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Abstract
Kernel-based hypothesis tests offer a flexible, non-
parametric tool to detect high-order interactions in
multivariate data, beyond pairwise relationships.
Yet the scalability of such tests is limited by the
computationally demanding permutation schemes
used to generate null approximations. Here we
introduce a family of permutation-free high-order
tests for joint independence and partial factorisa-
tions of d variables. Our tests eliminate the need
for permutation-based approximations by lever-
aging V-statistics and a novel cross-centring tech-
nique to yield test statistics with a standard normal
limiting distribution under the null. We present
implementations of the tests and showcase their
efficacy and scalability through synthetic datasets.
We also show applications inspired by causal dis-
covery and feature selection, which highlight both
the importance of high-order interactions in data
and the need for efficient computational methods.

1. Introduction
Many complex real-world systems involve interactions be-
yond pairwise relationships, necessitating an explicit under-
standing of interactions among three or more entities (Bat-
tiston et al., 2020; 2021; Rosas et al., 2022; Thibeault et al.,
2024). Such high-order interactions amongst d > 2 vari-
ables have been shown to affect processes in social (Benson
et al., 2016), ecological (Grilli et al., 2017) and biological
systems (Luff et al., 2024; Arnaudon et al., 2022), often
in ways that cannot be reduced to combinations of pair-
wise effects (Schaub et al., 2020; Bick et al., 2023). Given
the relative scarcity of relational datasets that record high-
order phenomena, it is important to develop unsupervised,
mathematically grounded methods for their detection in ob-

1Department of Mathematics, Imperial College London,
United Kingdom 2Department of Neurology, University Hospi-
tal Würzburg, Germany 3Department of Brain Sciences, Imperial
College London, United Kingdom. Correspondence to: Mauricio
Barahona <m.barahona@imperial.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

servational data. A growing body of work has approached
this challenge using tools from information theory (Rosas
et al., 2020; 2024), persistent homology (Santoro et al.,
2023; 2024), Bayesian inference (Young et al., 2021) and
Hamiltonian-based functions (Schneidman et al., 2003).

Within the statistical and machine learning literature, kernel-
based tests provide a flexible, non-parametric framework for
identifying relationships in data. The detection of pairwise
independence between two variables using HSIC (Gretton
et al., 2007) has found broad applicability in tasks such as
generative adversarial networks (Bińkowski et al., 2018),
feature selection (Song et al., 2012), and transfer learn-
ing (Long et al., 2015). Beyond pairwise independence,
kernel-based tests have been extended to assess joint inde-
pendence among d variables via dHSIC (Pfister et al., 2018),
as well as Lancaster interactions among three variables (Se-
jdinovic et al., 2013a), which were later generalised to d-
order Streitberg interactions (Liu et al., 2023b). However,
these tests typically rely on computationally expensive per-
mutation or bootstrap schemes (involving 100 ≤ p ≤ 1000
permutations), reducing their applicability to datasets with
larger number of variables, where the subsets of variables
to be tested for interactions explode combinatorially.

Here, we tackle this limitation on scalability by introducing
a family of permutation-free high-order tests that retain the
flexibility of kernel-based methods while eliminating the
computational burden of null-distribution approximation.
To note, our approach applies to the general settings where
one seeks to determine factorisation properties among sub-
sets of variables (e.g., Lancaster and Streitberg interactions),
rather than merely rejecting or accepting joint independence.

Contributions Our main contributions can be summarised
as follows: (1) We define the permutation-free joint inde-
pendence test, xdHSIC for any d. (2) To address the com-
binatorial challenges of testing for high-order factorisation,
we introduce the cross-centring technique to develop the
permutation-free d-order Lancaster factorisation test, xLI.
(3) Building on xLI, we derive a permutation-free Streitberg
interaction test, xSI. (4) We show that, for the special case
d = 2, our high-order tests have a more concise mathemat-
ical formulation than the existing xHSIC (Shekhar et al.,
2023). (5) Through empirical evaluations in machine learn-
ing applications, we demonstrate that the permutation-free
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tests achieve substantial computational speedup, exceeding
100-fold, over their permutation-based counterparts.

Paper Structure Section 2 introduces joint independence
and partial factorisation as two different generalisations
of pairwise relationships, and briefly reviews kernel-based
tests. In Section 3, we develop our permutation-free joint
independence test for any d, xdHSIC, and our permutation-
free factorisation tests for any d, xLI and xSI. We relate
our proposed methods to existing work in Section 4, and
provide numerical validations in Section 5. We conclude by
discussing directions for future research in Section 6.

2. Preliminaries
2.1. Statistical Interactions

Throughout this paper, we consider multivariate probability
distributions of a set of d variables D = {X1, . . . ,Xd}
denoted PX1,...,Xd =∶ P1⋯d.

Pairwise Interaction The simplest statistical interaction
emerges for d = 2. In this case, a lack of statistical in-
teraction is equivalent to pairwise independence, which is
determined by the difference between the joint distribution
P12 and the product of the marginals P1P2:

∆2P = P12 − P1P2 . (1)

Hence ∆2P = 0 ⇐⇒ X1 ⊥⊥X2 (pairwise independence).

Joint Independence One way to generalise the above
notion to d > 2 variables is to focus on joint independence:

∆d
IP = P1⋯d −

d

∏
i=1

Pi . (2)

Clearly, ∆d
IP vanishes if and only if the d variables are

jointly independent, a property that has been employed in
Independent Component Analysis (Hyvärinen & Oja, 2000),
causal discovery (Pfister et al., 2018; Laumann et al., 2023),
and variational autoencoders (Lopez et al., 2018). How-
ever, for d ≥ 3, joint independence is uninformative as a
criterion for the presence of high-order interactions. For
example, three of the four factorisations of P123 (P1P23,
P2P13 and P3P12) are neither full 3-way interactions nor
jointly independent like P1P2P3.

Lancaster Interaction An alternative generalisation in-
terprets the vanishing condition of ∆2P as a factorisation of
the joint distribution into disjoint components. To capture
this perspective, the Lancaster interaction for d = 3 variables
is defined as:

∆3
LP = P123 − P1P23 − P2P13 − P3P12 + 2P1P2P3 . (3)

Figure 1. Generalisations of pairwise dependence to high-order
interactions. All three measures of statistical interaction (joint
independence, Lancaster, Streitberg) are the same for d = 2. Joint
independence captures less information for d ≥ 3. Only Streitberg
interaction considers all factorisations for d ≥ 4.

If P123 can be factorised into any of P1P23,P2P13,P3P12

or P1P2P3, then ∆3
LP = 0 (see Appendix B). Lancaster

(1969) rewrote and generalised this measure for d-order
interactions as

∆d
LP =

d

∏
i=1
(P∗i − Pi) , (4)

where the P∗i are defined implicitly by P∗i P∗j⋯P∗k = Pij⋯k
and P∗i Pj⋯Pk = PiPj⋯Pk.

However, for d ≥ 4, ∆d
LP fails to capture certain fac-

torisations, e.g., if P1234 = P12P34 then ∆d
LP = (P12 −

P1P2)(P34 −P3P4) which is not zero in general (Streitberg,
1990). Despite this limitation, Liu et al. (2023b) proved that
for d ≥ 4, ∆d

LP = 0 only if the factorisation of P1⋯d includes
singleton variables, highlighting its partial informativeness
in capturing structural dependencies.

Streitberg Interaction To account for all factorisations of
P1⋯d , the Streitberg interaction was introduced (Streitberg,
1990). Let π = b1∣b2∣ . . . ∣b∣π∣ denote a partition of the set
D of d variables into ∣π∣ blocks bj , and let Pπ ∶=∏∣π∣j=1 Pbj .
The Streitberg interaction for d variables is:

∆d
SP =∑

π∈Π(D)
(∣π∣ − 1)! (−1)∣π∣−1Pπ , (5)

where the sum extends over Π(D), the set of all partitions of
the set D. Crucially, ∆d

SP = 0 only if P1⋯d can be factorised
in any way (Streitberg, 1990).

Figure 1 summarises these three perspectives of high-order
interactions, showing how they all coincide for d = 2; begin
to diverge for d = 3; and Streitberg interactions are unique
in capturing all possible factorisations for d ≥ 4. For details
on derivations via lattice theory, see Liu et al. (2025).
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2.2. Kernel-Based Tests

To transform the interaction measures from Section 2.1
into non-parametric test statistics, we embed the under-
lying distributions into reproducing kernel Hilbert spaces
(RKHS). Recall that a symmetric, positive-definite ker-
nel ki ∶ X i × X i → R induces an associated RKHS
Hi with the reproducing property. For any Xi ∈ X i,
let ϕi(Xi) = ki(Xi, ⋅) denote the canonical feature map.
The kernel mean embedding of a distribution Pi is then
given by µPi = EXi[ϕi(Xi)]. This embedding satisfies
EXif(Xi) = ⟨f, µPi⟩HS for all f inHi, where ⟨⋅, ⋅⟩HS is the
Hilbert-Schmidt inner product. If ki is characteristic, the
map µPi is injective, ensuring that the norm of the signed
measure is zero if and only if the measure itself is zero (Gret-
ton et al., 2007; Muandet et al., 2017).

Using such embeddings, all high-order interaction measures
in Section 2.1 can be naturally converted into kernel-based
test statistics by constructing kernel mean embeddings of the
relevant distributions, and computing their Hilbert-Schmidt
norms. Adopting this methodology, the measures in Eq. (2),
Eq. (4) and Eq. (5) have been developed into, respectively,
the dHSIC (Pfister et al., 2018), the Lancaster interaction
test (LI) (Sejdinovic et al., 2013a; Liu et al., 2023b), and
the Streitberg interaction test (SI) (Liu et al., 2023b).

A key practical issue is the fact that all of these test statistics
are degenerate under their respective null hypotheses. To
obtain valid rejections, one typically employs a permuta-
tion procedure to approximate the null distribution, or uses
heuristic strategies such as a Gamma approximation (as
in HSIC (Gretton et al., 2007) and dHSIC (Pfister et al.,
2018)). Permutation-based approaches involve p runs (typi-
cally p > 100) to achieve an accurate approximation of the
null distribution, and are thus computationally expensive for
large sample sizes or multiple variables. This computational
burden underscores the need for alternative methods that are
both theoretically principled and computationally efficient.

Recently, Shekhar et al. (2023) introduced xHSIC, a variant
of HSIC for d = 2 that avoids the need for permutations by
establishing that its null distribution converges to a standard
normal. Inspired by this approach, we develop a family of
permutation-free high-order tests in Section 3.

3. Permutation-Free High-Order Tests
3.1. Joint Independence

To extend the permutation-free pairwise independence mea-
sure of Shekhar et al. (2023) to the multivariate setting, we
first define the unnormalised permutation-free dHSIC using
the data-splitting technique:

xdHSIC = ⟨µ̂1
P1⋯d

− µ̂1
P1⋯Pd

, µ̂2
P1⋯d

− µ̂2
P1⋯Pd

⟩
HS

,

where µ̂1
(⋅) and µ̂2

(⋅) are the empirical embeddings in dHSIC,
estimated from two disjoint sample sets: the first half
Sd1 = {(x1

i ,⋯, xd
i ) ∶ 1 ≤ i ≤ n} and the second half Sd2 =

{(x1
i ,⋯, xd

i ) ∶ n + 1 ≤ i ≤ 2n} of the i.i.d. samples.

Unlike xHSIC in (Shekhar et al., 2023), which was based
on U-statistics, here we adopt V-statistics to reduce com-
putational overhead, while retaining robust estimation ac-
curacy (Pfister et al., 2018). Specifically, we form the
2n × 2n kernel matrices Ki with entries Ki

ab = ki(xi
a, x

i
b)

for 1 ≤ a, b ≤ 2n where {xi
a}2na=1 are i.i.d. samples for the

i-th variable. In our construction, the n × n submatrices
on the diagonal of Ki (with entries Ki

ab where both sam-
ples a, b come from either Sd1 or from Sd2 ) do not contribute
to the estimate. Instead, we only use the n × n upper-right
off-diagonal block (lower-left block is redundant due to sym-
metry), which measures distances between samples from
the two disjoint subsets. We then define xdHSIC, the nor-
malised permutation-free dHSIC.
Definition 3.1. Let Kj ∶=Kj

[1∶n,n+1∶2n] be the off-diagonal
n × n submatrix of Kj . Then xdHSIC is defined as:

xdHSIC =
√
n ⋅ xdHSIC

s2I
, with

xdHSIC = 1

n2
1T (

d

◯
j=1
Kj)1 + 1

n2d
(

d

◯
j=1

1TKj1)

− 1

nd+11
T (

d

◯
j=1
Kj1) − 1

nd+1 (
d

◯
j=1

1TKj)1 ,

s2I =
1

n
∥ 1
n
(

d

◯
j=1
Kj)1 + 1

n2d−1K
11(

d

◯
j=2

1TKj1)

− 1

nd
(

d

◯
j=1
Kj1) − 1

nd
(

d

◯
j=1
KjT1) − xdHSIC1∥

2

,

where the operator◯ represents the Hadamard product and
1 is the n × 1 vector of ones.

xdHSIC can be used to test d-order joint independence:
Hypothesis 3.2. (Joint Independence)

H0 ∶ P1,⋯,d = Πd
i=1Pi

H1 ∶ P1,⋯,d ≠ Πd
i=1Pi .

Then we have: H0 ⇐⇒ ∆d
IP = 0 ⇐⇒ xdHSIC = 0.

The construction of xdHSIC ensures it follows N (0,1)
under the null (Shekhar et al., 2023), thus enabling the test
with a single computation in contrast with p permutations for
standard dHSIC. Importantly, its time complexity matches
that of a single dHSIC computation.
Proposition 3.3. xdHSIC can be computed in O(dn2).

To prove this, it is sufficient to show that both the numer-
ator, xdHSIC, and the denominator, s2I , can be computed
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in O(dn2), which follows from an argument in Pfister et al.
(2018) (see Appendix A).

3.2. Partial Factorisation

A limitation of the joint independence test is that, if the
null hypothesis is rejected, it does not distinguish between
partial factorisation, where disjoint subsets of variables
indicate low-order interactions, and true non-factorisation,
where the joint distribution cannot be factorised in any way,
implying that all variables interact. To address this limita-
tion, more sophisticated criteria have been developed (Stre-
itberg, 1990), and the corresponding kernel-based tests have
been introduced (Sejdinovic et al., 2013a; Liu et al., 2023b).
However, these methods encounter degenerate cases, which
necessitate permutation-based resampling—a step that is
eliminated in the permutation-free Lancaster and Streitberg
interaction tests introduced below.

Centring: Our approach relies on matrix centring, which
is widely used in both kernel-based (Gretton et al., 2007;
Sejdinovic et al., 2013a) and distance-based (Chakraborty &
Zhang, 2019; Böttcher, 2020) high-order interaction tests to
improve computational efficiency and simplify notation. For
a n × n kernel matrix K, its centred version is K̃ = CKC,
where C = In − 1

n
11T , where In is the n×n identity matrix.

Equivalence: Two kernels are said to be equivalent if they
induce the same semimetric on the domain (Sejdinovic
et al., 2013b). In particular, the centred kernel is translation-
invariant and thus is equivalent to the original kernel.

Cross-centring: To extend the permutation-free scheme
to a broader class of measures, we introduce an analogous
cross-centring, which arises naturally under data splitting.
Definition 3.4. (Cross-centring) Let 1u = (10)⊗ 1 and 1ℓ =
(0
1
)⊗ 1, where ⊗ denotes the Kronecker product, and define

the matrices Cu = I2n − 1
n
1u1u

T , and Cℓ = I2n − 1
n
1ℓ1ℓ

T ,
where I2n is the 2n×2n identity matrix. For a 2n×2n kernel
matrix K with indices 1 ∶ n associated with Sd1 and indices
n + 1 ∶ 2n associated with Sd2 , its cross-centred version is
given by K = CuKCℓ.
Lemma 3.5. The cross-centred kernel

k(x,x′) = ⟨ϕ(x) − 1

n

n

∑
i=1

ϕ(xi), ϕ(x′) −
1

n

2n

∑
j=n+1

ϕ(x′j)⟩ ,

where ϕ(⋅) is the canonical feature map, is equivalent to
k(x,x′) as n→∞. See Appendix A.

Having established this asymptotic equivalence, we express
our test statistics in terms of cross-centred kernel matrices.

3.2.1. LANCASTER INTERACTION TEST

We now derive the d-order permutation-free Lancaster in-
teraction test. The Lancaster criterion can be used to detect

factorisations involving at least one singleton variable (Liu
et al., 2023b). To formalise the test, we introduce the fol-
lowing null hypothesis:

Hypothesis 3.6. (Lancaster Factorisation)

H0 ∶⋁
πL

HπL
∀ ∣πL∣ = 2

H1 ∶⋀
πL

¬HπL
∀ ∣πL∣ = 2

where HπL
is the event such that the joint distribution fac-

torises according to a partition πL containing exactly one
singleton, whereas ¬HπL

indicates that such a factorisation
does not hold. If any of the d subhypotheses in H0 is true,
then ∆d

LP = 0. Hence if all d subhypotheses are rejected, a
d-order Lancaster interaction is detected.

Note that even though H0 contains only d subhypotheses,
which correspond to the factorisations with one singleton,
all other factorisations that satisfy the Lancaster vanishing
condition are actually subsumed by them (Liu et al., 2023b).

We can now define the normalised permutation-free statistic
associated with a subhypothesis HπL

of H0.

Definition 3.7. Let HπL
∶ P1⋯d = PmP1,⋯,m−1,m+1,⋯,d =

PπL
for some 1 ≤ m ≤ d. Under the null of HπL

, the
normalised permutation-free Lancaster interaction, xLI, is:

xLI =
√
n ⋅ xLI
sL

, with

xLI = 1

n2
1T
u

⎛
⎝
K

m ○ ◯
i∈D/m

K
i⎞
⎠
1ℓ ,

s2L =
1

n3
1T
u

XXXXXXXXXXX

⎛
⎝
K

m ○ ◯
i∈D/m

K
i⎞
⎠
1ℓ

XXXXXXXXXXX

○2
− xLI2,

where D/m denotes all d variables except Xm, the opera-
tors ○,◯ represent Hadamard products, and the overline (⋅)
indicates cross-centring.

Remark: In our permutation-free procedure we have a dif-
ferent test statistic for each subhypothesis, all with a fixed
null distribution (standardised to N (0,1)).

To reject the null H0 for Lancaster factorisation, we carry
out d subtests (one for each of the singleton factorisations),
each with complexity O(dn2).
Proposition 3.8. The time complexity of xLI for all HπL

across any d is O(dn2).

The composite hypothesis H0 is rejected only if all sub-
hypotheses are individually rejected, and, as this has been
proven to be less conservative than the Bonferroni correc-
tion (Rubenstein et al., 2016), we use this correction for our
tests. When the subtests are executed sequentially rather
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than in parallel, the procedure can terminate early if any
subtest fails to reject its corresponding null, thereby saving
computational time. We provide a detailed description of
the test procedure of xLI for d = 3 in Appendix B.

3.2.2. STREITBERG INTERACTION TEST

As discussed, the Lancaster interaction is unable to detect
factorisations that do not involve singletons. The measure
that does vanish for all factorisations of the joint distribution
is the Streitberg interaction in Eq. (5). To test if P1⋯d can
be factorised in any way, we have the following hypothesis:

Hypothesis 3.9. (Complete Factorisation)

H0 ∶⋁
π

Hπ ∀ ∣π∣ = 2

H1 ∶⋀
π

¬Hπ ∀ ∣π∣ = 2

where Hπ denotes the event such that the joint distribution
P1⋯d is factorised as Pπ = Pb1Pb2 .

Note that only partitions with exactly two blocks need to be
considered in the composite tests, as all further factorisations
P1⋯d = Pb1Pb2⋯Pb∣π∣ are subsumed in bipartition subtests.
The partitions with two blocks correspond to the second
level of the d-order partition lattice (Liu et al., 2023b).

The Streitberg (complete) factorisation hypothesis includes
the Lancaster factorisation hypothesis plus, additionally,
the HπS

where πS are partitions into two blocks with no
singletons. For example, for d = 6, the Streitberg subtests
must check specifically for P123P456, whereas, in contrast,
P1P23456 is already included in the Lancaster factorisation
tests (due to the singleton), and P12P34P56 does not need
to be checked, since it has cardinality 3 and is subsumed in
2-block factorisations P1234P56, P1256P34 and P12P3456.

Definition 3.10. Under the null subhypothesis of HπS
,

where πS = b1∣b2, the permutation-free Streitberg inter-
action is defined as

xSI =
√
n ⋅ xSI
sS

, with

xSI = 1

n2
1T
u

⎛
⎝◯p∈b1

K
p ○◯

q∈b2
K

q⎞
⎠
1ℓ ,

s2S =
1

n3
1T
u

XXXXXXXXXXX

⎛
⎝◯p∈b1

K
p ○◯

q∈b2
K

q⎞
⎠
1ℓ

XXXXXXXXXXX

○2
− xSI2 .

Unlike the permutation-based Streitberg statistic, whose
time complexity grows combinatorially with d (Liu et al.,
2023b), xSI grows only quadratically with n.

Proposition 3.11. The time complexity of xSI for all HπS

across any d is O(dn2).

In our numerics, we test the complete factorisation hypoth-
esis (3.9) via a two-step process we denote xLI+xSI: we
first use xLI to test the d subhypotheses involving πL (bi-
partitions with a singleton), followed by applying xSI for
the subhypotheses involving the non-singleton bipartitions,
πS . Together, these two sets cover all the (2d−1 − 1) bi-
partitions needed to test for the complete factorisation, i.e.,
π∣π∣=2 = πL ∪ πS . Although xSI could, in principle, be
used to perform all subtests in Hypothesis (3.9) directly,
we found this approach to be computationally less advanta-
geous. Indeed, given that Liu et al. (2023b) showed that the
permutation-based SI test involves only non-singleton parti-
tions, if we were to use xSI, the terms in the permutation-
free xSI exceed this scope, further contributing to its higher
computational cost if it were applied for all subtests. As a
result, using xSI alone does not always guarantee improved
computational efficiency. In contrast, xLI+xSI ensures effi-
ciency, by maintaining quadratic complexity with the num-
ber of samples n regardless of order d. This advantage
becomes increasingly significant as d grows, making our
method more suitable for practical applications involving
high-order data.

3.3. Computational Complexity

Table 1 provides a summary of the time complexity of the
permutation-based and permutation-free tests, highlighting
the computational advantage of the tests proposed in this
paper. For the joint independence (dHSIC) and Lancaster
interaction (LI) tests, the permutation-free tests offer a p-
fold reduction in complexity by eliminating the need for
resampling. For the complete factorisation test (SI), our
strategy of combining xSI and xLI is far more efficient than
the permutation-based test in two ways: (i) p-fold reduction
for each each subtest; (ii) n2 scaling decoupled from d.
Empirical evaluation of these scalings is shown in Section 5
using synthetic data with ground truths.

Table 1. Time complexity of high-order tests. Here p is the num-
ber of permutations, n is the number of samples, d is the number
of variables and Fd is the number of partitions without singletons
for d variables, a combinatorial number. The permutation-free
tests developed in this paper are highlighted in blue.

Permutation-based Permutation-free
dHSIC: O(pdn2) xdHSIC: O(dn2)
LI ∶ O(pd2n2)
SI: O(pF 2

d 2
dnd/2)

xLI: O(d2n2)
xSI + xLI: O(2ddn2)

4. Related Work
Our work is inspired by Shekhar et al. (2023) who in-
troduced xHSIC to make HSIC (Gretton et al., 2007)
permutation-free by approximating HSIC using the data-
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splitting technique and U-statistic (Kim & Ramdas, 2024;
Shekhar et al., 2022), and normalising by the empirical stan-
dard deviation, thereby achieving a standard normal null
distribution. However, to the best of our knowledge, these
methods do not extend readily to more than two variables. In
contrast, our kernel-based formulation leverages V-statistics
and cross-centring to define permutation-free tests for Lan-
caster and Streitberg interactions for d > 2 variables.

Remark: For d = 2, our formulation recovers pairwise in-
dependence (Fig. 1). Yet by using cross-centring and V-
statistics we obtain a permutation-free statistic xHSICV ∶=
xSId=2 = xLId=2, which is simpler, more compact, and
with higher power than the original xHSIC in Shekhar et al.
(2023). See derivation and numerics in Appendix C.

5. Experiments
We evaluate our proposed permutation-free tests using a
range of experiments. For all cases, under the null hy-
pothesis of each test, we confirm standard normality and
controlled type-I errors of the corresponding xdHSIC, xLI
& xSI statistics (see Appendix D, Figs. 10–11 for examples).
Below we focus on the statistical power and computational
efficiency of these methods compared to their permutation-
based counterparts. Unless noted otherwise, the significance
level is set to α = 0.05, and we use Gaussian kernels with
bandwidth given by the median heuristic. Additional details
of each experiment are available in Appendix E.

5.1. Validation on Synthetic Examples

Joint Independence Test We first demonstrate the
xdHSIC statistic for permutation-free joint independence
testing. Figure 2a-c shows the application to a d = 4 multi-
variate Gaussian (MVG) distribution (covariance matrix in
the inset of (a), with β = 0.5). The power of the xdHSIC test
has similar sensitivity compared to the permutation-based
dHSIC test with p = 100 permutations, but xdHSIC reaches
the maximum power roughly 100 times faster (Fig. 2b-c), as
expected from the p-fold reduction in complexity. The same
reduction in computation time is obtained when applied to
d-variable MVGs of varying d (Fig. 2d).

Factorisation Tests Next, we demonstrate that our
permutation-free high-order tests successfully preserve the
vanishing conditions for different factorisation tests. In
Figure 3a, we consider data from a MVG with d = 5 vari-
ables and covariance matrix such that P1P2345 (see inset).
As expected, xdHSIC fails to detect this partial (singleton)
factorisation, which is correctly detected by both xLI and
xSI+xLI. Figure 3b shows that, when analyse data from a
MVG that is factorisable as P12P345 (no singletons), only
xSI+xLI succeeds in detecting this interaction.

a b

c d

Figure 2. Joint independence test. (a)-(c) Sampling from a d = 4
variable MVG (covariance matrix, inset of (a)), we compare
dHSIC (with p = 100 permutations) and xdHSIC: (a) statisti-
cal power as a function of the number of samples, n; (b) trade-off
between power and computational time (circle diameter propor-
tional to sample size n); (c) CPU time as n increases. (d) CPU
time for MVGs of the same form as in (a) but with increasing
number of variables, d (with n = 500 samples). Note that the
right scale of the CPU time in (c) and (d) is 100 times larger, thus
reflecting the p-fold computational reduction over dHSIC.

a b

Figure 3. Partial factorisations of MVG with d = 5 variables.
(a) xdHSIC fails to detect the partial factorisation with a singleton,
P1P2345, regardless of interaction strength. (b) Only xSI+xLI
identifies the factorisation with no singletons, P12P345. MVG
covariance matrices are insets in each case.

We then simulate data from a XOR gate with d = 5 variables,
in which the interaction is exclusively of order 5 without
2-, 3-, or 4-order interactions. Fig. 4a-c shows that the
power of the permutation-free xSI+xLI is superior to the
permutation-based SI with a substantial reduction in com-
putation time. For example, for n = 500 samples, xSI+xLI
can be computed within 0.5 seconds whereas SI requires
roughly 6 minutes. In Figure 4d, we consider a series of
XOR gates with increasing number of variables, d. Whereas
xSI+xLI can be computed in less that 1 second for d = 10,
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SI becomes already computational infeasible for d = 6, due
to the rapid combinatorial increase in the number of non-
singleton partitions (Fd) (Sloane et al., 2018), which makes
the computation quickly intractable as d increases (Table 1).

a b

c d

Figure 4. 5-way XOR factorisation. Power of xSI+xLI and SI
tests for an XOR gate with d = 5 variables as a function of: (a) sam-
ple size, n; (b) interaction strength, β. Computation time of both
tests for: (c) increasing sample size, n (for d = 5); (d) increasing
number of variables, d (for n = 100). The SI test is computation-
ally infeasible above d = 5 (dashed grey line). Note the different
left/right scales for CPU times in (c) and (d), highlighting the large
reduction in computational cost achieved by xSI+xLI.

5.2. Applications to Causal Discovery

V-Structure Detection A V-structure (or collider) is a
fundamental component in constraint-based causal discov-
ery, where two variables X and Y both causally influence
a third variable Z. If X ⊥⊥ Y , rejecting the Lancaster fac-
torisation hypothesis for d = 3 is equivalent to rejecting the
conditional independence X ⊥⊥ Y ∣Z, thereby indicating the
presence of a V-structure (Sejdinovic et al., 2013a).

Here, we use two datasets (A and B) from Sejdinovic et al.
(2013a), in which X ⊥⊥ Y , and we increase the noise dimen-
sion to make the causal relationship more difficult to detect.
Figures 5a-b shows the comparison of our permutation-free
xLI to the permutation-based LI and kernel-based condi-
tional independence KCI (Zhang et al., 2011) tests. Each
experiment uses n = 500 samples and the time complexity
is O(n2), O(pn2) and O(pn3), respectively. KCI rapidly
fails as the noise dimension grows, whereas Lancaster-based
approaches remain more robust. Although xLI is marginally
less powerful than LI, it runs approximately 100 times faster
(0.082s vs. 7.6s for p = 100 permutations), providing a trade-
off between statistical power and computational efficiency,

making xLI an attractive choice for detecting V-structures
when conventional conditional independence tests become
unreliable or too slow.

Furthermore, in Appendix B we thoroughly evaluate the sen-
sitivity of the permutation-free method by applying it to V-
structures encoded by three nonlinear forms (sinc, log, poly-
nomial) using three different kernel functions (RQ, Laplace,
RBF). We show that regardless of the non-linear form or
kernel, our proposed method achieves similar accuracy to
the permutation-based counterpart (Fig. 8).

a b

Figure 5. V-structure detection. Type-II errors of xLI, LI and
KCI for detecting the conditional dependence as the noise dimen-
sions vary in dataset (a) A and (b) B from Sejdinovic et al. (2013a).

DAG Causal Structural Learning An alternative route
for causal learning is provided by score-based methods (Pe-
ters et al., 2014; Laumann et al., 2023), whereby each vari-
able is modelled as a function of its direct causes (i.e., parent
nodes in a directed acyclic graph (DAG)) plus an additive
noise term. If the noise terms for all regressions are jointly
independent, then the proposed DAG cannot be rejected.

Following closely Simulation 4 from Pfister et al. (2018),
we simulate n samples from one DAG with d = 4 variables
(see Appendix D). We then compare the accuracy of our
permutation-free xdHSIC against the permutation-based
dHSIC (using p = 200) to recover the ground truth DAG.
Figure 6a shows that xdHSIC identifies the correct DAG
more frequently than dHSIC for n > 500, and it reaches
perfect accuracy using roughly two-thirds of the samples
needed by dHSIC, all of it with a 200-fold computational
speed-up. Similarly, the structural Hamming distance (SHD)
of xdHSIC reaches zero faster than dHSIC (Fig. 6b).

In real-world causal discovery, one often needs to search
over all possible DAGs (see Appendix D). For 3, 4, 5, and 6
nodes, there are 25, 543, 29281, and 3781503 DAGs, respec-
tively. Since the ratio of DAG counts between consecutive
node sets {3,4,5,6} is less than 200, the computation time
required for dHSIC (with p = 200 permutations) to test joint
independence in DAGs of 3 (or 4,5) nodes exceeds that of
xdHSIC applied to DAGs with an additional node, i.e., 4
(or 5, 6). This efficiency gain can facilitate experiments to
uncover causal relationships more effectively.
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ba

Figure 6. DAG causal discovery. (a) Accuracies of the correct
DAG being detected among all fully connected DAGs of four
nodes and (b) the distributions of the SHD of the detected DAG
using xdHSIC and dHSIC out of 100 experiments.

5.3. Application to Feature Selection

Feature selection is a crucial step in many machine learn-
ing pipelines. The task is to identify the most informative
features to enhance model performance and interpretability.
Most techniques, however, focus solely on pairwise rela-
tionships between a feature and the target variable (Póczos
et al., 2012; Song et al., 2012), overlooking high-order in-
teractions (Fumagalli et al., 2024; Muschalik et al., 2024).

To illustrate the application to feature selection, we con-
struct a dataset (n = 500) with nine features {X1, . . . ,X9},
of which {X1, . . . ,X7} are i.i.d. uniform variables interact-
ing through an XOR gate to generate a target variable Y , and
{X8,X9} are MVG’s with covariance [[1,0.9], [0.9,1]].
The ground truth interaction between the variables is thus
{Y,X1, . . . ,X7} ⊥⊥ {X8,X9}; hence no single variable or
pair of variables is predictive of Y . In Table 2, we compare
the performance of feature selection methods based on high-
order tests with popular methods based on univariate and
pairwise measures, including the sequential method, recur-
rent feature selection (RFE) (Pedregosa et al., 2011) and
SHAP (Lundberg & Lee, 2017). The permutation-free test
xSI+xLI is the only method able to detect the ground truth
feature set with lowest mean squared error (MSE). All other
methods, including pairwise independence, joint indepen-
dence and Lancaster tests, suffer from errors in selecting the
correct features due to their inability to identify the complex
high-order interactions between the input features and the
target variable in this example.

5.4. Application to Dataset of Stock Daily Returns

To demonstrate the scalability and applicability of our
permutation-free tests, we consider a large real-world fi-
nancial dataset: daily returns of stocks in the S&P 500 from
2020 to 2024. This dataset comprises 504 variables (stocks)
and 1004 samples (returns), spanning 11 sectors (Fig. 7).
As is standard in the finance literature, we assume the daily
returns to be i.i.d. (Ali & Giaccotto, 1982).

Table 2. Feature selection. Only xSI+xLI identifies the ground
truth variables ( ) that generate Y . Other methods either include
confounding variables ( ) or miss generating variables (#).

Method X1 X2 X3 X4 X5 X6 X7 X8 X9 MSE
Variance          5.01
Univariate          5.01
Sequential     # # #  4.69
RFE    # # # #  4.47
SHAP      # #   4.67
xHSIC      # #   4.67
xdHSIC          5.01
xLI          5.01

xSI+xLI        4.35
Ground truth        4.35

Figure 7 shows the percentage of 2-, 3-, 4-, and 5-way inter-
actions for all sectors, where we compute interactions for
500 sets of stocks within the same sector and, as a compari-
son, for 5000 sets of stocks randomly drawn from different
sectors. As expected, 2-, 3-, 4-, and 5-way interactions are
more common within a sector than across sectors, in con-
cordance with the GICS industrial taxonomy that underpins
the definition of the sectors. Interestingly, both Utilities and
Energy exhibit very high 3-, 4-, and 5-way within-sector
interactions. This likely stems from the highly regulated na-
ture of these sectors, resulting in stocks with similar returns
and, consequently, high (within-sector) redundancy. Con-
versely, Information Technology, Consumer Discretionary
and Health Care display lower high-order interactions. This
suggests that companies within these sectors may be more
closely connected to firms in other sectors as they are likely
influenced by external factors, indicating (cross-sector) syn-
ergistic relationships. A summary heatmap of the high-order
interaction profiles of all sectors is shown in Figure 13 in
Appendix E. These high-order interactions could be of help
when considering portfolio diversification.

6. Discussion
The use of fine-tuned permutation schemes has been shown
to be an essential ingredient for interaction tests to produce
reliable results, but this process can be both time-consuming
and challenging (Rindt et al., 2021). The permutation-free
methods introduced here, xdHSIC, xLI and xSI, offer a
more efficient approach to handling complex data structures
circumventing the need for permutations and the tuning of
associated hyperparameters, thus simplifying the workflow
and ensuring consistent performance.

Regarding when to use permutation-free vs. permutation-
based tests, our experiments show that for small sample
size, permutation-based methods perform comparably, and
occasionally slightly better. This is likely due to the need
for data splitting in permutation-free methods, which limits
their ability to capture the full data structure in low-sample
regimes as test statistics rely on inner products between
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Figure 7. Stock interactions in S&P500. Utilities and Energy show high 3-, 4– and 5-way interactions, likely due to regulation-driven
redundancy. In contrast, Information Technology, Health Care, and Consumer Discretionary exhibit lower high-order interactions,
suggesting stronger cross-sector connectivity.

embeddings estimated from the two separate halves. Hence,
as a rule of thumb, for low number of samples n and low
order d the trade-off between computation time and sta-
tistical power would not be unfavourable for permutation-
based methods, e.g., for n ≤ 50 and d ≤ 5 permutation-
based methods perform well with just p = 100 permutations.
Outside this regime, however, we strongly recommend the
permutation-free methods introduced here.

Nevertheless, several challenges and limitations remain.
The data-splitting technique that underpins our permutation-
free strategy relies on the assumption of i.i.d. samples,
which can be restrictive when dependencies exist across sam-
ples (e.g., time series, network data, spatial data). Although
permutation-based techniques have been developed to ad-
dress stationary (Chwialkowski & Gretton, 2014; Ruben-
stein et al., 2016) and non-stationary time-series data (Liu
et al., 2023a), the development of permutation-free meth-
ods for such data remains an open challenge. Additionally,
while we focus here on joint independence and factorisa-
tion hypotheses, other forms of higher-order structure, such
as conditional independence or more intricate composite
hypotheses, might benefit from similar permutation-free
schemes. Finally, although the permutation-free approach
substantially improves the efficiency of high-order tests,
there remains potential to further reduce computational over-
head by incorporating scalable kernel approximation tech-
niques such as random Fourier features and the Nyström
method (Zhang et al., 2018). Investigating these directions
could further broaden the applicability of kernel-based high-
order interaction tests in large-scale machine learning and
statistical settings.

Code Availability Code to implement the permutation-
free tests in this paper available at https:
//github.com/barahona-research-group/
PermFree-HOI.git.
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Appendices

A. Proofs for Section 3
A.1. Proof of Proposition 3.3

First observe that each term in the numerator can be computed in O(dn2) since the expression only contains Hadamard
product and vector matrix multiplication Pfister et al. (2018). Similarly for the denominator, the variance estimation
introduces no significant computational overhead beyond simple vector norm compared to xdHSIC.

A.2. Proof of Lemma 3.5

The conventional centring of a matrix K is denoted by K̃ = CKC, where C = I − 1
n

11T and 1 is an n × 1 vector of ones. It
has been shown that the respective centred kernel function k̃ is an equivalent kernel to k. Indeed, as shown in Sejdinovic
et al. (2013b), a kernel k̃f is equivalent to k if it can expressed as:

k̃f (z, z′) = ⟨k(⋅, z) − f, k (⋅, z′) − f⟩HS

for some function f . Now for conventional centring k̃, f = µPX
which can be approximated by µ̂PX

= 1
n ∑

n
i=1 ϕ (xi) and

thus is an equivalent kernel.

Here, the cross-centred k is also equivalent as 1
n ∑

n
i=1 ϕ (xi) and 1

n ∑
2n
i=n+1 ϕ (xi) can be seen as approximation of µPX

.

A.3. Proof of Proposition 3.8

Here, consider the Hadamard product of all the kernels in D except Kk as an individual kernel, then the xLI can be seen as
a special xHSIC and therefore they share the same time complexity.

A.4. Proof of Proposition 3.11

Here, consider the two Hadamard products as two kernels themselves, then the xSI can be seen as a special xHSIC and
therefore they share the same time complexity.

B. Extended analysis of the d = 3 Lancaster interaction test
B.1. Lancaster interaction hypothesis and test

∆3
LP in Equation (3) is the extension as d increases from 2 to 3 in the direction of the factorisation route as illustrated in

Figure 1. Now instead of testing for joint independence through the full factorisation P123 = P1P2P3, we would like to
understand if the joint distribution P123 is partially factorisable as summarised in the composite hypothesis below:

Hypothesis B.1. (Order-3 Factorisation)

H0 ∶ (P123 = P12P3) ∨ (P123 = P13P2) ∨ (P123 = P23P1)
H1 ∶ (P123 ≠ P12P3) ∧ (P123 ≠ P13P2) ∧ (P123 ≠ P23P1)

If any of the subhypotheses in the null hypothesis H0 is true, then ∆3
LP = 0. For example, if P123 = P12P3, this implies

P13 = P1P3 and P23 = P2P3, and, as a result, we have:

P123 = P12P3 Ô⇒ ∆3
LP = P123 − P12P3 − P13P2 − P23P1 + 2P1P2P3 = 0

And, similarly, P123 = P13P2 Ô⇒ ∆3
LP = 0 and P123 = P23P1 Ô⇒ ∆3

LP = 0. Hence H0 Ô⇒ ∆3
LP = 0. Note that even

though H0 only considers the three partial factorisations, the factorisation P1P2P3 is actually subsumed by them, i.e. P123 =
P1P2P3 implies that P123 = P12P3 and P123 = P13P2 and P123 = P23P1. In other words, P123 = P1P2P3 Ô⇒ ∆3

LP = 0
also.

By the contrapositive, this means: ∆3
LP ≠ 0 Ô⇒ ¬H0 ≡H1. Hence, when a d = 3 interaction is detected via the alternative

hypothesis H1, all three subhypotheses in H0, as well as the complete factorisation P123 = P1P2P3, need to be rejected.
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B.2. Construction of the permutation-free normalised test statistic

By computing the RKHS embedding and applying the permutation-free scheme, the unnormalised test statistics of three-
variable Lancaster interaction can be immediately written out in terms of the cross-centred kernels:

xLI = 1

n2

n

∑
i=1

2n

∑
j=n+1

[K1 ○K2 ○K3]
ij

Note that a key distinction between the permutation-based methods and the permutation-free approaches discussed here lies
in how multiple tests are conducted. In permutation-based methods, the test statistic remains constant, while the permutations
adapt to changes in the subhypotheses. In contrast, with the permutation-free approach, where the null distributions are all
standardised as N (0,1), the test statistics must instead vary.

Without loss of generality, under the subhypothesis P123 = P12P3, xLI can be simplified into:

xLI3 =
1

n2

n

∑
i=1

2n

∑
j=n+1

[K1 ○K2 ○K3]
ij

The normalised test statistic is

xLI3 =
√
n ⋅ xLI3
sL

, with

s2L =
1

n

n

∑
i=1

⎛
⎝
1

n

2n

∑
j=n+1

[K1 ○K2 ○K3]
ij
− xLI3

⎞
⎠

2

= 1

n

n

∑
i=1

⎛
⎜
⎝

⎛
⎝
1

n

2n

∑
j=n+1

[K1 ○K2 ○K3]
ij

⎞
⎠

2

+ xLI23 − 2xLI3
⎛
⎝
1

n

2n

∑
j=n+1

[K1 ○K2 ○K3]
ij

⎞
⎠

⎞
⎟
⎠

= 1

n

n

∑
i=1

⎛
⎝
1

n

2n

∑
j=n+1

[K1 ○K2 ○K3]
ij

⎞
⎠

2

+ xLI23 − 2xLI23

= 1

n

n

∑
i=1

⎛
⎝
1

n

2n

∑
j=n+1

[K1 ○K2 ○K3]
ij

⎞
⎠

2

− xLI23

Similarly, for the other two subhypotheses, we just move the double cross-centring to the pairwise variables. The whole
testing procedure is summarised in Algorithm 1.

Algorithm 1 Lancaster Interaction Test at d = 3

Input: Centred kernel matrices K
1
, K

2
, K

3
computed from observational data

for each subhypothesis (total three subhypotheses) do
Compute the test statistic xLI
if xLI > (1 − α)-quantile of N (0,1) then

Reject Hi and proceed to the next subhypothesis
else

Terminate and do not reject composite hypothesis
end if

end for
if all three subhypotheses are rejected then

Reject the composite hypothesis
else

Do not reject the composite hypothesis
end if

The composite hypothesis H0 is rejected only if all subhypotheses are individually rejected. As this has been proven to
be less conservative than the Bonferroni correction (Rubenstein et al., 2016), we use this correction for the factorisation
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tests for any d. When the subtests are executed sequentially rather than in parallel, the procedure can terminate early if any
subtest fails to reject its corresponding subhypothesis, thereby saving computational time.

B.3. Application to additional examples: nonlinear form and different kernels

In addition to the examples from Sejdinovic et al. (2013a), we also apply our method to three more examples with
diverse nonlinear forms. In all cases, our proposed permutation-free method achieves similar accuracy compared with the
permutation-based counterpart. Moreover the results are robust with different kernel functions, Rational-Quadratic (RQ)
kernel, Laplace Kernel and Radial Basis Function (RBF) kernel.

a b c

Figure 8. Structural causal models with diverse nonlinear forms and kernel functions. We constructed three V-structures using (a)
sinc (b) log, and (c) polynomial nonlinear forms (see inset).

C. Definition of the xHSIC pairwise test using V-statistics
We formulate the corresponding V-statistic version of the permutation-free pairwise independence test statistic, xHSICV
using the cross-centring technique:

xHSICV =
√
n ⋅ xHSICV

sV

xHSICV =
1

n2

n

∑
i=1

2n

∑
j=n+1

[K1 ○K2]
ij

s2V =
1

n

n

∑
i=1

⎛
⎝
1

n

2n

∑
j=n+1

[K1 ○K2]
ij
− xHSICV

⎞
⎠

2

This is a simpler formulation compared with the original xHSIC in Shekhar et al. (2023).

Figure 9 shows that not only is xHSICV theoretically grounded, like xHSIC, but it also has higher power compared with
both xHSIC and HSIC.
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Figure 9. Experiments of pairwise independence tests: xHSICV follows a standard normal distribution with two independent t-
distributions; controls the type-I error rate with the same data from t-distributions, and outperforms both HSIC (Gretton et al., 2007) and
xHSIC (Shekhar et al., 2023) with dependent MVG from the example in Equation (13) from Shekhar et al. (2023) with parameters b = 2,
ndim = 10, and ϵ = 0.5.

D. Further numerical checks of the test statistics

Figure 10. Null distributions of permutation-free test statistics. All three test statistics introduced in this paper follow a standard
normal distributionN (0,1) under their respective nulls.

Figure 11. Controlled type-I error of permutation-free test statistics. All three test statistics introduced in this paper have a valid level
of type-I error for α = 0.05, indicated by the dashed line.

E. Further details of datasets used in Section 5
The code to implement the permutation-free tests introduced in this paper is available at https://github.com/
barahona-research-group/PermFree-HOI.git.

E.1. XOR example from Liu et al. (2023b)

We generate n samples of V,W,X,Y,Z ∼ U(0,4), Z∶i = (V∶i +W∶i +X∶i + Y∶i)mod 4 and Zi+1∶n ∼ U(0,4)) (where the
samples [i + 1 ∶ n] act as noise). We then gradually increase the interaction proportion, 0 ≤ i/n ≤ 1.
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E.2. V-structure dataset A and B from Sejdinovic et al. (2013a)

Dataset A: For {X,Y,Z} ∈ Ra×Ra×Ra, X,Y ∼ N (0, Ip), W ∼ Exp ( 1√
2
), Z1 = sign (X1Y1)W , and Z2∶p ∼ N (0, Ip−1).

Dataset B: For {X,Y,Z} ∈ Ra ×Ra ×Ra, X,Y ∼N (0, Ip) , Z2∶p ∼ N (0, Ip−1), and

Z1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X2
1 + ϵ, w.p. 1/3,

Y 2
1 + ϵ, w.p. 1/3

X1Y1 + ϵ, w.p. 1/3

where ϵ ∼ N (0,0.01) and W.P. stands for with probability.

In both datasets, the 3-way interaction becomes increasingly difficult to detect as the noise dimension p increases.

E.3. Causal discovery example from Pfister et al. (2018)

For an additive noise model over random variables X1, . . . ,Xd,

Xj ∶= ∑
k∈Parents

f j,k (Xk) +N j , j ∈ {1, . . . , d} (6)

with corresponding DAG G. The noise variables N j are normally distributed and are jointly independent with a standard
deviation sampled uniformly between

√
2 and 2. Nodes without parents follow a Gaussian distribution with standard

deviation sampled uniformly between 5
√
2 and 10. The functions fjk are sampled from a Gaussian process with Gaussian

kernel and bandwidth one.

Figure 12. Fully connected DAG of 4 nodes. We use DAG 1 as the ground truth causal structure to simulate the data.

In this example we simulate the data from DAG 1 and compare all the possible fully connected DAGs shown in Figure 12.
The procedure of the causal discovery is outlined as the following: (i) Run the generalised additive noise model for each
DAG and get the residuals. (ii) Check the joint independence between the d residuals. (iii) Report the DAG with the largest
p-value.
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E.4. Real-World Financial Data

The CPU time for computing high-order interaction percentages took 8 hours without any parallelisation on a 2015 iMac
with 4 GHz Quad-Core Intel Core i7 processor and 32 GB 1867 MHz DDR3 memory. We estimate the time taken for the
permutation-based methods would have been at least 2 weeks. This highlights the scalability of our proposed method.

Figure 13. High-order interactions percentages in between stocks in S&P500. Heatmap of the percentages shown in Figure 7
summarising the differences across sectors in their high-order interaction structure, also relative to randomised sets (last row).
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