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ABSTRACT

Heterogeneous treatment effect estimation has important applications in fields
such as healthcare, economics, and education, attracting increasing attention from
both the academic and industrial community. However, due to the lack of robust-
ness against perturbation on the covariates, most existing causal machine learning
methods may not perform well in practice in treatment effect estimation. In this
paper, we mitigate this problem using the idea of adversarial machine learning. We
first show that our loss of interest, the adversarial loss, is partly bounded by the
Lipschitz constant of the causal prediction model. Next, we propose a representa-
tion learning-based Robust Heterogeneous Treatment Effect (RHTE) framework
which estimates heterogeneous treatment effect under covariate perturbation by
controlling the empirical loss, Lipschitz constant, and distance metric simultane-
ously. Theories are derived to guarantee the performance and robustness of our
estimation. To the best of our knowledge, this is the first work proposing robust
causal representation learning methods under covariate perturbation. Extensive
experiments on both synthetic examples and standard benchmarks demonstrate the
effectiveness and generality of our RHTE framework.

1 INTRODUCTION

Treatment effect measures the causal impact of a treatment or intervention on a targeted outcome.
Identifying and estimating treatment effect is of great significance in observational studies across
domains, such as healthcare (Shalit, 2020), computer vision (Santurkar et al., 2019; Elsayed et al.,
2018) and recommender system (Wang et al., 2021; 2022). In some scenarios, our estimand of interest
is not the average treatment effect (ATE) on the entire population, but the one on specific subgroups
of individuals with the same covariates, e.g. age, gender, etc., which is generally referred to as Con-
ditional Average Treatment Effect (CATE) or Heterogeneous Treatment Effect (HTE) (Wager &
Athey, 2018; Jacob, 2021; Fan et al., 2022).

Due to the prevailing existence of confounders that influence both the treatment and outcome vari-
ables, the distributions of treated and control groups are often imbalanced, posing challenges in
obtaining accurate estimation for CATE. From the causal machine learning community, Counterfac-
tual Representation Learning Johansson et al. (2016) is proposed to address the challenge by learning
a balanced representation between treatment and control groups from the covariates through distance
metrics, while minimizing causal effect estimation error. CFR (Shalit et al., 2017) method, together
with other variants such as Dragonnet (Shi et al., 2019) and TARNet (Shalit et al., 2017) are shown to
have solid theoretical guarantees and perform well in many real-world settings.

In many observational studies, however, the variables including treatment T , outcome Y , and
covariates X may not be accurately measured. For example, when estimating the conditional
average treatment effect on cardiovascular disease, the Electrocardiogram (ECG) data is a perturbed
observation of the heart status due to the limitation of scan resolution. Scans with low resolution
could result in wrong treatment evaluations and decisions made by doctors with unpredictable
consequences. Since the measurement error occurs on the covariates in the above example, we refer
to such measurement error as covariate perturbation. Some works have discussed measurement
error in causal inference (Imai & Yamamoto, 2010; Pearl, 2012; Kuroki & Pearl, 2014), addressing
measurement error in outcome (Shi et al., 2019), treatment (Xiao et al., 2019; Zhu et al., 2022)
or covariate (Kallus et al., 2018; Shu & Yi, 2019). However, the above methods require strong
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assumptions for either extra variables (instrumental variables, proxy variables, etc.) or distribution
family, e.g. exponential family, to construct unbiased estimators for the treatment effect. These
assumptions cannot be tested from observed data, and restrict the generality of the methods.

To fill this gap, in this paper, we propose a novel and effective framework called Robust Heterogeneous
Treatment Effect (RHTE) to achieve robustness representation learning method under covariate
perturbation. Under the potential outcome framework, we first formulate the problem using adversarial
samples, and define our loss of interest, the Expected Adversarial Factual Loss, which controls the
estimation error in the worst case. By constructing inequalities, we find that the adversarial loss can
be bounded when we simultaneously control the Expected Factual Loss and Lipschitz constant of the
model. This inspires us to design a representation learning framework that estimates CATE while
controlling the Lipschitz constant and the representation distributions through the IPM metric. To
constrain the Lipschitz constant, we propose two types of regularizations, called Orthonormality
Regularization and RKHS Regularization, and prove their validity. Then, theoretical results are
constructed to justify the robustness of RHTE estimation. Generalization bounds indicate that we can
control the adversarial losses by taking into account the Lipschitz constant of the causal prediction
model, along with empirical losses and the discrepancy between representation distributions. This
implies we are able to control the error on adversarial samples, and hence on the real covariate, which
proves the robustness of our estimation. Finally, we conduct experiments on both synthetic examples
and standard benchmark datasets. Results show that RHTE outperforms baseline methods in most
cases and makes robust estimations under covariate perturbation.

In summary, the main contributions of this paper can be concluded as follows:
• We address measurement error in causal machine learning methods, which is significant in

application.
• We formalize the problem with the adversarial sample framework and control the adversarial

loss through the Lipschitz constant, providing an approach to understanding covariate
perturbation and measurement error.
• A robust estimation framework of CATE under covariate perturbation is proposed, with

theories established to guarantee its performance and justify its robustness.
• Extensive experiments are conducted on both synthetic examples and standard benchmark

datasets to demonstrate the effectiveness of our proposed method.

2 RELATED WORK

Conditional average treatment effect estimation. How to effectively and accurately estimate
conditional average treatment effect has recently attracted increasing attention from the research
community. It basically aims to discover the underlying patterns of the distribution between the treated
and control groups. To model this character, early methods are based on re-weighting methods (Austin,
2011; Imai & Ratkovic, 2014; Fong et al., 2018) that is an effective approach to overcome the selection
bias induced by the existence of covariates in observational studies. Other widely used techniques for
CATE estimation belong to traditional machine learning, including Bayesian Additive Regression
Trees (BART) (Hill, 2011), Random Forests (RF) (Breiman, 2001), Causal Forests (CF) (Wager
& Athey, 2018), etc. These methods have more flexibility and predictive ability in balancing the
distribution between treated and control groups compared to re-weighting methods. In addition,
some promising works like S-Learner (Nie & Wager, 2021) and R-Learner (Künzel et al., 2019)
are based on meta-learning to utilize any supervised learning or statistical regression methods to
estimate the treatment effect. In recent years there have been plenty of studies adapting more
sophisticated mechanisms to measure CATE. For example, DragonNet (Shi et al., 2019) design
three-head components to predict the treatment effects as well as adjust the distribution by a process
of inferring treatments. Besides, more cutting-edge mechanisms like Integral Probability Metric
(IPM) (Qin et al., 2021; Johansson et al., 2016; Wu et al., 2022; Wang et al., 2023) are applied to
minimize generalization bound for treatment effect estimation, which is composed of factual loss and
the discrepancy between the treated and control distributions. The representative CFR (Shalit et al.,
2017) method enforces the similarity between the distributions of treated and control groups in the
representation space by a penalty term IPM, (Demirel et al., 2024) use the additional observational
study to supplement the randomized clinical trial data, (Guo et al., 2024; Yan et al.) employ Meta-
analysis and Optimal Transport to measure the inverse propensity score and (Li et al.) present a
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generative approach to align the target population, and can be able to reduce the distribution shifts
between treated and control groups.

While the boundary of estimation of CATE from observational data has been pushed by these models,
an important problem is still under-explored, that is the robustness of the treatment effect predicted
by deep neural networks when their input is subject to an adversarial perturbation. In this paper, we
bridge this gap by proposing two types of regularizations called Lipschitz regularization and RKHS
regularization to the original causal models for encouraging smoothness as well as improving the
generalization performance.

Adversarial machine learning. Adversarial machine learning refers to techniques against adversarial
perturbations (Huang et al., 2011). In the past few years, in order to facilitate the security and
robustness of a model, adversarial machine learning has been widely applied to the machine learning
community. For example, Cisse et al. (2017); Virmaux & Scaman (2018); Zhang et al. (2021)
incorporated some adversarial examples or robustness regularization into the original objective for
tackling sensitive issues in neural networks. In addition to that, some works (Deldjoo et al., 2021;
Tian & Xu, 2021) attempt to enhance the robustness of the recommender system and audio-visual
learning model respectively, and simultaneously improve its generalization performance via a way of
adversarial optimization framework. Another important application is in computer vision (Santurkar
et al., 2019; Elsayed et al., 2018), in which the adversarial examples are used to enhance the
parameters of the original model. Nonetheless, to the best of our knowledge, we are the first work
that integrate adversarial machine learning techniques into causal inference for CATE estimation.
More importantly, we provide theoretical analysis on the expected precision in the estimation of
heterogeneous effect (PEHE) loss and design two types of regularizations for encouraging robustness.

3 PROBLEM SETUP

We formalize our problems under the Neyman-Rubin potential outcomes framework as follows
(Rubin, 2005). Consider an observational study in which each unit receives a binary treatment
T ∈ T = {0, 1}. Let X ∈ X ⊂ Rd be the covariate in a bounded subset of Rd, Y ∈ Y ⊂ R be
the observed outcome and the bounded outcome space, and Y0, Y1 be the potential outcome under
treatment T = 0 and T = 1. In this paper, we mainly focus on estimating the conditional average
treatment effect (CATE) (Shalit et al., 2017):

τ(x) := E[Y1 − Y0|X = x]. (1)
The fundamental problem in estimating CATE is that for any unit we only have one observed outcome.
Therefore, it is hard to make inferences on both potential outcomes Y0 and Y1. In order to identify
and estimate the effect above, we assume Stable Unit Treatment Value Assumption (SUTVA) as well
as the following classical assumptions in causal inference hold (Yao et al., 2021):

Assumption 1 (Consistency). The observed outcome equals to the potential outcome under assigned
treatment, e.g. (Y |T = t) = Yt for any unit and t ∈ T .

Assumption 2 (Strong Ignorability). (Y0, Y1) ⊥⊥ T |X with 0 < p(T = 0|X) < 1 for ∀X ∈ X .

Under the above assumptions, CATE can be identified as
τ(x) = E[Y |X = x, T = 1]− E[Y |X = x, T = 0], (2)

and the estimation problem turns into building up models for the conditional outcome E[Y |X,T ].
Representation learning builds the conditional outcome model E[Y |X = x, T = t] = f(Φ(x), t)
by finding a one-to-one representation function Φ : X → Rl. Let L : Y × Rl → R be the
loss function. The model is trained by minimizing L(y, f(Φ(x), t)), while balancing distributions
pt=1
Φ := p(Φ(x)|t = 1) and pt=0

Φ := p(Φ(x)|t = 0) through a Integral Probability Metric (IPM)
distance IPMG(p, q) := supg∈G

∣∣∫
S g(s)(p(s)− q(s))ds

∣∣ , where G is the function class scaled
expected loss lies in. For common function families G, IPM is a true metric over the corresponding
set of probabilities (Shalit et al., 2017; Qin et al., 2021). When we let G be the family of 1-
Lipschitz functions, i.e., G = {g : ||g||Lip ≤ 1} we obtain the Wasserstein distance denoted
by WASSG(·, ·) between distributions. When H represents a Reproducing Kernel Hilbert Space
(RKHS) (Sriperumbudur et al., 2009), and our function class is G = {g ∈ H s.t. ||g||H ≤ 1}, IPM
metric turns out to be the Maximum Mean Discrepancy denoted by MMDG(·, ·).
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4 ESTIMATION AND THEORIES

The performance of the representation learning method is justified through the expected Precision in
Estimation of Heterogeneous Effect (PEHE) (Hill, 2011) loss on f :

ϵPEHE(f) =

∫
X
(τ̂(x)− τ(x))2p(x)dx. (3)

While ϵPEHE(f) measures the error between estimated and real CATE τ̂(x) and τ(x), an underlying
assumption is that covariate X has been accurately observed. In many practical settings, however, the
observed covariate is actually a perturbed observation of the real covariate Xr, e.g. X = Xr + δXr ,
where δXr

is a perturbed term. Using data suffering from severe covariate perturbation would result in
predicting incorrect treatment effects with high confidence. In this section, we will propose methods
and derive theories to find an estimation of CATE τ̂(x̃) using x̃, and derive theories to ensure its
robust performance under covariate perturbation.

4.1 ADVERSARIAL SAMPLE AND LOSS

To guarantee the robustness of model performance under covariate perturbation, we aim at bounding
its loss in the worst case when we estimate the effect using the adversarial sample. In this paper, we
define and study the following spherical perturbation:
Definition 1 (Spherical Perturbation). For a metric || · || in X , there exists ϵ > 0 such that Xr lies in
an ϵ-ball centered at X , i.e. ||X −Xr|| < ϵ for any X ∈ X . ϵ is called the level of perturbation.

The condition of spherical perturbation in common cases, for example, when δxr
∼ N(0, σ2). In this

case, we can use ℓp norm in X , set p to be any even number greater than 0, and ϵ = [(p− 1)!!]1/pσ.
Under the above assumption, the adversarial sample of a unit with X = x is formally defined as:

xadv = argmax
||x̃−x||≤ϵ

L(f(Φ(x̃), t), y). (4)

The adversarial sample represents the worst sample with maximal loss in the area Xr possibly lies.
Since the only thing we know is that Xr is in the ϵ-ball, we can control the model performance in the
entire ball only through its loss over the adversarial sample. For this sake, we aim at controlling the
following Expected Adversarial Factual Loss ϵFadv:
Definition 2. For the adversarial examples, the expected adversarial factual loss of f and Φ is

ϵFadv(f,Φ, ϵ) =

∫
X×T ×Y

L(y, f(Φ(xadv), t))p(x, t, y)dxdtdy. (5)

Note that this is different from the Expected Factual Loss generally studied in representation learning
methods in that it computes the loss using the adversarial sample xadv rather than x:

ϵF (f,Φ, ϵ) =

∫
X×T ×Y

L(y, f(Φ(x), t))p(x, t, y)dxdtdy. (6)

The following lemma shows the relation between ϵFadv and ϵF .
Lemma 1. Let ϵ denote the level of the perturbation. Assume that L(y, f(Φ(x), t)) is a Lipschitz
function with regard to f , with λL being the Lipschitz constant. Assume that f(Φ(x), t) is a Lipschitz
function with regard to x, and Λf stands for the Lipschitz constant. Then we have

ϵF (f,Φ) ≤ ϵFadv(f,Φ) ≤ ϵF (f,Φ) + λLΛf ϵ.

Proof. From the Lipschitz condition of L and f , for any x̃ and x ∈ X , we have
|L(y, f(Φ(x̃), t))− L(y, f(Φ(x), t))| ≤ λL|f(Φ(x̃), t)− f(Φ(x), t))| ≤ λLΛf ϵ

Therefore,

ϵFadv ≤ ϵF + |ϵFadv − ϵF |

≤ ϵF +

∫
X×T ×Y

max
||x̃−x||≤ϵ

|L(y, f(Φ(x̃), t))− L(y, f(Φ(x), t))| p(x, t, y)dxdtdy

≤ ϵF + λLΛf ϵ

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Remark. The Lipschitz constant for a function g : M → N is defined as ||g||Lip =

supx,y∈M
||g(x)−g(y)||N

||x−y||M , where || · ||M and || · ||N means the norm in each space.

Lemma 1 shows ϵFadv is greater than ϵF itself, while can be upper-bounded by the sum of ϵF and
multiplication of Lipschitz constants and level of perturbation. Note that λL only depends on the loss
we choose. Therefore, training model f only affects Λf . Lemma 1 provides us insights that in order
to control ϵFadv, we have to control ϵF and Lipschitz constants simultaneously. This inspires the
estimation method in the next section.

4.2 ESTIMATION

We estimate model f and representation function Φ through optimizing the following equation:

min
f,Φ

1

m

m∑
i=1

wi · L(yi, f(Φ(xi), ti)) + β · ℜ(f) + α · IPMG(p̂
t=1
Φ , p̂t=0

Φ ),

s.t wi =
ti
2u

+
1− ti

2(1− u)
, where u =

1

m

m∑
i=1

ti.

(7)

The weights wi balances the difference between the sizes of treatment and control group (Shalit
et al., 2017), p̂t=1

Φ and p̂t=0
Φ are empirical distribution of pt=1

Φ and pt=0
Φ respectively, and recall that

IPMG(·, ·) is the distance metric between these two distributions. We use two specific types of IPM,
WASS, and MMD, with details provided in the experiment part. ℜ(f) is a Lipschitz regularization
term with details discussed later. Through the estimation above, we minimize the empirical loss
of L(y, f(Φ(x), t)) while balancing the empirical distributions of representations in treatment and
control groups, which helps us control the expected factual loss ϵF . Meanwhile, we control the
Lipschitz constants of f through regularizing over ℜ(f). Consequently, we are able to control ϵFadv ,
which will be discussed in Theorem 1. Besides, we can also derive a generalization bound for the
adversarial version of PEHE, which further encourages its robustness, see Theorem 2 for details.

The choice of regularization term ℜ(f) depends on the norm in X and the functional space of fΦ,t.
Next, we propose two kinds of Lipschitz regularization terms ℜ(f) to bound the Lipschitz constant.

Orthonormality Regularization

In this paper, representation function Φ(x) is estimated through an lΦ-layer feed-forward neural
network, and outcome model f(r, t) is an lt-layer network with regard to r. Let W k

Φ and W k
t be the

weight matrix for the k-th layer of the network for Φ(x) and f(r, t), respectively.

Consider the ℓ2-norm in X . For a layer with weight matrix W : Rn0 → Rn1 , we have

||Wx−Wx̃||2 ≤ ||W ||2 · ||x− x̃||2, (8)

for any x, x̃ ∈ Rn0 , where ||W ||2 is the spectral norm of matrix. Therefore, the Lipschitz constant for
this layer can be bounded by ||W ||2. Since fΦ,t(x) is a two-branch neural network with shared layers
on Φ(x), applying the composition rules in estimating the Lipschitz constants (Tsuzuku et al., 2018),
the Lipschitz constant of fΦ,t(x) with regard to x denoted by Λf can be bounded by production of
spectral norms as follows:

Λf ≤
lΦ∏
k=1

||W k
Φ||2 ·max{

l1∏
m=1

||Wm
1 ||2,

l0∏
m=1

||Wm
0 ||2}. (9)

The works in parseval tightness theory (Kovačević et al., 2008; Cisse et al., 2017) demonstrate that
the orthonormality of weight matrices is sufficient to control the spectral norm. Following the above
idea, we aim to constrain the parameters with orthonormality for each transformation layer through

ℜk
t (f) =

1

2
||W k

t

T
W k

t − I||22, (10)

and ℜk
Φ(f) correspondingly, where I refers to the identity matrix. The gradient of this regularization

term is∇Wk
t
ℜk

t (f) = (W k
t W

k
t
T − I)W k

t . And the regularization term ℜ(f) is constructed by

ℜ(f) =
lΦ∑
k=1

ℜk
Φ(f) +

l0∑
m=1

ℜm
0 (f) +

l1∑
m=1

ℜm
1 (f). (11)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The regularization above helps us constrain the Lipschitz constant Λf . In the extreme case when
ℜ(f) = 0, all ℜk

Φ(f) and ℜm
t (f) equals 0, indicating that the weight matrix W for each layer is

orthogonal and ||W ||2 = 1. Therefore, from Eq. (9) the Lipschitz constraint is bounded by Λf ≤ 1.

RKHS Regularization

Assume fΦ,t(x) lies in a reproducing Hilbert kernel spaceH (Sriperumbudur et al., 2009), and denote
the norm and reproducing kernel function as || · ||H and K(·, ·), respectively. Define the norm on X
as ||x− y|| = ||K(., x)−K(., y)||H. From reproducing property, we have

||fΦ,t(x)− fΦ,t(y)|| = ⟨fΦ,t(·),K(·, x)−K(·, y)⟩ ≤ ||fΦ,t||H · ||x− y||. (12)
Therefore, we have Λf ≤ ||fΦ,t||H, which controls Lipschitz constant Λf through the RKHS norm.
From such bound, we can construct ℜ(f) to constrain the RKHS norm to control Λf :

ℜ(f) = ||fΦ,t||H − 1. (13)
When ℜ(f) = 0, Λf ≤ ||fΦ,t||H = 1, which bounds the Lipschitz constant of f .

4.3 THEORETICAL RESULTS

In this section, we will list theoretical results which guarantee the robust performance of our estimation
under covariate perturbation. The complete proofs and details are presented in the Appendix. To
begin with, recall that ϵ is the level of perturbation. Let D = {(xi, ti, yi)}mi=1 denote the training
data drawn from the sample space D = X × T × Y , and let Dt be its subspace Dt = X × {t} × Y .
First, we derive the following bound for expected adversarial factual loss ϵFadv in Definition 2:

Theorem 1. Let Ct(D, ϵ) be the covering number of Dt using ϵ-balls, Cp(D, ϵ) =
max{C0(D, ϵ), C1(D, ϵ)}, and Cd = supx,t,W,y L(y, f(Φ(x), t)), where W is the parameter set of
f and Φ. For δ > 0, with probability at least 1− δ over the i.i.d. samples {(xi, ti, yi)}mi=1, we have

ϵFadv(f,Φ) ≤
1

m

m∑
i=1

L(yi, f(Φ(xi), ti)) + 2λlΛf ϵ+ Cd

√
2Cp(D, ϵ) ln 2 + 2 ln(1/δ)

m
.

Remark. Theorem 1 provides an upper bound for the expected adversarial factual loss that controls
the expected treatment effect estimation error caused by adversarial samples over factual distribution,
which rationalizes the control on Lipschitz constant in order to bound ϵFadv.

Next, analogous to the PEHE loss commonly used to measure the performance of CATE estimation,
under covariate perturbation, we define Adversarial PEHE loss as

ϵPEHEadv(f) =

∫
X
(τ̂(xadv)− τ(xadv))

2p(x)dx, (14)

where xadv is the adversarial sample defined in (4). Adversarial PEHE loss helps us control the
expectation of maximal square error caused by estimating using real covariate xr. Estimation with
low Adversarial PEHE loss indicates good generalization performance not only using the observed
covariate to estimate CATE but also using real covariates, contained within the ϵ-ball from the
observation, to estimate CATE. We have the following bound on the Adversarial PEHE loss:

Theorem 2. Let G be a family of functions g : R → Y . Assume that there exists an ℓ2 loss,
L : Y × Y → R+, and a constant CΦ > 0, such that for fixed t ∈ {0, 1}, the per-unit expected
adversarial loss function ℓ̃f,Φ(x, t) =

∫
Y L(Yt, f(Φ(xadv), t))p(Yt|x)dYt obey 1

CΦ
· ℓ̃f,Φ(x, t) ∈ G.

Let CY be the minimum variance of the outcomes Yt under factual and counterfactual distributions.
Then, with probability at least 1− δ,

ϵPEHEadv(f,Φ) ≤
4

m

m∑
i=1

L (yi, f(Φ(xi), ti))

+ 4

(
λlΛf ϵ+ Cd

√
2Cp(D, ϵ) ln 2 + 2 ln(1/δ)

m

)
+ 2

(
CΦ · IPMG(p

t=1
Φ , pt=0

Φ )− CY

)
.

Remark. Theorem 2 provides us insights that through controlling the empirical loss, Lipschitz
constant, and distance between representation distributions simultaneously in (7), the generalized
robust performance of RHTE estimator is guaranteed through the Adversarial PEHE loss.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. CATE estimation is more difficult compared to prediction tasks since we rarely have
access to ground-truth treatment effects in real-world scenarios. To measure the effectiveness of the
proposed methods, we conduct extensive experiments based on two standard benchmark datasets,
ACIC (Dorie et al., 2019) and IHDP (Hill, 2011), and two synthetic Multimodal datasets , UTK-sim
and TC-sim. The ACIC dataset is a common benchmark dataset introduced by Dorie et al. (2019).
It comprises 4,802 units (28% treated, 72% control) and 82 covariates measuring aspects of the
linked birth and infant death data (LBIDD). The datasets are generated randomly according to the
data-generating process setting. The IHDP dataset was based on the Infant Health and Development
Program. It presented a semi-synthetic dataset for estimating causal effects. The covariates were
created through a randomized experiment examining the impact of home visits by specialists on future
cognitive scores. It consists of 747 units(19% treated, 81% control ) and 25 covariates measuring the
children and their mothers. The UTK-sim dataset is generated from the combining of tabular data
and UTK images Zhang et al. (2017), in which it consists of 1000 units (49% treated, 50% control),
2710 covariates representing the unit’s profiles in images. The more details of generation process can
refer to Deshpande et al. (2022). The TC-sim dataset is followed by Wang & Culotta (2020) where it
consists of 3240 units (25% treated, 75% control), and 3071 covariates measuring toxic comment.

Baselines. We compare our model with the following 11 representative baselines: Tree-based
methods Random Forests (RF) (Breiman, 2001) and Causal Forests (CF) (Wager & Athey, 2018),
meta learning methods S-Learner (Nie & Wager, 2021) and T-Learner (Künzel et al., 2019), Bal-
ancing Neural Network (BNN) (Johansson et al., 2016), DragonNet (Shi et al., 2019), Treatment-
Agnostic Representation Network (TARNet) (Shalit et al., 2017) as well as Counterfactual Regression
with the Wasserstein metric (CFRWASS) (Shalit et al., 2017) and the squared linear MMD metric
(CFRMMD) (Shalit et al., 2017), along with two extensions of CRF method Decomposed Repre-
sentations for CounterFactual Regression (DeRCFR) (Wu et al., 2022), and Optimal Transport for
Treatment Effect Estimation (ESCFR) (Wang et al., 2023).

Experimental Details. Our methods are implemented with BNN introduced by Johansson et al.
(2016). For all four datasets, the network architecture is shared and the same set of hyperparam-
eters is adopted. We set both hyperparameters α and β to 1 except for the ablation study. More
implementation details are provided in the Appendix.

Following the settings of previous studies (Shalit et al., 2017; Wu et al., 2022; Wang et al., 2023),
we resent within-sample and out-of-sample results that are calculated on the training and test set
respectively. The commonly used metric including Rooted Precision in Estimation of Heterogeneous
Effect (PEHE) (Hill, 2011) is applied for evaluating the quality of treatment effects. Formally, they

are defined as:
√
ϵPEHE =

√
1
n

∑n
i=1 (τ̂i − τi)

2
, where τ̂i and τi stand for the predicted CATE and

the ground truth CATE for the i-th instance respectively.

In comparison with the 11 baselines mentioned above, we add extra perturbation to the test sets.
More concretely, for given a test data point x, we generate a new covariate x′ = x+ δx to substitute
for the original one. We choose level of noise δx in {U(−0.1, 0.1)dim(x)}.

5.2 EXPERIMENTAL RESULTS

CATE Estimation. The overall comparison results for four datasets with perturbation are presented
in Table 1, from which we can see that compared to the standard benchmark datasets, the performance
of all the models are a little higher on the synthetic datasets, which is because of the imbalanced
distribution nature between treated and control groups , and verifies the difficulties of the treatment
effects estimation task itself. Representation learning methods like DragonNet can usually obtain
better performance than the traditional machine learning method like RF, which agrees with the
previous works (Qin et al., 2021; Shalit et al., 2017), and verifies the usefulness of predicting the
CATE by a deep neural network. Among representation learning models, the best performance is
usually achieved when the model is based on the IPM distance metric. This is as expected since the
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Table 1: Treatment effects estimation. In each module, we present each of the results with form mean
± standard deviation and we use bold fonts to label the best performance. Lower is better.

Datasets ACIC IHDP UTK-sim TC-sim
Task In-sample Out-sample In-sample Out-sample In-sample Out-sample In-sample Out-sample

R.Forest 4.05 ± 1.36 4.05 ± 1.38 6.29 ± 9.48 5.91 ± 8.9 0.33 ± 0.01 0.34 ± 0.02 0.89 ± 0.52 0.88 ± 0.52
C.Forest 1.88 ± 0.76 1.89 ± 0.78 4.94 ± 7.63 4.91 ± 7.48 0.25 ± 0.01 0.24 ± 0.02 0.86 ± 0.44 0.84 ± 0.46

S-Learner 3.83 ± 1.42 3.85 ± 1.46 6.27 ± 9.39 6.25 ± 9.55 0.27 ± 0.01 0.26 ± 0.02 0.94 ± 0.25 0.88 ± 0.32
T-Learner 2.38 ± 0.88 2.44 ± 0.88 5.47 ± 10.19 5.58 ± 10.55 0.34 ± 0.13 0.35 ± 0.14 1.06 ± 0.33 0.97 ± 0.37

BNN 5.59 ± 1.56 5.57 ± 1.54 8.55 ± 8.75 8.4 ± 8.52 0.26 ± 0.01 0.27 ± 0.01 0.89 ± 0.01 0.82 ± 0.08
DragonNet 1.78 ± 0.44 1.79 ± 0.43 2.54 ± 3.09 2.54 ± 3.15 0.19 ± 0.02 0.21 ± 0.03 0.89 ± 0.39 0.85 ± 0.40

TARNet 1.75 ± 0.53 1.80 ± 0.56 2.35 ± 2.87 2.4 ± 2.85 0.13 ± 0.01 0.14 ± 0.02 0.85 ± 0.47 0.83 ± 0.5
CFRMMD 1.71 ± 0.4 1.74 ± 0.41 2.28 ± 2.67 2.21 ± 2.31 0.20 ± 0.02 0.21 ± 0.02 0.90 ± 0.52 0.88 ± 0.55
CFRWASS 1.74 ± 0.43 1.78 ± 0.47 2.21 ± 2.81 2.22 ± 2.65 0.17 ± 0.02 0.17 ± 0.02 0.89 ± 0.49 0.86 ± 0.52
DeRCFR 1.79 ± 0.49 1.83 ± 0.51 3.23 ± 4.62 3.24 ± 4.68 0.18 ± 0.03 0.19 ± 0.04 0.89 ± 0.10 0.82 ± 0.18
ESCFR 2.73 ± 1.1 2.81 ± 1.15 3.84 ± 5.39 4.1 ± 5.73 0.21 ± 0.03 0.23 ± 0.02 0.85 ± 0.43 0.84 ± 0.44

RHTEMMD 1.31 ± 0.33 1.33 ± 0.34 1.97 ± 2.66 1.99 ± 2.54 0.27 ± 0.05 0.28 ± 0.06 0.87 ± 0.49 0.86 ± 0.5
RHTEWASS 1.26 ± 0.42 1.28 ± 0.43 2.13 ± 2.94 2.12 ± 2.79 0.11 ± 0.01 0.11 ± 0.01 0.91 ± 0.51 0.88 ± 0.53

IPM distance metric based on the studied representation can effectively reduce the distribution shift
between treated and control groups, improving the generalization performance of CATE estimation.

Encouragingly, our model can achieve the best performance on the most tasks across different
datasets, where the improvements are mostly significant. The result is consistent with our theoretical
analysis in section 3. Compared to the baselines, we introduce the Lipschitz regularization and RKHS
regularization separately to reduce the Lipschitz constant of the treatment effects model, improving
the robustness of treatment effects estimation. Between the different implementations of the IPM
distance metric, we find that WASS is a little superior to MMD in most cases. We speculate that
WASS is more suitable for balancing the representation distributions.

It is important to note that the effectiveness of our model on the synthetic Multimodal dataset
UTK-sim validates that covariates perturbation may occur in Multimodal scenarios.

Robustness Comparison. To verify the effectiveness of the proposed two types of regularizations
compared to simple adversarial defense-based methods, we also conduct experiments with baselines
by simply combining three types of adversarial samples-based methods: Training-based methods,
Architectural-based methods and Distillation-based methods Serban et al. (2020); Costa et al. (2024).
In table 2, ’X(T)’ ’X(A)’,and ’X(D)’ denote the training-based,architectural-based and distillation-
based methods respectively when baseline is X. We apply our framework to ESCFR, TARNet, and
DeRCFR, and use IHDP and UTK-sim as the experimental datasets. The conclusions on the other
base models and datasets are similar and omitted. From the results presented in Table 2 we can see:
among the baselines, the performance can be lower (In most cases) or better compared to the original
baseline’s performance presented in Table 1, we speculate that by simply combing adversarial defense
methods to casual models can’t address the problems that arise in causal inference,like distribution
shift,etc. Additionally, in most cases, our methods can achieve the best performance compared to the
baselines, and improvement is consistent on most datasets and evaluation metric. Above observations
verify the effectiveness of the proposed two types of regularizations compared to simple adversarial
defense methods.

Effects of Varying Perturbation Level. We further investigate our model with different levels
of extra noise and compare it with ESCFR, TARNet, and DeRCFR on the datasets of IHDP and
UTK-sim. More specifically, we add two new non-spherical types of perturbation δx on covariates.
The first one is called Fast gradient sign method (FGSM),and the second one is called One-step
target class method (OTCM). The detailed generation process could refer to section 4 in Puttagunta
et al. (2023). The results are presented in Figure 1. By imposing small extra perturbation values on
the input point, we can find that all of the performances on dataset IHDP and UTK-sim have been
degraded jointly compared to Table 1 that added spherical types of perturbation. We speculate that
the non-spherical perturbation could bring more noise than spherical perturbation in estimating HTE.
It is encouraging to see that our framework can still outperform the base models in all task cases.
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Figure 1: Performance comparison between the models under different types of perturbation on the
IHDP and Image datasets.

Figure 2: Influence of the weight parameter β. (a-b) present the performance on the IHDP dataset,
while (c-d) show the result of the UTK-sim dataset.

This observation suggests that our framework can indeed improve the model’s robustness even if the
input points have been perturbed. For our framework, the strategies of Lipschitz regularization and
RKHS regularization seem to have different advantages under different settings, and they alternatively
achieve the best performances, which is analogous to the results observed in Table 1. Based on this
observation, we speculate that, for Multimodal datasets, the RHTEMMD method can be leveraged to
build a more robust treatment effect model. Otherwise, the RHTEWASS may also be competitive.

Ablation Study on β. After evaluating our model as a whole, we would like to study whether differ-
ent designs in our model are necessary. In order to answer this question and illustrate the influence of
the proposed terms, in this section, we conduct the ablation study, where the hyper-parameters settings
follow the above experiments and we compare our model by varying the regularization penalty β. For
optimization objective (7), the regularization influence will decrease when the regularization penalty
β becomes smaller. We tune β in [0,1e-4,1e-2,1,1e2,1e4]. The results are presented in Figure 2. We
can see that the best performance is usually achieved when β is 1. This agrees with our opinion in
section 3, i.e., too small β may introduce too imbalance representation into the training process, while
too large β may severely impact the predictions made by the treatment effect model. The results
indeed prove the proposed regularizer’s effectiveness. By tuning β in proper ranges, we are allowed
to achieve better trade-offs to improve the treatment effects estimation performance.

6 CONCLUSION

By noting that previous representation learning methods seldom deal with measurement error in
causal inference, especially covariate perturbation, which is of great significance in real-world study,
we propose an RHTE framework to make robust CATE estimation under covariate perturbation. The
estimator is derived by controlling empirical loss, Lipschitz constant, and representation distribution
simultaneously. Generalization bounds on different types of adversarial losses are derived, implying
the robustness of the RHTE estimator from a theoretical point of view. Experiments on various
datasets are finally conducted to manifest the strong and robust performance of RHTE under different
settings. This article opens a new perspective on the understanding of covariate perturbation through
adversarial learning and enables representation learning methods to cope with covariate perturbation,
which greatly broadens its application scenarios. A possible shortcoming is that this paper considers
spherical perturbation on covariates. Dealing with more comprehensive types of perturbation, and
dealing with the case when perturbation occurs not only on covariates but also on treatments and
outcomes are interesting topics to be discussed in future research.
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Table 2: Performance comparison between the models training in the way of adversarial defense-based
methods.

Datasets IHDP UTK-sim
Task In-sample Out-sample In-sample Out-sample

TARNet (T) 2.32 ± 3.13 2.80 ± 4.08 0.25 ± 0.02 0.26 ± 0.03
TARNet (A) 2.10 ± 2.66 2.10 ± 2.63 0.12 ± 0.01 0.12 ± 0.01
TARNet (D) 2.29 ± 2.78 2.24 ± 2.49 0.13 ± 0.01 0.14 ± 0.01
DeRCFR (T) 2.92 ± 3.94 3.35 ± 4.83 0.30 ± 0.03 0.30 ± 0.03
DeRCFR (A) 2.83 ± 4.34 2.86 ± 4.42 0.12 ± 0.01 0.14 ± 0.02
DeRCFR (D) 2.92 ± 3.82 2.87 ± 3.63 0.18 ± 0.02 0.19 ± 0.03
ESCFR (T) 3.21 ± 4.60 3.78 ± 5.54 0.30 ± 0.01 0.30 ± 0.02
ESCFR (A) 3.70 ± 5.17 3.95 ± 5.53 0.18 ± 0.02 0.19 ± 0.02
ESCFR (D) 3.36 ± 4.86 3.55 ± 5.03 0.22 ± 0.01 0.24 ± 0.02

RHTEMMD 1.97 ± 2.66 1.99 ± 2.54 0.27 ± 0.05 0.28 ± 0.06
RHTEWASS 2.13 ± 2.94 2.12 ± 2.79 0.11 ± 0.01 0.11 ± 0.01
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A EXTRA DEFINITIONS

In this section, we propose or recall the following definitions, which will be used in the proof.
Definition 3. Let Φ : X → R be a representation function, f : R× {0, 1} → Y be a hypothesis
predicting the outcome of a unit’s features x given the representation covariates Φ(x) and the
treatment assignment t. Let L : Y × Y → R+ be a loss function. The expected adversarial factual
and counterfactual losses of Φ and f are:

ϵFadv(f,Φ) =

∫
X×T ×Y

L(y, f(Φ(xadv), t))p(x, t, y)dxdtdy,

ϵCFadv(f,Φ) =

∫
X×T ×Y

L(y, f(Φ(xadv), t))p(x, 1− t, y)dxdtdy.

(15)

Definition 4. The expected adversarial factual treated and control losses are:

ϵt=1
Fadv(f,Φ) =

∫
X×Y

L(y, f(Φ(xadv), 1))p(x, y|T = 1)dxdy,

ϵt=0
Fadv(f,Φ) =

∫
X×Y

L(y, f(Φ(xadv), 0))p(x, y|T = 0)dxdy.

(16)

Accordingly, we can obtain an immediate results ϵFadv(f,Φ) = P (t = 1)ϵt=1
Fadv(f,Φ) + P (t =

0)ϵt=0
Fadv(f,Φ).

Definition 5. The estimation of treatment effect by an hypothesis f and a representation function Φ
for unit x is:

τ̂(x) = f(Φ(x), 1)− f(Φ(x), 0), (17)

Definition 6. The expected Precision in Estimation of Heterogeneous Effect (PEHE) (Hill, 2011)
loss of f and Φ is:

ϵPEHE(f) =

∫
X
(τ̂(x)− τ(x))2p(x)dx. (18)

and its adversarial version is defined as

ϵPEHEadv(f) =

∫
X
(τ̂(xadv)− τ(xadv))

2p(x)dx. (19)

Definition 7. Integral Probability Metric (IPM). For two probability density functions p, q defined
over S ∈ Rd, and for a function family G of functions g : S → R, The IPM is (Shalit et al., 2017):

IPMG(p, q) := sup
g∈G

∣∣∣∣∫
S
g(s)(p(s)− q(s))ds

∣∣∣∣ . (20)

B PROOF OF THEOREM 1

Proof. We reformulate the expected factual loss of Φ and f as:
ϵF (f,Φ) = E(x,t,y)∼D[L(y, f(Φ(x)), t)]

and its empirical factual loss is:

ϵ̂F (f,Φ) =
1

m

m∑
i=1

L(yi, f(Φ(xi), ti))

For t = 0, 1, We can partition Dt into 2N (ϵ/2,X , || · ||X ) × N (ϵ/2,Y, || · ||Y) subsets where
N (ϵ/2,X , || · ||X ) is the ϵ/2-covering number of X and N (ϵ/2,Y, || · ||Y) is the ϵ/2-covering
number of Y . For two samples x1 and x2 who belong to a same subset, we have ||x1 − x2||X ≤ ϵ,
and the corresponding outcomes y1 and y2 satisfies ||y1 − y2||Y ≤ ϵ. Since X and Y are both
bounded sets inRd andR, respectively, from finite covering theorem, Dt can be covered by finite
open sets. We have the following lemma:

Lemma 2. Let Kt be the covering number ofDt using ϵ-balls under metric ||·|| and {Dt
1, ...,Dt

Kt
} be

the partitioned subsets of Dt as defined above, and K = K1 +K2. Recall that D = {(xi, ti, yi)}mi=1
is the observational data. Let N t

i be the number of observations from D that fall into Dt
i . Note

that {|N1
1 |, ..., |N1

K1
|, |N2

1 |, ..., |N2
K2
|} is an IID multinomial random variable with parameters m
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and {µ(D1
1), ..., µ(D1

K1
), µ(D2

1), ..., µ(D2
K2

)}. By the Breteganolle-Huber-Carol inequality (Xu &
Mannor, 2012), the following holds with probability at least 1− δ:

2∑
t=1

Kt∑
i=1

∣∣∣∣ |N t
i |

m
− µ(Dt

i)

∣∣∣∣ ≤
√

2K ln 2 + 2 ln(1/δ)

m

From the lemma we have
|ϵF (f,Φ)− ϵ̂F (f,Φ)|

=

∣∣∣∣∣
2∑

t=1

Kt∑
i=1

E
[
L(y, f(Φ(x), t))|(x, t, y) ∈ Dt

i

]
µ(Dt

i)−
1

m

m∑
i=1

L(yi, f(Φ(x), ti))

∣∣∣∣∣
≤

∣∣∣∣∣
2∑

t=1

Kt∑
i=1

E
[
L(y, f(Φ(x), t))|(x, t, y) ∈ Dt

i

] |N t
i |

m
− 1

m

m∑
i=1

L(yi, f(Φ(x), ti))

∣∣∣∣∣
+

∣∣∣∣∣
2∑

t=1

Kt∑
i=1

E
[
L(y, f(Φ(x), t))|(x, t, y) ∈ Dt

i

]
µ(Dt

i)−
2∑

t=1

Kt∑
i=1

E
[
L(y, f(Φ(x), t))|(x, t, y) ∈ Dt

i

] |N t
i |

m

∣∣∣∣∣
≤

∣∣∣∣∣∣ 1m
2∑

t=1

Kt∑
i=1

∑
j∈Nt

i

max
(x,t,y)∈Dt

i

|L(yj , f(Φ(xj), tj))− L(y, f(Φ(x), t))|

∣∣∣∣∣∣
+

∣∣∣∣∣ max
(x,t,y)∈D

|L(y, f(Φ(x), t))|
2∑

t=1

Kt∑
i=1

∣∣∣∣ |N t
i |

m
− µ(Dt

i)

∣∣∣∣
∣∣∣∣∣

≤ λlΛf ϵ+ Cd
2∑

t=1

Kt∑
i=1

∣∣∣∣ |N t
i |

m
− µ(Dt

i)

∣∣∣∣
By combining Lemma 2 and apply it in Lemma 1, the proof of Theorem 1 is done.

C PROOF OF THEOREM 2

Proof. Following the proof of generalization bound on PEHE in Theorem 1 of Shalit et al. (2017) by
substituting all x apart from those in probability functions with its adversarial sample xadv , we have

ϵPEHEadv(f,Φ) ≤ 2(ϵCFadv(f,Φ) + ϵFadv(f,Φ)− CY )

≤ 2
(
ϵt=0
Fadv(f,Φ) + ϵt=1

Fadv(f,Φ)
)
+ 2

(
CΦ · IPMG(p

t=1
Φ , pt=0

Φ )− CY

)
,

Combining it with Theorem 1 gets the result.

D EXPERIMENTAL DETAILS

We implement our methods based on BNN (Johansson et al., 2016). We use the same set of
hyperparameters for RHTE across three datasets. More specifically, we adopt 3 fully-connected
exponential-linear layers for the representation function Φ and 3 similar architecture layers for the
treatment effect prediction function f . The difference is that layer sizes are 200 for the former, and
100 for the latter. Batch normalization (Ioffe & Szegedy, 2015) is applied to facilitate training, and
all but the output layer use ReLU (Rectified Linear Unit) (Agarap, 2018) as activation functions
whose Lipschitz constant is less than or equal to 1. Additionally, we set batch size to 64 and learning
rate to 0.01 with 0.0001 weight decay. In the main optimization objective, we set α and β both
to 1. Following the common settings (Shalit et al., 2017; Wu et al., 2022; Wang et al., 2023), we
present within-sample and out-of-sample results that are calculated on the training and test set
respectively. For the ACIC dataset, we conduct experiments over randomly picked 100 realizations
with 63/27/10 train/validation/test splits. For IHDP dataset, following the common settings in Qin
et al. (2021); Shalit et al. (2017), we average over 100 replications of the outcomes with 63/27/10
train/validation/test splits. For the UTK-sim dataset, we average over 10 replications of the outcomes
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Algorithm 1 Learning algorithm of our model
Indicate the observational data (x1, t1, y1), ..., (xm, tm, ym);
Indicate the scaling parameter α and β;
Initialize all the model parameters;
Indicate the epoch number E;
Compute u = 1

m

∑m
i=1 ti;

Compute wi =
ti
2u + 1−ti

2(1−u) for i = 1, ...,m;
for e = 0 to E do

Sample mini-batch data B from D;
Compute the gradients of the regularization:

g1 = ∇WβR(f)

Compute the gradients of the IPM term:

g2 = ∇WαIPMG(p̂
t=1
Φ , p̂t=0

Φ )

Compute the gradients of the empirical loss:

g3 = ∇W
1

|B|

|B|∑
i=1

wiL(yi, f(Φ(xi), ti))

Obtain the step size scalar η with the Adam;
Update the parameters:

W ←W − η(g1 + g2 + g3)

end for

with 63/27/10 train/validation/test splits. For the TC-sim dataset, we average over 3 replications of
the outcomes with 63/27/10 train/validation/test splits.

E SUPPLEMENTARY AND ALGORITHM

Supplementary material includes dataset links, source codes, and the guidelines for running experi-
ments. We present our CATE estimation algorithm in Algorithm 1

16


	Introduction
	Related Work
	Problem Setup
	Estimation and Theories
	Adversarial Sample and Loss
	Estimation
	Theoretical Results

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Extra Definitions
	Proof of Theorem 1
	Proof of Theorem 2
	Experimental Details
	Supplementary and Algorithm

