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Abstract

Grammatical Error Detection (GED) methods001
rely heavily on human annotated error corpora.002
However, these annotations are unavailable in003
many low-resource languages. In this paper, we004
investigate GED in this context. Leveraging the005
zero-shot cross-lingual transfer capabilities of006
multilingual pre-trained language models, we007
train a model using data from a diverse set of008
languages to generate synthetic errors in other009
languages. These synthetic error corpora are010
then used to train a GED model. Specifically011
we propose a two-stage fine-tuning pipeline012
where the GED model is first fine-tuned on mul-013
tilingual synthetic data from target languages014
followed by fine-tuning on human-annotated015
GED corpora from source languages. This016
approach outperforms current state-of-the-art017
annotation-free GED methods. We also analyse018
the errors produced by our method and other019
strong baselines, finding that our approach pro-020
duces errors that are more diverse and more021
similar to human errors.022

1 Introduction023

Grammatical Error Detection (GED) refers to the024

automated process of detecting errors in text. It025

is often framed as a binary sequence labeling task026

where each token is classified as either correct or027

erroneous (Volodina et al., 2023; Kasewa et al.,028

2018). GED is widely used in language learning029

applications and contributes to the performance of030

grammatical error correction (GEC) systems (Yuan031

et al., 2021; Zhou et al., 2023; Sutter Pessurno de032

Carvalho, 2024).033

Prior research in multilingual GED has primar-034

ily operated in supervised settings (Volodina et al.,035

2023; Colla et al., 2023; Yuan et al., 2021), relying036

on human annotated data for training. Despite re-037

cent efforts to obtain annotated corpora (Náplava038

et al., 2022; Alhafni et al., 2023) many languages039

still lack these resources, motivating research on040

methods operating without GED annotations.041

To overcome the absence of human annota- 042

tions, researchers have explored two primary ap- 043

proaches. The first involves language-agnostic ar- 044

tificial error generation (AEG). This is achieved 045

using rules (Rothe et al., 2021; Grundkiewicz 046

and Junczys-Dowmunt, 2019), non-autoregressive 047

translation (Sun et al., 2022), or round-trip trans- 048

lation (Lichtarge et al., 2019). These methods are 049

not trained to replicate human errors and compare 050

unfavorably to supervised techniques like back- 051

translation (Kasewa et al., 2018; Stahlberg and 052

Kumar, 2021; Kiyono et al., 2019; Luhtaru et al., 053

2024b) which train models to learn to generate hu- 054

man errors. 055

The second approach leverages the cross-lingual 056

transfer (CLT) capabilities of BERT-like (Devlin 057

et al., 2019) multilingual pre-trained language mod- 058

els (mPLMs). This involves fine-tuning a GED 059

model on languages with abundant human annota- 060

tions (termed as source languages) and evaluating 061

their performance on languages devoid of human 062

annotations (referred to as target languages). While 063

certain languages exhibit unique error types, most 064

adhere to shared linguistic rules, which mPLMs 065

can exploit to detect errors across languages. 066

In this paper, we hypothesize that error genera- 067

tion also share linguistic similarities across lan- 068

guages. We propose a novel approach to zero- 069

shot CLT in GED by combining back-translation 070

with the CLT capabilities of mPLMs to perform 071

AEG in various target languages. Our method- 072

ology involves a two-stage fine-tuning pipeline: 073

first, a GED model is fine-tuned on multilingual 074

synthetic data produced by our language-agnostic 075

back-translation approach; second, the model un- 076

dergoes further fine-tuning on human-annotated 077

GED corpora from the source languages. 078

We experiment on 6 source and 5 target lan- 079

guages and show that our technique surpasses previ- 080

ous state-of-the-art annotation-free GED methods. 081

In addition, we provide a detailed error analysis 082
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comparing several AEG methods to ours.083

The contributions of this paper are as follows:084

• We introduce a novel state-of-the-art method085

for GED on languages without annotations.086

• We show that we can leverage the CLT capa-087

bilities of mPLMs for synthetic data gener-088

ation to improve performance on a different089

downstream task, in our case GED.090

• We provide the first evaluation of GEC091

annotation-free synthetic data generation092

methods applied to multilingual GED.093

• We release a synthetic GED corpus compris-094

ing over 5 million samples in 11 languages.095

2 Related Work096

GED Originally addressed through statistical (Ga-097

mon, 2011) and neural models (Rei and Yan-098

nakoudakis, 2016), GED is now tackled using pre-099

trained language models (Kaneko and Komachi,100

2019; Bell et al., 2019; Yuan et al., 2021; Colla101

et al., 2023; Le-Hong et al., 2023).102

Historically, most research in GED has been con-103

centrated on the English language. However, re-104

cently, Volodina et al. (2023) organised the first105

shared task on multilingual GED in which Colla106

et al. (2023) set state-of-the-art in all non-English107

datasets by fine-tuning a XLM-RoBERTa large108

model on human annotated data in a monolingual109

setting. While we follow their methodology to train110

our GED model, we complement prior research by111

exploring GED for languages lacking annotations.112

Artificial Error Generation Current meth-113

ods for AEG can be broadly categorized114

into language-agnostic and language-specific ap-115

proaches. Language-specific methods focus on116

replicating the error patterns found in a specific117

GEC corpora. This can involve heuristic ap-118

proaches tailored to mimic the linguistic errors119

identified in GEC corpora (Awasthi et al., 2019;120

Cao et al., 2023a; Náplava et al., 2022), or employ-121

ing techniques such as back-translation (Kasewa122

et al., 2018; Stahlberg and Kumar, 2021; Kiyono123

et al., 2019; Luhtaru et al., 2024b). While effective124

for languages with annotated corpora, these meth-125

ods are not suitable for languages lacking such126

resources.127

In contrast, there are few language-agnostic128

methods for generating artificial errors. Grund-129

kiewicz and Junczys-Dowmunt (2019) introduce130

errors in a corpus by deleting, swapping, inserting 131

and replacing words and characters. Replacements 132

rely on confusion sets obtained from an inverted 133

spellchecker. Lichtarge et al. (2019) introduce 134

noise via round-trip translation using a bridge lan- 135

guage. Finally, Sun et al. (2022) corrupt sentences 136

by performing non-autoregressive translation using 137

a pre-trained cross-lingual language model. All 138

these error generation techniques have primarily 139

been applied to GEC, and to the best of our knowl- 140

edge, their performance has not been evaluated on 141

GED. 142

Our work advances existing synthetic data gen- 143

eration methods by exploring a language-agnostic 144

variant of back-translation. 145

Unsupervised GEC Unlike GED, GEC without hu- 146

man annotations has been explored in several stud- 147

ies (Alikaniotis and Raheja, 2019; Yasunaga et al., 148

2021; Cao et al., 2023b). State-of-the-art unsuper- 149

vised GEC systems (Yasunaga et al., 2021; Cao 150

et al., 2023b) typically begin with the development 151

of a GED model trained on erroneous sentences 152

generated through rule-based methods (Awasthi 153

et al., 2019) or masked language models (Cao et al., 154

2023b). This GED model is subsequently used 155

with the Break-It-Fix-It (BIFI) method to create an 156

unsupervised GEC system. 157

However, the methods used by Yasunaga et al. 158

(2021); Cao et al. (2023b) for creating the GED 159

model are not language-agnostic, as they rely on 160

a thorough analysis of language-specific error pat- 161

terns, making them difficult to apply to languages 162

lacking such annotations. 163

Cross-lingual transfer Previous studies have 164

shown the capacity of mPLMs to generalize to lan- 165

guages unseen during fine-tuning for both NLU 166

(Conneau et al., 2020; Chi et al., 2021; Lopez La- 167

touche et al., 2024) and generative tasks (Xue et al., 168

2021; Chirkova and Nikoulina, 2024; Shaham et al., 169

2024). Close to our work, Yamashita et al. (2020) 170

explored cross-lingual transfer in GEC, a closely re- 171

lated topic. Their findings indicate that pre-training 172

with Masked Language Modeling and Translation 173

Language Modeling enhances cross-lingual trans- 174

fer. Additionally, they show that fine-tuning on a 175

combination of a high and a low-resource language 176

improves the performance of GEC models on the 177

low-resource language. 178

In contrast to Yamashita et al. (2020) our re- 179

search focuses on zero-shot cross-lingual transfer, 180

specifically for GED and AEG, without relying 181
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Figure 1: Overview of our proposed method.

on target language annotations. Additionally, we182

advance previous work on zero-shot cross-lingual183

transfer by demonstrating its effectiveness in im-184

proving downstream task performance. Investigat-185

ing zero-shot CLT in GED is particularly signif-186

icant because the "translate-train" baseline (Con-187

neau et al., 2018; Wu et al., 2024), which involves188

training a GED model on a translated dataset, is189

infeasible. This arises because machine translation190

systems tend to correct the errors that the GED191

model is intended to detect.192

3 Method193

Our proposed GED method is developed through194

a four-step process, as illustrated in Figure 1. Ini-195

tially, we train a multilingual AEG model using196

GEC datasets from the source languages. This197

AEG model is subsequently employed to produce a198

GED dataset encompassing both target and source199

languages. In the third step, we fine-tune a GED200

model on this multilingual artificially generated201

dataset. Finally, we perform an additional fine-202

tuning of the GED model using human-annotated203

GED data from the source languages. The resultant204

GED model is capable of detecting errors across205

any target language.206

Data Our method necessitates three types of cor-207

pora. First, the AEG model is trained using GEC208

datasets in a collection of source languages, Ds,209

which include pairs of ungrammatical sentences210

and their corrected versions. Additionally, mono-211

lingual corpora in the source languages D̃s and in212

the target low-resource languages D̃t, consisting of213

raw sentences, are required.214

AEG Training The AEG is a generative mPLM215

trained on a dataset Ds combining all source lan-216

guages, using the corrected text as input and the un-217

grammatical one as output. Post-training, the AEG218

can introduce errors in any language supported by219

the mPLM, leveraging the inherent zero-shot cross-220

lingual transfer capabilities of generative mPLMs.221

GED Artificial Data Creation Using our AEG222

system we obtain a multilingual dataset Dsynth223

of raw sentences and their corresponding syntheti- 224

cally generated ungrammatical versions by corrupt- 225

ing sentences from D̃s and D̃t. We obtain GED 226

token-level annotation from Dsynth by tokenizing 227

using language-specific tokenizers, and aligning 228

both sentence versions using Levenshtein distance 229

with minimal alignment following Kasewa et al. 230

(2018). We follow the labeling methodology of 231

Volodina et al. (2023); Kasewa et al. (2018). We 232

designate tokens that are not aligned with them- 233

selves or tokens following a gap as incorrect, while 234

remaining tokens are labeled as correct. 235

GED model fine-tuning We propose a two-stage 236

methodology for our multilingual GED model akin 237

to supervised GEC (Grundkiewicz et al., 2019; 238

Rothe et al., 2021; Luhtaru et al., 2024a). Models 239

are initially fine-tuned on synthetic data and later 240

refined with human-annotated data. Our approach 241

begins with the fine-tuning of an mPLM such as 242

XLM-R (Conneau et al., 2020) on our synthetically 243

generated multilingual GED datasets. Then, we 244

fine-tune this model using human-annotated GED 245

data from all our source languages, Ds. 246

4 Experimental Setup 247

4.1 Datasets & Evaluation Metric 248

We use English, German, Estonian, Russian, Ice- 249

landic, and Spanish as our source languages and 250

Swedish, Italian, Czech, Arabic, and Chinese as our 251

target languages. For each dataset, when multiple 252

subsets are available we use the L2 learners’ cor- 253

pora and the annotations for minimal corrections 254

for grammaticality. 255

Training set The English, German, Estonian, Rus- 256

sian, Icelandic, and Spanish datasets are taken from 257

the FCE corpus (Yannakoudakis et al., 2011), the 258

Falko-MERLIN GEC corpus (Boyd, 2018), UT- 259

L2 GEC (Rummo and Praakli, 2017), RULEC- 260

GEC (Rozovskaya and Roth, 2019), the Icelandic 261

language learners section of the Icelandic Error 262

Corpus (Arnardóttir et al., 2021), and COWS-L2H 263

(Davidson et al., 2020), respectively. We use the 264

training set of each of these GEC datasets to train 265
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F0.5(%)

Type Method Swedish Italian Czech Arabic Chinese

Supervised
COLLA ET AL. (2023) 78.2 82.2 73.4 - -
ALHAFNI ET AL. (2023) - - - 86.6 -
LI ET AL. (2023) - - - - 59.7

Synthetic data

RULES 65.3 60.0 56.1 51.9 -
RT TRANSLATION 57.0 43.0 45.9 38.3 20.1
NAT 65.9 58.6 61.1 52.5 30.4

Zero-shot DIRECTCLT 71.5 63.8 62.1 57.3 36.2
OURS 74.7 70.4 66.6 62.8 42.9

Table 1: Comparison of F0.5 between our proposed method, previous synthetic data generation techniques, and the
zero-shot cross-lingual transfer baseline on L2 corpora.

our generative mPLM. Additionally, for the sec-266

ond stage of our multilingual two-stage fine-tuning267

pipeline, we use the GED version of each GEC268

training dataset. For English and German, we use269

the GED dataset of Volodina et al. (2023). For270

Russian, we convert the M2 files (Dahlmeier and271

Ng, 2012) to a GED dataset following the approach272

used by Volodina et al. (2023); for the remaining273

languages, we obtain GED annotations from GEC274

corpora as detailed in 3.275

Evaluation set The Swedish, Italian and Czech276

datasets originate from the Swell corpus (Volod-277

ina et al., 2019), MERLIN (Boyd et al., 2014) and278

GECCC (Náplava et al., 2022) respectively. We279

employ the processed version of those datasets pro-280

vided in the Multi-GED Shared task 2023 (Volod-281

ina et al., 2023). For Arabic, we use both develop-282

ment and test data of the QALB-2015 shared tasks283

(Rozovskaya et al., 2015) provided by Alhafni et al.284

(2023). Finally, the Chinese GED data is derived285

from two GEC corpora: MuCGEC-Dev (Zhang286

et al., 2022) as development set and NLPCC18-287

Test (Zhao et al., 2018) as test set. We apply the288

post-processing method described in 3 to produce289

the GED versions.290

Monolingual corpora Our monolingual text data291

comes from the CC100 dataset (Conneau et al.,292

2020) in which we sample 200 thousand error-free293

instances for each language.294

Evaluation Metric Following previous work in295

GED, we report the token-based F0.5 (Kaneko and296

Komachi, 2019; Yuan et al., 2021; Volodina et al.,297

2023). For finer-grained analysis we also report the298

precision-recall curves of our main experiments.299

4.2 Baselines300

We evaluate the proposed artificial error gener-301

ation method against strong baselines that do302

not require human-annotated datasets in the tar- 303

get language. We chose methods representa- 304

tive of different family of artificial error genera- 305

tion in GEC: Rules (Grundkiewicz and Junczys- 306

Dowmunt, 2019), Round-trip translation (RT trans- 307

lation) (Lichtarge et al., 2019), Non auto-regressive 308

translation (NAT) (Sun et al., 2022). Addition- 309

ally, we compare our approach with a zero-shot 310

CLT baseline, which involves directly fine-tuning 311

the GED model on GED datasets from all source 312

languages. We refer to this technique as Direct- 313

CLT to distinguish it from our method, which uses 314

the cross-lingual transfer capabilities of generative 315

mPLMs to generate errors in any target language. 316

More information on the implementations of our 317

baselines in Appendix A.1. 318

4.3 Models and Fine-tuning setups 319

Synthetic Data Generation We use the No Lan- 320

guage Left Behind (NLLB-200) model (Team et al., 321

2022) which supports 202 languages as our gen- 322

erative mPLM. Specifically, we use NLLB 1.3B- 323

distilled for all our experiments. Following Luhtaru 324

et al. (2024b), we train the model on non-tokenized 325

text or detokenized if the non tokenized format is 326

not available. Details regarding our hyperparame- 327

ters can be found in Appendix A.2. 328

Grammatical Error Detection In line with (Colla 329

et al., 2023), we use XLM-RoBERTa-large, a mul- 330

tilingual pre-trained encoder with strong cross- 331

lingual abilities (Conneau et al., 2020) as our GED 332

model. We evaluate two versions of our method: 333

(1) A Monolingual version, where the GED model 334

is exclusively trained on synthetic data from the 335

target language, enabling direct comparison with 336

existing synthetic data generation techniques. (2) 337

A Multilingual version using our two-stage fine- 338

tuning procedure to compare against DirectCLT. 339

4



F0.5(%)

Method Swedish Italian Czech Arabic Chinese

DIRECTCLT 71.5 63.8 62.1 57.3 36.2

RULES 65.3 60.0 56.1 51.9 -
RT TRANSLATION 57.0 43.0 45.9 38.3 20.1
NAT 65.9 58.6 61.1 52.5 30.4
OURS MONOLINGUAL 70.4 70.3 63.0 62.3 39.8

Table 2: Comparison of F0.5 between the monolingual version of our method and previous synthetic data generation
techniques on L2 corpora.

Postprocessing The postprocessing steps outlined340

in 3, which transform synthetic corpora into GED341

corpora, necessitate tokenized text. To achieve this,342

we use Stanza (Qi et al., 2020) for Czech and Spacy343

(Honnibal et al., 2020) for Swedish and Italian. Fol-344

lowing previous works on Arabic GEC (Belkebir345

and Habash, 2021; Alhafni et al., 2023), we use346

CAMeL Tools (Obeid et al., 2020). Lastly, for Chi-347

nese, we use the PKUNLP word segmentation tool348

provided in the NLPCC 2018 shared task (Zhao349

et al., 2018).350

5 Proposed Method Evaluation351

5.1 Comparison to State-of-the-Art352

Table 1 presents the performance of our method353

compared to previous state-of-the-art. Our method354

establishes a new standard in GED without human355

annotations across all target languages, outperform-356

ing both synthetic data generation techniques and357

DirectCLT by a significant margin.358

We posit that our superior performance can be359

attributed to the capability of our AEG method to360

produce a diverse set of errors including language-361

specific errors. This hypothesis is further examined362

in Section 6.363

It is worth mentioning that while our results rep-364

resent a significant advancement, they still fall short365

of the state-of-the-art supervised settings. This re-366

sult is expected and aligns with the existing liter-367

ature in GED, which highlights notable discrep-368

ancies when evaluating supervised models with369

out-of-domain data, even if it originates from the370

same language as the training data (Volodina et al.,371

2023; Colla et al., 2023).372

5.2 Evaluation of AEG373

As all previous work using AEG for GED has been374

in monolingual settings, we introduce a monolin-375

gual variant of our approach. Here, the GED model376

is exclusively fine-tuned on synthetic data from the377

target language. 378

Table 2 shows that our synthetic data generation 379

technique achieves the best performance among 380

annotation-free synthetic data generation methods 381

applied to GED. Given that rule-based methods 382

apply a set of transformations without considering 383

the sentence context, the average improvement of 384

9.2 points of F0.5 over these methods highlights 385

the significance of generating context-dependent 386

errors in synthetic data generation. Additionally, 387

given that NAT is not trained to generate errors but 388

to produce translations, outperforming this method 389

by 8.3 points of F0.5 highlights the advantage of 390

learning to generate errors from authentic instances, 391

even when these instances originate from different 392

languages. 393

We hypothesize that the ability to synthesize 394

context-dependent errors combined with the acqui- 395

sition of error-generation insights from authentic 396

instances empower our method to yield errors more 397

akin to human errors, thus leading to better perfor- 398

mance. We further analyze this hypothesis in 6.1. 399

Additionally, our monolingual setup outper- 400

forms DirectCLT in four out of five languages. 401

This is a notable achievement given other synthetic 402

data generation methods’ inability to meet this 403

benchmark. Both approaches leverage the CLT 404

of mPLMs, albeit differently: ours uses it for ar- 405

tificial error generation in target languages with a 406

generative mPLM, while DirectCLT leverages it 407

directly to perform error detection across target lan- 408

guages. This comparison suggests that our method 409

creates tailored error patterns in target languages 410

that a GED model trained only on source language 411

annotations cannot detect, indicating that our ap- 412

proach to CLT in GED could generalize to other 413

NLU tasks, which is a promising avenue for future 414

research. 415
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Figure 2: Precision-Recall curves comparing our method in different data configurations to our baselines.

F0.5(%)

Configuration Swedish Italian Czech Arabic Chinese

DIRECTCLT 71.5 63.8 62.1 57.3 36.2
OURS 74.7 70.4 66.6 62.8 42.9
OURS FROM SOURCE 72.5 64.1 62.9 58.4 36.5
OURS FROM TARGET 74.2 71.3 67.3 71.6 47.9

Table 3: Comparison of F0.5 of our method where first-stage fine-tuning is performed on various data configurations.

5.3 Language Ablation416

We study the effect of changing the language con-417

figuration of the synthetic data. We compare fine-418

tuning the GED model using synthetic data com-419

prising different language sets: exclusively source420

languages, exclusively target languages, and a com-421

bination of both source and target languages.422

Results in Table 3 show that any first stage fine-423

tuning language configuration improves the GED424

performance of our method over the DirectCLT425

baseline, highlighting the robustness of our two-426

stage fine-tuning pipeline. Notably, including syn-427

thetic data from the target language results in a428

more significant improvement which emphasize429

the importance of using a language-agnostic artifi-430

cial error generation method capable of generating431

errors in any target language.432

Furthermore, results from Table 3 suggest that433

first-stage fine-tuning exclusively on synthetic data434

from target languages outperforms fine-tuning on a435

combination of source and target languages. How-436

ever, comparing F0.5 scores does not reveal the big437

picture and can lead to false conclusion. The F0.5438

score is computed at an operation point that is usu-439

ally arbitrarily set to 0.5 in the literature (Kasewa440

et al., 2018; Colla et al., 2023; Le-Hong et al.,441

2023). For a more comprehensive comparison442

of performance, Figure 2 presents the Precision-443

Recall curves for each method. It shows that fine-444

tuning on either synthetic data from source and445

target languages or target languages alone yields 446

similar results. We can conclude that the determin- 447

ing factor is the inclusion of synthetic data in the 448

target language. We can also see that our method 449

outperforms other baseline in the curves too. We 450

encourage practitioners to use such figures to com- 451

pare GED models for more meaningful conclusions 452

than threshold dependant metrics such as F scores. 453

We experimented with reversing our fine-tuning 454

pipeline by initially training on human annotations 455

from our source languages followed by fine-tuning 456

on synthetic data. However, this approach em- 457

pirically yielded inferior performance. The fact 458

that ending the fine-tuning process with human- 459

annotated data, even in source languages, is more 460

effective than using target language synthetic data 461

indicates that artificial errors still do not reach the 462

quality of authentic corpora. Otherwise it would 463

make sense to end the training with errors specific 464

to the target language. We hypothesize that im- 465

proved synthetic error generation techniques would 466

lead to opposite conclusions regarding the fine- 467

tuning order. 468

5.4 Scalability 469

Here we investigate how our synthetic data gen- 470

eration method scales as new languages corpora 471

become available. We fine-tune the AEG model by 472

progressively incorporating new languages in dif- 473

ferent orders to an English-only fine-tuned baseline. 474

We follow the protocol of Shaham et al. (2024). We 475
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Figure 3: Relative improvement in terms of F0.5 score
compared to English-only fine-tuning as additional
source languages are incorporated.

Czech L1 Arabic L1

RT translation 20.2 38.7
Rules 26.5 32.9
NAT 38.0 48.9
DirectCLT 41.7 45.5
Ours 41.8 63.2

Table 4: F0.5 (%) on out-of-domain L1 corpora.

report average scores per target language of a GED476

model fine-tuned on monolingual synthetic data.477

Figure 3 shows that on average, performance in-478

creases with the number of source languages. This479

suggests that our synthetic data generation method480

applied to GED might continue to improve as new481

GED corpora become available.482

5.5 Generalization to out-of-domain errors483

Errors vary between different populations. For in-484

stance native speakers (L1) do not commit the same485

type of errors than second language learners (L2).486

We investigate the robustness of our method to dif-487

ferent error distributions. Our method is trained488

on L2 learner corpora and we evaluate it on L1489

data. We found available GED annotated data of490

L1 speakers for Arabic and Czech: QALB 2014491

(Mohit et al., 2014) and the Native Formal section492

of GECCC (Náplava et al., 2022).493

Table 4 presents the results. Our method sur-494

passes all other baselines, demonstrating its con-495

tinued suitability for out-of-domain corpora in496

the target language. Unlike the other baselines,497

our method achieves approximately similar perfor-498

mance on both L1 and L2 Arabic corpora. However,499

for Czech, all methods show a significant decrease500

in performance. We hypothesize that this is due to501

the unique stringent rules regarding the use of com-502

mas in Czech. This results in the predominance503

of "Punctuation" errors in the L1 Czech corpora,504

which are less common in many other languages,505

and therefore amplify the difference between do-506

mains.507

Precision Recall F1

Rules 96.5 95.2 96.6
NAT 94.3 97.2 95.2
Ours 79.1 88.3 83.4

Table 5: Performance of a binary classifier trained to
distinguish between human errors and errors produced
by a synthetic data generation technique. We report the
Precision, Recall and F1 score.

6 Analysis of synthetic errors 508

We compare the errors produced by the AEG meth- 509

ods. We first study Czech using a Czech extension 510

(Náplava et al., 2022) of the ERRANT (Bryant 511

et al., 2017) error annotation tool and an artificial 512

vs human error discriminator. We then extend our 513

analysis to many languages using GPT-4 (OpenAI 514

et al., 2024) to classify error types. 515

6.1 Czech Case Study 516

Similarity Analysis with Human Errors To as- 517

sess if the synthetic instances are realistic and 518

human-like, we train a binary classifier (one per 519

synthetic data generation technique) to distinguish 520

between errors generated by a particular synthetic 521

data generation method and human errors. We 522

constructed a development set comprising approx- 523

imately equal numbers of authentic and synthetic 524

data and assessed performance using the F1 score. 525

More information on how we train the classifier 526

can be found in A.3. Results are presented in Table 527

5. 528

Our classifier achieves an F1 score of 83.4% 529

for the proposed method, indicating a moderate 530

ability to differentiate between synthetic and hu- 531

man errors. This supports our hypothesis that our 532

synthetic data generation method does not fully 533

replicate the quality of authentic sentences. In con- 534

trast, the classifier achieves an F1 score exceeding 535

95% for other synthetic data generation methods, 536

suggesting a higher degree of differentiation. Over- 537

all, this suggests that our method produces errors 538

that are more human-like, translating into better 539

downstream performance. 540

Error Distribution We use the Czech extension 541

(Náplava et al., 2022) of ERRANT to categorize 542

the errors made by different systems. Figure 4 543

presents the distribution of the top 10 error types 544

for the various synthetic data generation methods 545

studied. Our method produces a more diverse set 546

of errors compared to NAT (Sun et al., 2022) and 547
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Figure 4: Top 10 error types distribution of different
annotation-free synthetic data generation methods.

Figure 5: Normalized Entropy comparison of authentic
and synthetic errors aggregated over different datasets.

rule-based approaches (Grundkiewicz and Junczys-548

Dowmunt, 2019). Notably, while other methods549

predominantly yield ’Other’ and ’Spell’ error types,550

our method features a more balanced distribution551

of error types, indicating that our method is more552

effective in mimicking the complexity and range of553

human language errors.554

Additionally, our method generates a higher per-555

centage of ’DIACR’ errors compared to other tech-556

niques. Since ’DIACR’ errors are the most com-557

mon among L2 learners of Czech, this could ex-558

plain the performance improvements of our method.559

Given that ’DIACR’ errors are specific to Czech560

(Náplava et al., 2022) in the set of languages we561

study, this indicates that our method can produce562

error types not encountered during the fine-tuning563

on source languages of our generative mPLM.564

6.2 Multilingual Extension565

We want to extend our previous findings by assess-566

ing if our synthetic data generation method effec-567

tively captures a variety of error types across all568

languages. For this, we need a language-agnostic569

classifier. We use GPT-4 to classify errors from570

various sources across all the languages under in-571

vestigation. Prior studies have shown that GPT-4’s572

judgments align closely with human evaluations573

(Wang et al., 2023; Fu et al., 2023) and exhibit574

promising error correction capabilities (Fang et al.,575

2023; Davis et al., 2024; Wu et al., 2023). Al-576

though a thorough assessment of GPT-4 for error577

classification is beyond the scope of the study, we578

performed a limited qualitative analysis of GPT-4’s579

accuracy in Italian, Swedish, Spanish, and English 580

with native speakers. We found that it is suitable 581

for our application. For each type of error classified 582

by GPT-4 we compute its frequency distribution 583

across data and compute the entropy of this distribu- 584

tion. Further details on our evaluation methodology 585

are provided in Appendix A.4. 586

Figure 5 validates our previous findings that our 587

method generates a more diverse set of errors com- 588

pared to NAT. However, the range of error types 589

generated by our method is narrower than that pro- 590

duced by humans. Moreover, the variability in the 591

diversity of error types is significantly higher with 592

our method than with human errors across different 593

languages. This suggests that our method does not 594

consistently perform across languages. 595

7 Conclusion 596

We introduced a novel zero-shot approach for GED 597

with low-resource languages. Our method com- 598

bines back-translation with the CLT capabilities 599

of mPLMs to perform AEG across various target 600

languages. Then, we fine-tune the GED model 601

in two steps: first on multilingual synthetic data 602

from source and target languages, then on human- 603

annotated source language corpora. This method 604

achieves state-of-the-art performance in annotation- 605

free GED. Our error analysis shows that we pro- 606

duce errors that are more diverse and human-like 607

than the baselines. 608

In future work, we intend to explore the potential 609

of our GED models to enhance unsupervised GEC 610

methods. 611

8 Limitations 612

Our approach relies on the CLT capabilities ob- 613

tained during the multilingual unsupervised pre- 614

training of mPLMs. Consequently, the applica- 615

bility of our method is restricted to the languages 616

supported by the mPLM. Furthermore, its perfor- 617

mance on each language may vary depending on 618

the amount of pre-training data available for that 619

language. This limitation is inherent to all studies 620

leveraging mPLMs. 621

Additionally, our study primarily focuses on the 622

errors made by second language learners. While 623

we have analyzed the performance of our method 624

on native language corpora, it would be valuable to 625

evaluate its generalizability to other domains within 626

a language. For instance, this includes errors made 627

in casual text messaging or by machine translation 628
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systems.629

Compared to the direct application of CLT in630

GED, our method involves additional steps such631

as training a generative mPLM and generating a632

substantial amount of synthetic data. These re-633

quirements may pose challenges for researchers634

with limited computational resources and could635

limit the practicality of developing this approach636

in resource-constrained environments. To address637

this constraint, we have made available a synthetic638

GED corpus encompassing more than 5 million639

samples across 11 languages.640

9 Ethics Statement641

Our research is driven by a commitment to sup-642

porting and preserving linguistic diversity. Low-643

resource languages often face marginalization in644

the realm of technological advancements. By de-645

veloping GED models for these languages, we aim646

to enhance their digital presence and usability, thus647

promoting linguistic equity.648

However, it is important to acknowledge poten-649

tial ethical concerns. The use of CLT to generate650

synthetic data, while beneficial for training GED651

models, carries the risk of misuse. Such systems652

could potentially be exploited to create false infor-653

mation or propaganda in low-resource languages.654

Additionally, while GED systems are crucial for655

regions with a shortage of language teachers, there656

is a risk that their widespread use could lead to657

an over-reliance on these tools. This dependency658

might result in a decline in the linguistic and gram-659

matical skills of native speakers, as they become660

more reliant on technology for language correction661

and validation.662

It is essential for future users to use these tech-663

nologies judiciously. Balancing the use of GED664

tools with a genuine effort to improve one’s linguis-665

tic abilities is crucial. Building on the research by666

Fei et al. (2023) could provide a valuable advance-667

ment by incorporating explainability into our GED668

systems.669
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A Appendix1186

A.1 Baselines1187

Rules We re-implemented Grundkiewicz and1188

Junczys-Dowmunt (2019) using Aspell dictionar-1189

ies1 for the replacement operation.1190

NAT We replicated the NAT model using InfoXLM1191

(Chi et al., 2021) and English as source language,1192

following (Sun et al., 2022) methodology. For1193

non-autoregressive translation generation, we used1194

Europarl (Koehn, 2005) for Italian, Swedish and1195

Czech and the UN Parallel Corpus v1.0 (Ziemski1196

et al., 2016) for Arabic and Chinese. We conducted1197

hyper-parameter tuning for the NAT-based data con-1198

struction by exploring the parameter set specified1199

in (Sun et al., 2022) and selected the optimal pa-1200

rameters for each language based on performance1201

on the development set.1202

RT translation We use OPUS-MT (Tiedemann1203

and Thottingal, 2020) as our translation model and1204

English as the bridge language.1205

A.2 Implementation details1206

Artificial error generation We use two distinct1207

AEG models to generate errors in target and source1208

languages, both based on NLL 1.3B-distilled but1209

trained with different hyper-parameters.1210

For synthetic data generation in target lan-1211

guages, we conduct preliminary grid searches on1212

the Swedish development set to determine the opti-1213

mal hyperparameters. We select the learning rate1214

from {1e-4, 5e-4, 1e-5, 5e-5} and the number of1215

epochs from {3, 5, 10, 15, 20}. Ultimately, we set1216

the learning rate to 1e-5 and fine-tune for 3 epochs1217

with a batch size of 24 and a linear scheduler.1218

For synthetic data generation in source lan-1219

guages, we use a different set of hyper-parameters1220

based on grid searches on the English development1221

set. The learning rate is set to 1e-4, and we fine-1222

tune for 10 epochs with a batch size of 24 and a1223

linear scheduler.1224

Grammatical error detection Based on initial ex-1225

periments with the Swedish development set, we1226

use a learning rate of 1e-5, a batch size of 24, and1227

train for 5 epochs with a linear scheduler. In our1228

second-stage experiments, we maintain the same1229

setup but fine-tune for only 1 epoch.1230

Monolingual corpora: As mentioned in Section1231

4.1, our monolingual text data is sourced from the1232

CC100 dataset (Conneau et al., 2020), from which1233

1http://aspell.net/

we sample 200,000 error-free instances for each 1234

language. To ensure the text is error-free, we use 1235

the DirectCLT baseline for error detection, includ- 1236

ing only sentences verified to be error-free. 1237

For all our trainings, we use 3*A6000 GPUs 1238

with 48 GB of VRAM. 1239

A.3 Similarity Analysis details 1240

To distinguish between authentic and synthetic in- 1241

stances, we train a binary classifier. The classifier 1242

processes a pair of sentences: a grammatical sen- 1243

tence and its corresponding ungrammatical version 1244

separated by a separator token. Its task is to identify 1245

whether the ungrammatical sentence is synthetic 1246

or authentic. We train separate binary classifiers 1247

for each synthetic data generation method, using 1248

mdeberta-v3-base (He et al., 2023) as our back- 1249

bone. 1250

A.4 GPT-4 analysis details 1251

To evaluate the linguistic diversity of errors across 1252

different languages, we employed GPT-4 as an er- 1253

ror classifier. Specifically, we used GPT-4 to de- 1254

scribe the nature of the errors in sentences. Without 1255

constraining GPT-4 to a predetermined set of error 1256

types, it generated a diverse range of error descrip- 1257

tions for similar errors. 1258

We then categorized these errors into distinct 1259

clusters using a clustering method based on the 1260

sentence embeddings generated using sentence- 1261

transformers (Reimers and Gurevych, 2019). In 1262

particular, we applied KMeans clustering with four 1263

different values of K (16, 32, 64, 128). This ap- 1264

proach produced multiple sets of clusters, each rep- 1265

resenting distinct error patterns within the dataset. 1266

For each value of K, we computed the frequency 1267

distribution of errors across the clusters and sub- 1268

sequently calculated the entropy of these distribu- 1269

tions. To enable comparison across different values 1270

of K, we normalized the entropy values, ensuring 1271

comparability and eliminating bias from the num- 1272

ber of clusters chosen. 1273

Finally, to derive a comprehensive measure of 1274

normalized entropy for each language under study, 1275

we averaged the normalized entropy values ob- 1276

tained across all K settings. The resulting normal- 1277

ized entropy metric provides a robust indicator of 1278

the diversity of error patterns observed across dif- 1279

ferent languages, as illustrated in Figure 5. 1280
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1 2 3 4 5 6

en en,de en,de,is en,de,is,et en,de,is,et,ru all
en en,es en,es,de en,es,de,et en,es,de,et,is all
en en,is en,is,es en,is,es,ru en,is,es,ru,de all

Table 6: Subsets of source languages used to fine-tune
our AEG model for our scalability experiments in 5.4

.
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