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ABSTRACT

Large-batch training has become a cornerstone in accelerating the training of deep
neural networks, yet it poses challenges in optimization and generalization. Ex-
isting optimizers like AdamW present performance degradation during language
models’ large-batch training, due to the information bottleneck of attention layers
caused by the sharp increase of max attention logit. While the LAMB optimizer
partially addresses this issue, some attention layers still experience sharply in-
creased maximum attention logits. The reason is that [5-norm-based trust ratios
in LAMB are less effective in directly influencing extreme weight values. Fur-
thermore, the weight-wise trust ratio in LAMB is error-prone due to overlooking
relationships of weight values within rows or columns. Building on these obser-
vations, we propose a novel optimizer, MERIT, which leverages the max norm to
calculate the trust ratio to directly constrain the max attention logit. Moreover, we
further construct element-wise trust ratios to provide more robust update scaling
by focusing on local weight structures. Extensive experiments of large-batch train-
ing across various sizes of GPT-2 models demonstrate the superior performance
of MERIT. Notably, during the training of GPT-2 Medium, MERIT enables the
use of a 6k batch size without any performance degradation compared to the stan-
dard batch size (480). This work highlights the importance of considering the max
attention logit and finer granularity trust ratio calculation in large-batch training.
It successfully improves the training stability and paves the way for larger batch
usage, enabling faster development and iteration on large language models.

1 INTRODUCTION

The advent of large language models has revolutionized natural language processing, achieving un-
precedented performance across a wide range of tasks (Dubey et al., 2024; Touvron et al., 2023;
OpenAl, 2024). However, the increasing size and complexity of language models always result in a
high time cost for the training. With the growing availability of powerful GPU clusters and special-
ized hardware accelerators, large-batch training can dramatically reduce the time required to train
state-of-the-art models, making it possible to iterate faster and explore more ambitious architectures
by processing more data in parallel.

While large-batch training offers the potential for increased parallelism and faster convergence, it
also introduces complex optimization dynamics that can impede model performance and stability
(Goyal et al., 2018; Keskar et al., 2017; Shallue et al., 2019). Training large language models with
large batches typically encounters two main issues. The first problem is that when a fixed number of
training tokens is available, using larger batch sizes reduces the total number of training iterations,
limiting its ability to learn fine-grained patterns in the data. Additionally, research has shown that
training with large batches often leads to models performing poorly on unseen data. When using
AdamW optimizer with a large batch size, Figure 1 shows clear performance degradation, requiring
additional training tokens to reach comparable generalization levels.

This paper identifies a crucial problem in large-batch training of language models: we observe the
sharp increase of max attention logit in attention layers during the training process using AdamW
optimizer (Kingma & Ba, 2017; Loshchilov & Hutter, 2019). The inflated max attention logit can
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Figure 1: For both GPT-2 models, the connection between batch size and the number of steps
required to reach a specific validation loss follows a similar pattern. At first, as the batch size
increases, there is a phase of ideal scaling (shown by a dotted line) where doubling the batch size
cuts the necessary steps in half. This is followed by a period where the benefits start to decrease.
Eventually, a point is reached where further increasing the batch size (data parallelism) offers no
additional advantage. This final stage represents the upper limit of large-batch training effectiveness.

result in overly sharp attention distributions, potentially causing the model to focus on specific to-
kens or patterns overly, thus hindering its ability to capture nuanced relationships in the data (Zhai
et al., 2023). While LAMB (You et al., 2020) successfully reduces the max attention logit in the
first layer of GPT-2 models (Radford et al., 2019; Brown et al., 2020) by applying a weight-wise
trust ratio, it faces limitations in further decreasing the value in the medium layer. The limitation
arises from the substantial difference in magnitude between the max norm and the I norm of the
query/key matrices, which prevents LAMB from directly exerting additional influence on the max
attention logit.

Moreover, our analysis reveals that rows and columns in large-batch trained weights often share
similarities. The neglect of these relationships in the weight-wise ratio method proposed in LAMB
leads to training instability as it fails to mitigate the negative impact of extreme values from other
rows or columns. Given rows and columns exhibit high similarity, it allows for calculating element-
wise ratios by considering the weights within the same rows/columns, while eliminating influences
from other rows/columns. The proposed finer granularity ratios focus on local weight structures,
resulting in more stable large-batch training for language models.

Inspired by these insights, we propose a novel optimizer, MERIT, that specifically targets the control
of attention logit magnitudes while maintaining the benefits of efficient large-batch training. Our
approach builds upon the foundations laid by AdamW and LAMB, introducing max-norm-based
trust ratios to precisely modulate the impact of large weights on attention logit distributions and finer
granularity ratios for focusing on specific weight structures. We conduct extensive experiments to
evaluate the performance of MERIT compared to existing optimizers across various sizes of GPT-
2 models. Our findings demonstrate the potential of MERIT to enhance large-batch training by
improving convergence properties and generalization performance. This work contributes to the
ongoing exploration of optimization strategies in large-batch training and highlights the significance
of finer granularity ratio calculation in the design of effective optimizers.

2 RELATED WORK

2.1 LARGE-BATCH TRAINING

Scaling up batch sizes during the training of deep neural networks has been an active area of re-
search, as it allows for better parallelization across multiple GPUs and reduces time-to-train. How-
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ever, naively increasing the batch size often leads to degraded model performance, a phenomenon
dubbed the “generalization gap”. Several techniques have been proposed to enable large-batch train-
ing without compromising accuracy. Goyal et al. (2018) showed that linear scaling of the learning
rate with respect to the batch size can maintain model quality for batch sizes up to 8K on ImageNet.
Other works proposed novel optimization algorithms like LARS (You et al., 2017) and LAMB (You
et al., 2020) that dynamically adapt layer-wise learning rates based on parameter norms and momen-
tum. Liu et al. (2022) introduced a more efficient SAM (Foret et al., 2021) variant for training Vision
Transformers (Dosovitskiy et al., 2021) using large batches and Luo et al. (2023) explored memory-
efficient optimization techniques for large-batch training of language models. Overall, these meth-
ods aim to maintain proper scaling of parameter updates and normalization statistics when scaling up
batch sizes. However, LAMB still presents a large max attention logit and shows a weight-wise trust
ratio calculation containing some error, leading to large-batch training performance degradation.

2.2 MAX ATTENTION LOGIT

The relationship between max attention logit and training stability of transformers has been explored
extensively. Researchers have previously documented that Transformer training fails when the at-
tention logits become large. Dehghani et al. (2023) addressed the challenge of uncontrolled growth
in attention logits in large-scale transformers by implementing query/key normalization, effectively
stabilizing the training process and preventing the near one-hot attention distributions typical in
models with parameters nearing 8 billion. Wortsman et al. (2024) observed the loss diverges and
training fails when the max attention logit exceeds approximately 10%. Zhai et al. (2023) identified
attention entropy collapse as a common issue in Transformer training across various domains and
tasks and proposed ocReparam to reparameterize the weights of linear layers using spectral normal-
ization and a learned scalar. Nevertheless, the significant increase in the maximum attention logit
value during large-batch training remains unexplored and leads to the poor performance of existing
optimizers.

3 PRELIMINARY

3.1 MAX ATTENTION LOGIT GROWTH IN LARGE-BATCH TRAINING

(a) Max Attention Logit -- 1st Layer (b) Max Attention Logit -- 12th Layer
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Figure 2: Max attention logit of self-attention layers during the large-batch training of GPT-2
medium model using three optimizers. (a) Max Attention Logit of first self-attention layer. (b)
Max Attention Logit of medium (12th) self-attention layer.

In the self-attention layer of a Transformer (Vaswani et al., 2017), attention logits are calculated by
combining queries ¢; and keys k; using the formula z;; = (g;, k;)/ V/dy, where dj, represents the
head dimension. These logits are then processed through a softmax function to generate attention
weights, which are subsequently used to aggregate values v;. The maximum attention logit is defined
as the max value among the computed attention logits, max z;;. Dehghani et al. (2023) observed
that the attention logits z became large when using relatively high learning ratios, which they termed
as attention logit growth. Consequently, the attention weights collapse to one-hot vectors and cause
unstable training, a phenomenon termed attention entropy collapse by Zhai et al. (2023).
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In the large-batch training of GPT models, as the need for larger learning rates than normal batch
sizes, AdamW-based training consistently presents a similar max attention logit sharp increase that
leads to one-hot-vector attention output that limits the expression ability of attention layers. As
shown in Figure 2(a), the max attention logit of the first self-attention layer during large-batch train-
ing significantly exceeds the value observed in small-batch training presented in Figure 10, leading
to training instability and performance degradation. As a result, AdamW-based large-batching leads
to a worse generalization performance compared with small batches.

3.2 TRUST RATIO IN LAMB

A distinguishing feature of the LAMB optimizer is its implementation of the “trust ratio”, a mecha-
nism designed to dynamically adjust the learning rates for each neural network layer based on their
respective weight norms and update norms. The trust ratio R for particular weights w at time ¢ is
defined as the quotient of the /3-norm of weights to that of updates U:

[ ]

R=—"—""(U+\w 1
10 + v (Ot FAwe) M
where U; = \/thjrs and || - || denotes lo-norm. By scaling the learning rates in proportion to these

norms, the trust ratio ensures that updates of each layer are neither too large—risking overshooting
the minimum—nor too small—leading to slow convergence.

Through the design of trust ratios, LAMB optimizer achieves a balance that allows it to exploit the
computational benefits of large batch sizes without compromising the robustness of the model train-
ing process. However, the increment of max attention logit still exists during large-batch training as
presented in Figure 2(b).

4  ALGORITHM

4.1 MAXIMUM NORMALIZED RATIO

Relative Ratio Between L2 Norm and Maximum Norm

The max attention logit is directly relevant to the 0.996

max norm (largest absolute value) in key matrix W
and query matrix Wg, as evidenced by the equa-
tion: attention logits a = X WKWJ X7, where
X represents the input sequence to a self-attention .
layer. Hence, the issue outlined in Section 3.1 can
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norms. In this scenario, {s-norm-based trust ratios

cannot deal with extreme values of weights effec-
tively. As a result, LAMB often fails to further re-
duce max attention logit in the medium self-attention
layer as depicted by Figure 2(b). Thus, we suggest
modifying the LAMB optimizer using the max norm

Figure 3: Relative ratios between maximum
and L2 norm of self-attention layers in GPT-
2 medium. Ratio is calculated as (||[WW]| —
[W 1) /|, in which ||| and |-, denote
l5-norm and max norm.

instead of the l; norm when calculating the trust ra-

tio. Therefore, the proposed method gives larger updates to extreme values of weights. This helps
prevent extreme values in query and key weights from becoming too large, limiting spikes in the
maximum attention logit.

4.2 ELEMENT-WISE TRUST RATIO

To further improve the large-batch training performance of layer-wise ratios, we devise an element-
wise ratio to capture local weight structures more accurately while maintaining computational effi-
ciency. Due to the multi-headed self-attention mechanism and outlier dimension phenomenon ob-
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Figure 4: Analysis of GPT-2 small’s first attention layer reveals patterns in query-key weight mag-
nitudes: weights show high similarities within both rows (arising from multi-headed attention archi-
tecture) and columns (due to the outlier dimension phenomenon).

served throughout the training process of transformers (Kovaleva et al., 2021; Puccetti et al., 2022),
weight values exhibit similarities within rows/columns as shown in Figure 4. Given this context,
weight-wise trust ratios of LAMB have been observed to introduce certain inaccuracies because ex-
treme values in one row/column can adversely impact the training stability of other rows/columns.
To address this limitation, we propose a novel approach that employs an element-wise ratio to lever-
age the inherent similarity of weights within the same rows or columns of the weight matrix. Our
method involves calculating ratios along both rows and columns and then selecting the larger of
these two values for each element.

Specifically, let W € R™*™ and U € R™*" be the weight matrix and update matrix separately,
with W (%) representing elements at the i-th row and W) representing elements at the j-th column.

We first calculate the row-wise ratio R, for each row R\ = W, /1UD,, and the column-
wise ratio R, for each column RY) = W ||, /U 9)]|,. Lastly, the final element-wise ratio R

is determined by R(*7) = max{RﬁZ), RY )}. This improved approach seeks to boost the capacity
of the optimizer to adjust to specific weight structures in different parts of the network, leading to
improved convergence and generalization performance in language models.

4.3 MERIT

Algorithm 1 summarizes our proposed MERIT optimizer. The design of MERIT comes from two
parts: maximum-normalized trust ratio and element-wise refinement for faster convergence and bet-
ter generalization performance for large-batch pre-training of language models. Finally, we imple-
ment an element-wise clipping mechanism that limits the maximum update magnitude to 1 across
all parameter dimensions, which mirrors the update strategy of stochastic Sign Momentum Gra-
dient Descent (Bernstein et al., 2018), serving to enhance the overall stability of the large-batch
optimization process. The designs incorporated in MERIT successfully address the issue of rapidly
increasing max attention logits in the middle self-attention layers of language models, as illustrated
in Figure 2(b).

4.4 CONVERGENCE ANALYSIS

Notation. Let I be the d x d identity matrix, and let I = [Iy,I5, ..., I}] be its decomposition into
column sub-matrices I; = d x dj,. For w € R?, let w(* be the block of variables corresponding
to the columns of I; i.e., w? = 17w € R% fori = 1,2,--- ,h. For any function f : R? — R,
V., f(w) denotes the gradient with respect to w®. For vectors u and v € R?, we use u? to represent
the element-wise square operation and u/v to represent the element-wise division operation. We use
[l - 1ls Il - ||+ and || - ||+ to denote l3-norm, /;-norm and max norm of a vector respectively. Consider
the following nonconvex stochastic optimization problems of the form

min, () = Banplf(w, 2)] + 5 o] @

weR?
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Algorithm 1 MERIT

I: Input: ; € RY learning rate {n;}~_;, parameters 0 < 31, 52 < 1, € > 0,mg = 0,v9 = 0
2: fort =1to 1 do

3: gt = ﬁzmte){t V[(U}hl't).

4: my <— Pimy—1 + (1 — B1)g¢

5: v 4— Bove—1 + (1 — Ba)g7

6
7

my¢

Ut = vi+e

s ohtowi : — _ lwellm
Weight-wise Ratio b, = Huf,+(>\ﬁ)m\|m .
. 3 3 J
8  Row-wise Ratior") = — e N Column-wise Ratio ) = — g e
e A, O Cisorm
9:  Element-wise Ratio s\"?) = max{max{r.", ¢}, b,}
10: Wy = wy — N - clip(sy - (ug + Awy) , 1)
11: end for

where w is model parameters to optimize, ¢ is the loss function and P is a probability distribution on
the unknown training data X C RF.

Assumption 1. The loss function £(u) is L;-smooth with respect to u(*), which means there exists a
non-negative constant L; such that

|Vil(u, ) — Vil(v,z)| < Liju® — 0P|, Vu,v e R andz € X, 3)
foralli € [h]. Let L = (Lq,--- ,Ly)T represent the vector of Lipschitz constants in i dimensions.
We use Lg,q to denote ), %

Assumption 2. The variance in stochastic gradients is subject to the following upper bound:
E|Vil(w,z) — Vi f(w)]* < o forall w € R? and i € [h]
E|[Vl(w, x)]; — [V f(w)];|> < &2 forallw € R and i € [d],

ando = (0q,--- ,0)  andé = (71, --- ,54)7 are used to denote the vectors of standard deviations
of stochastic gradient per layer and per dimension separately.

“4)

Assumption 3. Gradients are bounded i.e., [Vi(w,7)]; < G foralli € [d], w € R? and x € X.
Note that such assumptions are typical in the analysis of stochastic first-order methods.

Due to the usage of element-wise clipping on controlling the worst-case (largest) update size in all
parameter dimensions to be at most 1, the training stability is improved and we only need to consider
the convergence analysis of weight-wise maximum-normalized ratio that is the lower bound of the
proposed MERIT, which is noted as MERIT-W. The following result provides a convergence rate
for MERIT-W in general nonconvex settings. Following the analysis in You et al. (2020), we focus
on the setting where 5; = 0 and A = 0.

Theorem 1. Let n; = n = 1/% forallt € [T],b=T,d; = d/hforall i € [h], and

a; < ||v|lm < ay, for all v > 0 where «;, o, > 0. Then for w; optimized by MERIT-W, we have
the following bounds:

1. When (3, = 0, we have

1 () = f ) Lany | 153
(E [mllw(wa)lllb <O( T + Tdh)’

2. When 33 > 0, we have

B[V fe)|f] < O( 2G2log(d) l W(f(wl) ~Fr DL \% ) |

h(1 = f2)
where w* represents an optimal solution to the problem outlined in equation 2 and wy, is an iteration
uniformly randomly selected from {wy, - - - ,wr}. For a detailed proof of convergence, please refer
to Appendix F.
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5 EXPERIMENTS

5.1 SETUP

Language modeling. We conducted large-batch training experiments on OpenWebText (Gokaslan
& Cohen, 2019), training autoregressive models from scratch using settings derived from the Chin-
chilla scaling law (Hoffmann et al., 2022). Following standard protocol, we set the context length of
GPT-2 to 1024. Our experiments encompassed three model sizes: 125M (small), 355M (medium),
and 770M (large). Detailed specifications of the model configurations can be found in Appendix A.

Baselines. We compare MERIT with LAMB, the dominantly used optimizer on large-batch training
of language modeling tasks, Adam with decoupled weight decay (AdamW), Lion (Chen et al., 2023),
and Sophia-G (Liu et al., 2024). For all models, all learning rates are tuned with grid search. The
weight decay is set to 0.1 for all optimizers for a fair comparison. We follow (Liu et al., 2024) for
the settings of 3 values: For AdamW: 5; = 0.9 and 85 = 0.95. For Lion: 5; = 0.95 and 52 = 0.98.
For Sophia-G: 51 = 0.92 and B3 = 0.99.

Chinchilla Scaling Law. The Chinchilla scaling law suggests an optimal training regime of approx-
imately 20 tokens per parameter for large language models. This principle, derived from Hoffmann
et al. (2022)’s comprehensive analysis, proposes that model performance is maximized when the
number of training tokens scales proportionally with the number of parameters under a fixed com-
pute budget. While the exact ratio may vary slightly depending on specific circumstances, the “20x
rule” has been widely adopted as a practical guideline for efficient model scaling in the field of
natural language processing (Anil et al., 2023; Muennighoff et al., 2023).

Implementation. Following the Chinchilla scaling law, we use batch size 1K for GPT-2 small with
2B training tokens, 4K for GPT-2 medium with 8B tokens, and 8K for GPT-2 large with 16B tokens
for the large-batch training setting. Our learning rate (LR) follows a cosine schedule, with the final
LR set to 0.1 of the peak LR. We maintain a constant LR warm-up ratio of 0.02 and apply standard
gradient clipping (norm) with a threshold of 1.0. In the case of Sophia-G, we select 240 examples
from each minibatch to compute the diagonal Gauss-Newton and update the diagonal Hessian every
10 steps. We implement the algorithms in PyTorch (Paszke et al., 2019) and train all the models in
bfloat16. All models are trained on H100 GPUs.

Technical details. We apply the previously described baseline optimizers and MERIT for three
token counts: 2B (Small), 8B (Medium), and 16B (Large). We mainly evaluate GPT-2 models with
their log perplexity and plot the validation loss curves. The results from SuperGLUE (Wang et al.,
2019), LAMBADA (Paperno et al., 2016), and WikiText (Merity et al., 2017) evaluations are also
included in our experiments.

5.2 RESULTS

(a) GPT2 Small - 2B Tokens (b) GPT2 Medium - 8B Tokens (c) GPT2 Large - 16B Tokens
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Figure 5: Final validation loss for each optimizer. (a) GPT-2 Small (125M, batch size=1K). AdamW:
3.470, LAMB: 3.355, MERIT: 3.280 (b) GPT-2 Medium (355M, batch size=4K). AdamW: 3.172,
LAMB: 3.068, MERIT: 2.982. (c) GPT-2 Large (770M, batch size=8K). AdamW: 3.039, LAMB:
2.971, MERIT: 2.897.

Figure 5 illustrates the validation loss curve on OpenWebText with the same number of steps.
MERIT consistently achieves lower validation loss than LAMB, AdamW, Lion, and Sophia-G. As
the size of the language model increases, the performance gap between MERIT and baselines be-
comes larger. Besides, during large-batch training of GPT-2 Large, the performance gap between
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AdamW and LAMB diminishes. In contrast, MERIT demonstrates an increased advantage over
LAMB under this condition. MERIT achieves a 0.07 smaller validation loss on the 123M model
(Figure 5 (a)) with the same training tokens, which means a significant improvement according to
training scaling laws in this regime (Kaplan et al., 2020; Hoffmann et al., 2022; Liu et al., 2024).

The scaling law favors MERIT over LAMB. Figure 1 illustrates the number of steps required for
GPT-2 models with varying batch sizes to reach equivalent validation loss on OpenWebText. The
graph reveals a noticeable decline in generalization performance when training language models
with large batch sizes using the AdamW optimizer. LAMB’s layerwise adaptive optimization strat-
egy mitigates this effect to some extent. Importantly, MERIT enables the use of larger batch sizes
without compromising performance (1K for GPT-2 Small and 4K for GPT-2 Medium). Moreover,
the performance gap between MERIT and LAMB, given the same number of training tokens, widens
for 355M parameter models compared to 125M parameter models.

Zero-shot Evaluation. The enhanced validation loss performance translates to better results in
evaluation tasks as shown in Figure 6. We measure the zero-evaluation performance of trained GPT
models on LAMBADA and WikiText by showing the corresponding perplexity. MERIT success-
fully obtains lower perplexity across both tasks compared with AdamW and LAMB. Our evaluation
focuses solely on zero-shot performance for pre-trained GPT-2 models, as demonstrating in-context
learning typically requires GPT models with at least a billion parameters. Additional evaluation
results are available in Appendix D.
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Figure 6: Zero-shot evaluation on LAMBADA and WikiText. With the same number of steps,
language models large-batch pre-trained with MERIT outperform models pre-trained with AdamW
and LAMB on both tasks with fewer perplexity scores.

5.3 FURTHER ANALYSIS

Comparison of wall-clock time and computational re- Typle 1: Wall-clock time and TFLOPS.
sources. In Table 1, we present a comparison of the to- Optimizer Model T(step) TFLOPS
tal computational requirements (measured in TFLOPS) Size
er step and the actual time taken (wall-clock time) on

I1)\100 GpPUs. Following the methodology of Chowdhery AdamW 770M - 242.50s 4391

. LAMB 770M  243.51s 43.73
et al. (2022), we report the average time per step (T(step)) MERIT 7I0M 245 465 4338
and corresponding FLOPS. The data in Table 1 reveals
that employing maximum-normalized and element-wise
trust ratio calculation adds minimal extra computational
overhead (1%) compared to lo-norm-based trust ratio of
LAMB. Overall, the increase in FLOPS is negligible
compared to AdamW and LAMB. Concerning memory usage, our optimizer maintains two memory
states, like LAMB and AdamW, resulting in the same memory requirements.

AdamW 355M  57.69s 44.05
LAMB 355M  57.93s 43.86
MERIT 355M  58.50s 43.43

Performance Gap Between Standard Batch Size and Large Batch Size. The disparity in gen-
eralization between small and large batch sizes during optimization is a complex issue, primarily
due to the reduced noise in gradient estimates when using large batches. We conduct experiments
following the training protocol outlined in Liu et al. (2024), using 48 billion tokens for training. Our
study compares MERIT’s performance with large batches against AdamW’s performance with small
batches (batch size=480). As illustrated in Figure 7 and Table 2, MERIT demonstrates the ability
to increase batch sizes to 4K for GPT-2 small pre-training and 6K for GPT-2 medium pre-training
without compromising generalization performance. These findings suggest that MERIT enables
language models to effectively utilize larger batch sizes as the model scale increases.
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(a) Loss Curves Under Sophia Setting - GPT2 Small (b) Loss Curves Under Sophia Setting - GPT2 Medium
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Figure 7: Comparison of validation loss trajectories for GPT-2 Small and GPT-2 Medium models
under Sophia training settings.

Table 2: Comparison of zero-evaluation performance for GPT-2 Small and GPT-2 Medium models
under Sophia training settings.

Model ARC COPA HelllaSwag RACE WIC Avg

GPT-2 Small (AdamW-Batch Size=480)  43.43  66.00 29.20 29.00 50.16 43.56
GPT-2 Small (MERIT-Batch Size=4k) 4583  67.00 28.82 2756 50.16 43.87
GPT-2 Medium (AdamW-Batch Size=480) 49.49  71.00 3239 30.05 50.00 46.59
GPT-2 Medium (MERIT-Batch Size=6k)) 50.38  70.00 32.32 3033 5047 46.70

Curvature of Convergence Point. The curvature of the convergence point in the loss landscape
differs significantly between small and large batch sizes, impacting model generalization and ro-
bustness. Large batch sizes often lead to convergence in sharper minima with higher curvature
Keskar et al. (2017). While these sharp minima may achieve lower training loss, they can result
in poorer generalization due to their sensitivity to small changes. In Figure 8(a), we present the
eigenvalue distributions of Hessian matrices at the convergence points of GPT-2 small models pre-
trained using AdamW and MERIT algorithms. The convergence point achieved by MERIT exhibits
a smaller top eigenvalue (12.326) and trace (3444.92) than AdamW whose top eigenvalue and trace
equal 37.231 and 12994.91 respectively, and eigenvalues of MERIT are predominantly confined to
the range [—5, 5]. This reduced spread of eigenvalues suggests that MERIT converges to an overall
flatter region in the optimization landscape. Such flat regions, characterized by small eigenvalues
and trace, are frequently associated with improved generalization capabilities in language models.
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Figure 8: (a) A graphical representation comparing the eigenvalues of Hessian matrices at con-
vergence points, contrasting models pre-trained using AdamW versus MERIT. (b) QK-Norm leads
to performance degradation although improving the feasible learning rates of GPT-2 models pre-
training without divergence.

QK-Norm VS MERIT. QK-Norm (Dehghani et al., 2023) was developed to mitigate training in-
stabilities encountered when scaling Vision Transformer (ViT) models to unprecedented sizes with
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higher learning rates. This technique applies Layer Normalization to the query and key vectors
prior to the attention computation in the transformer architecture. However, as illustrated in Figure
8(b), while QK-Norm enables larger learning rates for AdamW in GPT-2 models, it negatively leads
to performance degradation in large-batch training. A potential explanation for this discrepancy is
that QK-Norm aims to stabilize attention computations and inadvertently restricts information flow
within the attention layers of language models, which becomes more obvious in large-batch training
with much fewer optimization steps. In contrast, our proposed MERIT demonstrates the ability to
enhance the performance of language models when trained using large batch sizes.

5.4 ABLATION STUDY

(a) Sensitivity to learning rates and ablations
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Figure 9: (a) Three ablations present obvious performance degradations. (b) The trigger ratio of the
weight-wise trust ratio lower bound during the large-batch training of GPT-2 Medium.

Ablation 1: Element-wise Clipping. Figure 9(a) reveals that MERIT, even without element-wise
clipping, still outperforms AdamW and LAMB in terms of convergence, albeit with a less pro-
nounced improvement. This finding suggests that when we apply the element-wise trust ratio with-
out clipping, certain elements undergo unexpectedly large update steps, which can adversely affect
the language model performance. These results underscore the importance of element-wise update
clipping in large-batch training scenarios, where update magnitudes tend to be larger compared to
standard training conditions. For visualization of element-wise clipping ratios during GPT-2 Small
training, please refer to Appendix E.

Ablation 2: Weight-wise Ratio Bound. The implementation of a weight-wise trust ratio as a lower
bound for element-wise ratios aims to mitigate excessively small updates during large-batch training
of language models. As illustrated in Figure 9(a), the application of this lower bound significantly
enhances generalization performance, highlighting the importance of balanced updates across dif-
ferent elements. Figure 9(b) further demonstrates that this lower bound becomes particularly crucial
in the latter stages of training. This observation indicates that maintaining a minimum update mag-
nitude grows increasingly important as the model nears convergence. Such a strategy likely enables
the model to continue refining its parameters effectively in later training phases, potentially circum-
venting premature convergence to sub-optimal solutions.

Ablation 3: Element-wise Ratio. Element-wise trust ratio calculations enhance the generaliza-
tion capability of language models by providing more robust ratio estimates focusing on local
weight structures for individual weight elements. Figure 9(a) demonstrates the advancement of
using element-wise ratio.

6 CONCLUSION

Accelerating the pre-training of language models heavily relies on large batch techniques. In this
study, we present the MERIT optimizer, which integrates maximum norm and local weight infor-
mation to compute trust ratios. When applied to the large-batch training of GPT models, MERIT
enables larger batch size usage than LAMB and AdamW, while maintaining comparable generaliza-
tion performance.

10
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A MODELS AND HYPERPARAMTERS CONFIGURATION

Table 3: Model Configurations and Peak Learning Rate Under Chinchilla Scaling Law.
Model Size d.model n_head depth Lionlr Sophia-Glr AdamWIlr LAMBIr MERIT Ir

Small 125M 768 12 12 le-4 le-4 le-3 le-2 9e-3
Medium 355M 1024 16 24 8e-5 le-4 4e-3 le-2 9e-3
Large 770M 1280 20 36 8e-5 2e-4 2e-3 8e-3 6e-3

In our study, we examine three GPT-2 variants: small, medium, and large, as described by (Rad-
ford et al., 2019). The specific configurations for these models are outlined in Table A. We utilize
the nanoGPT framework (available at https://github.com/karpathy/nanoGPT/) as our
codebase. Consistent with nanoGPT’s approach, we implement GELU activation functions and omit
bias and Dropout (Srivastava et al., 2014) during the pre-training phase.

The GPT-2 models undergo training using the OpenWebText corpus (Gokaslan & Cohen, 2019). We
process the text using the GPT-2 tokenizer (Radford et al., 2019). For data organization, we adopt the
train-validation split provided by nanoGPT. The training dataset comprises 9 billion tokens, while
the validation set contains 4.4 million tokens.

Our training setup employs distributed data-parallel processing with gradient accumulation, allow-
ing for batch sizes of 1K, 4K, and 8K. All model variants are trained using bfloat16 precision. The
125M and 355M parameter models are trained on systems equipped with two H100 GPUs, whereas
the 770M parameter models require machines with eight H100 GPUs.

B LIMITATIONS

Comprehensive downstream task assessment. We evaluate large-batch pre-trained models on 7
downstream tasks, which provides valuable but limited insights. A truly comprehensive assessment
of language models remains an open research challenge. Our evaluation is further constrained by
the modest size of the models studied, which lack advanced capabilities like in-context learning and
complex reasoning capability. These limitations indicate the need for caution when extrapolating
our findings to larger, more capable models.

Cross-domain applicability and generalization. Our study focuses on large language model opti-
mization. However, a truly versatile optimizer should perform well across various domains such as
computer vision, reinforcement learning, and multimodal tasks. Due to computational constraints,
we have not evaluated the large-batch training performance of our optimizer in these areas. Future
work should investigate its efficacy across diverse machine learning paradigms to fully assess its
generalizability and potential impact.

Scaling up to larger language models and datasets. MERIT has shown promising scalability up
to 770M parameter models trained on OpenWebText. While there are no fundamental barriers to
scaling further, our comparison with AdamW and LAMB on more extensive models and datasets is
constrained by resource limitations. Based on observed improvements in scaling laws and enhanced
pre-training stability, we anticipate MERIT to outperform AdamW and LAMB in large-batch train-
ing scenarios with larger language models. However, empirical validation of this hypothesis awaits
future work with access to greater computational resources.

C MAX ATTENTION LOGIT IN SMALL-BATCH TRAINING

Following is the distribution of max attention logits in small-batch (512) training of the GPT-2
medium model using the same chinchilla scaling law setting. Notably, these max attention logits are
significantly lower than those observed in large-batch training scenarios. This reduction suggests
that the attention outputs are more evenly distributed, which typically leads to improved training
convergence and generalization performance.
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Figure 10: Max attention logit of self-attention layers during the small-batch training of GPT-2
medium model using three optimizers. (a) Max Attention Logit of first self-attention layer. (b) Max
Attention Logit of medium self-attention layer.

D ZERO-SHOT EVALUATION ON LAMBADA AND WIKITEXT

Zero-shot Evaluation. The improved validation loss leads to better downstream task performance,
as demonstrated in Figure 11. When comparing models with equal pre-training steps, the GPT-2
variants trained using MERIT consistently outperform those using LAMB and AdamW in zero-shot
accuracy across most subtasks.
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Figure 11: Zero-shot evaluation on SuperGLUE benchmark. Given an equivalent number of training
steps, models that undergo large-batch pre-training using MERIT exhibit higher accuracy than those
pre-trained with AdamW and LAMB on most tasks.

E CLIPPING RATIO IN GPT-2 SMALL LARGE-BATCH TRAINING

Figure 12 presents the element-wise clipping ratio in GPT-2 Small training setting (2B tokens) for
the 1st, 6th, and 12th layers.

The analysis of clipping effects across different layers reveals distinct patterns in gradient update
behavior during training. The input layer (Layer 1) maintains near-zero clipping ratios throughout,
suggesting that early-layer gradient updates rarely require adjustment. In contrast, the middle layer
(Layer 6) experiences more substantial clipping, with ratios peaking at 12% during later training
stages. The output layer (Layer 12) shows minimal clipping, with ratios reaching only 0.25% at
maximum.

This layered pattern demonstrates that the clipping mechanism primarily influences the middle lay-
ers, leaving input and output layers unaffected. Such behavior indicates that the clipping mechanism
functions as a targeted stabilizer rather than a uniform constraint across the network. Most gradient
updates maintain their original direction, with the most significant stabilization occurring in middle
layers where feature representations undergo refinement.
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Figure 12: Element-wise clipping ratio for different layers of GPT-2 Small during large-batch train-
ing.
F CONVERGENCE PROOF OF THEOREM 1

Proof. We study how MERIT-W converges across different minibatch sizes. To begin, let’s review
the update equation of MERIT-W

ul?

widy = = - fw? lln— 5)
llug " llm
forall i € [h].
Since the function f is L-smooth, we obtain the following:
) . h L; )
Flwipr) < Flwe) + (Vif (w),wl —w”) + P 5 Hlwl)y — w”)?
i=1
h d; (4,5) h 2,2
i Uu Lidiaun
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i=1 j=1 ||Ut ||m i=1
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The above inequality follows from the Lipschitz continuity of the gradient. We bound term 7} in
the following manner:
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This follows from the fact that Hu,@”m < 1/% and /o; < G. If By = 0, then Ty
can be bounded as follows:
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The rest of the proof for 82 = 0 is similar to argument for the case Sz > 0, which is shown below.
Taking expectation, we have the following:

h
E[T1] < —n: Z

i=1j=1

atogey et x (IVas () x of))|
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h d; .
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Using the bound on the probability that the signs differ, we get:
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Substituting the above bound on 77 in equation 6, we have the following bound:
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Summing the above inequality for ¢ = 1 to T" and using telescoping sum, we have the following inequality:
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Rearranging the terms of the above inequality, and dividing by nT'a; we have:
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