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ABSTRACT

Decoding visual representations from human brain activity has emerged as a thriv-
ing research domain, particularly in the context of brain-computer interfaces. Our
study presents an innovative method that employs knowledge distillation to train
an EEG classifier and reconstruct images from the ImageNet and THINGS-EEG
2 datasets using only electroencephalography (EEG) data from participants that
have viewed the images themselves (i.e. ”brain decoding”). We analyzed EEG
recordings from 6 participants for the ImageNet dataset and 10 for the THINGS-
EEG 2 dataset, exposed to images spanning unique semantic categories. These
EEG readings were converted into spectrograms, which were then used to train a
convolutional neural network (CNN), integrated with a knowledge distillation pro-
cedure based on a pre-trained Contrastive Language-Image Pre-Training (CLIP)-
based image classification teacher network. This strategy allowed our model to
attain a top-5 accuracy of 80%, significantly outperforming a standard CNN and
various RNN-based benchmarks. Additionally, we incorporated an image recon-
struction mechanism based on pre-trained latent diffusion models, which allowed
us to generate an estimate of the images that had elicited EEG activity. There-
fore, our architecture not only decodes images from neural activity but also offers
a credible image reconstruction from EEG only, paving the way for, e.g., swift,
individualized feedback experiments.

1 INTRODUCTION

Electroencephalography (EEG) has gained prominence in decoding visual representations from the
human brain, particularly for complex visual stimuli from datasets like ImageNet. While convolu-
tional (CNN) and recurrent neural networks (RNN) have been effective in classifying EEG signals
into image categories(Deng et al., 2009), the focus of these papers has largely been on multisub-
ject models. Our study emphasizes single-subject models to capture individual variability in visual
processing, hence offering enhanced decoding detail as well as privacy. A key challenge is recon-
structing visual stimuli from EEG due to its low spatial resolution. In this respect, semantic image
reconstructions (Ferrante et al., 2023; Ozcelik et al., 2022; Takagi & Nishimoto, 2023; Benchetrit
et al., 2023) may be more viable than pixel-level recreations. This paper builds on prior work (Kava-
sidis et al.; Spampinato et al.; Palazzo et al.; Singh et al.; Bai et al.; Spampinato et al., 2019), by
proposing a novel pipeline for training single-subject models for brain decoding and EEG-based
image reconstruction, leveraging deep learning techniques. We address issues identified in previous
studies, such as inflated performance metrics due to inadequate data preprocessing (Li et al., 2018;
Bharadwaj et al., 2023; Li et al., 2021), and adhere to conservative approaches recommended by
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Figure 1: Our pipeline can be described as follows: EEG data was recorded while the subject was
viewing natural images. These data are then preprocessed and converted into spectrograms, which
serve as the input for our neural network. Our EEG decoder is trained using a knowledge distillation
method based on the CLIP model. The outputs from the EEG decoder, which are predictions of
the image that elicited the EEG data, are then combined with an image generation pipeline. This
end-to-end approach allows us to reconstruct images from the neural activity data captured by the
EEG.

recent re-analyses (Palazzo et al., 2020; Li et al., 2018). Our pipeline employs CLIP-based (Radford
et al., 2021) knowledge distillation in a convolutional neural network, trained on time-frequency de-
composition (TFD) of EEG signals, followed by generative diffusion synthesis. We therefore align
neural and image representations, allowing for semantically coherent and visually similar image re-
constructions. The pipeline features a flexible, independent generative component conditioned by
the EEG decoder and exploits a classification bottleneck to simplify the problem and avoid direct
regression of the latent diffusion model’s conditioning embedding.

2 MATERIAL AND METHODS

This section outlines our methodology and the dataset used, sourced from ImageNet EEG (Kavasidis
et al., 2017), which is publicly available. This dataset is composed of EEG recordings obtained from
six participants exposed to images from 40 different ImageNet classes, each comprising 50 images.
The image display protocol involved showing images sequentially for 0.5 seconds each, across 25-
second intervals, always followed by a 10-second break. This resulted in showing 2,000 images over
1,400 seconds (23 minutes recording time per subject). Data collection involved a 128-channel cap
with active, low-impedance electrodes (actiCAP 128Ch, Brainproducts) and Brainvision amplifiers
and systems, recording EEG signals at a 1000 Hz sampling rate with 16-bit resolution. The final
dataset has 11,466 sequences. This extensive experimental design, involving multi-channel EEG
recordings while viewing of thousands of stimuli, provides a comprehensive dataset for training
decoding models. For more details on the acquisition protocol, refer to (Kavasidis et al., 2017;
Spampinato et al., 2019).

EEG data underwent a sequence of preprocessing steps after train/test (80/20%) splitting. Initially,
a notch filter (49-51 Hz) reduced power line interference, and a 14-70 Hz second-order Butterworth
band-pass filter isolated frequencies linked to visual attention. The signals were then standardized
channel-wise. For training, we segmented the filtered EEG signals into 40 ms long windows, with
20 ms overlap. Each segment underwent time-frequency decomposition using the short-time Fourier
transform (STFT or wavelet decomposition as an alternative) resulting in images that represented
the time and frequency spectrum with shape (channels, time, frequency). This process yielded 1911
EEG spectrograms per subject, essential for training our CNN and classifying visual stimuli. To
show generalization of our method, we also included another dataset, from the THINGS initiative
collection, named THINGS-EEG2 (Gifford et al., 2022). This dataset comprises a substantial col-
lection of EEG readings taken at high temporal precision, recording reactions to pictures of objects
against a natural backdrop. It encompasses data from 10 participants, covering 82,160 instances
across 16,740 different image scenarios. Image stimuli belong to the THINGS Image dataset, span-
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Figure 2: Reconstructed images. Left column: target classes; subsequent columns: results from
individual participants starting from their EEG activity.

Method Accuracy Top3 Accuracy Top5 Accuracy F1 Kappa
LR on windowed signal 0.0205 (0.0058) 0.0636 (0.0083) 0.1092 (0.0110) 0.0156 (0.0054) 0.0009 (0.0061)
LR on PCA windowed signal 0.0175 (0.0040) 0.0536 (0.0084) 0.0961 (0.0063) 0.0097 (0.0047) 0.0020 (0.0039)
CEBRA + kNN 0.0240 (0.0050) 0.0831 (0.0116) 0.1402 (0.0136) 0.0223 (0.0061) -0.0012 (0.0056)
LSTM 0.3605 (0.0938) 0.7376 (0.1226) 0.8868 (0.1030) 0.3392 (0.0894) 0.3437 (0.0960)
Conv1d 0.2623 (0.0511) 0.6013 (0.0826) 0.7971 (0.0851) 0.2582 (0.0520) 0.2432 (0.0524)
Knowledge distillation on eeg (img) 0.2819 (0.0836) 0.5773 (0.1379) 0.7295 (0.1339) 0.2742 (0.0794) 0.2632 (0.0857)
Knowledge distillation on wavelet 0.4060 (0.1154) 0.7490 (0.1282) 0.8787 (0.1007) 0.3889 (0.1148) 0.3905 (0.1183)
Plain CNN on spectrograms 0.2819 (0.0836) 0.5773 (0.1379) 0.7295 (0.1339) 0.2742 (0.0794) 0.2632 (0.0857)
Palazzo et al (Palazzo et al., 2020) 0.3350 (0.089) - - - -
Knowledge distillation on STFT 0.4120 (0.1131) 0.7530 (0.1068) 0.8782 (0.0806) 0.4027 (0.1133) 0.3966 (0.1160)
Knowledge distillation (THINGS-EEG2) 0.58 (0.04) - - 0.52 (0.036) -
Plain CNN (THINGS-EEG2) 0.52 (0.03) - - 0.48 (0.032) -

Table 1: Performance comparison of decoding baselines. The table presents the mean values ac-
companied by the standard deviation (enclosed in parentheses) for each evaluation metric across all
participants. Results from (Palazzo et al., 2020) are reported from the original paper in the same
setting used here. The first part of the table reports results for ImageNet-EEG dataset, while the
second part report comparison between our method and plain CNN on the THINGS-EEG2 dataset.

ning across 1854 different classes. In this work, the EEG activity is recorded while 1654 categories
were shown as part of the training set and the other 200 categories were shown as test set. Since
the very fine granularity of concepts of this dataset makes the problem more complex, we obtained
pseudo-labels for the entire dataset using a K-Means over the CLIP embeddings of all images. We
used a k-Elbow approach to identify the optimal number of clusters (that turned out to be 8) and
trained a K-Means to predict cluster labels to re-label this dataset. EEG data were processed as
described before. Since the cluster labels cannot be used as conditioning for the generative part, we
adopted a simpler approach for the second dataset, stopping our analysis with the classification part.

Knowledge distillation involves transferring knowledge from a large, pretrained teacher model to
a smaller student model, enabling the latter to achieve high performance in spite of lower model
capacity. (Hinton et al., 2015). For a given stimulus image x, let ft(x) be the output class prob-
abilities from the teacher model, and fs(e; θ) the student model’s output, with θ as its parameters
and e representing EEG recordings. The student model is trained by minimizing a loss function
L(θ), combining a cross-entropy loss LCE with a distillation loss LKD, which measures the output
difference between student and teacher models. The distillation loss LKD includes a temperature
parameter T and enhances the transfer of insights about inter-class relationships from the teacher
to the student model. In our implementation, we set α = 0.5 and T = 1 as optimizable hyper-
parameters of our procedure. Our teacher model integrates a linear classifier with CLIP (Radford
et al., 2021), utilizing its image encoder (a vision transformer) to embed images into latent repre-
sentations. CLIP’s ability to align images and text in an embedding space is leveraged to create a
classifier trained on the CLS token for image classification. The student CNN, trained on EEG data,
benefits from the teacher’s knowledge, focusing on neural patterns relevant to visual recognition.

Our method uses a CNN with residual connections for classifying EEG time-frequency decompo-
sitions (TFDs). It starts with convolutional layers, increasing filter numbers to extract spatial and
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temporal features, followed by global average pooling and fully-connected layers for classification.
With our knowledge distillation method, we use an image classifier as a teacher to provide ”soft
targets” for guiding our EEG model. This classifier initially predicts stimulus classes with a 99% ac-
curacy. During training, EEG spectrograms are input into the student CNN model, while the teacher
model receives CLIP image features. The aim is to align the student model’s class probability dis-
tributions with those of the teacher, enhancing stability and performance compared to direct class
label training. At the inference stage, the EEG-based CNN alone predicts classes from new EEG
TFDs. This knowledge distillation from the image model allows our CNN to develop robust rep-
resentations for decoding visual stimuli from EEG signals. After training, our EEG model predicts
ImageNet classes from new EEG TFDs. To reconstruct corresponding visual stimuli, we use the
Stable Diffusion generative model (Ramesh et al., 2022). For each EEG prediction, a text prompt
like ”an image of a predicted class” is created and fed into Stable Diffusion, generating images
matching the predicted class. This approach allows visual stimulus reconstruction solely from neu-
ral activity. The EEG decoder determines the class, and Stable Diffusion produces an image which
is semantically coherent with the class. The entire decoding pipeline is illustrated in Fig 1. This
approach facilitates the synthesis of plausible image reconstructions based on the decoded semantic
category from neural activity patterns. This model-centric strategy also addresses the inherent reso-
lution constraints of EEG for high-fidelity decoding. Finally, the guided diffusion modeling ensures
the generation of visualizations that are both realistic and interpretable to human observers.

In terms of baselines and comparisons, we explored various methods for EEG signal decoding,
ranging from traditional machine learning to advanced neural network architectures . We started
with basic logistic regression classifiers, employing techniques like standardization, averaging of
raw EEG signals, PCA for component retention, and sliding window averaging. Delving into deep
learning, we used the CEBRA technique (Schneider et al., 2023), which projects EEG data onto a
32-dimensional space using CLIP features to generate a nonlinear neural baseline. We also tested
Recurrent Networks (LSTMs) and 1D CNN models with four layers and dropout regularization, di-
rectly processing EEG time series. Additionally, we implemented computer vision techniques using
Convolutional Neural Networks (CNNs) by interpreting EEG signals as 2D images. We varied the
time-frequency decomposition strategy, alternating between Short-Time Fourier Transform (STFT)
and wavelet decomposition, specifically employing the Daubechies db4 wavelet (Lee et al., 2019).
This methodology efficiently leveraged the structural properties of multi-channel EEG data. All neu-
ral networks had a similar parameter count (1.1-1.2 M) and were trained with the Adam optimizer, a
learning rate of 3e − 4, and common specifications including early stopping, batch sizing, gradient
clipping, and a max epoch limit. This diverse set of methods aimed to offer a detailed comparison
between methods, underscoring the importance of spatiotemporal modeling in EEG decoding.

3 RESULTS

Our model’s effectiveness is assessed using a range of metrics: top-5, top-3, top-1 accuracy, F1
score, and normalized kappa score. Our approach, which combines a CNN on time-frequency de-
compositions (TFD) with CLIP-based knowledge distillation, outperforms all baselines as well as
the same network without distillation, as detailed Table 2. Our results reveal several trends: classi-
cal machine learning techniques using averaged or PCA-reduced EEG data show near chance-level
accuracy, highlighting the limitations of hand-engineered features in decoding complex visual stim-
uli. In contrast, deep learning models, particularly those handling spatiotemporal EEG TFDs, dis-
play markedly better accuracy. CNNs processing raw EEG time series or 2D multi-channel EEG
representations, especially those utilizing TFDs from wavelet-transformed or spectrogram images,
achieve over 85% top-5 accuracy, demonstrating the efficacy of computer vision techniques in EEG
signal processing. Deep learning models considerably outperform classical methods in top-3 and
top-5 accuracy metrics. Top CNNs achieve over 75% top-3 accuracy, showing that the true label
often falls within the top three predictions. This indicates the proficiency of 2D convolutions in ex-
tracting semantic categories from EEG, with a noticeable performance disparity compared to LSTM
networks. Although there are challenges in precisely mapping EEG to specific image labels due
to the intrinsic noise nature of EEG data and dataset size, these models reliably identify broader
categories, proving EEG’s viability for visual concept decoding. Fig 2 presents qualitative examples
of predicted and reconstructed images. While there are occasional minor category errors, the model
effectively discerns the overarching semantic category and creates corresponding reconstructions,
confirming its capability for accurate semantic interpretation from EEG patterns.
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4 DISCUSSION

This study aimed to decode and reconstruct visual representations from EEG-recorded brain activity,
using deep convolutional neural networks trained on EEG-derived TFD with CLIP-based knowledge
distillation. The model demonstrated reliability across most participants but faced challenges dis-
tinguishing closely related classes. This approach’s potential for non-invasive EEG recordings in
brain-computer interfaces is significant, suggesting possible exploitation for artificial vision and in-
novative neurofeedback experiments (Enriquez-Geppert et al., 2017). However, limitations exist,
primarily due to the macroscopic perspective and limited spatial resolution of EEG signals. In the
future, integrating EEG with higher-resolution imaging techniques, like fMRI, could enhance image
reconstruction detail (Ferrante et al., 2023; Ozcelik & VanRullen, 2023). The model’s current limita-
tions include its optimization for a specific set of categories and variability in decoding performance
across participants and sessions. Ethical considerations in EEG decoding, particularly around per-
sonal perceptual data, are addressed by creating subject-specific models, ensuring consensual and
individualized decoding. The study also introduces a training methodology suitable for real-time
feedback in models tailored to individuals, with minimal inference time on advanced hardware. Fu-
ture advancements in deep learning and generative models are expected to further enhance EEG
decoding and reconstruction capabilities.

5 CONCLUSIONS

In our study, we showcased the capability of deep neural networks combined with generative dif-
fusion models to reconstruct visual experiences from non-invasive EEG recordings. We introduced
a novel teacher-student framework where two networks process different yet related data (images
and EEG) for the same classification task forcing a representation alignment and we observed that
this approach yielded to superior performance in decoding and realistic image reconstruction when
combined with a powerful image prior like a pretrained latent diffusion model.
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