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Abstract

Tracking financial investments in climate adap-001
tation is a complex and expertise-intensive002
task, particularly for Early Warning Systems003
(EWS), which lack standardized financial re-004
porting across multilateral development banks005
(MDBs) and funds. To address this challenge,006
we introduce an LLM-based agentic AI system007
that integrates contextual retrieval, fine-tuning,008
and multi-step reasoning to extract relevant fi-009
nancial data, classify investments, and ensure010
compliance with funding guidelines. Our study011
focuses on a real-world application: tracking012
EWS investments in the Climate Risk and Early013
Warning Systems (CREWS) Fund. We analyze014
25 MDB project documents and evaluate mul-015
tiple AI-driven classification methods, includ-016
ing zero-shot and few-shot learning, fine-tuned017
transformer-based classifiers, chain-of-thought018
(CoT) prompting, and an agent-based retrieval-019
augmented generation (RAG) approach. Our020
results show that the agent-based RAG ap-021
proach significantly outperforms other meth-022
ods, achieving 87% accuracy, 89% precision,023
and 83% recall. Additionally, we contribute a024
benchmark dataset and expert-annotated cor-025
pus, providing a valuable resource for future026
research in AI-driven financial tracking and cli-027
mate finance transparency.1028

1 Introduction029

Recent advances in Large Language Models030

(LLMs) have transformed investment tracking, fi-031

nancial reporting, and compliance monitoring in032

climate finance. However, tracking financial flows033

and categorizing investments in Early Warning Sys-034

tems (EWS) remains challenging due to the lack of035

standardized structures and terminologies in finan-036

cial reports from Multilateral Development Banks037

(MDBs) and climate funds.038

1We will open-source all code, LLM generations, and hu-
man annotations.

Motivation. Early Warning Systems (EWS) are 039

essential for disaster risk reduction and climate 040

resilience. The United Nations (UN) has priori- 041

tized universal EWS access by 2027 through its 042

Early Warnings for All (EW4All) initiative, em- 043

phasizing that timely warnings reduce economic 044

losses and save lives. Studies show that 24 hours 045

of advance warning can reduce damages by 30%, 046

while every dollar invested in early warning sys- 047

tems saves up to ten dollars in avoided losses2. 048

Despite their importance, EWS investments lack 049

financial transparency, as MDB reports often fail 050

to systematically classify and track funding alloca- 051

tions. This study addresses this gap by developing 052

an AI-driven system to automate investment track- 053

ing in the Climate Risk and Early Warning Systems 054

(CREWS) Fund. Traditional NLP methods struggle 055

with the inconsistencies and variability in financial 056

reporting, making manual tracking impractical. 057

Context. EW4All underscores the need for finan- 058

cial transparency in climate adaptation. However, 059

MDB financial reports lack standardized catego- 060

rization, contain both structured and unstructured 061

data, and use inconsistent terminology across in- 062

stitutions. Existing NLP models fail to generalize 063

across diverse reporting formats and require ex- 064

tensive labeled data. Addressing these challenges 065

necessitates advanced AI techniques capable of rea- 066

soning over heterogeneous financial documents. 067

Contribution. We introduce the EW4All Finan- 068

cial Tracking AI-Assistant, a system designed to 069

automate EWS investment classification in MDB 070

reports. a) It employs multi-modal processing to 071

extract financial information from text, tables, and 072

graphs, improving classification accuracy across 073

diverse document formats. b) It handles heteroge- 074

neous reporting structures, adapting to inconsisten- 075

cies in MDB financial disclosures with AI-driven 076

categorization techniques. c) It integrates multi- 077

2See Appendix A for more on EWS.
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step reasoning and retrieval, leveraging retrieval-078

augmented generation (RAG) and chain-of-thought079

(CoT) prompting for enhanced explainability and080

expert validation.081

Our system significantly outperforms existing082

methods, achieving 87% accuracy, 89% precision,083

and 83% recall—representing a 23% improvement084

over traditional NLP approaches. The agent-based085

RAG method surpasses zero-shot, few-shot, and086

fine-tuned transformer baselines, demonstrating the087

effectiveness of AI-driven reasoning for structured088

financial tracking.089

Implications. By improving climate finance090

transparency, this AI-driven approach provides091

structured, evidence-based insights into MDB in-092

vestments. The integration of retrieval-augmented093

generation and agentic AI enhances decision-094

making, financial accountability, and policy formu-095

lation in global climate investment tracking. This096

work contributes to broader AI applications in cli-097

mate finance, supporting international initiatives098

that seek to optimize resource allocation for cli-099

mate resilience.100

2 Related Literature101

RAG improves knowledge-intensive tasks by in-102

tegrating external retrieval with LLM generation103

(Lewis et al., 2020), yet traditional RAG remains104

limited by static retrieval pipelines. Agentic RAG105

enhances adaptability by incorporating iterative re-106

trieval and decision-making, improving factual ac-107

curacy and multi-step reasoning (Xi et al., 2023;108

Yao et al., 2023; Guo et al., 2024). Multi-agent109

frameworks extend this by refining retrieval for110

applications such as code generation and verifica-111

tion (Guo et al., 2024; Liu et al., 2024), advancing112

explainability and human-AI collaboration.113

In-Context Learning (ICL) allows LLMs to gen-114

eralize from few-shot demonstrations without fine-115

tuning (Brown et al., 2020), but its effectiveness116

hinges on example selection. Retrieval-based ICL117

improves prompt efficiency, and reward models fur-118

ther refine in-context retrieval (Wang et al., 2024).119

CoT prompting facilitates step-by-step reasoning,120

significantly boosting performance in arithmetic121

and commonsense tasks (Wei et al., 2022; Kojima122

et al., 2022). Self-consistency decoding enhances123

CoT by aggregating multiple reasoning paths (?),124

while example-based prompting strengthens com-125

plex question-answering capabilities (Diao et al.,126

2024).127

3 Methodology 128

Our methodology comprises four main steps: 1 129

PDF parsing and chunking, 2 context augmenta- 130

tion, 3 storage and retrieval from a vector database, 131

and 4 classification and budget allocation using 132

multiple methods. The final and fifth steps 5 are 133

verification by an expert group and updating the 134

database (see Figure 1). 135

3.1 PDF Parsing and Chunking 136

For each PDF document d in our dataset D, we 137

begin by extracting its raw text Td using the Llama- 138

Parse (LlamaIndex, 2024) PDF parser: 139

Td = LlamaParse(d). 140

Subsequently, the extracted text is partitioned into 141

two distinct types of content: 142

– Table Chunks: Tables within the document are 143

automatically detected and extracted as separate 144

chunks. 145

– Text Chunks: The remaining textual content 146

is segmented based on markdown-style headers. 147

Each resulting text chunk comprises a header 148

(title) and the paragraphs that follow. 149

The overall set of chunks is defined as C = Ctext ∪ 150

Ctable, where Ctext and Ctable denote the sets of text 151

and table chunks, respectively. This separation 152

allows us to treat structured data (tables) and un- 153

structured text differently in subsequent processing 154

stages. 155

3.2 Context Augmentation 156

To enhance the context of each chunk, we aug- 157

ment it with a concise summary that situates it 158

within the full document (Anthropic, 2024). Given 159

a chunk c ∈ C and the full document text Td, 160

The prompt PContext(c, Td) is used to generate a 161

two-sentence context summary using an LLM, 162

ctx(c) = LLM(PContext(c, Td)). The augmented 163

chunk c′ is then formed by concatenating the origi- 164

nal chunk with its contextual summary: 165

c′ = c⊕ ctx(c), 166

where ⊕ denotes concatenation. This augmentation 167

improves the disambiguation of the content during 168

later retrieval and classification stages. 169

3.3 Storage and Retrieval in a Vector 170

Database 171

Each augmented chunk c′ is stored in a vector 172

database (vdb) along with relevant metadata, in- 173

cluding a unique file identifier f derived from the 174
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Figure 1: AI-driven financial tracking pipeline for EWS investments, integrating MDB data, LLM-based classifi-
cation, and expert verification by WMO and UNDRR. The different steps are: 1 PDF parsing and chunking, 2

context augmentation, 3 storage and retrieval from a vector database, 4 classification and budget allocation, 5

verification and updating the database.

PDF file name: meta(c′) = {file_name : f}. The175

storage operation is performed as:176

VDB_store(c′,meta(c′)).177

For downstream processing, we query the vdb us-178

ing a tailored query q in conjunction with the file179

identifier f to retrieve a fixed number of relevant180

chunks (specifically, five per document) that are181

most likely to contain information on pillars and182

budget allocations:183

R(f) = VDB_query(q, f) with |R(f)| = 5.184

3.3.1 Hybrid Retrieval via Rank Fusion185

In addition to the above procedure, we employ a186

hybrid search strategy that combines dense vector187

search with BM25F-based keyword search (Robert-188

son and Zaragoza, 2009) to leverage both semantic189

similarity and exact lexical matching. Let Rv(q, f)190

denote the set of candidate chunks retrieved via191

dense vector search, and let Rk(q, f) denote the192

candidate chunks obtained via BM25F keyword193

search. To fuse these two retrieval sets, we use Re-194

ciprocal Rank Fusion (RRF) (Cormack et al., 2009).195

For each candidate chunk c ∈ Rv(q, f)∪Rk(q, f)196

we compute an RRF score as:197

RRF(c) =
∑

i∈{v,k}

1

ranki(c) +K
,198

where ranki(c) is the rank of c in retrieval system199

i (with lower ranks corresponding to higher rele-200

vance) and K is a smoothing constant (typically201

set to 60). The final set of retrieved chunks is then202

given by selecting the top five candidates according203

to their RRF scores: 204

R(f) = Top5
(
Rv(q, f) ∪Rk(q, f), RRF(c)

)
. 205

This hybrid method harnesses the semantic sensi- 206

tivity of dense vector retrieval alongside the precise 207

lexical matching of BM25F, thereby enhancing the 208

overall disambiguation and retrieval performance 209

during downstream processing. 210

3.4 Classification and Budget Allocation 211

For each retrieved chunk c′ ∈ R(f), we apply 212

the following four methods to classify the chunk 213

(i.e., assign it a class y from the five pillars) and to 214

allocate an associated budget B. 215

3.4.1 Zero-Shot and Few-Shot Classification 216

In this approach, we construct a prompt 217

PClass+Budget(c
′) that includes the content of the aug- 218

mented chunk and (in the few-shot setting) several 219

annotated examples. The LLM is then queried to 220

simultaneously produce an outcome classification 221

y and an associated budget B: 222

{y,B} = LLM(PClass+Budget(c
′)). 223

This method leverages the pre-trained knowledge 224

of the LLM, with few-shot prompting guiding its 225

responses. 226

3.4.2 Fine-Tuned Transformer-Based 227

Classifier 228

In another approach, we fine-tune a transformer- 229

based classifier Mft on a labeled dataset 230

{(c′i, yi)}Ni=1. The model is used to classify each 231

augmented chunk y = Mft(c
′). Subsequently, an 232

LLM is used to determine the budget allocation of 233

each class. The prompt PBudget(c
′, y) is constructed 234

3



using the the chunk and its classification.235

B = LLM(PBudget(c
′, y)).236

The final result for each chunk is the tuple {y,B}.237

3.4.3 Few-Shot-V2: Chain-of-Thought (CoT)238

This approach employs a three-step COT strategy,239

resulting in a tuple {y,B}:240

1 Reformatting: If c′ represents a table, it is241

reformatted into a clean markdown table:242

c′′ = LLM(Preformat(c
′)).243

Otherwise, we set c′′ = c′.244

2 Classification: A classification prompt is245

used to classify the (reformatted) chunk:246

y = LLM(PClass(c
′′)).247

3 Budget Allocation: A subsequent prompt al-248

locates the budget B = LLM(PBudget(c
′′, y)).249

3.4.4 Agent-Based Approach250

This method uses an agent that follows a sequence251

of instructions and performs RAG queries:252

1. Instruction Generation: The agent, primed253

with examples of annotated PDFs and the de-254

sired output format, generates a list of sub-255

task instructions I = {i1, i2, . . . , ik} to com-256

plete the classification and budget allocation257

task. It also generates a list of queries Q =258

{q1, q2, . . . , ql} to use if the sub-tasks require259

querying the vdb.260

2. Sub-Task and Query Mapping: The agent261

maps instructions I to queries Q.262

3. Sub-Task Execution: For each instruction ij ,263

is the sub-task requires querying the vdb, a re-264

trieval is performed to extract relevant chunks:265

c′ij = VDB_query(qij , f)266

4. Sub-Task Validation: The agent performs a267
self-healing step to validate that the retrieved268
chunks c′ij are sufficient. If not, a new query269

qnew
ij

is generated and the retrieval is repeated:270

c′ij
final =

{
VDB_query(qnew

ij , f), if c′ij is insufficient,

c′ij , otherwise.
271

5. Final Formatting: After finishing all the272

sub-tasks, the final step formats the output273

as JSON:274

{y,B} = LLM(PFormat({resultI}))275

4 Results276

We evaluated our methodology on an evaluation set277

comprising a collection of PDF documents from278

the CREWS Fund. Our evaluation focuses on how279

accurately the budget is distributed across the EWS 280

Pillars for each document. To this end, we as- 281

sess three key metrics: accuracy, precision, and 282

recall. Table 1 summarizes the performance of each 283

method, where the metrics for the agent-based ap- 284

proach are highlighted in bold due to its superior 285

performance. 286

Method Accuracy Precision Recall

Zero-Shot 0.41 0.40 0.61
Few-Shot 0.42 0.45 0.64
Transformer 0.41 0.64 0.32
Few-Shot-CoT 0.51 0.63 0.71
Agent 0.87 0.89 0.83

Table 1: Evaluation metrics for budget distribution
across the EWS Pillars.

The results indicate that the agent-based ap- 287

proach significantly outperforms the other meth- 288

ods, achieving higher accuracy, precision, and re- 289

call. This suggests that the integration of retrieval- 290

augmented generation and dynamic sub-task ex- 291

ecution in the agent method greatly enhances the 292

effectiveness of budget allocation across the pillars. 293

5 Conclusion 294

Automating financial tracking of EWS investments 295

is crucial for improving climate finance trans- 296

parency and accountability. In this study, we 297

introduced the EWS4All Financial Tracking AI- 298

Assistant, a novel system that integrates multi- 299

modal processing, hierarchical reasoning, and RAG 300

for document classification and budget allocation. 301

Our experiments on 25 project documents from the 302

CREWS Fund demonstrated that an agent-based 303

approach significantly outperforms traditional NLP 304

methods, achieving 87% accuracy, 89% precision, 305

and 83% recall. The system effectively addresses 306

challenges related to document heterogeneity, struc- 307

tured and unstructured data integration, and cross- 308

organizational inconsistencies. Beyond improving 309

financial tracking, our work contributes a bench- 310

mark dataset for future AI research in climate 311

finance. By combining AI-driven classification, 312

retrieval, and reasoning, this approach enhances 313

decision-making processes in MDBs and supports 314

evidence-based climate investment policies. Future 315

work will focus on extending the system to han- 316

dle a broader range of MDB financial documents, 317

improving model generalization, and integrating 318

real-time updates for dynamic financial tracking. 319
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Limitations320

While our approach demonstrates significant im-321

provements in automating financial tracking for322

EWS investments, several limitations remain. First,323

our system relies on existing financial reports from324

MDBs, in this case CREWS, which are often het-325

erogeneous and may contain incomplete or ambigu-326

ous financial allocations. In cases where funding327

details are missing or inconsistently reported, even328

advanced retrieval-augmented generation (RAG)329

and multi-step reasoning approaches may strug-330

gle to provide accurate classifications. Second,331

the classification system is influenced by the train-332

ing data used in fine-tuning and prompt engineer-333

ing. Despite expert annotations, the model may334

still exhibit biases in investment classification, par-335

ticularly when encountering novel financial struc-336

tures or terminology not well-represented in the337

dataset. Third, while our agent-based RAG system338

achieves state-of-the-art performance on structured339

and unstructured financial data, its generalizabil-340

ity to other climate finance applications outside341

EWS has not been fully explored. Future work342

should assess model robustness across different343

sustainability reporting frameworks and financial344

instruments. Finally, our system assumes that finan-345

cial tracking can be improved through AI-assisted346

reasoning; however, its real-world effectiveness de-347

pends on institutional adoption, policy integration,348

and alignment with evolving financial disclosure349

regulations.350

Ethics Statement351

Human Annotation: This study relies on annota-352

tions provided by domain experts from the World353

Meteorological Organization (WMO), who possess354

extensive knowledge of Early Warning Systems355

(EWS). These experts played a pivotal role in the356

design and conceptualization of the study. Their357

deep understanding of both the contextual and prac-358

tical aspects of the collected data ensures the accu-359

racy and relevance of the annotations. The use of360

expert annotations minimizes the risk of misclassi-361

fication and enhances the reliability of the model’s362

outputs.363

Responsible AI Use. This tool is intended as an364

assistive system to enhance transparency and effi-365

ciency in financial tracking, not as a replacement366

for human analysts. Expert oversight remains cru-367

cial in interpreting financial classifications, address-368

ing edge cases, and ensuring compliance with pol- 369

icy frameworks. By open-sourcing our dataset and 370

model, we encourage responsible use and further 371

validation to refine the system’s applicability in 372

real-world climate finance decision-making. 373

Data Privacy and Bias: This study does not in- 374

volve any personally identifiable or sensitive finan- 375

cial data. All data used in this research originates 376

from publicly available sources under a Creative 377

Commons license, ensuring compliance with data 378

privacy regulations. While we find no evidence of 379

demographic biases in the dataset, we acknowledge 380

that financial reporting by multilateral development 381

banks (MDBs) may reflect institutional biases in 382

investment classification. Our model operates as a 383

decision-support tool and should not replace human 384

judgment in financial tracking and policy decisions. 385

Reproducibility Statement: To ensure full repro- 386

ducibility, we will release all PDFs, codes, EWS- 387

taxonomy, and expert-annotated data used in this 388

study. Our approach aligns with best practices 389

in AI transparency and responsible research dis- 390

semination. However, we encourage users of this 391

dataset and model to consider ethical implications 392

when applying automated financial tracking sys- 393

tems in real-world decision-making contexts. For 394

vector database storage and retrieval, we utilized 395

Weaviate, an open-source, scalable vector search 396

engine that efficiently indexes high-dimensional 397

embeddings. Additionally, for reasoning and large 398

language model (LLM) interactions, we integrated 399

OpenAI’s o1 API, leveraging its advanced capabil- 400

ities to process, analyze, and infer patterns from 401

financial document data. 402
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A Early Warning Systems (EWS) 488

A.1 Definition and Purpose 489

Early Warning Systems (EWS) are integrated 490

frameworks designed to detect imminent hazards 491

and alert authorities and communities before disas- 492

ters strike. In essence, an EWS combines hazard 493

monitoring, risk analysis, communication, and pre- 494

paredness planning to enable timely, preventive ac- 495

tions. Early warnings are a cornerstone of disaster 496

risk reduction (DRR) – they save lives and reduce 497

economic losses by giving people time to evacuate, 498

protect assets, and secure critical infrastructure3. 499

By empowering those at risk to act ahead of a haz- 500

ard, EWS help build climate resilience: they are 501

proven to safeguard lives, livelihoods, and ecosys- 502

tems amid increasing climate-related threats4. In 503

summary, an effective EWS ensures that impend- 504

ing dangers are rapidly identified, warnings reach 505

the impacted population, and appropriate protective 506

measures are taken in advance. 507

A.2 EWS Taxonomy 508

A robust EWS involves several fundamental com- 509

ponents that work together seamlessly. The United 510

Nations identify four interrelated pillars necessary 511

for an effective people-centered EWS (Pescaroli 512

et al., 2025). This taxonomy serves as a struc- 513

tured framework to categorize EWS components 514

and activities, facilitating a consistent approach 515

to analyzing early warning systems across various 516

domains. Our approach in this paper is based on 517

these four fundamental pillars of EWS and one 518

3See https://www.unisdr.org/files/608_10340.
pdf.

4See, https://www.unep.org/topics/
climate-action/climate-transparency/
climate-information-and-early-warning-systems.
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cross-pillar, ensuring a comprehensive understand-519

ing of risk knowledge, detection, communication,520

and preparedness.521

Early Warning System (EWS) Taxonomy
Prompt

An Early Warning System (EWS) is an in-
tegrated system of hazard monitoring, fore-
casting, and prediction, disaster risk assess-
ment, communication, and preparedness ac-
tivities that enables individuals, communi-
ties, governments, businesses, and others to
take timely action to reduce disaster risks
before hazardous events occur.
When analyzing a text, it is essential to de-
termine whether it falls under EWS com-
ponents and activities, which vary across
multiple sectors and require coordination
and financing from various actors.
The taxonomy is based on the Four Pil-
lars of Early Warning Systems and one
cross-pillar:

Pillar 1: Disaster Risk Knowledge and
Management (Led by UNDRR)
This pillar focuses on understanding dis-
aster risks and enhancing the knowledge
of communities by collecting and utilizing
comprehensive information on hazards, ex-
posure, vulnerability, and capacity.
Illustrative examples:
– Inclusive risk knowledge: Incorporat-

ing local, traditional, and scientific risk
knowledge.

– Production of risk knowledge: Establish-
ing a systematic recording of disaster loss
data.

– Risk-informed planning: Ensuring
decision-makers can access and use
updated risk information.

– Data rescue: Digitizing and preserving
historical disaster data.

Keywords: Risk mapping, vulnerability
mapping, disaster risk reduction (DRR), cli-
mate information.

522

Pillar 2: Detection, Observation,
Monitoring, Analysis, and Forecasting
(Led by WMO)
This pillar enhances the capability to detect
and monitor hazards, providing timely and
accurate forecasting.
Illustrative examples:
– Observing networks enhancement:

Strengthening real-time monitoring
systems.

– Hazard-specific observations: Improving
monitoring of high-impact hazards.

– Impact-based forecasting: Developing
quantitative triggers for anticipatory ac-
tion.

Keywords: Forecasting, seasonal predic-
tions, multi-model projections, climate ser-
vices.

Pillar 3: Warning Dissemination and
Communication (Led by ITU)
Effective communication ensures that early
warnings are received by those at risk, en-
abling them to take timely action.
Illustrative examples:
– Multichannel alert systems: Use of SMS,

satellite, sirens, and social media.
– Standardized warnings: Implementation

of the Common Alerting Protocol (CAP).
– Feedback mechanisms: Enabling commu-

nity input on warning effectiveness.
Keywords: Communication systems, mul-
tichannel dissemination, emergency broad-
cast systems.

Pillar 4: Preparedness and Response
Capabilities (Led by IFRC)
Timely preparedness and response measures
translate early warnings into life-saving ac-
tions.
Illustrative examples:
– Emergency preparedness planning: De-

veloping anticipatory action frameworks.
– Public awareness campaigns: Educating

communities on disaster response.
– Emergency shelters: Construction of cy-

clone shelters, evacuation centers.
Keywords: Preparedness planning, emer-

523
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gency drills, public education on disaster
response.

Cross-Pillar: Foundational Elements for
Effective EWS
Cross-cutting elements critical to the sus-
tainability and effectiveness of EWS in-
clude governance, inclusion, institutional
arrangements, and financial planning.
Illustrative examples:
– Governance and institutional frameworks:

Defining roles of agencies and stakehold-
ers.

– Financial sustainability: Mobilizing and
tracking finance for early warning sys-
tems.

– Regulatory support: Developing and en-
forcing data-sharing legislation.

Keywords: Institutional frameworks, gov-
ernance, financial sustainability, data man-
agement.

524

Each of these components is vital. Only when525

risk knowledge, monitoring, communication, and526

preparedness work in unison can an early warn-527

ing system effectively protect lives and properties.528

Gaps in any one element (for example, if warnings529

don’t reach the vulnerable, or if communities don’t530

know how to respond) will weaken the whole sys-531

tem. Thus, successful EWS are people-centered532

and end-to-end, linking high-tech hazard detection533

with on-the-ground community action.534

A.3 Importance for climate finance535

EWS are widely recognized as a high-impact, cost-536

effective investment for climate resilience. By pro-537

viding advance notice of floods, storms, heatwaves538

and other climate-related hazards, EWS signifi-539

cantly reduce disaster losses. Studies indicate that540

every $1 spent on early warnings can save up to541

$10 by preventing damages and losses.5 For ex-542

ample, just 24 hours’ warning of an extreme event543

can cut ensuing damage by about 30%, and an esti-544

mated USD $800 million investment in early warn-545

ing infrastructure in developing countries could546

avert $3–16 billion in losses every year6. These547

5See, https://wmo.int/news/media-centre/
early-warnings-all-advances-new-challenges-emerge.

6See, https://www.unep.org/topics/
climate-action/climate-transparency/
climate-information-and-early-warning-systems.

economic benefits underscore why EWS are con- 548

sidered “no-regret” adaptation measures, i.e., they 549

pay for themselves many times over by protecting 550

lives, assets, and development gains. 551

Given their proven value, EWS have become 552

a priority in climate change adaptation and disas- 553

ter risk reduction funding. International climate 554

finance mechanisms, such as the Green Climate 555

Fund, Climate Risk and Early Warning Systems 556

(CREWS) Fund, and Adaptation Fund along with 557

development banks, are channeling resources into 558

EWS projects, from modernizing meteorological 559

services and hazard monitoring networks to com- 560

munity training and alert communication systems. 561

Strengthening EWS is also central to global ini- 562

tiatives like the United Nations’ Early Warnings 563

for All (EW4All), which calls for expanding early 564

warning coverage to 100% of the global population 565

by 2027. Achieving this goal requires substantial 566

financial support to build new warning systems in 567

climate-vulnerable countries and to maintain and 568

upgrade existing ones. Climate finance is therefore 569

being directed to help develop, implement, and 570

sustain EWS, ensuring that countries can operate 571

these systems (e.g. funding for equipment, data 572

systems, and personnel) over the long term. In 573

summary, investing in EWS is essential for climate 574

resilience. It not only reduces humanitarian and 575

economic impacts from extreme weather, but also 576

yields high returns on investment. Financial sup- 577

port for EWS, whether through dedicated climate 578

funds, loans and grants, or public budgets, under- 579

pins their development and sustainability, making 580

it possible to deploy cutting-edge technology and 581

foster prepared communities. By mitigating the 582

worst effects of climate disasters, EWS help safe- 583

guard development progress, which is why they 584

feature prominently in climate adaptation financing 585

and strategies. 586

Hence, investing in EWS is essential for climate 587

resilience. It not only reduces humanitarian and 588

economic impacts from extreme weather, but also 589

yields high returns on investment. Financial sup- 590

port for EWS, whether through dedicated climate 591

funds, loans and grants, or public budgets, under- 592

pins their development and sustainability, making 593

it possible to deploy cutting-edge technology and 594

foster prepared communities. By mitigating the 595

worst effects of climate disasters, EWS help safe- 596

guard development progress, which is why they 597

feature prominently in climate adaptation financing 598

and strategies. 599
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A.4 Current challenges600

Despite their clear benefits, there are several chal-601

lenges in financing and implementing EWS effec-602

tively. Key issues include:603

Data Inconsistencies and Lack of Standard-604

ization: EWS rely on data from multiple sources605

(weather observations, risk databases, etc.), but606

often this data is inconsistent, incomplete, or not607

shared effectively across systems. Differences in608

how hazards are monitored and reported can lead to609

gaps or delays in warnings. Likewise, there is a lack610

of standardization in early warning protocols and611

data formats between agencies and countries (Ve-612

lazquez et al., 2020; Pescaroli et al., 2025). Incom-613

patible data systems and inconsistent methodolo-614

gies (for example, different trigger criteria for warn-615

ings or varying risk assessment methods) make it616

difficult to integrate information. This fragmenta-617

tion hinders the creation of a “common operating618

picture” of risk. Data harmonization and common619

standards (for data collection, forecasting models,620

and warning communication) are needed to ensure621

EWS components work together seamlessly.622

Institutional and Cross-Organizational Barri-623

ers: An effective EWS cuts across many organi-624

zations, national meteorological services, disaster625

management agencies, local governments, interna-626

tional partners, and communities. Coordinating627

these actors remains a challenge. In many cases,628

efforts are siloed: meteorological offices may is-629

sue technical warnings that don’t fully reach or en-630

gage local authorities or the public. There are gaps631

in governance, clarity of roles, and inter-agency632

communication that can weaken the warning chain.633

Improving EWS often requires overcoming bu-634

reaucratic boundaries and fostering cooperation635

between different sectors (e.g., linking climate sci-636

entists with emergency planners). Interoperability637

issues, i.e.,ensuring different organizations’ tech-638

nologies and procedures align, are also a hurdle639

(Tupper and Fearnley, 2023). As the World Me-640

teorological Organization (WMO) states, connect-641

ing all relevant actors (from international agencies642

down to community groups) and adapting plans to643

real-world local conditions is complex7. Sustained644

commitment, clear protocols, and partnerships are645

required to break down these barriers so that EWS646

operate as a cohesive, cross-sector system.647

7See, https://wmo.int/news/media-centre/
early-warnings-all-advances-new-challenges-emerge.

Financing Gaps and Sustainability: While 648

funding for EWS is rising, it still lags behind 649

what is needed for global coverage and mainte- 650

nance. Many high-risk developing countries lack 651

the resources to install or upgrade EWS infrastruc- 652

ture (radar, sensors, communication tools) and to 653

train personnel. Fragmented financing is a prob- 654

lem. Support comes from various donors and pro- 655

grams without a unified strategy, leading to poten- 656

tial overlaps in some areas and stark gaps in oth- 657

ers. For instance, recent analyses show that a large 658

share of EWS funding is concentrated in a few 659

countries, while Small Island Developing States 660

(SIDS) and Least Developed Countries (LDCs) re- 661

main underfunded despite being highly vulnerable8. 662

Even when initial capital is provided to set up an 663

EWS, securing long-term funding for operations 664

and maintenance (software updates, staffing, equip- 665

ment calibration) is difficult. Without sustainable 666

financing, systems can degrade over time. Ensuring 667

financial sustainability, co-financing arrangements, 668

and political commitment is critical so that EWS 669

are not one-off projects but enduring services. 670

In addition to the above, there are challenges in 671

technological adoption and last-mile delivery: for 672

example, reaching remote or marginalized popula- 673

tions with warnings (issues of language, literacy, 674

and reliable communication channels) and building 675

trust so that people heed warnings. Climate change 676

is also introducing new complexities – hazards are 677

becoming more unpredictable or intense, testing 678

the limits of existing early warning capabilities. 679

Overall, addressing data and standardization issues, 680

improving institutional coordination, and closing 681

funding gaps are priority challenges to fully realize 682

the life-saving potential of EWS. 683

A.5 Relevance to this study 684

Our work is focused on the financial tracking and 685

classification of investments in climate resilience, 686

and EWS represent a prime example of such in- 687

vestments. Early warning projects often cut across 688

sectors and funding sources – they might include 689

components of infrastructure, technology, capac- 690

ity building, and community outreach. Because 691

of this cross-cutting nature, tracking where and 692

how money is spent on EWS can be difficult with- 693

out a clear classification system. Different orga- 694

nizations may label EWS-related activities in var- 695

ious ways (e.g. “hydromet modernization”, “dis- 696

8See, https://wmo.int/media/news/
tracking-funding-life-saving-early-warning-systems.
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aster preparedness”, “climate services”), leading697

to inconsistencies in investment data. By estab-698

lishing a standardized framework to define and cat-699

egorize EWS investments, the study helps create700

a “big-picture view” of early warning financing.701

This enables analysts and policymakers to iden-702

tify overlaps, gaps, and trends that were previously703

obscured by fragmented data.704

Moreover, improving the classification of EWS705

funding directly supports broader resilience initia-706

tives. For instance, the newly launched Global Ob-707

servatory for Early Warning System Investments is708

already working to tag and track EWS-related ex-709

penditures across major financial institutions. Such710

efforts mirror the goals of this study by highlighting711

the need for consistent tracking, transparency, and712

coordination in climate resilience finance. Better713

classification of investments means stakeholders714

can pinpoint where resources are going and where715

additional support is needed to meet global targets716

like the “Early Warnings for All by 2027” pledge.717

In short, EWS feature in this study as a critical718

category of climate resilience investment that must719

be clearly identified and monitored.720

By including EWS in its financial tracking frame-721

work, the study provides valuable insights for722

decision-makers. It helps determine how much723

funding is allocated to early warnings, from which724

sources, and for what components (equipment,725

training, maintenance, etc.). This information726

is crucial for evidence-based decisions on scal-727

ing up EWS: for example, spotting a shortfall in728

community-level preparedness funding, or recog-729

nizing successful investment patterns that could be730

replicated. Ultimately, linking EWS to the study’s731

financial tracking reinforces the message that cli-732

mate resilience investments can be better managed733

when we know their size, scope, and impact area.734

By classifying EWS expenditures systematically,735

the study contributes to stronger accountability and736

strategic planning in building climate resilience,737

ensuring that early warning systems – and the com-738

munities they protect – get the support they urgently739

need.740

B Dataset Construction741

In this study, we analyze financial information742

extracted from PDFs containing both structured743

and unstructured data. Unlike conventional bench-744

mark datasets, these documents exhibit high het-745

erogeneity in their formats—some tables are well-746

structured, while others embed financial figures 747

within free-text paragraphs or are scattered across 748

multiple rows and columns. Additionally, many nu- 749

merical values correspond to multiple rows within 750

the same column, creating challenges in extraction, 751

alignment, and interpretation. 752

The annotated data, provided by experts in CSV 753

format, along with the corresponding PDFs, can be 754

found in the supplementary materials of this paper. 755

The dataset consists of 298 rows of expert an- 756

notations and contains the following 9 columns: 757

Fund, Project ID, Component, Outcome/Expected- 758

Outcome/Objectives, Output/Sub-component, Ac- 759

tivity/Output Indicator, Page Number, Amount, and 760

Label. 761

The total amount of Early Warning Systems 762

(EWS) is computed as the sum of all Amount values 763

for a given project. 764

The annotated dataset (CSV file and PDFs) 765

consists of financial reports and investment doc- 766

uments sourced from publicly available institu- 767

tional records, which are intended for public in- 768

formation and research and transparency purposes. 769

The dataset is used strictly within its intended 770

scope—analyzing financial tracking in climate in- 771

vestments—and adheres to the original access con- 772

ditions. Additionally, for the artifacts we create, 773

including benchmark datasets and classification 774

models, we specify their intended use for research 775

and evaluation in automated financial tracking and 776

ensure they remain compliant with ethical research 777

guidelines. 778
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