monitor

chair

Attract

Repel

(b) Contrastive Learning

Figure 3: Architecture overview for the Human Diet Network(HDNet). (a) Modular steps carried
out by HDNet in context-aware object recognition. HDNet consists of 3 modules: feature extraction,
integration of context and target information, and confidence-modulated classification. HDNet takes
the cropped target object It and the entire context image Ic as inputs and extracts their respective
features. These feature maps are tokenized and information from the two streams is integrated over
multiple cross-attention layers. HDNet also estimates a confidence score p for recognition using
the target object features alone, which is used to modulate the contributions of Ft and Ft,c in the
final weighted prediction yp. (b) To help HDNet learn generic representations across domains, we
introduce contrastive learning on the context-modulated object representations Ft,c in the embedding
space. Target and context representations for objects of the same category are enforced to attract each
other, while those from different categories are enforced to repel. Pairs for contrastive learning are
generated using various lighting, material, or viewpoint shifts (Sec. 3.1).

Contrastive loss over real-world transformations: HDNet builds on the supervised contrastive
learning loss (Khosla et al. (2020))—samples from the same object category (but different lighting,
material, or viewpoint) serve as positive pairs, while samples from different object categories serve
as negative pairs. Consider a batch of N data and label pairs {xk, yk}Nk=1. The corresponding mul-
tiview batch consists of 2N pairs of domain-shifted images constructed by modifying the lighting,
materials or viewpoints of objects in the batch. {x̃l, ỹl}2Nl=1, where x̃2k and x̃2k�1 are two views cre-
ated with random semantic domain shifts of xk(k = 1, ..., N) and ỹ2k = ỹ2k�1 = ỹk. The domain
shifts are randomly selected from a set of HVD domains specified during training. For example, if
xk is from a material domain, x̃2k and x̃2k�1 would be images from the same 3D scene but with
different materials.

Within a multiviewed batch, let m 2 M := {1, ..., 2N} be the index of an arbitrary domain shifted
sample. Let j(m) be the index of the other domain shifted samples originating from the same source
samples belonging to the same object category, also known as the positive. Then A(m) := M\{m}
refers to the rest of indices in M except for m itself. Hence, we can also define P (m) := {p 2
A(m) : ỹp = ỹm} as the collection of indices of all positives in the multiviewed batch distinct from
m. |P (m)| is the cardinality. The supervised contrastive learning loss is:

Lcontrast =
X

m2M

Lm =
X

m2M

�1

|P (m)|
X

p2P (m)

log
exp(zm · zp/⌧)P

a2A(m) exp(zm · za/⌧)
(1)

Here, zm refers to the context-dependent object features Fm,t,c on x̃m after L2 normalization. This
design encourages HDNet to attract the objects and relevant context from the same category, and
repel the objects and irrelevant context from different categories. HDNet is trained end-to-end with
contrative loss alongside three three cross-entropy losses proposed in context-aware CRTNet archi-
tecture Bomatter et al. (2021). These include cross-entropy losses. First, loss w.r.t. the confidence-
weighted prediction yp denoted Lp, which allows the model to increase the confidence value p for
samples where the prediction based on target alone tends to be correct. Second, w.r.t. yt, denoted Lt.
(iii) Finally, w.r.t. yt,c, denoted Lc,t. This disentangled objective function ensures strong learning
signals for all parts of the architecture irrespective of the value of p. Thus, HDNEt is trained end to
end with:

LHDNet = ↵Lcontrast + Lp + Lt + Lc,t (2)
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(a) (b) (c) (d)

Figure 4: Real-world transformational diversity significantly improved generalization for all
OOD transformations and architectures. (a) Models trained with low transformational diversity
and minimal context struggled to generalize across real-world OOD transformations (especially ma-
terial and viewpoint changes). Y-axis reports the top-1 classification accuracy for ResNet, DenseNet
and ViT models trained on the HVD dataset (b) ResNet, DenseNet and ViT models trained on the
Semantic-iLab dataset also struggled to generalize to OOD transformations. (c) Generalization im-
proved significantly as real-world transformational diversity (RWTD) is increased. Y-axis reports
accuracy for a HDNet model trained on the HVD dataset. This held true for all OOD transforma-
tions. (d) Generalization performance also improved for a ResNet model trained on the Semantic-
ilab dataset. An ⇤ represents statistical significance (two-sided t-test). The colors green, blue, and
red represent performance on OOD lighting, OOD materials, and OOD viewpoints respectively.

Similar to past work (Bomatter et al. (2021); Zhang et al. (2020)), we set ⌧ = 0.1,↵ = 0.5 to
balance the supervision from constrastive learning and the classification loss. Learning rate was set
to 0.0001 and all models were trained the Adam optimizer.

5 RESULTS

We present findings demonstrating the effectiveness of training models with two key attributes of the
human visual diet:—Real-World Transformational Diversity (RWTD) and Scene Context. To begin,
Sec. 5.1 establishes a lower baseline by benchmarking generalization capabilities of conventional
vision models trained with low RWTD and minimal scene context. Building further, Sec. 5.2 and
Sec. 5.3 respectively show that incorporating real-world transformation diversity and scene context
into the training data improves generalization significantly. Sec. 5.4 presents an extreme test of our
hypothesis, showing that models trained with a human-like visual data outperform models trained
on a 1000x-fold larger internet-scraped dataset. Finally, as a real-world litmus test, Sec. 5.5 shows
that a human-like visual diet leads to significant improvement in generalizing from synthetic images
from HVD to natural images from ScanNet.

For all experiments, one domain per transformation (light, material, viewpoint) was held out as the
OOD test set and never used for training. As Real-World Transformational Diversity (RWTD) was
increased from 1 to 4 domains (20% to 80% RWTD), the number of images sampled per domain
were reduced. This ensured a fixed training dataset size. All models were pre-trained on ImageNet.
Additional details on hyperparameters and baseline models are provided in Sec. I and Sec. J.

5.1 MODELS TRAINED WITH LOW DIVERSITY AND MINIMAL CONTEXT STRUGGLE TO
GENERALIZE

We started by estimating a lower baseline by training models on a dataset analogous to internet-
scraped datasets like ImageNet ( Deng et al. (2009)). For this purpose, we evaluated generalization
performance of three common vision models: ResNet He et al. (2016), DenseNet ( Huang et al.
(2017)), and ViT ( Dosovitskiy et al. (2020)) when trained with low real-world transformational
diversity (RWTD) and minimal scene context. Specifically, these models were trained with data
from only 1 domain (low RWTD) and cropping images to show only the target object and testing on
other domains (minimal context). These results are reported inFig.4a,b.

For HVD (Fig. 4a), ResNet generalized better across lighting changes (green) than material changes
(blue, two-sided t-test, p < 10�5) or viewpoint changes (red, two-sided t-test, p < 10�6). There is
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(a)

Human Visual Diet (HVD) Dataset Semantic iLab Dataset

(c)

Original Image

Generalization performance
with unseen materials

Images after Style Transfer

(d)

80% Real-World Transformational Diversity (RWTD) 20% RWTD + Data Augmentations

(b)

Figure 5: Data post-processing does not match gains from collecting data mimicking the human
visual diet. (a),(b) Models trained with 80% real-world transformational diversity (RWTD) (solid
bars) outperform those trained with 20% RWTD + traditional data augmentation (striped bars) for
all transformations (lighting (green), material (blue), and viewpoint (red)) across both HVD (a) and
Semantic-iLab (b) datasets. Number of images is held constant in these experiments. Format and
conventions as in Fig. 4ab. (c) Sample images (bottom) from style transfer domains created using
AdaIn ( Huang & Belongie (2017a)) based on the original image on top. (d) Models trained on style
transfer domains (red) do not generalize as well as those trained with material diversity (blue). The
increase in OOD performance for real-world materials is statistically significant (blue, significance
denoted by ‘*’). However, there is no statistically significant increase in performance when the
model is tranied with additional style-transfer domains (red, without an ‘*’).

ample room for improvement, especially when tested on OOD material and viewpoints. Similar con-
clusions can be drawn for DenseNet and ViT. The qualitative conclusions were similar for Semantic-
iLab (Fig. 4b)—ResNet generalized better across OOD lighting (Fig. 4b, green) than OOD materials
(blue, two-sided t-test, p < 10�6) or OOD viewpoints (red, two-sided t-test, p < 10�6). Further-
more, the degree of generalization for material and viewpoints was particularly low for Semantic-
iLab. These conclusions on the Semantic-iLab dataset held true for DenseNet and ViT architectures
as well. In sum, models trained with minimal diversity and minimal context showed only moderate
generalization, especially struggling with material and viewpoint changes.

5.2 REAL-WORD TRANSFORMATIONAL DIVERSITY (RWTD) IMPROVES GENERALIZATION
FOR ALL OOD TRANSFORMATIONS

For each transformation, we increased the amount of real-world transformational diversity (RWTD)
that the models were exposed to by training them using samples from more domains from 1 domain
(20%) to 4 domains (80%). Fig. 4 reports results for our proposed Human Diet Network (HDNet)
trained with the HVD dataset, and for a ResNet model trained with the Semantic-iLab dataset as
transformational diversity is increased. As described in Sec. 3 and Sec. 4, HDNet was designed
specifically to leverage the transformational diversity present in the HVD dataset.

OOD generalization improved approximately monotonically with transformational diversity for all
three transformations in the HVD dataset (Fig. 4c). This improvement was significantly greater for
OOD materials than for OOD lighting (p < 10�4) and OOD viewpoints (p < 10�4). Increased
diversity improved generalization for a ResNet model trained on the Semantic-iLab dataset as well
(Fig. 4d). As with HVD, improvement in generalization across the Semantic-iLab dataset was higher
for unseen materials than for unseen lighting (p < 10�3) and unseen viewpoints (p < 10�6). Thus,
with sufficient diversity, generalization to OOD lighting and materials reached almost ceiling levels.
However, despite improvement, OOD viewpoints remained a challenge.

RWTD outperforms data augmentation: We compared the impact of training with real world
transformations versus training with traditional data augmentation (Crops, Rotations, Contrast, and
Solarize operations). Fig. 5a compares HDNet trained on HVD with 80% RWTD, and the same
architecture trained with 20% RWTD+traditional data augmentation. RWTD outperformed data
augmentation for all three transformations (two-sided t test, p < 10�4). The same was true for a
ResNet model trained with Semantic-iLab dataset (Fig. 5(b)). For additional details, see Sec. G.
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Transfor-
mation

AND
Mask CAD COR

AL ERM IRM MTL Self
Reg VREx Faster

RCNN
HDNet
(ours)

Lighting 0.82 0.80 0.81 0.8 0.83 0.81 0.75 0.83 0.95 0.98
Materials 0.75 0.75 0.75 0.75 0.74 0.74 0.74 0.75 0.78 0.94

Viewpoints 0.75 0.77 0.79 0.78 0.76 0.79 0.76 0.78 0.65 0.83

Table 1: Contextual information improves OOD generalization. All models were trained with 4
HVD domains (80% RWTD) and tested on the 1 held-out domain for each of the three transforma-
tions. HDNet is benchmarked against specialized domain generalization (DG) baselines, and two
context-aware baselines—a FasterRCNN model modified to do recognition, and CRTNet Bomatter
et al. (2021). Similar to past works Gulrajani & Lopez-Paz (2020), ERM performed the best among
the DG baselines. CRTNet was the best performing baseline, but HDNet outperformed all baselines
on all three transformations. Bolded entries indicate the highest accuracy in each row.

Semantic
Shift

Full
Context
(� = 0)

Less
Context
(� = 25)

Least
Context

(� = 125)
Lighting 0.98± 0.001 0.96± 0.001 0.94± 0.001
Material 0.94± 0.002 0.88± 0.01 0.83± 0.006

Viewpoints 0.83± 0.006 0.77± 0.01 0.76± 0.01

Table 2: Blurring scene context worsens generalization performance. � is the standard deviation
for the gaussian kernel applied to the image as a filter. Thus, blurring increases with �, and is applied
to both training and testing data. Similar to Table. 1, HDNet is trained on 4 domains and tested
on the held-out OOD domain for each transformation. As blurring increases, the generalization
performance of HDNet drops on all three OOD transformations (Lighting, Material and Viewpoints).

RWTD outperforms generative AI: Fig. 5(c) shows style-transfer domains constructed using the
generative AI model AdaIn Huang & Belongie (2017a), an alternate approach to the rendered, pho-
torealistic materials used in HVD. 5(d) shows generalization performance of HVD trained with
real-world materials from HVD vs images from these style-transfer domains. The training dataset
size was kept constant, and all models were tested on the same held-out OOD Materials domain.
Unlike new material domains, new style transfer images did not improve generalization to OOD
materials. Additional details are provided in Sec. E.2.

5.3 UTILIZING SCENE CONTEXT IMPROVES GENERALIZATION

We compared HDNet with a suite of baselines that do not utilize scene context. This includes
domain generalization (DG) architectures—ANDMask (Shahtalebi et al. (2021)), CAD (Blanchard
et al. (2017a)), CORAL (Sun & Saenko (2016)), MTL (Blanchard et al. (2017b)), Self-Reg (Kim
et al. (2021)), VREx (Krueger et al. (2021)), IRM (Arjovsky et al. (2019)), and ERM (Gulrajani
& Lopez-Paz (2020)). We also report comparisons with two context-aware models—a modified
FasterRCNN model designed to perform visual recognition and the recent CRTNet (Bomatter et al.
(2021)) — to the comparison. All models were trained with 80% Transformational Diversity, i.e., 4
training domains.

Table 1 reports the top-1 classification accuracy of HDNet compared with the above listed baselines.
HDNet beat all baselines with statistical significance (two-sided t-test, p < 0.05) for all three trans-
formations. The best performing baseline was another context-aware model—CRTNET Bomatter
et al. (2021). The best performing DG approach was ERM, which was outperformed by CRTNet.
In summary, approaches utilizing scene context (HDNet and CRTNet) outperformed all specialized
DG approaches on all real-world transformations, and our proposed HDNet also outperformed the
closest baseline (CRTNet).

Removing scene context worsens generalization: The results above show that incorporating scene
context improves generalization. Additionally, Table. 2 shows the impact of reducing scene context
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Real-World
Transformation Architecture 1 Stream 2 Stream

Lighting

ResNet 0.85± 0.004 0.95± 0.009⇤

ViT 0.91± 0.003 0.97± 0.007⇤

HDNet (Ours) - 0.98± 0.001

Materials

ResNet 0.64± 0.03 0.83± 0.008⇤

ViT 0.78± 0.01 0.92± 0.003⇤

HDNet (Ours) - 0.94± 0.002

Viewpoint

ResNet 0.63± 0.02 0.72± 0.009⇤

ViT 0.77± 0.01 0.83± 0.001⇤

HDNet (Ours) - 0.83± 0.006

Table 3: Modifying standard architectures to leverage scene context. We proposed a methodol-
ogy to modify standard architectures such that they can utilize scene context. Inspired by HDNet, a
ResNet and a ViT model were modified to have two streams—one operating on the target, and the
other one on the contextual information. This modification significantly improved generalization
across all OOD transformations for both ResNet and ViT trained on the HVD dataset. All models
were trained on 4 domains (80% RWTD) and tested on the held out domain for each transformation.
Best performing model for each transformation has been bolded.

Real World
Transforma-

tion
Dino
V2

ResNet50
SWSL

ResNet18
SWSL

ResNext101
32x4d
SWSL

ResNext101
32x16d
SWSL

ResNext50
32x4d
SWSL

HDNet
(Ours)

Lighting 0.94 0.9 0.88 0.93 0.93 0.91 0.98
Materials 0.79 0.73 0.67 0.77 0.79 0.74 0.94

Viewpoints 0.74 0.72 0.65 0.74 0.78 0.73 0.83

Table 4: Our approach beats models trained with 1,000x more data. HDNet was pre-trained
on ImageNet and fine-tuned on data with both transformational diversity and scene context (4 HVD
domains, full scene context). Baselines were pre-trained on 1,000-fold more data (IG-1B dataset),
but fine-tuned on data not containing these two attributes (1 HVD domain, minimal scene context).
HDNet beats all baselines by a large margin for all three transformations.

information by blurring the context using a Gaussian Blur. Performance dropped consistently for all
three transformations as contextual information is reduced.

Modifying existing architectures to leverage scene context: We present a simple methodology to
modify existing architectures (ResNet, ViT) such that they can leverage scene context. For ResNet,
a two-stream version was made where each stream was a ResNet backbone. One stream operated on
the target, and the other on the scene context. Output features from each stream were concatenated,
and passed through a fully connected layer for classification. Two-stream ViT was analogous. In
contrast, the one-stream architecture did not use scene context and operated on the target object
alone. These modifications led to significantly improved performance (two-sided t test, p < 0.05),
as shown in Table 3. Additional experiments on the role of scene context are presented in Sec. E.1.

5.4 HUMAN-LIKE VISUAL DIET BEATS BILLION-SCALE INTERNET-SCRAPED DATASETS

Next, we compared HDNet with visual recognition models trained with 1,000x more data (Table. 4).
All models except HDNet were pre-trained on the IG-1B dataset Yalniz et al. (2019), and then
fine-tuned on data with 20% RWTD and with object crops i.e., low transformational diversity and
minimal context. In comparison, HDNet was pre-trained on ImageNet and fine-tuned with data
consisting of 80% RWTD and scene context i.e., human-like visual diet. All models were fine-tuned
on the same number of images. HDNet outperformed all billion-scale baselines by large margins
despite being trained on 1000x less data (Table. 4, two-sided t-test, p < 0.001).
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OOD Generalization on Syn2Real

Figure 6: Human-like visual diet enables improved generalization on the Syn2Real benchmark.
HDNet is compared against a suite of DG benchmarks, standard computer vision models, and the
context-aware CRTNet model. All models are trained on purely synthetic images (HVD) and tested
on natural images (ScanNet) with no pre-training on any natural images. HDNet beats all baselines
by a large margin (18%), and with statistical significance.

5.5 HUMAN-LIKE VISUAL DIET ENABLES GENERALIZATION TO REAL-WORLD IMAGES

As a real litmus test, we tested the impact of a human-like visual diet on the Syn2Real benchmark
i.e., models were trained on purely synthetic images (from HVD) and tested on natural images from
ScanNet. These models were not pretrained on ImageNet, and thus, had never seen any natural
images. Fig. 6 reports a comparison of HDNet is compared against a suite of DG benchmarks, stan-
dard computer vision models, and the context-aware CRTNet model. HDNet trained with RWTD
and scene context achieved an accuracy of 0.69, while the best baseline (CRTNet) trained without a
human-like diet achieved an accuracy of 0.51. Thus, incorporating these attributes into the training
dataset enabled HDNet to generalize significantly well from a purely synthetic training data to a
natural image test set (two-sided t-test, p < 0.05).

6 CONCLUSIONS

We investigated the impact of data composition on the out-of-distribution generalization capabilities
of visual recognition models. Specifically, we demonstrated that incorporating two key components
of the human visual diet—transformational diversity and scene context—improves generalization to
OOD viewpoints, lighting, and material changes. Our contributions include three new benchmarks,
and a novel architecture that models and leverages these human-like visual attributes. This work
provides an approach complementary to existing directions on data augmentation and specialized
domain generalization architectures.

While our results are promising, the human visual diet is complex and multifaceted, with several
additional features like temporal information, egocentric views, embodiment, and goal-driven/active
sampling that warrant further investigation. We hope that future datasets extending the Human
Visual Diet (HVD) dataset introduced here can address these. Similarly, the Human Diet Network
(HDNet) introduced here represents a promising first step in integrating human-like scene context,
but is currently limited to only spatial context. We hope that future work can build architectures
incorporating temporal context—such as motion and sequential dependency. In summary, this work
opens new avenues for aligning biological and artificial vision systems, and advancing generalization
in AI. Out-of-distribution generalization remains the Achilles’ heel of modern AI, and we hope
future research in these directions will lead to models that generalize as effortlessly as human vision.
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SUPPLEMENTARY MATERIALS

A HVD DOMAINS

A.1 SAMPLE IMAGES FROM THE HVD DATASET

We present additional images from the HVD dataset. Each figure shows change in one scene param-
eter, while holding all others constant. In Fig. S1 we show images from two different light domains.
Note that the first three rows in Fig S1 show different indoor lighting conditions controlled us-
ing indoor light color and intensity sampled from disjoint chunks of the HSV space. The last two
rows show different outdoor lighting settings created by changing the environment maps. Similarly,
Fig. S2 shows five different scenes from two training domains with a material shift. Fig. S3 shows
viewpoint shifted domains.

B DETAILS ON THE CONSTRUCTION OF THE SEMANTIC ILAB DATASET

We show sample images from the Semantic iLab dataset in Fig. 2(b) created by modifying the ex-
isting iLab Borji et al. (2016) dataset. This is a multi-view dataset, and hence already contains
viewpoint shifted variations of the same objects. We modify the dataset to also contain material
and light shifts. To mimick light shift, we modified the white balance of the original images, as
shown in Fig. 2(b). For material shifts, we first run a foreground detector on these objects using
Google’s Cloud Vision API. We also run style transfer on these images using AdaIn Huang & Be-
longie (2017b). Then, we overlay the style transferred image on to the object mask on the original
image to mimick material shifts. Note that this is approximate, and does not model the physics of
material transfer in the same way as our rendered HVD dataset which is far more photorealistic, as
shown in Fig. S2. Material shifted Semantic iLab images are shown in Fig. 2(b). As the dataset is
originally multi-view, we do not need to generate new viewpoints and can use images of a different
viewpoint from the original dataset as shown in Fig. 2(b).

C DETAILS ON THE CONSTRUCTION OF THE SYN2REAL DATASET

Results are reported on a test subset of 350 test images which are not blurry and do not have signifi-
cant clutter, and on a larger subset of 700 test images where clutter and minor blurring was allowed
to achieve a bigger test set. The same procedure was also followed to hand-annotate 8, 000 train-
ing object instances from the HVD dataset to ensure there is no spurious impact of the annotation
procedure on the performance of models when tested on ScanNet. We made three adaptations for
these experiments. Firstly, as both ScanNet and ImageNet contain natural images and overlapping
categories, we trained models from scratch to ensure pre-training does not interfere with our results.
Thus, these models never saw any real-world images, not even ImageNet as they were not pretrained
on those datasets. Secondly, we trained and tested models on overlapping classes between HVD and
ScanNet. Finally, we used the LabelMe Wada (2018) software to manually annotate a test set from
ScanNet and training set for the HVD dataset using the same procedure to make sure biases from
the annotation procedure do not impact experiments. Thus, all models were trained purely on syn-
thetic data from HVD and tested on only real-world natural image data from ScanNet as shown in
Fig. 2(c).

D DETAILS ON THE HUMAN DIET NETWORK

E ADDITIONAL EXPERIMENTS WITH REAL-WORLD TRANSFORMATIONAL
DIVERSITY

E.1 REAL-WORLD TRANSFORMATIONS OUTPERFORM TRADITIONAL DATA AUGMENTATION.

We investigated how real-world transformational diversity (RWTD) compares to traditional data
augmentation strategies including 2D rotations, scaling, and changes in contrast. Models trained
with a visual diet consisting of 80% RWTD were reported in Fig.3(e). We compared these with
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Figure S1: Example images showing lighting tranformations. We show paired images from different
lighting transformation domains between the right and left column in each row. All other parameters
held constant.
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Figure S2: Example images showing material tranformations. We show paired images from dif-
ferent material transformation domains between the right and left column in each row. All other
parameters held constant
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Figure S3: Example images showing viewpoint tranformations. We show paired images from dif-
ferent viewpoint transformation domains between the right and left column in each row. All other
parameters held constant
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models trained with a visual diet consisting of 20% RWTD + traditional augmentation. As before,
all models were tested on unseen lighting, material, and viewpoint changes.

The number of training images was kept constant across all training scenarios to evaluate the quality
of the training images rather than their quantity. Training set size equalization was achieved by sam-
pling fewer images per domain in the 80% RTWD training set. For instance, for HVD experiments
with unseen viewpoints we sampled 15, 000 training images per viewpoint domain to construct the
training set with 20% RWTD + Data Augmentations. In comparison, we sampled only 3, 750 per
viewpoint domain to construct the 80% RWTD training set. Thus, the initial sizes of the 80%RWTD
and the 20%RWTD+Data Augmentation training sets was identical. However, due to data aug-
mentations being stochastic the total number of unique images shown to models trained with data
augmentations was much larger. Assuming a unique image was created by data augmentation in
every epoch, over 50 epochs the dataset size would be 50 times larger with data augmentations.

Traditional data augmentation largely involves 2D affine operations (crops, rotations) or image-
processing based methods (contrast, solarize) which are not necessarily representative of real-world
transformations. In summary, the positive impact of a visual diet consisting of diverse lighting, ma-
terial, and viewpoint changes (real-world transformational diversity) cannot be replicated by using
traditional data augmentation applied to the dataset after data collection—diversity must be ensured
at the data collection level.

E.2 REAL-WORLD TRANSFORMATIONS OUTPERFORM AUGMENTATION WITH GENERATIVE
AI.

Several existing works rely on increasing data diversity using AdaIn-based methods Huang & Be-
longie (2017a); Zhou et al. (2021). These style transfer methods change the colors in the image while
retaining object boundaries, but do not modify materials explicitly as done in our HVD dataset. We
evaluated how well models perform if diversity is increased using style transfer as opposed to mate-
rial diversity. We started with one material domain, and created four additional domains using style
transfer. Sample images of style transfer domains are shown in Fig. 5(c). Corresponding images
from the HVD dataset with real-world transformation in materials can be seen in Fig. 2(a). The
total number of domains (and images) created using style transfer was kept the same as the material
domains in HVD. The only difference in the training data was that instead of four additional material
domains, we have four additional style transfer domains. We compared models trained with these
two different visual diets—one consisting of four material domains, and the other consisting of four
style transfer domains. All models were then tested on the same held-out OOD Materials domain.
Style transfer domains did not enable models to generalize to new materials as well as the material
shift domains presented in HVD (Fig. 5(d)).
These experiments support the notion that in order to build visual recognition models that can gen-
eralize to unseen materials, it is important to explicitly increase diversity using additional materials
at the time of training data collection. The impact of diverse materials cannot be replicated by using
style transfer to augment the dataset after data collection.

E.3 EACH INDIVIDUAL REAL-WORLD TRANSFORMATION IS HELPFUL

Some real-world transformations are easier to capture than others. For instance, capturing light
changes during data collection might be significantly easier than collecting multiple possible room
layouts, or object viewpoints. Thus, it would be beneficial if training with one transforma-
tion (e.g., light changes) can improve performance on a different transformation (e.g., viewpoint
changes). We refer to such a regime as assymetric diversity—as models are trained with one kind of
diversity, and tested on a different kind of diversity (Fig. 5(e),(f)). In all cases, the best generaliza-
tion performance was obtained when training and testing with the same real-world transformation
for both HVD (Fig. 5(e)) and Semantic-iLab datasets (Fig. 5(f)). In most cases, there was a drop
in performance of 10% or more when training in one transformation and testing with a different
(assymetric) transformation. These experiments imply that to build models that generalize well, it
is important to collect training data with multiple real-world transformations.
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F ADDITIONAL EXPERIMENTS FOR THE ROLE OF CONTEXT

Given the success of HDNet, we asked whether implementing a two-stream separation of target and
context would also improve performance for other architectures. We modified ResNet18 He et al.
(2016) and ViT Dosovitskiy et al. (2020) to leverage scene context in the same way as HDNet.
For ResNet, a two-stream version was made where each stream is a ResNet backbone. One stream
operates on the target, and the other one on the scene context. Output features from each stream were
concatenated, and passed through a fully connected layer for classification as shown in Fig. 1(c).
The two-stream architecture for ViT was analogous. In contrast, the one-stream architecture did not
use scene context and operated on the target object alone (see methods for additional details). The
two-stream architectures consistently led to improved performance (two-sided t test, p < 0.05), as
shown in Table 3.

To further understand the role of contextual information on visual recognition, we conducted two
additional experiments. Firstly, we evaluated the impact of reducing scene context information by
blurring it using a Gaussian Blur. As shown in Table. 2, performance dropped consistently for all
three transformations as contextual information is reduced. Secondly, we confirmed that the increase
in performance is due to the addition of contextual information and not due to the two-stream ar-
chitecture per se by training HDNet with both streams receiving only the target information. This
removal of context led to a drop in performance, as reported in Table. S1 (see Sec. F for details).

Besides results on the role of context presented in Table. 3, we present here two additional experi-
ments evaluating the contribution of scene context on generalization. Firstly, we also evaluated the
impact of blurring the scene context while keeping the target intact Zhang et al. (2020). For each
real-world transformation, we trained and tested models with increasing levels of Gaussian blurring
applied to the scene context. These results are presented in Blurring was applied to the images in
the form of a Gaussian kernel filter, with the kernel standard deviation (�) set to 0, 25, or 125. The
cropped image of the target object was passed to the second stream of the network without blurring.
These results are reported in Table 2. As can be seen, there was a drop in performance as context
blurred for all three real-world transformations.

Semantic
Shift

Target
only

Target and
Context

Viewpoint 0.77 0.82
Material 0.85 0.94
Lighting 0.97 0.98

Table S1: Training a two-stream HDNet with only target information. As a third control for
confirming the role of context, we train HDNet where both streams are passed just the target object.
Thus, it is forced to learn without scene context. This results in a drop in performance for all
semantic shifts, providing further evidence in support of the utility of scene context.

Secondly, we train HDNet such that both streams are trained with the target object. Thus, this
modified version is forced to learn without scene context. These results are shown in Table. S1. For
all semantic shifts, forcing HDNet to learn with only the target results in a drop in accuracy. This
provides further evidence supporting the utility of scene context in enabling generalization.

G ADDITIONAL EXPERIMENTS WITH HDNET AND CONTRASTIVE LOSS

We evaluate the contribution of the contrastive loss by training variations of HDNet on HVD with
and without the contrastive loss as shown in Eq. 2. These numbers are reported in Table S2. As
can be seen, adding a contrastive loss improves performance for all three semantic shifts, providing
evidence for its utility.
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Semantic
Shift

Without
Contrastive Loss

With Contrastive
Loss

Viewpoint 0.79 0.82
Material 0.89 0.94
Lighting 0.98 0.98

Table S2: Impact of removing contrastive loss. We evaluate the contribution of the contrastive
loss by training and testing HDNet on the HVD dataset with and without the contrastive loss. The
contrastive loss results in an improvement across all three semantic shifts.

Test
Dataset ResNet ViT AND

Mask CAD CORALERM IRM MTL Self
Reg VREx HDNet

(ours)
ScanNet 0.35 0.29 0.43 0.40 0.42 0.48 0.46 0.46 0.53 0.42 0.61

Table S3: Human visual diet improves generalization to larger real world dataset as well. We
curated a larger subset of ScanNet images, allowing more complex real world scenarios like blurry
images, clutter and occlusions. We report the capability of models to generalize from synthetic
HVD images to this more complex subset of ScanNet. HDNet leveraging human-like visual-diet
outperforms all baselines on this more complex dataset as well.

H ADDITIONAL EXPERIMENTS WITH A LARGER, LESS CONTROLLED
SCANNET TEST SET.

We extend the generalization to real-world results presented in the main paper by reporting these
numbers on a larger test set created by annotating additional images from ScanNet. As ScanNet was
created by shooting video footage of 3D scenes, many frames can be blurry. In the original, smaller
test-set such blurry frames were removed to ensure a higher quality test set. However, here we also
include additional images with lower fidelity to report numbers on a larger test set. These numbers
are reported in Table. S3. The trend is consistent with results reported on a smaller, more controlled
subset in the main paper—HDNet outperforms all other benchmarks by a large margin. As expected,
including these images in the test set results in a drop in accuracy across all methods. All models
were trained on synthetic images from HVD and were tested on a test set of natural images from
ScanNet.

I HYPERPARAMETERS

HDNet: As our model builds on top of CRTNet Bomatter et al. (2021) as backbone, we use the
same hyperparameters for the backbone as reported in the original paper. All models were trained
for 20 epochs with a learning rate of 0.0001, with a batch size of 15 on a Tesla V100 16Gb GPU.

Domain generalization: We used the code from Gulrajani et al. Gulrajani & Lopez-Paz (2020)
to train and test domain generalization methods on our dataset. The code is available here:
https://github.com/facebookresearch/DomainBed. To begin, we ran all available
models and tried 10 random hyperparameter initializations. Of these, we picked the best perform-
ing hyperparameter seed—24596. We also picked the top performing algorithms as the baselines
reported in the paper.

FasterRCNN: We used the code from Bomatter et al. Bomatter et al. (2021) to train and test the
modified FasterRCNN model for recognition. The code is available here: https://github.
com/kreimanlab/WhenPigsFlyContext, and we used the exact hyperparameters men-
tioned in the repository.
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J EXPERIMENTAL DETAILS

HDNet was compared against several baselines presented below. All models were trained on
NVIDIA Tesla V100 16G GPUs. Optimal hyper-parameters for benchmarks were identified using
random search, and all hyper-parameters are available in the supplement in Sec. I.

J.1 BASELINE APPROACHES

We compared the impact of a human-like visual diet with a diverse set of alternative approaches
popular in machine learning. This includes:

2D feed-forward object recognition networks: Previous works have tested popular object recog-
nition models in generalization tests Geirhos et al. (2018); Boyd et al. (2022). We include the same
popular architectures ranging from 2D-ConvNets to transformers: DenseNet Iandola et al. (2014),
ResNet He et al. (2016), and ViT Dosovitskiy et al. (2020). These models do not use context, and
take the target object patch It as input.

Domain generalization methods: We also compare HDNet to an array of state-of-the-art domain
generalization methods (Table 1). These methods also use only the target object, and do not use
contextual information.

Context-aware recognition models: To compare against models which use scene context, we in-
clude CRTNet Bomatter et al. (2021) and Faster R-CNN Ren et al. (2015). CRTNet fuses object
and contextual information with a cross-attention transformer to reason about the class label of the
target object. We also compare HDNet with a Faster R-CNN Ren et al. (2015) model modified to
perform recognition by replacing the region proposal network with the ground truth location of the
target object.

Billion-Scale self and semi supervised architectures: We presented results with a suite of mod-
ern approaches trained on 1000-fold more data to emphasize the importance of data quality over
sheer dataset size. These included—Dino V2, ResNet50 SWSL, ResNet18 SWSL, 32x4d SWSL,
ResNext101 32x16d SWSL, and ResNext50 32x4d SWSL.

J.2 EVALUATION OF COMPUTATIONAL MODELS

Performance for all models is evaluated as the Top-1 classification accuracy. Error bars reported
on all figures refer to the variance of per-class accuracies of different models. For statistical test-
ing, p-values were calculated using a two-sample paired t-test on the per-category accuracies for
different models. The t-test checks for the null hypothesis that these two independent samples have
identical average (expected) values. For ScanNet, a t-test is not optimal due to the smaller number
of samples, and thus a Wilcoxon rank-sum test was employed for hypothesis testing as suggested in
past works De Winter (2019); Posten (1982). All statistical testing was conducting using the python
package scipy, and the threshold for statistical significance was set at 0.05.
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