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1. Introduction

Employing non-linear function with Gaussian Process (GP) prior as the emission function of HMM
has some advantages in characterizing the sequences of time-series observations; it can model the
pair of input-output observations such as observed time and the corresponding response (Frigola,
2015; Nakamura et al., 2017; Nagano et al., 2018). Moreover, employing SM kernel (Wilson and
Adams, 2013) for the covariance of GP prior can characterize the dataset based on diversely char-
acterized stationary kernel (Ulrich et al., 2014, 2015). However, due to the scalability issue for the
training, this model is limited to modeling a small size of dataset.

In this work, we introduce a hybrid Bayesian HMM with GP emission using SM kernel, which
we call HMM-GPSM, for modeling sequences of single-channel time-series observations. Then, we
propose a scalable inference method to train the HMM-GPSM with large-scale sequences of time-
series data D = {xt, yt}Tt=1 with xt and yt ∈ RNt having (1) long sequences of state transitions (T
is large) and (2) a large number of time-series observation from each state (Nt is large).

• To address issue (1), we employ stochastic variational inference (SVI) based on (Hoffman
et al., 2013; Foti et al., 2014) to efficiently update the parameters of HMM-GPSM with the
long sequences dataset. To be specific, we propose the approximate evidence lower bound for
the full T sequences of time-series observations which can be computed using the randomly
sampledL sub-sequences of time-series observations. This approximation can linearly reduce
the computational complexity for computing the evidence lower bound from O(T ) to O(L).

• To address issue (2), we propose the approximate GP emission using spectral points sampled
from the spectral density of SM kernel and the efficient inference for the kernel hyperpa-
rameters of approximate GP emission and corresponding HMM-GPSM. To be specific, we
approximate the SM kernel by employing the spectral points sampled from Gaussian mixture
spectral density based on random Fourier feature (RFF) (Rahimi and Recht, 2008). We then
introduce the variational distribution on the spectral points while treating these points are ran-
dom variables and derive the regularized lower bound of GP emission likelihood. Using this
lower bound, we derive the evidence lower bound of the HMM-GPSM that can be scalably
computed for a large number of time-series observations in each sequence. This approxi-
mation reduces the computational complexity for computing GP emission likelihood from
O(N3

t ) to O(NtM
2) with M sampled spectral points under M � Nt.

The proposed methods can be jointly used to efficiently update the parameters of HMM-GPSM with
the dataset having both (1) and (2) issues. We validate the proposed method on the synthetic using
the clustering accuracy and training time as the performance metrics.
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2. Methodology

2.1. Hybrid Bayesian HMM with GP Emission

Hybrid Bayesian HMM with GP emission has the structure of Input-Output HMM (Bengio and
Frasconi, 1995) with the emission function being modeled by GP. To introduce the model, we as-
sume that T sequences of inputs and outputs pairs X = {xt}Tt=1 and Y = {yt}Tt=1 are given where
yt ∈ RNt is the Nt dimensional output corresponding to the input xt ∈ RNt obtained at time t. We
denote zt ∈ {1, ..,K} representing the hidden state for xt and yt.

To explain the relation between yt and xt, the target function ft with the conditional GP prior
given hidden state zt and covariance kzt is defined as

p(ft|xt, zt) = N (ft;mzt(xt), kzt(xt, xt; θzt)) , (1)

where θzt denotes the hyperparameters of the SM kernel kzt having Qzt mixture components. Un-
der the Gaussian noise assumption, we define the emission function as the conditional marginal
likelihood p(yt|xt, zt) given the hidden state zt and the input xt as

p(yt|xt, zt) = N
(
yt|mzt(xt), kzt(xt, xt; θzt) + σ2εzt I

)
. (2)

Then, the joint likelihood of Hybrid HMM with GP emission is defined as

p(Z, Y,A, π|X) = p(π)p(A)p(z0|π)
T∏
t=1

p(zt|zt−1, A)p(yt|xt, zt), (3)

where p(π) = Dir(π|απ) is a prior distribution for the initial parameter π ∈ RK and p(A) =∏K
i=1 Dir(Ai|αAi ) is a prior distribution for transition matrix A ∈ RK×K . Ai denotes the i th row

of A.

2.2. Variational Inference

Under Mean-Field assumption, let us assume the variational distribution q(π,A,Z) = q(π)q(A)q(Z),

q(π) = Dir(π|wπ) q(A) =

K∏
k=1

Dir(Ak|wAk ), (4)

where wπ and {wAj }Kj=1 are variational parameters for q(π) and q(A). Then, using Jensen inequal-
ity, we derive the variational objective L called by evidence lower bound (ELBO) as

log p(Y |X) ≥ Eq(Z,A,π) [log p(Y,Z|X,A, π)]−KL(q(A, π)||p(A, π)) = L, (5)

where Eq(Z,A,π) [log p(Y,Z|X,A, π)] is expressed as

Eq(π) [log p(z0|π)] + Eq(Z,A)

[
T∑
t=1

log p(zt|zt−1, A)

]
+ Eq(Z)

[
T∑
t=1

log p(yt|xt, zt)

]
. (6)

For the training, L is maximized by alternatively updating the local hidden variables q(Z),
variational parameters wπ and {wAj }Kj=1 for q(π,A), and kernel hyperparameters {θk}Kk=1 based on
variational EM algorithm. The detailed update procedures are described in the appendix.
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2.3. Scalable Variational Inference

2.3.1. SVI APPROACH FOR LONG SEQUENCES (T IS LARGE)

Given the T sequences of time-series, we randomly sample L consecutive sequences of inputs
and outputs Xs

L = {xk−1+l}Ll=1 and Y s
L = {yk−1+l}Ll=1, where k is sampled uniformly from

k ∈ {1, .., T − L + 1}. We linearly approximate the ELBO of full sequences by considering the
expected log joint likelihood of {ZsL, Y s

L} given Xs
L as

Es [Eq [log p(Y s
L , Z

s
L|Xs

L)]]

≈ 1

T − L+ 1
Eq

[
T−L+1∑
t=1

log p(zt−1) + L
T∑
t=1

log p(zt|zt−1, A) + L
T∑
t=1

log p(yt|zt, xt)

]
. (7)

Based on Eq. (7), the batch factors CAs and Cθs for calibrating the ELBO of {Xs
L, Y

s
L} with full

ELBO of {X,Y } are obtained as

CAs =
T − L+ 1

L
, Cθs =

T − L+ 1

L
. (8)

The detailed derivation of batch factors are explained in appendix. With the batch factor CAs in Eq.
(8) and the estimated q∗(ZsL) for Y s

L and Xs
L, the variational parameters wπ for q(π) and wA for

q(A) are updated by stochastic natural gradient descent as

wπj = (1− pn)wπj + pn
(
απj + q∗s(zk = j)

)
(9)

wAj,i = (1− pn)wAj,i + pn

(
αAj,i + CAs

L∑
l=1

q∗s(zk−1+l = j, zk+l = i)

)
, (10)

where pn is n-th iteration learning rate. SM kernel hyperparameters θ = {θk}Kk=1 are updated by
maximizing the following expected log marginal likelihood coordinated with the batch factor Cθs as

Cθs Eq(Zs
L)

[
L∑
l=0

log p(yk−1+l|zk−1+l, xk−1+l)

]
. (11)

2.3.2. APPROXIMATE GP EMISSION FOR A LARGE NUMBER OF TIME-SERIES (Nt IS LARGE)

For the SM kernel kSM (x − y) =
∑Q

q=1wqexp
(
−2π2((x− y)Tσq)

2
)

cos
(
2π(x− y)Tµq

)
with

the parameters {wq, µq, σ2q}
Q
q=1, we approximate the SM kernel based on RFF.

Let S = [S1,1, .., S1,m, .., SQ,1, .., SQ,m] be the random spectral points and q(S) be the varia-
tional distribution of S defined as

q(S) =

Q∏
q=1

m∏
i=1

N(Sq,i;µq, σ
2
q ). (12)

Using the set of the spectral points s = ∪Qq=1{sq,i}mi=1 ∼ q(S) sampled by reparametrization trick
as sq,i = µq + σq ◦ εi with εi ∼ N(ε; 0, I), we define the feature map φSM (x; s) as

φSM (x; s) =
[√

w1φ{s1,i}mi=1
(x), ..,

√
wQφ{sQ,i}mi=1

(x)
]
∈ R1×2Qm (13)

φ{sq,i}mi=1
(x) =

1

m

[
cos (x{sq,i}mi=1

), sin (x{sq,i}mi=1
)
]
∈ R1×2m,
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to approximate the SM kernel kSM (x−y) by φSM (x; s)φSM (y; s)T and gram matrix kSM (xt, xt) ∈
RNt×Nt by ΦSM (xt; s)ΦSM (xt; s)T with the feature matrix ΦSM (xt; s) ∈ RNt×2Qm.

Then, using Jensen’s inequality, we derive the regularized lower bound of log p(yt|zt, xt) as

log p(yt|xt, zt) '
1

K

K∑
k=1

log p(yt|xt, zt, s(k))−KL(q(S)||p(S)), (14)

where p(yt|xt, zt, s(k)) is computed as N(yt|mzt(xt),Φ
SM
zt (xt; s(k))ΦSM

zt (xt; s(k))T + σ2εzt I) with
the set of spectral points s(k) sampled from q(S) at k times. Eq (14) enables efficient computation
because the inversion of the approximate gram matrix is efficiently computable (Lázaro-Gredilla
et al., 2010). The prior distribution of p(S) is assumed as

∏Q
q=1

∏m
i=1N(Sq,i; µ̃q,i, σ̃

2
q,i).

Applying the result of Eq. (14) to the conditional log likelihood log p(yt|xt, zt) in Eq. (6), we
derive the lower bound Lasm, which can be efficiently computable, as

Lasm = Eq(Z,A,π) [log p(Y,Z|X,A, π)]− T
K∑
k=1

Q∑
q=1

KL(N(uq, σ
2
q ) || N(µ̃q,1, σ̃

2
q,1)) (15)

−KL(q(A, π)||p(A, π)),

under the condition that the parameters of prior p(S) are assumed as {µ̃q.i, σ̃2q,i}Mi=2 = {µq, σ2q}.
Here, Eq(Z,A,π) [log p(Y,Z|X,A, π)] is the expected joint likelihood over q(Z,A, π) using the ap-
proximate GP emission p(yt|xt, zt) defined as

K∏
k=1

N
(
yt|mzt(xt),Φ

SM
zt (xt; s(k))ΦSM

zt (xt; s(k))T + σ2εzt I
) 1

K
. (16)

Optimizing the Lasm in Eq. (15) can be efficiently conducted in the same way as L in Eq. (5) is
optimized, using the less number of operation for updating the parameters. It can be used together
with section 2.3.1 SVI approach for long sequences dataset.

3. Experiments

Evaluation Metric
• Accuracy : The ratio of correct hidden state estimation for sequences of time-series observations.
Since the estimated hidden states {ẑt}Tt=1 are possibly equivalent to the true hidden states up to
the permutation of hidden states, we reorder them by Munkres algorithm (Munkres, 1957); For
example, if two sequences of the estimated hidden states are given as z11:3 = (1, 2, 3) and z21:3 =
(2, 3, 1), and there exists the correspondence π between hidden states z11:3 and z21:3 to satisfy π(1) =
2, π(2) = 3, and π(3) = 1, those estimated hidden states z11:3 and z21:3 are equivalent. Then, we
calculate the ratio of how many reordered states are matched with the total T true hidden states.
• 1 iteration time : single iteration time (seconds) required to update local and global parameters.
Simulation data
We generate the sequences of time-series observations with eight different hidden states. We assume
that state transition follows Markov process. Specifically, we construct two groups of hidden states
whose dynamics are different: (1 → 2 → 3 → 4) and (5 → 6 → 7 → 8). In the first group, each
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(b) Test set accuracy (Q=4)

Figure 1: Comparison of training HMM-GPSM (Q ∈ {3, 4}) by VI (T = 100) and SVI (L ∈
{10, 20, 50}) for WHz = 100

state except state 4 follows the staying probability 0.7 and the moving probability 0.3. Similarly, in
the second group, each state except state 8 has staying probability 0.3 and the moving probability
0.7. The special states {4, 8} connect the two group with probability 1, i.e., (4 → 5) and (8 → 1).
Given the hidden state s ∈ {1, .., 8}, the time-series observation f s(t) is generated by

fs(t) =

6∑
q=1

αsq sin
(
2π ωsq t

)
+ ε (17)

where the weights αs = [αs1, .., α
s
6] are sampled from Dir(αs|α0), and the frequency components

ωsq are sampled from the interval [0,WHz].

3.1. Long Sequences (T is large)

We investigate how the SVI approach reduces the training time required to train HMM-GPSM with
long sequences of time-series dataset (T is large). We compare the following inference methods:

• VI (T) : Variational inference for full T sequences in appendix
• SVI (L) : Stochastic Variational inference with L sampled sub-sequences in section 2.3.1

We generate the sequences of time-series observations using Eq. (17) having 150 sequences of
time-series. We fix the number of data points in each time-series observation as Nt = 200. We
limit spectral range as WHz = 100 to make sure that time-series with Nt = 200 contains enough
information to infer the spectral characteristics of the time-series according to the Nyquist–Shannon
sampling theorem (Oppenheim, 1999).

We train the first 150 sequences of times-series (T = 100, Nt = 200) and test the left sequences
(T = 50, Nt = 200); VI approach uses the whole sequences (T = 100) of the training data, while
the SVI approach uses the sub-sequences with the length L ∈ {10, 20, 50}. In addition, to see how
the model complexity affects the training time, we consider the number of mixture for the SM kernel
as Q ∈ {3, 4}.

Figure 1(a) compares the training performance of the SVI training approach for varying batch
length L ∈ {10, 20, 50} with the fixed Q = 3. Figure 1(b) shows the same results for Q = 4.
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Figure 2: Comparison of training HMM-GPSM (Q ∈ {5, 6}) by SVI and SVI-AGPE (L = 10 and
R ∈ {.10, .20, .30}) for WHz = 500

In this plot, each test accuracy for VI and SVI is evaluated every iteration during total 30 training
iterations. Figures show that SVI approach with the smaller batch length L ∈ {10, 20, 50} takes
less training time to achieve a similar level of test accuracy compared to the VI approach.
3.2. Large number of observations (Nt is large)

In this experiment, we investigate how the derived ELBO Lasm in Eq. (15) reduces the training
time of the HMM-GPSM and affects the accuracy of hidden state estimation when Nt is large. To
this end, we compare the following two inference methods:

• SVI (L) : Stochastic Variational inference with L sampled sub-sequences in section 2.3.1.
• SVI-AGPE (L, R) : Stochastic Variational inference with L sampled sub-sequences in section

2.3.1. and approximate GP emission with the sampling rate R in section 2.3.2.

During the experiment, we change the number of mixtures Q for SM kernel and the ratio of the
sampled spectral pointsR used for the SM kernel approximation to investigate how these parameters
affect the accuracy and training time; the number of sampled spectral points M is set as M ∝ NtR.

We generate 150 sequences of time-series observation by Eq. (17) with Nt = 1000 and WHz =
500. The first 100 sequences (T = 100, Nt = 1000) and the left 50 sequences (T = 50, Nt =
1000) are used for training and test, respectively. For the number of repetition K for SM kernel
approximation in Eq. (16), we use K = 1 for training and K = 3 for test.

Figure 2(a) compares the training performance of the SVI-AGPE approach for varying sampling
rates R ∈ {.10, .20, .30} with the fixed L = 10 and Q = 5. Figure 2(b) shows the same results for
Q = 6. Each test accuracy for SVI and SVI-AGPE approaches is evaluated every iteration during
50 training iterations. Figures show that SVI-AGPE with the rate R ∈ {.10, .20, .30} takes less
training time to achieve a similar level of test accuracy for SVI.

4. Conclusion

In this work, we propose the scalable learning method for HMM-GPSM and validate that the pro-
posed learning algorithm scalably trains HMM-GPSM with a large-scale dataset while maintaining
the clustering performance.
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SUPPLEMENTARY MATERIAL

Appendix A. Derivation

A.1. ELBO Derivation for Eq. (5)

log p(Y |X)

=

∫∫∫
p(Y |X,Z,A, π)p(Z,A, π|X) dZdAdπ

≥
∫∫∫

log
(
p(Y |X,Z,A, π)

p(Z,A, π)

q(Z,A, π)

)
q(Z,A, π) dZdAdπ

=

∫∫∫
log p(Y |X,Z,A, π)q(Z,A, π) dZdAdπ −KL(q(Z,A, π)||p(Z,A, π))

=

∫∫∫
log p(Y,Z|X,A, π)q(Z,A, π) dZdAdπ +H(q(Z), p(Z))−KL(q(Z,A, π)||p(Z,A, π))

= Eq(Z,A,π) [log p(Y,Z|X,A, π)] +H(q(Z))−KL(q(A, π)||p(A, π))

≥ Eq(Z,A,π) [log p(Y,Z|X,A, π)]−KL(q(A, π)||p(A, π)) := L

where cross entropy H(q(Z), p(Z)) = H(q(Z)) +KL(q(Z)||p(Z)).

A.2. Batch factor Derivation for SVI Approach for Eq. (8)

Given the sampled i ∈ {1, .., T − L + 1} uniformly, let Y s
L = {yi, .., yi+L−1} be sampled obser-

vation with the length L and Xs
L be corresponding inputs and ZsL corresponding hidden states. The

expected log joint likelihood of {ZsL, Y s
L} given Xs

L is approximated as

Es
[
Eq[log p(Y s

L , Z
s
L|Xs

L)]
]

=

T−L∑
i=0

1

T − L+ 1
Eq[log p(Y si

L , Z
si
L |X

si
L )]

=
1

T − L+ 1

T−L∑
i=0

Eq

log p(zi) +

L∑
t=1

log p(zi+t|zi+t−1, A)︸ ︷︷ ︸
transition term

+

L∑
t=1

log p(yi+t|zi+t, xi+t)︸ ︷︷ ︸
observation term

 · · · (∗)

≈ 1

T − L+ 1
Eq

[
T−L+1∑
t=1

log p(zt−1) + L

T∑
t=1

log p(zt|zt−1, A) + L

T∑
t=1

log p(yt|zt, xt)

]
This implies that transition and observation term of Eq[log p(Y s

L , Z
s
L|Xs

L)] for the sampled i ∈
{1, .., T − L+ 1} can be approximated as

Eq

[
L∑
t=1

log p(zi+t|zi+t−1, A)

]
≈ L

T − L+ 1
Eq

[
T∑
t=1

log p(zt|zt−1, A)

]

Eq

[
L∑
t=1

log p(yi+t|zi+t, xi+t)

]
≈ L

T − L+ 1
Eq

[
T∑
t=1

log p(yt|zt, xt)

]

9



SCALABLE HYBRID HIDDEN MARKOV MODEL WITH GAUSSIAN PROCESS EMISSION

Thus, the batch factors, CAs and Cθs , to calibrate the approximated ELBO are obtained as

CAs =
T − L+ 1

L
, Cθs =

T − L+ 1

L

The transition term in expectation in (∗) can be approximated as

T−L∑
i=0

Eq

[
L∑
t=1

log p(zi+t|zi+t−1, A)

]

= Eq

 L∑
j=1

log p(zj |zj−1, A) +
L+1∑
j=2

log p(zj |zj−1, A) + · · ·+
T∑

j=T−L+1

log p(zj |zj−1, A)



= Eq

L
T−L+1∑
t=L

log p(zt|zt−1, A) +

L−1∑
t=1

t
(

log p(zt|zt−1, A) + log p(zT−t+1|zT−t, A)
)

︸ ︷︷ ︸
approximate term


≈ Eq

[
L

T−L+1∑
t=L

log p(zt|zt−1, A) + L

L−1∑
t=1

(
log p(zt|zt−1, A) + log p(zT−t+1|zT−t, A)

)]

= Eq

[
L

T∑
t=1

log p(zt|zt−1, A)

]

Here, the observation term in expectation in (∗) can be approximated as

T−L∑
i=0

Eq

[
L∑
t=1

log p(yi+t|zi+t, xi+t)

]

= Eq

 L∑
j=1

log p(yj |zj , xj) + · · ·+
T∑

j=T−L+1

log p(yj |zj , xj)


= Eq

[
L

T−L+1∑
t=L

log p(yt|zt, xt) +

L−1∑
t=1

t
(

log p(yt|zt, xt) + log p(yT−t+1|zT−t+1, xT−t+1)
)

︸ ︷︷ ︸
approximate term

]

≈ Eq

[
L
T−L+1∑
t=L

log p(yt|zt, xt) + L
L−1∑
t=1

(
log p(yt|zt, xt) + log p(yT−t+1|zT−t+1, xT−t+1)

)]

= Eq

[
L

T∑
t=1

log p(yt|zt, xt)

]

10



SCALABLE HYBRID HIDDEN MARKOV MODEL WITH GAUSSIAN PROCESS EMISSION

A.3. SM kernel Approximation for Eq. (13)

Given the parameters of SM kernel {wq, µq, σq}Qq=1, we sample spectral points sq = {sq,i}mi=1 from
Gaussian distribution N(S;µq, σq) by reparametrization trick as

sq,i = µq + σq ◦ εi
where εi ∼ N(ε; 0, I) for i = 1, ..,m. If we define the feature map φsq(x) as

φsq(x) =
1√
m

[cos 2πsq,1, sin 2πsq,1, .., cos 2πsq,m, sin 2πsq,m] ∈ R1×2m

, then φsq(x)φsq(y)T can approximate kq(x−y) which is the inducted kernel from Gaussian Spectral
density N(S;µq, σq) by Bochner’s theorem.

Esq∼N(S;µq ,σq)

[
φsq(x)φsq(y)T

]
= Esq∼N(S;µq ,σq)

[
1

mq

mq∑
i=1

(
cos 2πsq,i

Tx
) (

cos 2πsq,i
T y
)

+
(
sin 2πsq,i

Tx
) (

sin 2πsq,i
T y
) ]

= Esq∼N(S;µq ,σq)

[
1

mq

mq∑
i=1

cos 2πsq,i
T (x− y)

]

= Esq∼N(S;µq ,σq)

[
1

mq

mq∑
i=1

ei2πsq,i
T (x−y) + e−i2πsq,i

T (x−y)

2

]

=
1

2
(kq(x− y) + kq(y − x)) = kq(x− y)

Using the above derivation, if we define sampled spectral points s = ∪Qq=1{sq,i}mi=1 with sq,i ∼
N(µq, σ

2
q ) and the feature map φSM (x) =

[√
w1φ{s1,i}mi=1

(x), ..,
√
wQφ{sQ,i}mi=1

(x)
]
, then φSM (x)φSM (y)T

is an unbiased estimator of kSM (x, y) as

Es
[
φSM (x)φSM (y)T

]
=

Q∑
q=1

wqEsq∼N(S;µq ,σq)

[
φsq(x)φsq(y)T

]
=

Q∑
q=1

wqkq(x− y) = kSM (x− y)

A.4. Regularized Lower bound for Eq. (14)

Let q(S) be variational distribution defined in Eq. (12). We can derive the lower boundL as follows:

log p(Y |X) = log

∫
p(Y, S|X)dS = log

∫
p(Y |X,S)

p(S)

q(S)
q(S)dS

≥
∫

log
(
p(Y |X,S)

p(S)

q(S)

)
q(S)dS

=

∫
log p(Y |X,S)q(S) + log

p(S)

q(S)
q(S)dS

=

∫
log p(Y |X,S)q(S)dS −KL(q(S)||P (S))

≈ 1

K

K∑
i=1

log p(Y |X, s(i))−KL(q(S)||P (S))

11
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where s(i) is i-th sampled spectral points from q(S).

A.5. ELBO Derivation for Eq. (15)

L = Eq(Z,A,π) [log p(Y, Z|X,A, π)]−KL(q(A, π)||p(A, π))

= Eq(π) [log p(z0|π)] + Eq(Z,A)

[
T∑
t=1

log p(zt|zt−1, A)

]
+ Eq(Z)

[
T∑
t=1

log p(yt|xt, zt)

]
−KL(q(A, π)||p(A, π))

≥ Eq(π) [log p(z0|π)] + Eq(Z,A)

[
T∑
t=1

log p(zt|zt−1, A)

]
+ Eq(Z)

[
T∑
t=1

1

K

K∑
k=1

log p(yt|zt, xt, s(k))

]

− Eq(Z)

[
T∑
t=1

KL(q(S|zt)||p(S|zt))

]
−KL(q(A, π)||p(A, π))

≥ Eq(π) [log p(z0|π)] + Eq(Z,A)

[
T∑
t=1

log p(zt|zt−1, A)

]
+ Eq(Z)

[
T∑
t=1

1

K

K∑
k=1

log p(yt|zt, xt, s(k))

]

− T
K∑
k=1

KL(q(S|zt = k)||p(S|zt = k))−KL(q(A, π)||p(A, π))

The first inequality holds by applying the lower bound bound in Eq. (14) to log p(yt|xt, zt) in the
derived ELBO in Eq. (5). The second inequality is derived using q(zt = k) ≤ 1 for all t, k.

= Eq(Z,A,π) [log p(Y,Z|X,A, π)]− T
K∑
k=1

KL(q(S|zt = k)||p(S|zt = k))−KL(q(A, π)||p(A, π))

where Eq(Z,A,π) [log p(Y,Z|X,A, π)] is the expected joint likelihood with respect to q(Z,A, π)

using 1
K

∑K
k=1 log p(yt|zt, xt, s(k)) as log likelihood of GP emission instead of log p(yt|zt, xt).

The additional KL divergence term related to KL(q(S|zt = k)||p(S|zt = k)) is computed as∑Q
q=1

∑m
i=1 KL(N(uq, σ

2
q )||N(µ̃q,i, σ̃

2
q,i)) with the parameters {µq, σq}Qq=1 corresponding to hid-

den state zt = k. If we consider {µ̃q.i, σ̃2q,i}Mi=2 = {µq, σq}, we reduce the KL regulaizer as∑Q
q=1 KL(N(uq, σ

2
q )||N(µ̃q,1, σ̃

2
q,1)).

= Eq(Z,A,π) [log p(Y,Z|X,A, π)]− T
K∑
k=1

Q∑
q=1

KL(N(uq, σ
2
q ) || N(µ̃q,1, σ̃

2
q,1))−KL(q(A, π)||p(A, π))

For the corresponding approximate GP emission, we can obtain
∏K
k=1 p(yt|zt, xt, s(k))

1
k be-

cause of

log p(yt|zt, xt) ≈
1

K

K∑
k=1

log p(yt|zt, xt, s(k)) = log
K∏
k=1

p(yt|zt, xt, s(k))
1
k .

12
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If {s(k)}Kk=1 are sampled such that p(yt|zt, xt, s(k)) ≈ p(yt|zt, xt), the approximate GP emission∏K
k=1 p(yt|zt, xt, s(k))

1
k becomes the original GP emission p(yt|zt, xt). This can be feasible when

the number of sampled spectral pointsQm for s(k) is large enough for ΦSM (xt; s(k))ΦSM (xt; s(k))T
to be equal to the true SM kernel gram matrix KSM (xt, xt).

Appendix B. Parameters update procedure for section 2.2 Variational Inference

B.1. Local Variables

The optimal local variable q∗(Z) is proportional as

q∗(Z) ∝ exp
(
Eq(A,π) [log p(Y,Z|X,A, π)]

)
= exp

(
Eq(π)[log p(z0|π)] +

T∑
t=1

Eq(A)[log p(zt|zt−1, A)] +

T∑
t=1

log p(yt|zt, xt)
)
, (18)

by Mean field approximation (Bishop, 2006; Beal, 2003). We define the following auxiliary vari-
ables π̃ as exp

(
Eq(π)[log πj ]

)
and Ãj,i as exp

(
Eq(A)[logAj,i]

)
required to evaluate Eq. (18), which

are computed as

π̃ := exp
(
Eq(π)[log πj ]

)
= exp

ψ(wπj )− ψ

 K∑
j=1

wπj


Ãj,i := exp

(
Eq(A)[logAj,i]

)
= exp

[
ψ(wAj,i)− ψ

(
K∑
i=1

wAj,i

)]

where ψ(·) is the digamma function.
To compute the marginal distribution q∗(zt = k) and q∗(zt = j, zt = i) necessary for updating

variational parameters for global variables, forward-backward algorithm known as Baum–Welch
algorithm (Beal, 2003) is used. Defining αt,i = p(zt = i|y1:t, x1:t) and βt,i = p(yt+1:T |zt =
i, xt+1:T ) with α0 = π and βT = [1, .., 1]T ∈ RK , we compute {αt, βt}Tt=1 as

αt,i =
K∑
j=1

αt−1,jÃj,ip (yt|zt = i, xt)

βt,j =

K∑
i=1

Ãj,ip (yt+1|zt+1 = i, xt+1)βt+1,i.

These computed likelihoods {αt, βt}Tt=1 are used to compute q∗(zt = i) and q∗(zt = j, zt = i) for
t = 1, .., T and j, i = 1, ..,K as

q∗(zt = i) ∝ αt,iβt,i
q∗(zt−1 = j, zt = i) ∝ αt−1,jAj,i p(yt|zt = i, xt)βt,i.

A detail derivation for Forward-backward algorithm can be found in (Beal, 2003).

13
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Appendix C. Computational Complexity

To analyze the computation complexity for the proposed learning algorithm, we split the algorithm
mainly into three parts; computation of log marginal likelihood for observations, local update, and
global update. We proceed with the analysis of our computation under a single batch assumption
because the repetitive batch sampling for SVI and the spectral points sampling of Eq. (14) increases
the total computation linearly.

For the brevity, we assume Nt = N for all t. In original VI approach, computing the log
marginal likelihood of T × N observations with K hidden state costs O(KTN3). However, our
approximation approach costs O(KLNM2) where the length of the sampled sequence is L, and
the total M sampled spectral points are used for SM kernel approximation. This is because SVI
approach reduces to O(L) from O(T ) and SM kernel approximation reduces to O(NM2) from
O(N3) under M � N .

For the update of local variables, VI and SVI take O(K2T ) and O(K2L) for the Forward-
Backward algorithm, respectively. Updating the global variable is dominated by updating kernel
hyperparameters. Computing the derivative of log marginal likelihood for each parameter costs
O(N3) (Rasmussen, 2004). Thus, in the case of SM kernel, VI approach costsO((3Q+ 1)N3KT )
where all SM kernels take Q Gaussian mixture components. However, our scalable approach takes
O((3Q+ 1)NM2KL).

In summary, our learning method scalably trains the large dataset when we control M and L
such that NM2 � N3 and L� T .

Appendix D. Additional results of Experiment

D.1. Long Sequence (T is large)

WHz = 100

Model Inference Accuracy 1 Iteration

HMM-GPSM (Q=3) VI (T=100) .66 173.18

HMM-GPSM (Q=3) SVI (L=10) .64 ±.08 17.29 ±.02

HMM-GPSM (Q=3) SVI (L=20) .70 ±.04 34.46 ±.13

HMM-GPSM (Q=3) SVI (L=50) .74 ±.05 85.96 ±.11

HMM-GPSM (Q=4) VI (T=100) .72 208.41

HMM-GPSM (Q=4) SVI (L=10) .74 ±.11 20.94 ±.02

HMM-GPSM (Q=4) SVI (L=20) .68 ±.11 41.97 ±.05

HMM-GPSM (Q=4) SVI (L=50) .70 ±.05 104.57 ±.19

Table 1: Accuracy and single iteration time (seconds) on synthetic dataset with WHz = 100; This
table describes the statistic of accuracy and single iteration time for training approach of VI and SVI
with Q ∈ {3, 4} and L ∈ {10, 20, 50}.

14
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(a) Test data set
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(b) HMM-GPSM (Q=4) trained by VI (T=100) with accuracy 0.72
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(c) HMM-GPSM (Q=4) trained by SVI (L=10) with accuracy 0.84
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(d) HMM-GPSM (Q=4) trained by SVI (L=20) with accuracy 0.78

Figure 3: Test set clustering results of HMM-GPSM (Q=4) trained by VI (T=100) and SVI (L∈
{10, 20}) for WHz = 100. We display the estimated result {ẑt}134t=115 on [115, 135] out of [100, 150]
because of limited space. Each hidden state is characterized by its own color; if two time-series
observations are colored in the same color, they are estimated to have same hidden state.
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D.2. Large number of observations (Nt is large)

WHz = 500

Model Inference Accuracy 1 Iteration

HMM-GPSM (Q=3) SVI (L=10) .66 ± .02 325.29 ± 1.79

HMM-GPSM (Q=3) SVI-AGPE (L=10 R=.05) .64 ± .09 23.89 ± .19

HMM-GPSM (Q=3) SVI-AGPE (L=10 R=.10) .60 ± .03 32.43 ± .03

HMM-GPSM (Q=3) SVI-AGPE (L=10 R=.20) .64 ± .06 75.05 ± .38

HMM-GPSM (Q=5) SVI (L=10) .74 ± .03 468.81 ± 9.69

HMM-GPSM (Q=5) SVI-AGPE (L=10 R=.10) .73 ± .05 41.42 ± .10

HMM-GPSM (Q=5) SVI-AGPE (L=10 R=.20) .71 ± .02 78.38 ± .07

HMM-GPSM (Q=5) SVI-AGPE (L=10 R=.30) .74 ± .06 163.94 ± 2.02

HMM-GPSM (Q=6) SVI (L=10) .76 ± .02 515.54 ± 12.80

HMM-GPSM (Q=6) SVI-AGPE (L=10 R=.10) .70 ± .06 48.59 ± .28

HMM-GPSM (Q=6) SVI-AGPE (L=10 R=.20) .74 ± .06 81.38 ± .59

HMM-GPSM (Q=6) SVI-AGPE (L=10 R=.30) .76 ± .02 163.60 ± 1.63

Table 2: Accuracy and single iteration time (seconds) on sinusoidal dataset with WHz = 500;
This table summarizes how the proposed kernel approximation approach (SVI-AGPE) affects the
training time and the accuracy for HMM-GPSM withQ ∈ {3, 5, 6}, comparing to the SVI approach
without kernel approximation (SVI). For this comparison, we set L = 10 for SVI approach and
vary the ratio of spectral points R ∈ {.05, .10, .20, .30}. The statistical results are obtained from 5
repetitive experiments.
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state 8

(a) Empirical spectral density

0 100 200 300 400 500
Hz 

0.00

0.20

0.40
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0.80

p(
s)

(b) Estimated spectral density

Figure 4: Comparison of empirical spectral density of time-series observation and estimated spectral
density of HMM-GPSM (Q=5) trained by SVI-AGPE (L = 10 and R = .20) for WHz = 500;
empirical spectral density is obtained by applying welch method (Welch, 1967) to 20 time-series of
training set per each hidden state. Estimated spectral density is obtained by evaluating p(s) in Eq.
(5) with the parameters {wq, µq, σ2q}5q=1 in Eq. (30) inferred by SVI-AGPE.
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(b) HMM-GPSM (Q=5) trained by SVI (L=10) with accuracy 0.74
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(c) HMM-GPSM (Q=5) trained by SVI-AGPE (L=10, R=.20) with accuracy 0.78

Figure 5: Test set clustering results of HMM-GPSM (Q=5) trained by SVI (L=10) and SVI-AGPE
(L=10, R ∈ {.10, .20}) for WHz = 500. We display the estimated result {ẑt}149t=130 on [130, 150]
out of [100, 150] because of limited space.

D.3. Why is SM kernel considered

SM kernel is a flexible kernel to model any stationary covariance function. Bochner’s theorem
(Bochner, 1959) states that for the inputs x1 and x2 ∈ RP and its distance τ = x1 − x2, the
stationary kernel k(τ), which is invariant to translation of the inputs, can be obtained by taking a
inverse Fourier transform to the corresponding spectral density of p(S) as

k(τ) =

∫
ei2πs

Tτp(S)ds. (19)

This theorem implies that if p(S) approximates well the true spectral density for dataset, the target
function f using GP prior with the corresponding kernel k(τ) models well the true signal.

Wilson et al. (Wilson and Adams, 2013) implement this idea to devise a new kernel known
as the spectral mixture (SM) kernel. They represent the spectral density p(S) using a mixture of
symmetric Gaussian distribution with parameters {wq, µq,Σq}Qq=1 as

p(S) =

Q∑
q=1

wq

(
N(s|µq,Σq) +N(−s|µq,Σq)

2

)
,

where µq = [µq,1, .., µq,P ], σq = [σq,1, .., σq,P ] ∈ RP and Σq = diag(σ2q ) ∈ RP×P because a
mixture of Gaussian distribution can approximate any continuous function by universal approximate
theorem (Plataniotis and Hatzinakos, 2017). Then, they obtain the SM kernel by taking an inverse
Fourier transform to p(S) by Eq. (20) as

kSM (τ) =

Q∑
q=1

wqexp
(
−2π2(τTσq)

2
)

cos
(
2πτTµq

)
. (20)
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Flexibility of GP emission using SM kernel
We have investigated that GP emission using SM kernel characterizes the hidden state of time-series
observation more flexibly over GP emission using the conventional kernel including RBF, Periodic,
and the combination kernel. The considered baseline models are as follows:

• HMM-GPRBF : HMM-GP using RBF kernel

• HMM-GPPER : HMM-GP using Periodic kernel

• HMM-GPCombKernel : HMM-GP using combination kernel (RBF + PER + PER + PER)

• HMM-GPSM (Q) : HMM-GP using Q-mixture SM kernel

All models are trained by variational inference for full T sequences as explained in section 3.2.
For this experiment, we generate the sequences of time-series observations using Eq. (35) hav-

ing 150 sequences of time-series. During the experiment, we fix the number of data points in each
time-series observation as Nt = 200. We limit spectral range as WHz = 100 to make sure that
time-series with Nt = 200 contains enough information to infer the spectral characteristics of the
time-series according to the Nyquist–Shannon sampling theorem (Oppenheim, 1999).

For training the parameters of the model, we use first 100 sequences of time-series, i.e T = 100
(training set). We run 30 iterations to update the local variables q(Z) and the variational parameters
of q(π) and q(A), and kernel hyperparameters for global variables. The kernel hyperparameters are
updated by the Adam optimizer with learning rate .005. After training, we evaluate how accurate
the trained models estimate the hidden state for the left 50 sequences of time-series observations
(test set).

WHz = 100

Model Inference Accuracy 1 Iteration time

HMM-GPSM (Q=1) VI (T=100) .66 98.25

HMM-GPRBF VI (T=100) .44 75.05

HMM-GPPER VI (T=100) .46 89.12

HMM-GPCombKernel VI (T=100) .42 164.23

Table 3: Accuracy and single iteration time (seconds) on sinusoidal dataset with WHz = 100;
This table compares the statistic of accuracy and single iteration time for HMM-GPSM (Q = 1),
HMM-GPRBF, HMM-GPPER, and HMM-GPCombKernel. Assuming that each kernel uses the
almost same number of hyperparameters (#RBF: 2 , #Periodic: 3), we just use a single mixture
SM kernel (Q = 1, #SM: 3) to show its expressibility for characterizing the complex time-series
observation.
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(b) HMM-GPRBF trained by VI (T=100) with accuracy 0.44
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(c) HMM-GPPER trained by VI (T=100) with accuracy 0.46
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(d) HMM-GPSM (Q=1) trained by VI (T=100) with accuracy 0.66

Figure 6: Test set clustering results of HMM-GPSM, HMM-GPPER, and HMM-GPRBF for
WHz = 100. We display the estimated result {ẑt}134t=115 on [115, 135] out of [100, 150] because
of limited space. We see that SM kernel allows the model to estimate hidden states more flexibly
and accurately over RBF and Periodic kernel; (d) SM kernel distinguishes the testset into 4 types of
signal. (b) RBF and (c) Periodic kernel distinguish the testset into 3 types and 2 types of signal.
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