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ABSTRACT

Vertical Federated Learning (VFL) is a crucial paradigm for training machine
learning models on feature-partitioned, distributed data. However, due to privacy
restrictions, few public real-world VFL datasets exist for algorithm evaluation,
and these represent a limited array of feature distributions. Existing benchmarks
often resort to synthetic datasets, derived from arbitrary feature splits from a global
set, which only capture a subset of feature distributions, leading to inadequate
algorithm performance assessment. This paper addresses these shortcomings
by introducing two key factors affecting VFL performance - feature importance
and feature correlation - and proposing associated evaluation metrics and dataset
splitting methods. Additionally, we introduce a real VFL dataset to address the
deficit in image-image VFL scenarios. Our comprehensive evaluation of cutting-
edge VFL algorithms provides valuable insights for future research in the field.

1 INTRODUCTION

Federated learning (Konečnỳ et al., 2016) is acknowledged for enabling model training on distributed
data with enhanced privacy. In this study, we delve into the less explored vertical federated learn-
ing (VFL), where each party has a feature subset, aligning with a general definition of federated
learning (Li et al., 2021a) that includes privacy-preserving collaborative learning like assisted learn-
ing (Diao et al., 2022) and split learning (Vepakomma et al., 2018). The VFL application, depicted in
Figure 1a, involves an initial development phase using synthetic or real-world benchmarks, followed
by deployment in actual federated environments upon validation.

Evaluating VFL algorithms is challenging due to the inherent confidentiality of VFL data (Liu
et al., 2022). The scope of party imbalance and correlation in existing real VFL datasets, termed
the real scope, is limited. Datasets in the OARF benchmark (Hu et al., 2022), FedAds (Wei et al.,
2023), NUS-WIDE (Chua et al., 2009), and Vehicle (Duarte and Hu, 2004), predominantly represent
scenarios where parties are balanced and exhibit weak correlations, as depicted in Figure 1b.

To address the constraints inherent in the real scope, many VFL benchmarks (Hu et al., 2022; He et al.,
2020; Caldas et al., 2018) utilize synthetic datasets. This evaluation scope, termed uniform scope,
represent the imbalance-correlation scope under an equal distribution of features among parties, either
randomly or manually. The uniform scope, though commonly adopted in VFL experiments (Diao
et al., 2022; Castiglia et al., 2022), confines the evaluation to scenarios featuring balanced, strongly
correlated parties according to Figure 1b. Another critical limitation is the misalignment between the
uniform scope and real scope, underscoring the imperative for a diverse and realistic VFL benchmark.

Constructing a systematic synthetic VFL benchmark necessitates pinpointing the key factors affecting
VFL algorithm performance. Existing synthetic benchmarks for non-i.i.d. horizontal federated
learning (HFL), such as NIID-Bench (Li et al., 2022a), fall short for VFL due to inherent assumptions
about feature space and instance significance. Specifically, while HFL benchmarks typically assume
independent and uniformly significant instances, this does not hold in VFL where features exhibit
intrinsic correlations and differing importances. Furthermore, HFL benchmarks posit that all parties
share the same feature space, a premise misaligned with VFL’s distributed feature paradigm. This
delineates the unique analytical challenges inherent to synthetic VFL benchmarks.
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(a) Pipeline of VFL (b) Estimated scope of VFL datasets

Figure 1: Overview of existing VFL piplines and datasets and the estimated scope of VFL datasets

Given these limitations, our statistical analysis of supervised VFL tasks identifies party importance and
correlation as two crucial factors influencing target probability distributions in synthetic VFL datasets
derived from the same global dataset. Accordingly, we propose VertiBench, a comprehensive VFL
benchmark featuring novel feature-splitting methods for synthetic dataset generation. VertiBench
offers three primary benefits: (1) it generally encompasses the uniform scope; (2) it effectively
emulates the real scope, as evidenced by comparable performance on VertiBench-synthetic datasets;
and (3) it introduces the capability to evaluate other scenarios that have not been explored in the
previous studies, e.g. imbalanced feature split, broadening the scope of VFL evaluation.

Our primary contributions include: (1) Synthetic dataset generation methods with varied party
importance and correlation, capturing a broad scope of VFL scenarios. (2) Novel real-world image-
to-image VFL dataset Satellite. (3) Techniques to evaluate the party importance and correlation
of real-world VFL datasets, enabling feature split comparison with synthetic VFL datasets. (4)
Comprehensive benchmarks of mainstream cutting-edge VFL algorithms, providing key insights.
For example, we demonstrate the scalability of VFL algorithms, challenging prior assumptions
about VFL scaling difficulties (Hu et al., 2022), and emphasize the challenges of communication
efficiency in VFL datasets across varying imbalance levels. The VertiBench source code is available
on GitHub (Wu et al., 2023a), with data splitting tools installable from PyPI (Wu et al., 2023b). The
pre-split dataset is accessible in (Anonymized, 2023).

2 EVALUATE VFL DATASETS

In this section, our objective is to investigate the primary factors influencing VFL performance when
generating synthetic VFL datasets from a fixed global dataset. Additionally, we explore methods to
efficiently estimate these factors, guiding the subsequent feature split.

2.1 FACTORS THAT AFFECT VFL PERFORMANCE

Suppose there are K parties. Denote the data on party Pk as a random vector Xk (1 ≤ k ≤ K).
Denote the label as a random variable y. A supervised learning algorithm maximizes the likelihood
function where hypothesis h represents models and parameters, i.e., L(y|XK , ...,X1;h). These
supervised learning algorithms estimate the probability mass function in Eq. 1. The proof of
Proposition 1 is provided in Appendix A.
Proposition 1. The probability mass function can be written as

logP(y|XK , ...,X1) =
∑K

k=1 log
P(y|Xk,...,X1)

P(y|Xk−1,...,X1)
+ logP(y) (1)

In VFL, P(y) is the same for all the parties. The skewness among K parties is determined by K ratios
of distributions. Interestingly, this ratio quantifies the divergence between two marginal probability
distributions of y - one inclusive of Xk and the other exclusive of Xk. Essentially, the ratio estimates
the impact on the global distribution when the features of a single party are excluded. This can
be interpreted as the importance of a given party. Proposition 1 applies regardless of the order of
X1, . . . ,Xk. Shapley value, emphasizing feature independence, aids in precisely evaluating party
importance in vertical federated learning, as demonstrated in (Wang et al., 2019; Han et al., 2021).
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In another aspect, the ratio P(y|Xk,...,X1)
P(y|Xk−1,...,X1)

is determined by the correlation between Xk and
X1, . . . ,Xk−1. In cases where the independence assumption underlying the Shapley value is invali-
dated, assessing each party’s impact on the global distribution becomes more accurate when based on
feature correlation.

We identify feature importance and correlation as pivotal factors influencing VFL algorithm per-
formance. For datasets with nearly independent features, the low inter-party correlation makes
correlation-based splits less meaningful, suggesting the superiority of importance-based feature
splits. Conversely, in datasets with highly correlated features, assessing individual feature impor-
tance becomes impractical, making correlation-based splits more suitable due to varying inter-party
correlations.

Importance and correlation are treated as orthogonal evaluation factors applicable in distinct scenarios.
While there may be an intrinsic link between them, our experiments indicate that focusing on one
factor at a time yields explainable results reflective of real-world performance. As discussed in
Appendix H, the interplay between importance and correlation can be complex. A joint optimization
for both factors might be computationally intensive and less explainable, while providing limited
additional insights. The subsequent sections will introduce our approach to evaluate these two factors
and generating synthetic datasets based on each factor accordingly.

2.2 EVALUATE PARTY IMPORTANCE

To assess the importance for each party, we sum the importance of its features. While numerous
methods to evaluate feature importance can be adopted in VertiBench, this study primarily focuses on
two approaches: 1) Shapley Value: Feature importance is determined using Shapley values, efficiently
estimated by evaluating the performance of a trained XGBoost (Chen and Guestrin, 2016) on random
subsets. 2) Shapley-CMI (Han et al., 2021): This approach, which does not rely on specific models,
estimates the importance of each feature based on the Shapley-CMI applied to the global dataset.
Both methods yield consistent and reasonable estimates of party importance.

2.3 EVALUATE PARTY CORRELATION

The task of efficiently evaluating correlation among two groups of features is challenging despite
well-studied individual feature correlation (Myers and Sirois, 2004; De Winter et al., 2016). The
Shapley-Taylor index, proposed for evaluating correlation between feature sets (Sundararajan et al.,
2020), is computationally intensive (NP-hard), and unsuitable for high-dimensional datasets. The
determinant of the correlation matrix (Wang and Zheng, 2014) efficiently estimates inter-party
correlation but is over-sensitive to linearly correlated features, impeding its use in feature partitioning.
A more refined metric - the multi-way correlation coefficient (mcor) (Taylor, 2020), addresses this,
but like the determinant, it struggles with unequal feature numbers across parties, a typical VFL
scenario, due to the assumption of a square correlation matrix.

Given the limitations of existing metrics (Taylor, 2020; Wang and Zheng, 2014), we propose a novel
metric to examine the correlation when the parties involved possess unequal numbers of features.
Our approach hinges on the use of the standard variance of the singular values of the correlation
matrix. This serves as an efficient measure of the overall correlation between two parties. Since the
feature-wise correlation is an orthogonal research area, we selected Spearman rank correlation (Zar,
2005) due to its capability to handle non-linear correlation.

To elaborate further, we denote the column-wise correlation matrix between two matrices, Xi and Xj ,
as cor(Xi,Xj). As a result, we formally define the correlation between two entities, Xi ∈ Rn×mi

and Xj ∈ Rn×mj , in terms of their respective parties as Eq. 2.

Pcor(Xi,Xj) :=
1√
d

√
1

d−1

∑d
t=1 (σt(cor(Xi,Xj))− σ)

2
, d = min(mi,mj) (2)

In this equation, σi(·) means the i-th singular value of a matrix, while σ stands for their mean
value. Proposition 2 states that Pcor is equivalent to mcor for inner-party correlation (see Appendix A
for proof). Experiments detailed in Appendix D.1 reveal that Pcor exhibits trends analogous to
mcor (Taylor, 2020) when assessing inter-party correlation between equal number of features.
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Proposition 2. For any real matrix X, Pcor(X,X) = mcor(X,X)

The singular values of a correlation matrix, Pcor, represent the magnitudes of its ellipsoid’s semi-axes,
indicating the degree of dependence among features. The standard deviation of these singular values
reflects the distribution of dependence across different axes. A notably large singular value in a
specific axis (Figure 2c) suggests a high concentration of dependence. For instance, if there’s only
one nonzero singular value, it implies that all features are perfectly correlated with a single feature.
Conversely, if the singular values are uniformly distributed such as Figure 2a (indicated by a small
standard deviation), it denotes less concentrated feature correlations. Therefore, the standard deviation
of singular values serves as a measure of the dataset’s proximity to perfect correlation.

Proposition 3 states that Pcor, like mcor, spans a range from 0 to 1, even when assessing inter-party
correlation. A Pcor value of 1 signifies perfect correlation between X1 and X2, while a value of 0
indicates their independence.
Proposition 3. For any two real matrices X1 and X2, Pcor(X1,X2) ∈ [0, 1]

It is important to note that the absolute value of Pcor alone does not fully capture inter-party correlation.
For instance, when Xi and Xj are two parties both containing the same set of independent features,
Pcor(Xi,Xj) yields a value of 0, the same as the Pcor between two independent parties. Despite
the same Pcor value, these scenarios intuitively differ in their levels of inter-party correlation. This
discrepancy arises from overlooking the inner-party correlation of Xi and Xj . Typically, parties with
highly correlated features tend to exhibit higher Pcor values with other parties.

To accurately measure the correlation between Xi and Xj , we evaluate how the shift towards perfect
correlation varies when Xi is replaced by Xj . This is captured by the relative change in Pcor, denoted
as Pcor(Xi,Xj)− Pcor(Xi,Xi). In the perspective of variance analysis (Kruskal and Wallis, 1952),
this difference quantifies the degree to which the standard deviation Pcor(Xi,Xj) is explained by
inter-party factors, controlling the contribution of inner-party correlations. The overall inter-party
correlation, denoted as Icor, is described as the mean party-wise correlation across all distinct party
pairs. Formally,

Icor(X1, . . . ,XK) := 1
K(K−1)

∑K
i=1

∑K
j=1,j ̸=i (Pcor(Xi,Xj)− Pcor(Xi,Xi)). (3)

(a) x, y, z ∼ U(0, 1) (b) x, y ∼ U(0, 1), z = −x2 − y2 (c) x ∼ U(0, 1), y = 2x, z = x+1

Figure 2: Examples of Pcor values on different levels of correlation. U means uniform distribution.
Arrow direction indicates right singular vector orientation, arrow scale represents singular values.

Icor exhibits notable properties both theoretically and empirically. Theoretically, as demonstrated in
Theorem 1 (see Appendix A for proof), optimizing Icor yields ideal feature splits in optimal scenarios.
Specifically, in datasets comprising two independent but internally perfectly correlated feature
sets, Icor reaches its minimum when each party exclusively possesses one feature set and attains its
maximum when each party equally shares half of the features from both sets. Empirically, we evaluate
the link between inter-party correlation and Icor in complex, real-world datasets (Appendix D). These
empirical observations align with theoretical insights, confirming Icor’s capability in analyzing
intricate data correlations.
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Theorem 1. Consider a global dataset X comprising two independent datasets D1,D2 ∈ Rn×m,
each of the same dimension. Independence implies that for any feature a

(1)
i from D1 and any

feature a
(2)
j from D2, where i, j ∈ [1,m], the correlation Cor

(
a
(1)
i , a

(2)
j

)
= 0. Furthermore,

assume within D1 and D2, all features are perfectly correlated, such that for all pairs of distinct
features a(1)i , a

(1)
j in D1 and a

(2)
i , a

(2)
j in D2, with i, j ∈ [1,m] and i ̸= j, the correlations satisfy

Cor
(
a
(1)
i , a

(1)
j

)
= 1 and Cor

(
a
(2)
i , a

(2)
j

)
= 1 respectively. When the features of X are divided

equally into two subsets, X1 and X2, such that each subset contains m/2 features, the overall
inter-party correlation Icor(X1,X2) satisfies

Icor(X1,X2) ∈

[
− m√

m(m− 1)
, 0

]
.

The lower bound occurs if and only if X1 comprises all features of either D1 or D2, with X2

containing the remaining features. The upper bound occurs if and only if X1 holds m features from
both D1 and D2, with X2 holding the remaining m features from D1 and D2.

3 SPLIT SYNTHETIC VFL DATASETS

This section aims to develop algorithms to split features according to two key factors: importance
and correlation. These algorithms should allow users to adjust the party importance and correlation
of synthetic VFL datasets by simply modulating two parameters: α and β. The intended mapping
should meet two criteria: (1) The scope of α and β should encompass a broad spectrum of feature
splits, inclusive of both real splits and random splits. (2) When two global datasets bear similarities,
synthetic VFL datasets derived from them using identical α and β parameters should yield similar
VFL algorithm behaviors. We provide both theoretical and empirical validation for criteria (1) in this
section, whereas criteria (2) is substantiated through experiments in Section 4.4.

3.1 SPLIT BY PARTY IMPORTANCE

In light of the computational expense incurred by the Shapley value method, an alternative and more
efficient strategy is necessary to perform feature splits based on importance. With all parties exhibiting
symmetry in the context of X, varying the importance among parties essentially translates to varying
the variance of the importance among them. Assuming each party Pi possesses an importance factor
αi > 0, we propose the implementation of the Dirichlet distribution parameterized by α = {αi}Ki=1
for feature splitting. This approach ensures two beneficial properties post-split: (1) a larger αi

guarantees a higher expected importance for Pi, and (2) a smaller ∥{αi}Ki=1∥2 assures a greater
variance in the importance among parties.

More specifically, we propose a feature splitting method based on feature importance. After initializ-
ing local datasets for each party, a series of probabilities r1, . . . , rK s.t.

∑K
i=1 ri = 1 is sampled from

a Dirichlet distribution Dir(α1, . . . , αK). Each feature is randomly allocated to a party Pk, selected
based on the probabilities rk. To accommodate algorithms that fail when faced with empty features,
we can ensure each party is initially provided with a random feature before the algorithm is set in
motion. Detailed formalization of this algorithm can be found in Appendix C.
Theorem 2. Consider a feature index set A = {1, 2, ...,m} and a characteristic function v :
2A → R such that v(∅) = 0. Let ϕj(v) denote the importance of the j-th feature on v such that∑m

j=1 ϕ(j) = v(A). Assume that the indices in A are randomly distributed to K parties with
probabilities r1, ..., rK ∼ Dir(α1, . . . , αK). Let Zi be the sum of feature importance for party i.
Then, we have ∀i ∈ [1,K] and E[Zi] ∝ αi.

The proof of Theorem 2 can be found in Appendix A, resembling the Dirichlet-multinomial mean
proof but focusing on sum importance instead of feature counts. The metric of importance, ϕj(v),
comprises the Shapley value and the recently proposed Shapley-CMI (Han et al., 2021). Theorem 2
asserts that the expected cumulative importance E[Zi] of each party is proportional to the importance
parameter αi. The Dirichlet-based split method ensures that: (1) a larger value of αi leads to a higher
expected value of ri, thus a higher expected value of party importance, and (2) a smaller value of
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∥{αi}Ki=1∥2 results in a larger variance in ri, as well as more imbalanced importance among parties.
Both properties are empirically validated in Appendix D.2. Hence, the proposed method naturally
aligns with the requirements for feature importance. With α = 1, Dirichlet-split mirrors a uniform
distribution, incorporating random splits within the uniform scope. Even for manual equal splits
lacking consistent criteria, a large α in Dirichlet-split can encapsulate them by yielding nearly equal
feature distribution among parties.

3.2 SPLIT BY PARTY CORRELATION

This correlation-based feature-split algorithm (Alg. 1) is designed to allocate features across multiple
parties based on a given correlation parameter β. The algorithm’s operation is premised on a defined
number of features for each party, represented as m1, . . . ,mK . Commencing with the initialization of
a column permutation matrix P to an identity matrix (line 1), the algorithm proceeds to define a score
function, f(P;X), which represents the overall correlation Icor after the features are permutated by
P (line 2). Subsequently, the algorithm determines the range of the score function (lines 3-4). This
forms the basis for calculating the target correlation f∗(X;β), which is a linear interpolation between
the lower and upper bounds controlled by the correlation index β (line 5). Next, the algorithm locates
the optimal permutation matrix P∗ by solving an permutation-based optimization problem. Notably,
we employ the Biased Random-Key Genetic Algorithm (BRKGA) (Gonçalves and Resende, 2011)
for this purpose. The final step of the algorithm splits the features according to the derived optimal
permutation and the pre-set number of features for each party (lines 6-7).

Algorithm 1: Feature Splitting by Correlation
Input: Global dataset X ∈ Rn×m, correlation index β, number of features m1, . . . ,mK

Output: Local dataasets X1, . . . ,XK

1 P← I; /* Initiate permutation matrix */
2 f(P;X) := Icor(XP

1 , . . . ,X
P
K) s.t. XP

1 , . . . ,X
P
K ← split features of XP by m1, . . . ,mK ;

3 fmin(X) = minP f(P;X); /* Calculate lower bound */
4 fmax(X) = maxP f(P;X); /* Calculate upper bound */
5 f∗(X;β)← (1− β)fmin(X) + βfmax(X); /* Calculate target correlation

*/
6 P∗ ← argminP |f(P;X)− f∗(X;β)|; /* Find the permutation matrix */
7 XP

1 , . . . ,X
P
K ← split features of XP∗ by m1, . . . ,mK ;

8 return X1, . . . ,XK

The efficiency of the optimization process, involving numerous Icor invocations, is crucial. For
smaller datasets, Singular Value Decomposition (SVD) (Baker, 2005) is used for direct singular value
computation. However, for high-dimensional datasets, we employ truncated SVD (Hansen, 1990)
estimates the largest top-dt singular values, assuming the remainder as zero for standard variance
calculation. The ablation study of dt is included in Appendix G.6. Our experiments, detailed in
Appendix D.2, confirm the efficacy of both split methods.

3.3 COMPARE FEATURE SPLIT ACROSS GLOBAL DATASETS

The metrics presented in Section 2 facilitate meaningful comparisons of feature splits within the
same global datasets but fall short when comparing across different datasets. To bridge this gap and
enable a comparison between real and synthetic VFL datasets, we introduce methods to map these
metrics to two values: α and β, where α indicates party balance and β indicates party correlation.
Consequently, this mapping enables a direct comparison between feature splits originating from real
and synthetic VFL datasets, as demonstrated in Figure 1b.

To estimate α, the importance of each party is calculated by Shapley values. These importance
are then normalized and treated as Dirichlet parameters αi for each party Pi, in line with Theo-
rem 2. To approximate the scale of the Dirichlet parameters and align them with the generation of
synthetic datasets, we find a symmetric Dirichlet distribution Dir(α) that has the same variance as
Dir(α1, . . . , αK), as given in Proposition 4. This value of α reflects the variance of party importance.
The proof is provided in Appendix A.
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Proposition 4. Given a Dirichlet distribution Dir(α1, . . . , αK) with mean variance σ, symmetric
Dirichlet distribution Dir(α) that has the same mean variance σ if α = K−1−K2σ

K3σ .

To estimate β, we start by computing the potential minimum and maximum values of Icor by shuffling
the features among parties, denoted as Icormin, Icormax. Next, we estimate the Icor of the actual dataset,
Icorreal, and derive the β value using β = min

{
max

{
Icorreal−Icormin
Icormax−Icormin

, 0
}
, 1
}

. It is important to note
that in real-world scenarios, Icorreal might fall slightly outside the range of Icormin, Icormax due to the
constraints of optimization algorithms. To rectify this, we clip the estimated β to ensure β ∈ [0, 1].

4 EXPERIMENT

This section benchmarks cutting-edge VFL algorithms, with a detailed review in Section 4.1. Experi-
mental settings are outlined in Section 4.2, and results regarding VFL accuracy and synthetic-real
correlation are in Sections 4.3 and 4.4, respectively. Further evaluations, such as real communication
cost, scalability, training time, and real dataset performance, are in Appendix G. Each experiment
elucidates results and provides relevant insights, highlighting (1) the performance-communication
tradeoff of NN-based and boosting-based methods, (2) the performance similarity between synthetic
and real VFL datasets under the same α, β, and (3) the scalability potential of VFL algorithms.

4.1 REVIEW OF VFL ALGORITHMS

This section reviews existing VFL algorithms, with a focus on accuracy, efficiency, and communi-
cation cost. VertiBench concentrates on common supervised learning tasks such as classification
and regression within synchronized parties, summarized in Table 1. Notably, this benchmark ex-
cludes studies exploring other aspects (Jin et al., 2021; Qi et al., 2022; Jiang et al., 2022) and other
tasks (Chang et al., 2020; Li et al., 2021b; Chen and Zhang, 2022; He et al., 2022; Li et al., 2022b).
Since most VFL algorithms presume exact inter-party data linking, we adopt this approach in Vert-
iBench, despite recent contrary findings (Wu et al., 2022a; Nock et al., 2021) that this assumption may
not be true. We refer to parties with and without labels as primary and secondary parties respectively.

Table 1: Summary of existing VFL algorithms

Category Model1 Algorithm Contribution Reference Data2 Feature3

Ensemble-
based Any AL Accuracy (Xian et al., 2020) Syn Manual

GAL Accuracy (Diao et al., 2022) Syn Manual

Split-
based

NN
SplitNN Accuracy (Vepakomma et al., 2018) Syn N/A
C-VFL Communication (Castiglia et al., 2022) Syn Manual

BlindFL Efficiency (Fu et al., 2022b) Syn Manual
FedOnce Communication (Wu et al., 2022b) Syn Random

GBDT

SecureBoost Accuracy (Cheng et al., 2021) Syn Manual
Pivot Accuracy (Wu et al., 2020) Syn Manual

FedTree Accuracy, Efficiency (Li et al., 2023) Syn Random
VF2Boost Efficiency (Fu et al., 2021) Syn Manual

RF Fed-Forest Communication (Liu et al., 2020) Syn Random
1 Abbreviations: NN - neural network; GBDT - gradient boosting decision trees; RF - random forest; Any -
model-agnostic.
2 Dataset in experiments: Syn - synthetic datasets partitioned from global datasets.
3 Datasets used in the experiments: Manual - features manually split without specific reasons; Random -
features randomly split without explanation; N/A - no VFL experiments conducted.

Most of the existing VFL methods can be categorized into ensemble-based and split-based. Ensemble-
based methods have each party maintain a full model for local prediction and use collaborative
ensemble techniques during training. Conversely, split-based methods delegate each party with a
portion of the model, representing different inference stages. A comprehensive comparison is in
Appendix B. In this paper, we concentrate on the primary types of VFL, acknowledging that there
are various subtypes as identified in (Liu et al., 2022). Exploring these subtypes in depth will be an
objective of our future research efforts.
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In our experiments, we evaluate various VFL algorithms, including split-NN-based (e.g., SplitNN, C-
VFL, FedOnce), split-GBDT-based (FedTree), and ensemble-based (GAL). For fairness, evaluations
exclude encryption or noise. Noting minor variances among split-GBDT-based methods such as
FedTree and SecureBoost, FedTree is used as a representative in our experiments.

4.2 EXPERIMENTAL SETTINGS

This subsection includes the datasets and training method. Detailed dataset specifications, environ-
ments, and hyperparameter settings can be found in Appendix F.

Datasets. Our experiments utilize 11 datasets: nine centralized ones (covtype (Blackard,
1998), msd (Bertin-Mahieux, 2011), gisette (Guyon et al., 2008), realsim (Andrew,
2015), epsilon (Guo-Xun et al., 2008), letter (Slate, 1991), radar (Khosravi, 2020),
MNIST (Deng, 2012), CIFAR10 (Krizhevsky and Hinton, 2009)), and two real-world VFL datasets
(NUS-WIDE (Chua et al., 2009), Vehicle (Duarte and Hu, 2004)), with detailed descriptions
available in Appendix F. The msd dataset is used for regression tasks, while the others cater to
classification tasks. Each dataset is partitioned into 80% training and 20% testing instances except
NUS-WIDE, MNIST, and CIFAR10 with pre-defined test set. The datasets’ features are distributed
among multiple parties (typically four), split based on party importance (α) or correlation (β). In the
correlation-based split, each party is assigned an equal number of features.

Training. For classification tasks, we use accuracy as the evaluation metric, while regression tasks
are evaluated using the Root Mean Square Error (RMSE). To ensure the reliability of our results, we
conduct five runs for each algorithm, using seeds ranging from 0 to 4 to randomly split the datasets
for each run, and then compute their mean metrics and standard deviation. Detailed hyper-parameter
settings for each algorithms are provided in Appendix F.

4.3 VFL ACCURACY

In this subsection, we assess the impact on the performance of VFL algorithms when varying α and
β. Our analysis includes all the three VFL categories in Table 1. The performance is summarized in
Figure 3 and detailed in Table 9 in Appendix G. The result on msd dataset provides similar insights
to others, thus only included in Table 9. From our exploration, we can draw three key observations.

Split parameters α and β significantly affect VFL algorithm performance, depending on the
algorithm and dataset. SplitNN and FedTree show stable performance across various α and β
settings. In contrast, C-VFL demonstrates notable performance fluctuations: up to 10% on epsilon
and 40% on letter with varying α. GAL performs better on imbalanced datasets (affected by α by
8% on letter and radar, 2-5% on others) and is minimally influenced by β. FedOnce, favoring
balanced and highly correlated datasets, is affected by α (5-10% on letter, gisette, epsilon)
and by β (1-3% on covtype, epsilon). These findings highlight the need for comprehensive
evaluations across a range of α and β to determine VFL algorithms’ robustness.

SplitNN often leads in accuracy across most datasets; however, the performance of split-
GBDT-based and ensemble-based methods can vary significantly depending on the dataset. As
anticipated, given its iterative transmission of substantial representations and gradients, SplitNN often
outperforms other methods across a majority of datasets. Comparatively, the performance of FedTree
and GAL is dataset-dependent. FedTree is well-suited to high-dimensional, smaller datasets like
gisette, but struggles with larger datasets like epsilon and covtype. GAL, on the other hand,
performs admirably with binary classification and regression tasks, though its performance drops
significantly as the number of classes increases, as observed on the covtype and letter dataset.

The compression of SplitNN renders them particularly affected by party imbalance. C-VFL,
modelled after SplitNN, exhibits the least accuracy among tested baselines due to its compression
approach. Moreover, C-VFL exhibits marked sensitivity to the imbalance level, α. Specifically, at
α = 0.1, its accuracy on datasets like letter and epsilon scarcely surpasses random guessing.
However, C-VFL thrives in highly imbalanced split of radar dataset. This data-dependent behavior
underscores an urgent need to refine compression techniques for VFL tailored to varying imbalances.
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Figure 3: Accuracy of VFL algorithms on different datasets varying imbalance and correlation

4.4 PERFORMANCE CORRELATION: VERTIBENCH SCOPE VS. REAL SCOPE

In assessing the performance correlation between VertiBench-synthetic and real VFL datasets, we
use derived α and β values of NUS-WIDE and Vehicle (Section 3.3) to generate comparable
synthetic datasets. To evaluate the relative performance of each algorithm, we calculate the accuracy
differences between Vehicle-synthetic and NUS-WIDE-synthetic datasets for each algorithm and
compare with real dataset accuracy differences, with further details in Appendix G.8.

Our experiment reveals a positive correlation between relative algorithm performance on synthetic
datasets with matching α and β, and their performance on real VFL datasets. This indicates that, under
the same α or β, higher mean accuracy on synthetic datasets typically implies better performance on
real VFL datasets, thus affirming the relevance of VertiBench-synthetic datasets in approximating
real VFL performance.
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Figure 4: Mean accuracy differences: synthetic datasets vs. real datasets

5 CONCLUSION

We introduce VertiBench, a refined benchmarking tool for Vertical Federated Learning (VFL), adept at
generating a variety of synthetic VFL datasets from a single global dataset. The scope of VertiBench
extends beyond the confines of existing uniform and real scopes, shedding light on VFL scenarios
previously unexplored. Our findings underscore performance variations under diverse data partitions,
emphasizing the need to evaluate VFL algorithms across varied feature splits for enhanced insights
into their real-world applicability.
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6 REPRODUCIBILITY STATEMENT

The code for this study is accessible via a GitHub repository (Wu et al., 2023a), accompanied by a
README.md file that provides guidelines for environment setup and result reproduction. Compre-
hensive proofs of all theoretical results are meticulously detailed in Appendix A. Further, Appendix F
offers a detailed description of dataset specifications and hyperparameter configurations.
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A PROOF

Proposition 1. The probability mass function can be written as

logP(y|XK , ..., X1) =

K∑
i=1

log
P(y|Xk, ..., X1)

P(y|Xk−1, ..., X1)
+ logP(y) (4)
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Proof. According to the definition of conditional probability, this marginal distribution can be written
as

P(y|XK , ..., X1)

=
P(y,XK , ..., X1)

P(XK , ..., X1)

=
P(y)P(X1|y)

∏K
k=2 P(Xk|y,Xk−1, ..., X1)

P(X1)
∏K

k=2 P(Xk|Xk−1, ..., X1)

= P(y)
P(X1|y)
P(X1)

K∏
k=2

P(Xk|y,Xk−1, ..., X1)

P(Xk|Xk−1, ..., X1)

(5)

Denoting

ck = log
P(Xk|y,Xk−1, ..., X1)

P(Xk|Xk−1, ..., X1)
, c1 = log

P(X1|y)
P(X1)

(6)

Adding logarithm on both sides, we have

logP(y|XK , ..., X1) =

K∑
i=1

log ci + logP(y) (7)

Furthermore, we have

ck =
P(Xk|y,Xk−1, ..., X1)

P(Xk|Xk−1, ..., X1)

=
P(Xk, y|Xk−1, ..., X1)

P(Xk|Xk−1, ..., X1)P(y|Xk−1, ..., X)

=
P(y|Xk, ..., X1)

P(y|Xk−1, ..., X1)

(8)

Combining (6) and (8), we have

logP(y|XK , ..., X1) =

K∑
i=1

log
P(y|Xk, ..., X1)

P(y|Xk−1, ..., X1)
+ logP(y) (9)

Proposition 2. For any real matrix X, Pcor(X,X) = mcor(X,X)

Proof. In the context of the correlation matrix of X, Pcor measures the standard deviation of singular
values, while mcor (Taylor, 2020) measures the standard deviation of eigenvalues. Given that the
correlation matrix is symmetric positive semi-definite, each eigenvalue corresponds to a singular
value, resulting in Pcor equating to mcor.

Proposition 3. For any two real matrices X1 and X2, Pcor(X1,X2) ∈ [0, 1]

Proof. Denote the correlation matrix between X1 and X2 as C, the singular values of C as Σ =
[σ1, . . . , σd]. Then

Pcor(X1,X2) =

√
1

d
Var(Σ) =

√
1

d
(E(Σ2)− E2(Σ)) (10)

Thus,

0 ≤ Pcor(X1,X2) ≤
√

1

d
E(Σ2) (11)
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Given that every element in the correlation matrix is in range [−1, 1]

E(Σ2) = tr(CTC)/d ≤ d2/d ≤ d (12)

Thus, Pcor(X1,X2) ∈ [0, 1]

Theorem 1. Consider a global dataset X comprising two independent datasets D1,D2 ∈ Rn×m,
each of the same dimension. Independence implies that for any feature a

(1)
i from D1 and any

feature a
(2)
j from D2, where i, j ∈ [1,m], the correlation Cor

(
a
(1)
i , a

(2)
j

)
= 0. Furthermore,

assume within D1 and D2, all features are perfectly correlated, such that for all pairs of distinct
features a(1)i , a

(1)
j in D1 and a

(2)
i , a

(2)
j in D2, with i, j ∈ [1,m] and i ̸= j, the correlations satisfy

Cor
(
a
(1)
i , a

(1)
j

)
= 1 and Cor

(
a
(2)
i , a

(2)
j

)
= 1 respectively. When the features of X are divided

equally into two subsets, X1 and X2, such that each subset contains m features, the overall inter-party
correlation Icor(X1,X2) satisfies

Icor(X1,X2) ∈

[
− m√

m(m− 1)
, 0

]
.

The lower bound occurs if and only if X1 comprises all features of either D1 or D2, with X2

containing the remaining features. The upper bound occurs if and only if X1 holds m features from
both D1 and D2, with X2 holding the remaining m features from D1 and D2.

Proof. Consider two sets of features, X1 and X2, derived from datasets D1 and D2. Let X1 contain
u features from D1 and v features from D2, where u, v ∈ [0,m] and u + v = m. The set X2

comprises the remaining features, specifically v features from D1 and u features from D2. The
inner-party correlation matrices C11 for X1 and C22 for X2 are given by:

C11 =

[
1u×u 0u×v

0v×u 1v×v

]
,C22 =

[
1v×v 0v×u

0u×v 1u×u

]
(13)

To calculate the Pcor(X1,X1) and Pcor(X2,X2), we need to determine the singular values of C11

and C22. As these are symmetric matrices, their singular values are the absolute values of their
eigenvalues. We will illustrate the process using C11, with C22 following a similar pattern.

The characteristic equation of C11 is ∣∣∣∣Uu×u
11 0u×v

0v×u Vv×v
11

∣∣∣∣ = 0 (14)

where Uu×u
11 and Vv×v

11 are matrices defined as

Uu×u
11 = Vv×v

11 =


1− λ 1 · · · 1
1 1− λ · · · 1
...

...
. . .

...
1 1 · · · 1− λ


Equation 14 simplifies to det(Uu×u

11 )det(Vv×v
11 ) = 0. The roots of det(Uu×u

11 ) = 0 and det(Vv×v
11 ) =

0 are the eigenvalues of 1u×u and 1v×v respectively. Since 1u×u and 1v×v are rank-1 matrices, they
each have only one non-zero eigenvalue, u and v respectively. Therefore, C11 has two non-zero
eigenvalues: u and v. The Pcor for X1 is

Pcor(X1,X1) =
1√
m

√
u2 + v2

m− 1
(15)

A similar calculation for C22 yields:

Pcor(X2,X2) =
1√
m

√
u2 + v2

m− 1
(16)
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Next, we consider the inter-party correlation matrices C12 and C21

C12 =

[
1u×v 0u×u

0v×v 1v×u

]
,C21 = CT

12 =

[
1v×u 0v×v

0u×u 1u×v

]
(17)

Since C21 = CT
12, they share the same singular values. A key principle in linear algebra states that

the singular values of a matrix remain invariant under rotation. This invariance arises because rotating
a matrix is mathematically equivalent to multiplying it by an orthogonal matrix, a process that does
not alter its singular values. By rotating C12 and C21 90 degrees counter-clockwise, we obtain
symmetric matrices C′

12 and C′
21, whose singular values are the absolute values of their eigenvalues.

As C′
12 is a rank-2 matrix, it has two non-zero eigenvalues.

The characteristic equation of C′
12 is ∣∣∣∣Uu×u

12 1u×v

1v×u Vv×v
12

∣∣∣∣ = 0 (18)

where Uu×u
12 and Vv×v

12 are defined as

Uu×u
12 =


−λ 0 · · · 0
0 −λ · · · 0
...

...
. . .

...
0 0 · · · −λ


u×u

,Vv×v
12 =


−λ 0 · · · 0
0 −λ · · · 0
...

...
. . .

...
0 0 · · · −λ


v×v

(19)

Since we focused on non-zero eigenvalues (λ ̸= 0), Uu×u
12 is invertible. According to the property of

block matrices, Eq. 18 is equivalent to

det(Uu×u
12 ) det(Vv×v

12 − 1v×u(U−1
12 )

u×u1u×v) = 0 (20)

Since det(Uu×u
12 ) = (−λ)u, and

det(U−1
12 ) =

∣∣∣∣∣∣∣∣∣
− 1

λ 0 · · · 0
0 − 1

λ · · · 0
...

...
. . .

...
0 0 · · · − 1

λ

∣∣∣∣∣∣∣∣∣ =
(
− 1

λ

)u

(21)

Given λ ̸= 0, Eq. 20 is equivalent to∣∣∣∣∣∣∣∣
u
λ − λ u

λ · · · u
λ

u
λ

u
λ − λ · · · u

λ
...

...
. . .

...
u
λ

u
λ · · · u

λ − λ

∣∣∣∣∣∣∣∣
v×v

= 0 (22)

∣∣∣∣∣∣∣∣
u− λ2 u · · · u

u u− λ2 · · · u
...

...
. . .

...
u u · · · u− λ2

∣∣∣∣∣∣∣∣
v×v

= 0 (23)

The roots of Eq. 23 are the eigenvalues of u · 1v×v, which is a rank-1 matrix. The only non-zero
eigenvalue of u · 1v×v is uv, leading to λ2 = uv. Thus, the two non-zero eigenvalues of C′

12 are
±
√
uv, and the Pcor of C12 is

Pcor(X1,X2) =
1√
m

√
2uv

m− 1
(24)

Combining Eq. 15, 16, and 24, the overall inter-party correlation (Icor) is derived as

Icor(X1,X2) =
1

2
(2 ∗ Pcor(X1,X2)− Pcor(X1,X1)− Pcor(X2,X2))

=
1√
m

√
2uv

m− 1
− 1√

m

√
u2 + v2

m− 1

=
1√

m(m− 1)

(√
2uv −

√
u2 + v2

) (25)
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By the AM-HM inequality, Icor(X1,X2) ≤ 0, with equality if and only if u = v = m
2 .

For the lower bound, given u = m− v, expressing Icor in terms of v gives

Icor(X1,X2) =
1√

m(m− 1)

(√
2mv − 2v2 −

√
2v2 − 2mv +m2

)
(26)

Letting t = 2mv − 2v2(v ∈ [0,m]), it holds t ∈ [0,m2/2]. Consider the function f(t) =
√
t −√

m2 − t, the derivative of f(t) ensures

f ′(t) =
1

2
√
t
+

1

2
√
m2 − t

=

√
m2 − t−

√
t

2
√
t(m2 − t)

≥ 0

(27)

Therefore, f(t) and Icor(X1,X2) are monotonically non-descreasing w.r.t. t. The lower bound of
Icor is reached when t = 0, yielding

Icor(X1,X2) ≥ −
m√

m(m− 1)
(28)

This condition holds if and only if v = 0 or v = m.

Theorem 2. Consider a feature index set A = {1, 2, ...,m} and a characteristic function v :
2A → R such that v(∅) = 0. Let ϕj(v) denote the importance of the j-th feature on v such that∑m

j=1 ϕ(j) = v(A). Assume that the indices in A are randomly distributed to K parties with
probabilities r1, ..., rK ∼ Dir(α1, . . . , αK). Let Zi be the sum of feature importance for party i.
Then, we have ∀i ∈ [1,K] and E[Zi] ∝ αi.

Proof. For each feature j assigned to party i with probability ri, we define the feature importance
Yij as:

Yij =

{
ϕj(v), w.p. ri
0, w.p. 1− ri

(29)

By leveraging the property of linearity of expectation, we find that:

E[Zi] =

m∑
j=1

E[Yij ] =

m∑
j=1

ϕj(v)E[ri] = E[ri]
m∑
j=1

ϕ(j) (30)

Given that
∑m

j=1 ϕ(j) = v(A), we derive:

E[Zi] = E[ri]v(A) (31)

Since the property of Dirichlet distribution asserts that αi ≈ E[ri], it holds

E[Zi] ∝ αiv(A) (32)

Moreover, since v(A) is a constant, it follows that:

E[Zi] ∝ αi (33)

Proposition 4. Given a Dirichlet distribution Dir(α1, . . . , αK) with mean variance σ, symmetric
Dirichlet distribution Dir(α) that has the same mean variance σ if α = K−1−K2σ

K3σ .

Proof. Suppose we have variables X1, . . . , XK following the Dirichlet distribution, denoted as
Dir(α, . . . , α). Leveraging the inherent properties of the Dirichlet distribution, we can formulate the
variance Var(Xi) for all i ∈ [1,K] as

Var(Xi) =
K − 1

K2(Kα+ 1)
(34)
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The mean variance, denoted as σ, can subsequently be articulated in terms of the expected variance,
E[Var(Xi)], as

E[Var(Xi)] =
K − 1

K2(Kα+ 1)
= σ (35)

Recognizing that for a Dirichlet distribution σ > 0 holds, we can transform the above equation to
express α in terms of σ:

α =
K − 1−K2σ

K3σ
(36)

B DETAILS OF VFL ALGORITHMS

In this section, we provide a detailed comparison of the existing VFL algorithms as an extension
of Section 4.1. This section critically reviews current VFL algorithms, with a focus on accuracy,
efficiency, and communication size. VertiBench concentrates on standard supervised learning tasks
such as classification and regression within synchronized parties, summarized in Table 1. Notably,
this benchmark excludes studies exploring different VFL aspects such as privacy (Jin et al., 2021),
fairness (Qi et al., 2022), data pricing (Jiang et al., 2022), asynchronization (Zhang et al., 2021b;
Hu et al., 2019; Zhang et al., 2021a), latency (Fu et al., 2022a), and other tasks like unsupervised
learning (Chang et al., 2020), matrix factorization (Li et al., 2021b), multi-task learning (Chen and
Zhang, 2022), and coreset construction (Huang et al., 2022). While most VFL algorithms presume
accurate inter-party data linking, we adopt this approach in VertiBench, despite recent contrary
findings (Wu et al., 2022a; Nock et al., 2021) that this assumption may not be true.

The mainstream existing methods can be classified into two categories: ensemble-based and split-
based. The distinguishing factor lies in the independent prediction capability of each party. Ensemble-
based methods involve parties each maintaining a full model for local feature prediction, with
collaborative ensemble methods during training, while split-based methods require each party to hold
a partial model forming different inference stages of the full model. Consequently, split-based partial
models cannot perform independent inference. For split-based models, our focus is on advanced
models such as neural networks (NNs) and gradient boosting decision trees (GBDTs) (Chen and
Guestrin, 2016), though VertiBench can accommodate various models (Hardy et al., 2017; Gu et al.,
2020). Split-NN-based models are trained by transferring representations and gradients, while
split-GBDT-models are trained by transferring gradients and histograms. While acknowledging the
existence of various VFL algorithm subtypes (Li et al., 2022b), our current study primarily addresses
the major types of VFL algorithms. The exploration of other subtypes remains a subject for future
research.

B.1 ENSEMBLE-BASED VFL ALGORITHMS

In the ensemble-based VFL algorithms detailed in Algorithm 2, each iteration t commences with the
primary party P1 calculating the residual of the prior global model F t−1(·) (line 3). This is followed
by the communication of residuals rt1 to the secondary parties (P2, . . . , PK ). In the ensuing step (line
5), each secondary party trains a local model f(θti ; ·) on its local data Xi to predict the residuals,
subsequently sending the model parameters θti back to P1. P1 then aggregates these local models
and updates the global model F t(·) (line 6). This process iterates until a convergence criterion is
achieved.

Specifics of residual sharing and model aggregation depend on algorithm design. In AL, residuals are
shared among parties, and models are aggregated through summation. Conversely, in GAL, pseudo
residuals (i.e., gradients) are shared, and models are aggregated through a weighted summation.
Furthermore, the aggregation weight in GAL can updated during the training process.
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Algorithm 2: Outline of ensemble-based VFL algorithms
Input :Number of iterations T ; number of parties K; data and labels of primary party

X1, y, learning rate ηt; data of secondary parties X2, . . . ,XK

Output :Models on K parties f(θ1; ·), . . . , f(θK ; ·)
Algorithms :AL, GAL

Residual(F t−1(X),y) =

{
L(F t−1(X),y) ,AL

∂
∂F t−1(X)L(F

t−1(X),y) ,GAL

Mergek
i=1f(θ

t
1;X1) =

{
ηt

∑k
i=1 f(θ

t
i ;Xi) ,AL

ηt
∑k

i=1 w
t
if(θ

t
i ;Xi) ,GAL

1 Initialize θ01, . . . , θ
0
K ; initialize F 0 ← 0;

2 for t = 1, . . . , T do
3 rt1 ← Residual(F t−1(X),y); /* P1: Compute residual */
4 for i = 1, . . . , k do
5 θti ← argminθt

i
L(f(θti ;Xi), r

t
1); /* PK: Optimize local model */

6 F t(X)← F t−1(X) + Mergek
i=1f(θ

t
1;X1); /* P1 Update ensemble model */

B.2 SPLIT-NN-BASED VFL ALGORITHMS

As described in Algorithm 3, each iteration t starts with the parties Pi conducting forward-propagation
on their local data Xi to derive local representation Zt

i (line 4). These representations are subse-
quently forwarded to the primary party P1. Depending on the iteration, P1 then merges the local
representations (line 6), further derives a global prediction ŷt with an aggregated model (line 7),
updates the aggregated model parameters θt1 (line 8), and broadcast the encoded aggregation model
θti to all parties (line 9). The parties Pi then employ these encoded aggregation model to update their
local models (line 11). This process is repeated until a specified criterion for stopping is met.

The specific methods of encoding, determining aggregation frequency, and merging are dependent on
the algorithm design. In the process of forward-pass encoding, SplitNN sends local representations di-
rectly to Party P1 for merging, while C-VFL compresses these representations before transmission. In
contrast, BlindFL utilizes a source layer to encode local representations, ensuring privacy preservation.
During backward-pass encoding, C-VFL transmits the top-k-compressed aggregation model. Both
SplitNN and BlindFL initially compute the gradients with respect to Z and subsequently broadcast
either the raw or source-layer encoded gradients to all the parties. Regarding aggregation frequency,
C-VFL aggregates every Q iterations to reduce communication cost, while both SplitNN and BlindFL
aggregate at every iteration. For the merging process, SplitNN and C-VFL use concatenation of
local representations, while BlindFL applies a secret-sharing summation with source-layer-encoded
representations.

FedOnce (Wu et al., 2022b), a split-based VFL approach, distinguishes itself by its single-round
communication protocol. Secondary parties initially engage in unsupervised learning, aiming to pre-
dict noise and subsequently develop local representations. These representations are then transferred
to the primary party, which utilizes them in training a SplitNN model on the primary dataset. This
method notably reduces both the communication size and the synchronization overhead.

B.3 SPLIT-GBDT-BASED VFL ALGORITHMS

Outlined in Algorithm 4, each iteration t initiates with the primary party P1 encoding the gradient of
residuals, yielding rt (line 3). Following this, all parties Pi calculate local histograms Ht

i utilizing
their individual local data Xi and the encoded residuals rt (line 5). These local histograms are then
transmitted to P1 for merging (line 6). In the next step, P1 trains a decision tree using the merged
histogram Ht and the encoded residuals rt (line 7). The selected split points from this tree are
communicated to the secondary party that possesses the split feature, which stores these split points
for potential future requests during inference (line 9). Finally, P1 updates the ensemble model F t

with the newly trained tree (line 10). This sequence of operations continues until a set stopping
condition is fulfilled.
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Algorithm 3: Outline of split-NN-based VFL algorithms
Input :Number of iterations T ; number of parties K; data and labels of primary party

X1, y, learning rate ηt; data of secondary parties X2, . . . ,XK ; local epochs Q
Output :Models on K parties f(θ1; ·), . . . , f(θK ; ·)
Algorithms :SplitNN, C-VFL, BlindFL

Encode(Z) =


Z ,SplitNN
EmbeddingCompress(Z) ,C-VFL
SourceLayer(Z) ,BlindFL

Encode(θt1) =


∂

∂Zt
i
L(ŷt,y; θt1) ,SplitNN

TopK(θt1) ,C-VFL
SourceLayer( ∂

∂Zt
i
L(ŷt,y; θt1)) ,BlindFL

condition(t) =

{
True ,SplitNN, BlindFL
t mod Q = 0 ,C-VFL

Mergek
i=1Z

t
i =

{
Concatenate(Z1, . . . ,Zt) ,SplitNN,C-VFL
SecretSharingSum(Z1, . . . ,Zt) ,BlindFL

1 Initialize θ01, . . . , θ
0
K ;

2 for t = 1, . . . , T do
3 for i = 1, . . . , k do
4 Zt

i ← Encode(f(θti ;Xi)); /* Pi: Get local representations */

5 if condition(t) then
6 Zt ← Mergek

i=1Z
t
i; /* P1: Merge local representations */

7 ŷt ← f(θt1;Z
t); /* P1: Get global prediction */

8 θt1 ← θt−1
1 − ηt ∂

∂Zt
1
L(ŷt,y); /* P1: Update aggregated model */

9 gt
i ← Encode(θt1); /* P1: Encode aggregated model */

10 for i = 1, . . . , k do
11 θti ← θt−1

i − ηtgt
i ; /* Pi: Update local model */

Depending on the algorithm, the specific techniques for encoding, computing histograms, merging,
and updating modes differ. Pivot views the instance set in each node as confidential information,
implementing homomorphic encryption on it. Conversely, SecureBoost, FedTree, and VF2Boost
treat the instance set as public information and apply homomorphic encryption only on a specific
set of instances. In terms of merging, SecureBoost and FedTree perform homomorphic decryption
directly to acquire actual sum values after aggregating encrypted histograms. VF2Boost further
introduces efficiency measures such as Polynomial-based histogram packing and reordered histogram
accumulation, while Pivot utilizes multi-party computation supporting comparison to maintain the
secrecy of values at all times. In terms of the update mode, SecureBoost, Pivot, and FedTree adopt a
sequential approach, whereas VF2Boost utilizes a pipeline processing for speedup. Additionally, it is
worth mentioning that SecureBoost employs a threshold for binary classification to enhance accuracy
in the context of datasets with label imbalance.

C SPLIT METHOD DETAILS

In this section, we formally state out proposed importance-based feature-split algorithm in Algo-
rithm 5. After initializing local datasets for each party (line 1), a series of probabilities p1, . . . , pK
s.t.

∑K
i=1 pi = 1 is sampled from a Dirichlet distribution, parameterized by α1, . . . , αK (line 2). For

each feature, it then proceeds to randomly select a party Pk, according to the probabilities pk, and
assigns the respective feature to Pk (lines 3-5). In order to address potential failures in algorithms
when confronted with empty features, we can optionally initialize each party with a random feature
prior to the commencement of the algorithm.
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Algorithm 4: Outline of split-GBDT-based VFL algorithms
Input :Number of iterations T ; number of parties K; data and labels of primary party

X1, y, learning rate ηt; data of secondary parties X2, . . . ,XK

Output :Models on K parties f(θ1; ·), . . . , f(θK ; ·)
Algorithms :SecureBoost, Pivot, FedTree, VF2Boost

HE = HomomorphicEncrypt, HD = HomomorphicDecrypt, MPC =
MultiPartyComputationEncode,⊗ is homomorphic multiplication, α is instance mask

Encode(Z) =

{
HE(r · α) ,SecureBoost, FedTree,VF2Boost
r⊗ HE(α) ,Pivot

Hist(X, r) =

{
HE(Histogram(X · α, r)) ,SecureBoost,FedTree,VF2Boost
Histogram(X, r)⊗ HE(α) ,Pivot

Mergek
i=1H

t
i =


HD(HESum(Ht

1, . . . ,H
t
K)) ,SecureBoost,FedTree

HD(Pack(HESum(Re-order(Ht
1, . . . ,H

t
K)))) ,VF2Boost

MPC(HESum(Ht
1, . . . ,H

t
K)) ,Pivot

mode =

{
sequence ,SecureBoost,Pivot,FedTree
pipeline ,VF2Boost

1 Initialize θ01, . . . , θ
0
K ; let federated model F 0(·)← 0;

2 for t = 1, . . . , T in mode do
3 rt ← Encode( ∂

∂F t−1L(F t−1(Ht−1),y)); /* P1: Encode gradients */
4 for i = 1, . . . , k do
5 Ht

i ← Hist(Xi, r
t); /* Pi: Compute local histogram */

6 Ht ← Mergek
i=1H

t
i; /* P1: Merge local histograms */

7 θt1 ← argminθt
1
L(f(θt1;Ht), rt); /* P1: Construct tree */

8 for i = 2, . . . , k do
9 θti ← Selected split points in Ht

i; /* Pi: Update secondary parties */

10 F t(Ht)← F t−1(Ht−1) + f(θt1;H
t); /* P1: Update ensemble model */

Algorithm 5: Feature Splitting by Importance
Input: Global dataset X ∈ Rn×m, importance factors α1, . . . , αK

Output: Local dataasets X1, . . . ,XK

1 X1, . . . ,XK ← ∅; /* Initialize local dataset for Pi */
2 p1, . . . , pK ← Dirichlet(α1, . . . , αK); /* Sample probabilities for K parties

*/
3 for j = 1, . . . ,m do
4 k ← Random choice from [1,K] ∩ N w.p. (p1, . . . , pK); /* Choose a party */
5 Dk ← Dk ∪ {X[:, j]}; /* Add feature X[:, j] to Pk */

6 return X1, . . . ,XK

D EMPIRICAL VALIDATION OF SPLIT METHODS

To rigorously evaluate the practical performance of our proposed correlation evaluation metric and
the correlation-based feature-split algorithm, we conduct a series of systematic experiments.

D.1 CORRELATION EVALUATION METRIC

In order to validate the efficacy of the correlation evaluation metric, Pcor, we create two synthetic
datasets, X1 (m1 features) and X2 (m2 features), using the sklearn library. Initially, party P1

holds X1, and P2 holds X2. Over the course of the experiment, we gradually transfer features from
X1 to P2, each time exchanging for a feature of X2. This process continues until all features of X1

end up on P2, while the total number of features remains constant during the whole process.
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Our observations, as presented in Figure 5a and 5b, reveal the following: (1) Pcor behaves similarly to
mcor when evaluating inner-party correlation and shows a similar trend to mcor (Taylor, 2020) when
assessing inter-party correlation. (2) Both Pcor and mcor exhibit the lowest inter-party correlation
and the highest inner-party correlation at the extremities of the x-axis. This suggests that the datasets
X1 and X2 are managed by distinct parties and exhibit complete independence. This pattern is also
reflected in Figure 5c when Pcor is applied to parties of different dimensions. These observations
validate the appropriateness of Pcor as a measure for evaluating inter-party correlation, even when
the number of features between the two parties varies.

(a) mcor: m1 = m2 = 10 (b) Pcor: m1 = m2 = 10 (c) Pcor: m1 = 10,m2 = 20

Figure 5: The trend of correlation and metrics when exchanging features between two parties. mcor:
multi-way correlation (Taylor, 2020); Pcor(i)-(j): Pcor(Xi,Xj); mcor(i)-(j): mcor(Xi,Xj).

D.2 FEATURE-SPLIT ALGORITHM

Importance-based Feature Split. We rigorously investigate the correlation between {αi} and
party importance, using both Shapley value and Shapley-CMI for feature importance assessment. For
property (1), in a two-party VFL experiment, we fix α2 = 1 and vary α1 from 10−2 to 103. For each
α2, we compute the scaled αi as αi/

∑
i αi and run 1,000 trials to estimate the party importance’s

expected value. The subsequent relationship between scaled αi and the expected party importance is
illustrated in Figure 6a and 6b, demonstrating clear proportionality.

For property (2), four parties are divided under a symmetric Dirichlet distribution (where ∀i, αi = α)
with α values ranging from 10−2 to 103. For each α, the standard variance of party importance
is estimated over 1,000 trials, as visualized in Figure 6c and 6d. These plots signify a negative
relationship between α = ∥{αi}Ki=1∥2 and the standard variance of party importance, extending the
scenario of a random split leading to consistent party imbalance levels.

(a) αi vs. Shapley (b) αi vs. Shapley-CMI (c) α vs. Shapley std. (d) α vs. Shapley-CMI std.

Figure 6: Relationship between α and party importance: (a)(b) Proportionality of scaled αi to
party Pi’s importance; (c)(d) Negative correlation between α and standard variance (std.) of party
importance. The red dotted line indicates the importance variance of random split.

Correlation-based Feature Split. We turn our attention towards validating the efficacy of our
proposed correlation-based feature-split algorithm. Three synthetic datasets, each encompassing 10
features, are independently generated using the sklearn library. These datasets are subsequently
concatenated along the feature axis, yielding a global dataset with 30 features. This dataset, with
features shuffled, is then split into three local datasets, each containing 10 features, deploying our
proposed algorithm with β values set at 0, 0.5, and 1.0.
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Specifically, we split synthetic datasets with various β values using Algorithm 1 (as shown in
Figure 7a, 7b, and 7c) and compare this to a random split (Figure 7d). Our findings reveal that as β
increases, inter-party correlation correspondingly escalates. Additionally, as depicted in Figure 8,
when we perform splits on a concatenated feature-shuffled real VFL dataset Vehicle (β = 0),
VertiBench, when parameterized with the same β, exactly reconstruct the real feature split
of Vehicle dataset. This indicates that VertiBench scope aligns well with the real scope which
corresponds to a scenario with small inter-party correlation as further depicted in Figure 9. In contrast,
a uniformly random split (uniform scope) produces a distinct correlation matrix.

(a) corr-split: β = 0 (b) corr-split: β = 0.5 (c) corr-split: β = 1.0 (d) uniform-split

Figure 7: Absolute correlation matrix of the global dataset with party boundaries indicated by red
lines. Icor means inter-party correlation. (a),(b),(c) - correlation-based split; (d) uniform split.

(a) Real: Vehicle dataset (b) Synthetic: spilt with same β (c) Synthetic: uniform split

Figure 8: Absolute correlation matrix of real Vehicle dataset and synthetic datasets generated from
feature-shuffled Vehicle - VertiBench with the same β vs. uniform split

(a) NUS-WIDE correlation (b) Vehicle correlation (c) Satellite correlation

Figure 9: Absolute correlation matrix of real VFL datasets with party boundaries marked in red lines

D.3 TIME EFFICIENCY OF SPLIT METHODS

Table 2 provides a summary of the estimated time requirements for our proposed split methods,
with the I/O time for loading and saving datasets excluded. Notably, the importance-based split
method demonstrates significant efficiency, typically completing within a minute. In contrast, the
correlation-based split method requires a longer processing time, due to the need to resolve three
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optimization problems. This time cost is especially pronounced on high-dimensional datasets, such
as realsim, because the singular value decomposition (SVD) used in the correlation-based split
algorithm is dependent on the number of features. Despite these differences in time consumption,
both split methods prove capable of handling large datasets, accommodating instances up to 581k
and features up to 20k, within a reasonable time frame.

Table 2: Estimated time cost of splitting methods (in seconds)

Dataset Performance of importance-based split Performance of correlation-based split

α = 0.1 α = 1 α = 10 α = 100 β = 0 β = 0.3 β = 0.6 β = 1

covtype 0.21 0.24 0.26 0.27 64.15 55.77 53.19 69.34
msd 0.29 0.27 0.29 0.30 85.39 68.88 64.76 62.01

gisette 0.23 0.29 0.25 0.27 6743.26 6388.56 5640.81 6733.69
realsim 30.11 29.80 30.60 26.68 13681.97 13381.56 11341.31 10057.42
letter 0.00 0.00 0.00 0.00 43.15 46.01 41.50 38.72

epsilon 12.67 12.30 10.36 12.28 4853.63 4395.76 4105.53 3621.99
radar 0.14 0.15 0.16 0.15 308.61 274.06 236.73 299.12

To further evaluate the performance, we specifically arranged experiments to evaluate the computa-
tional intensity of the correlation-based splitting method. We conducted tests on synthetic datasets of
varying dimensions or sizes generated by sklearn. Using a Pearson-based splitting method on a
single RTX 3090 GPU, the results are detailed in Figure 10.

Scalability experiments indicate the efficiency of the proposed split method. For the importance-based
split method, it avoids the computational demands of Shapley value calculations while retaining
related properties. This method completed within 30 seconds across all tested datasets, ensuring
scalability for large datasets. The correlation-based method effectively handles datasets with up to
10k features, aligning with the dimensional needs of common VFL datasets such as realsim and
CIFAR10. Meanwhile, the number of parties hardly affect the efficiency under a fixed global dataset.

(a) Sample size impact
(#features=100)

(b) Feature size impact
(#samples=1000)

(c) Party size impact
(#samples=#parties=1000)

Figure 10: Scalability of correlation-based split algorithm on #samples and #features

E REAL DATASET CONSTRUCTION

In this section, we outline the construction process of Satellite, which was adapted from the
WorldStrat dataset (Cornebise et al., 2022), originally intended for high-resolution imagery analysis.
The Satellite encompasses Point of Interest (POI) data, each associated with one or more
Areas of Interest (AOI). Every AOI incorporates a unique location identifier, a land type, and 16
low-resolution, 13-channel images, each taken during a satellite visit to the location.

During the data cleaning phase, we scrutinize the dataset thoroughly, identifying and removing 67
incomplete data records that have an insufficient number of low-resolution images. Furthermore,
given the inconsistent widths and heights of images across different locations, we standardize the size
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of all images to a 158x158 square via bicubic interpolation. Additionally, the pixel values of each
image are scaled to integer values within the range of [0, 255].

Satellite forms a practical VFL scenario for location identification based on satellite imagery.
Each AOI, with its unique location identifier, is captured by 16 satellite visits. Assuming each visit is
carried out by a distinct satellite organization, these organizations aim to collectively train a model to
classify the land type of the location without sharing original images. Satellite encompasses four
land types as labels, namely Amnesty POI (4.8%), ASMSpotter (8.9%), Landcover (61.3%),
and UNHCR (25.0%), making the task a 4-class classification problem of 3,927 locations.

As depicted in Figure 11, the consistency in capturing the same location 16 times presents variations
in image quality. These discrepancies arise due to the changing weather and lighting conditions
experienced during each satellite visit. Hence, each of these 16 satellite visits can equivalently be
considered as 16 separate parties. All 13-channel images in the satellite dataset that correspond to the
description of Sentinel-2 Bands as shown in Table 3.

Figure 11: Preview of an area of Satellite dataset at channel-1 with land type Amnesty

Table 3: Channel information of satellite dataset

Channel Band Description

1 Band 1 Aerosol (443 nm)
2 Band 2 Blue (490 nm)
3 Band 3 Green (560 nm)
4 Band 4 Red (665 nm)
5 Band 5 Vegetation Red Edge (705 nm)
6 Band 6 Vegetation Red Edge (740 nm)
7 Band 7 Vegetation Red Edge (783 nm)
8 Band 8 NIR (842 nm)
9 Band 8A Narrow NIR (865 nm)
10 Band 9 Water Vapor (940 nm)
11 Band 10 SWIR - Cirrus (1375 nm)
12 Band 11 SWIR (1610 nm)
13 Band 12 SWIR (2190 nm)

License. Our use of the WorldStrat dataset was restricted to the labels and Sentinel-2 imagery,
falling under the CC BY 4.0 (Commons, 2023a) license, while excluding high-resolution imagery
that falls under the CC BY-NC 4.0 (Commons, 2023b) license. Therefore, we have released the
Satellite dataset under the CC BY 4.0 license.

File description and maintenance plan. We aim to create a dedicated website for federated learn-
ing datasets to host Satellite and future VFL datasets. Although the website is currently under
construction, we have made Satellite available via a public Google Drive link (Anonymized,
2023) for review purposes. The provided ZIP file comprises 32 CSV files, corresponding to training
and testing datasets split at a ratio of 8:2. Each training and testing file contains 3,142 and 785
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flattened images from a party, respectively. The code of VertiBench (Wu et al., 2023a) also contains
a Satellite loader for demonstration.

F EXPERIMENTAL DETAILS

Datasets. The datasets employed in our experiments exhibit a range of dimensions (from 16 to
20,958), instance numbers (from 15k to 581k), and tasks, which include binary classification, multi-
class classification, and regression. Detailed information about these datasets and the corresponding
licenses are presented in Table 4 and Table 5.

Table 4: Detailed information of centralized datasets (N/A means unspecified)

Dataset Task #samples #features #classes License

covtype (Blackard, 1998) cls 581,012 54 7 BSD1

msd (Bertin-Mahieux, 2011) reg 463,715 90 1 CC BY-NC-SA 2.02

gisette (Guyon et al., 2008) cls 6,000 5,000 2 CC BY 4.03

realsim (Andrew, 2015) cls 72,309 20,958 2 N/A
epsilon (Guo-Xun et al., 2008) cls 400,000 2,000 2 N/A
letter (Slate, 1991) cls 15,000 16 26 N/A
radar (Khosravi, 2020) cls 325,834 174 7 N/A
MNIST (Deng, 2012) cls 70,000 784 10 CC BY-SA 4.0 DEED4

CIFAR10 (Krizhevsky and Hinton, 2009) cls 60,000 1,024 10 N/A
1 https://opensource.org/license/bsd-3-clause/
2 https://creativecommons.org/licenses/by-nc-sa/2.0/
3 https://creativecommons.org/licenses/by/4.0/legalcode
4 https://creativecommons.org/licenses/by-sa/4.0/deed.en

Table 5: Detailed information of real VFL datasets

Dataset Task #parties #samples1 #features2 #classes

NUS-WIDE (Chua et al., 2009) cls 5 107,859/161,789 64/144/73/128/225 2
Vehicle (Duarte and Hu, 2004) cls 2 63,058/15,765 50/50 3
Satellite (proposed) cls 16 3,927×16 16×13×158×158 4

1 The #samples is written in the form of train/test.
2 The #features for each parties are divided by /.
The licenses of NUS-WIDE and Vehicle are unspecified. The license of Satellite is
CC-BY-4.0

Hyperparameters. For models based on split-GBDT, such as SecureBoost, FedTree, and Pivot,
our experiments are conducted with the following hyperparameters: learning_rate=0.1,
num_trees=50, max_bin=32, and max_depth=6. Due to the constraints of dataset sizes
in their codes, Pivot is evaluated exclusively on two datasets: the letter dataset under
the default setting of MAX_GLOBAL_SPLIT_NUM=6,000 and on the gisette dataset with
MAX_GLOBAL_SPLIT_NUM=500,000. The latter alteration was necessitated by a segmentation
fault encountered under the default setting.

With regard to split-NN-based models, specifically SplitNN and C-VFL, each local model is trained
by a two-layer multi-layer perceptron (MLP) with each hidden layer containing 100 units. The
corresponding aggregated model is a single-layer MLP with 200 hidden units. The learning rate,
chosen from the set {10−4, 10−3, 3× 10−3}, is contingent on the specific algorithm and dataset. The
number of iterations is fixed at 50 for SplitNN and 200 for C-VFL, with the latter setting aimed at
ensuring model convergence. We also test C-VFL using four quantization buckets, a single vector
quantization dimension, and a top-k compressor as recommended in the default setting. The number
of local rounds Q in C-VFL is set to 10. In the evaluation of communication cost, the split parameter
α is set to 0.1 since feature split hardly affects the communication size.

Finally, for the ensemble-based model, GAL, we utilize a learning_rate=0.01,
local_epoch=20, global_epoch=20, and batch_size=512, with the assist mode set
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to stack. In the GAL framework, each party employs an MLP model consisting of two hidden
layers, each containing 100 hidden units.

Environments. The hardware configuration used for C-VFL, GAL, SplitNN, and FedTree consists
of 2x AMD EPYC 7543 32-Core Processors, 4x A100 GPUs, and 503.4 GB of RAM, running on
Python 3.10.11 with PyTorch 2.0.0, Linux 5.15.0-71-generic, Ubuntu 22.04.2 LTS. For FATE frame-
work, we are using federatedai/standalone_fate Docker image, running with Python
3.8.13 on Docker 23.0.2. Pivot is compiled from source using CMake 3.19.7, g++ 9.5.0, libboost
1.71.0, libscapi with git commit hash 1f70a88, and runs on a slurm cluster with AMD EPYC 7V13
64-Core Processor with the same number of cores as 2x AMD EPYC 7543 used for other algorithms.
We conducted real distributed experiments on four distinct machines to evaluate the communication
cost, the machines are equipped with AMD EPYC 7V13 64-Core Processors, 503Gi RAM, 1GbE
NICs (Intel I350), and varying GPUs (AMD Instinct MI210 for P1 and P2, AMD Instinct MI100
for P3 and P4). The distributed experimental environment consisted of Python 3.9.12 and PyTorch
2.0.1+rocm5.4.2. We monitored network traffic from the network adapter before and after the ex-
periments using ifconfig to measure the actual data size transferred between parties. We also
recorded the network traffic size during idle server periods as background noise. Measurements were
taken for 1 minute with a 1-minute gap between each measurement, totaling 5 times. The mean
received data was 56.76 KB (std ±1.08 KB), and the mean sent data was 46.50 KB (std ±1.35 KB)

Distributed Implementations. FedTree inherently supports distributed deployment through gRPC,
a feature we utilize. In contrast, SplitNN, C-VFL, and GAL lack native distributed support. To address
this, we implemented distributed support for these algorithms using torch.distributed. For
the sparse matrix representation in C-VFL, we employ torch.sparse_coo_tensor.

License. The licenses pertinent to the datasets and algorithms utilized in VertiBench are documented
in Table 4 and Table 6, respectively. We ensure adherence to these licenses as VertiBench neither
redistributes the codes and data nor utilizes them for any commercial purpose.

Table 6: License usage for each VFL algorithm.

Algorithm License Share Commercial use Redistribute

GAL (Diao et al., 2022) MIT1 ✓ ✓ ✓

C-VFL (Castiglia et al., 2022) MIT1 ✓ ✓ ✓

SecureBoost (Cheng et al., 2021) Apache 2.02 ✓ ✓ ✓

Pivot (Wu et al., 2020) CC BY-NC-ND 4.03 ✓ ✗ ✗

FedTree (Li et al., 2023) Apache 2.02 ✓ ✓ ✓

Note: AL, SplitNN, BlindFL and VF2Boost do not specify their licensing terms.
1 https://opensource.org/license/mit/
2 https://www.apache.org/licenses/LICENSE-2.0
3 https://creativecommons.org/licenses/by-nc-nd/4.0/

G ADDITIONAL EXPERIMENTS

G.1 COMMUNICATION COST DETAILS

In this subsection, we evaluate the total and maximum incoming/outgoing communication costs of
various VFL algorithms over 50 epochs. This assessment is performed on four physically distributed
machines, with results displayed in Figures 12, and 13. We observe real network adapter communi-
cation for both four and two-party settings with ifconfig. Additionally, theoretically estimated
communication sizes are compared in Figure 14, and real-time performance in relation to increasing
communication costs for four VFL algorithms is presented in Figure 15. The results yield following
four observations.

Gradient-boosting algorithms, such as GAL and FedTree, tend to have small communication
sizes when contrasted with NN-based methods like SplitNN and C-VFL. Yet, FedTree expe-
riences marked communication overhead with high-dimensional datasets. C-VFL, due to its

29

https://opensource.org/license/mit/
https://www.apache.org/licenses/LICENSE-2.0
https://creativecommons.org/licenses/by-nc-nd/4.0/


different pipeline from SplitNN, fails to reduce real communication cost, especially as it broadcasts
compressed representations from all parties too all other parties. The large communication expenses
in NN-based algorithms from the recurrent transmission of gradients and representations, contributing
to SplitNN’s superior accuracy. The high communication costs of FedTree on high-dimensional
datasets might be linked to the transmission of feature histograms and node information across parties.

Generally, GAL is more efficient than FedTree, though FedTree sometimes has less incoming
communication cost on low-dimensional datasets. The incoming communication cost includes
residuals for GAL and histograms for FedTree. Residual size is dependent on the number of
instances, while histogram size relates to the feature count. Hence, FedTree shows small incoming
communication cost on low-dimensional datasets but more on high-dimensional datasets. However,
FedTree’s outgoing communication cost is much larger than GAL, as it transmits both gradients and
node information, resulting in its large overall communication overhead.

C-VFL struggles to reduce real communication costs via representation compression sent to
the server, and it neither enhance the backward server-client communication. Initially, C-
VFL’s incoming communication costs align closely with those of SplitNN. This is attributable to
the method of estimating the compression ratio of representations by counting the ratio of non-
zero elements. Though these representations appear sparse, they cannot be effectively transmitted
without added overheads. Specifically, the coordinate format (COO) sparse matrix, as utilized in
our experiments, demands even greater communication due to the need for additional indices. As a
result, such compressions offer limited advantage in practical scenarios. Moreover, the consistent
outgoing communication costs indicate that transmitting compressed aggregated models in C-VFL or
broadcasting compressed representations does not display efficiency over transmitting uncompressed
gradients of the cut layer. This revelation hints at avenues for potential refinement to minimize
SplitNN’s backward communication expenses.

The real-time performance per communication round aligns with observations made for a fixed
epoch. This is largely attributed to the dominance of communication per iteration over the number of
iterations. GAL achieve similar accuracy levels with minimal communication overhead, a scenario
where SplitNN and C-VFL might struggle to complete even a single iteration. However, when more
communication is allowed, SplitNN typically delivers the most superior performance.

The estimated communication costs generally align with actual observations, with notable
exceptions in C-VFL and FedTree when handling high-dimensional datasets. In the case of
C-VFL, the estimation overlooks the overhead associated with transmitting sparse matrices. For
FedTree on high-dimensional data, the reported communication cost likely arises from unaccounted
transmission information related to nodes and histograms. Such discrepancies underscore the need
for comprehensive testing on real distributed systems for VFL algorithms.

G.2 SCALABILITY

In this section, we examine the scalability of various VFL algorithms on two high-dimensional
datasets, depicted in Figure 16. The datasets, split by importance with α = 1, consist of a varying
number of parties, ranging from 2 to 2048. Our results demonstrate that SplitNN and FedTree are
scalable to thousands of parties without any significant drop in accuracy. This is attributable
to FedTree’s lossless design and SplitNN’s robust structure. However, both GAL and C-VFL show
substantial performance declines with an increase in party numbers.

An intriguing observation is that C-VFL’s accuracy nearly matches SplitNN’s when the number
of parties reaches 2048 on the gisette dataset. This is likely because the average number of
features per party reduces to 2 in this scenario, causing the compression mechanism to potentially
fail, and thus, C-VFL reverts to SplitNN’s performance.

G.3 TRAINING TIME

The training duration for VFL algorithms is consolidated in Table 7. It should be noted that FedTree
and SecureBoost are executed without the use of encryption or noise. Conversely, we retain the
default privacy setting for Pivot as it does not offer a non-encryption alternative. Three observations
can be gleaned from the table.

30



Figure 12: Real total, max incoming and outgoing communication size across parties of VFL
algorithms (50 global iterations)
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Figure 13: Real total, max incoming and outgoing communication size across parties of VFL
algorithms (two parties, 50 global iterations)
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Figure 14: Estimated total communication size of VFL algorithms (50 global iterations)

0

25
00

50
00

75
00

10
00

0

12
50

0

15
00

0

0

20

40

60

80

100
covtype

0

20
0

40
0

60
0

80
0

10
00

gisette

0

50
0

10
00

15
00

20
00

25
00

realsim

0

10
00

20
00

30
00

40
00

0

20

40

60

80

100
epsilon

SplitNN
GAL
C-VFL
FedTree

0

10
0

20
0

30
0

40
0

letter

0

25
0

50
0

75
0

10
00

12
50

15
00

radar

Communication cost (MiB)

Ac
cu

ra
cy

0 1000 2000 3000 4000 5000 6000

0.2

0.4

0.6

0.8

msd
SplitNN
GAL
C-VFL
FedTree

RM
SE

Communication cost (MiB)

Figure 15: Test performance as the increasing of communication cost (MiB)
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Figure 16: Scalability tests for VFL algorithms on gisette and realsim dataset

Firstly, we observe a considerable overhead associated with the encryption processes of Pivot.
Pivot, which employs both homomorphic encryption and secure multi-party computation to ensure
stringent privacy, endures a training time that is up to 105 times longer than FedTree. This limitation
renders such strict privacy measures impractical for real-world applications that employ large datasets.
This observation underscores the necessity for further exploration into the efficiency-privacy trade-off
in VFL.

Secondly, when comparing non-encryption methods, we find that split-based algorithms (SplitNN,
FedTree) generally outperform ensemble-based algorithms (GAL) in terms of efficiency. This is
primarily because split-based algorithms require each party to train a partial model, whereas ensemble-
based algorithms mandate that each party train an entire model for ensemble purposes. This design
characteristic also contributes to the lower communication costs associated with ensemble-based
algorithms, as demonstrated in Figure 12.

Lastly, we note that SplitNN demonstrates higher efficiency than FedTree on high-dimensional
small datasets, yet demands more training time on low-dimensional large datasets. This
discrepancy arises because FedTree computes a fixed-size histogram for each feature, which alleviates
the impact of a large number of instances but is sensitive to the number of features. Conversely,
SplitNN trains data in batches, rendering it sensitive to the number of instances. This observation
emphasizes the importance of carefully selecting a VFL algorithm based on the properties of the
dataset in the application.

Table 7: Estimated training time of VFL algorithms (4-party, in hours)

Dataset VFL Algorithm

SplitNN GAL FedTree SecureBoost C-VFL Pivot 1

covtype 0.19 2.18 0.076 14.84 1.45 -
msd 0.17 2.01 0.037 0.28 1.29 -

gisette 0.01 0.03 0.052 0.56 0.02 25805.52
realsim 0.06 1.40 0.32 1.16 0.48 -
epsilon 0.15 1.79 0.33 7.99 1.11 -
letter 0.01 0.06 0.47 2.69 0.04 6750.76
radar 0.12 1.31 0.21 10.06 0.83 -

1 A segmentation fault arises in Pivot when datasets encompass more than 60,000 samples. Conse-
quently, only the gisette and letter datasets have their training times estimated.

G.4 PERFORMANCE ON SATELLITE DATASET

In Table 8, we present the single-party and VFL performance results on the Satellite dataset. For an
equitable comparison, each single party trains a concatenated MLP, formed by linking a SplitNN’s
local model with its aggregated model, under the same hyperparameters. Our results indicate that
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VFL can yield approximately a 10% accuracy improvement over local training, thus affirming the
practical utility of the Satellite dataset for vertical federated learning applications.

Table 8: Accuracy of single party training (Solo) and VFL with SplitNN on Satellite dataset

Method Accuracy (mean ± standard deviation)

Party P0 (Solo) 0.7368 ± 0.0086
Party P1 (Solo) 0.7310 ± 0.0054
Party P2 (Solo) 0.7320 ± 0.0055
Party P3 (Solo) 0.7289 ± 0.0115
Party P4 (Solo) 0.7251 ± 0.0080
Party P5 (Solo) 0.7167 ± 0.0097
Party P6 (Solo) 0.7353 ± 0.0045
Party P7 (Solo) 0.7256 ± 0.0139
Party P8 (Solo) 0.7335 ± 0.0126
Party P9 (Solo) 0.7154 ± 0.0049
Party P10 (Solo) 0.7264 ± 0.0172
Party P11 (Solo) 0.7169 ± 0.0106
Party P12 (Solo) 0.7182 ± 0.0075
Party P13 (Solo) 0.7118 ± 0.0084
Party P14 (Solo) 0.7060 ± 0.0119
Party P15 (Solo) 0.7292 ± 0.0069

Party P1 ∼ P15 (SplitNN) 0.8117 ± 0.0035

G.5 DETAILS OF VFL PERFORMANCE

In this subsection, we present the detailed information (including msd) in Table 9. Besides the
previous observations, we can make two additional observations on the msd regression dataset.
First, compared among algorithms, split-based algorithms still have leading performance. Second,
compared among split parameters, we observe that both α and β have slight effect on the performance
on msd.

G.6 ABLATION STUDY OF TRUNCATED THRESHOLD OF SVD

In this subsection, we assess the Pcor of each dataset using VertiBench, varying the truncated threshold
dt. We quantify both the speedup - defined as the execution time ratio between exact and truncated
SVD - and the relative error, as outlined in Eq. 37.

Relative Error =
|Approximate Pcor− Exact Pcor|

Exact Pcor
(37)

From the presented data, it is evident that high-dimensional datasets such as gisette, realsim,
epsilon, and radar benefit from notable speedup with minimal error. In contrast, for lower-
dimensional datasets like covtype, msd, and letter, the speedup is marginal and accompanied
by a significant relative error. Consequently, in our experiments, we employ exact SVD for datasets
comprising fewer than 100 features. For those exceeding 100 features, we utilize approximate SVD
with dt = 400.

G.7 PERFORMANCE ON MNIST AND CIFAR10

In this subsection, we extend VertiBench to accommodate image datasets, with experiments conducted
on MNIST and CIFAR10 revealing novel insights.

Image Dataset Splitting. Unlike tabular datasets, image datasets hold crucial positional information,
implying that feature order is pertinent. Adapting to this characteristic, we flatten the image and
perform the split using VertiBench, akin to tabular datasets, all while preserving positional metadata.
Post-splitting, the features are reconfigured to their original image positions, and any absent features
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Table 9: Accuracy/RMSE of VFL algorithms on different datasets varying imbalance and correlation

Dataset Method Performance of importance-based split Performance of correlation-based split

α = 0.1 α = 1 α = 10 α = 100 β = 0 β = 0.3 β = 0.6 β = 1

covtype

SplitNN 91.2±0.4% 92.1±0.2% 92.1±0.3% 92.1±0.1% 92.0±0.2% 92.1±0.2% 92.3±0.2% 92.1±0.1%
GAL 66.1±2.9% 60.2±1.1% 62.1±4.1% 61.5±3.9% 63.1±2.3% 62.9±2.4% 63.0±2.4% 64.0±1.6%

FedTree 77.9±0.1% 77.8±0.2% 77.8±0.1% 77.8±0.1% 77.8±0.2% 77.8±0.2% 77.8±0.2% 77.9±0.2%
C-VFL 46.9±4.1% 14.8±19.0% 26.9±25.3% 38.3±18.6% 26.6±18.2% 36.3±17.4% 39.2±15.4% 46.6±6.7%

FedOnce 68.9±5.9% 70.2±2.6% 74.4±3.1% 75.0±1.5% 71.6±3.5% 73.4±1.7% 75.9±0.8% 73.8±2.5%

msd

SplitNN 0.1010±0.0 0.1020±0.0 0.1010±0.0 0.1010±0.0 0.1015±0.0 0.1015±0.0 0.1013±0.0 0.1010±0.0
GAL 0.1220±0.0 0.1220±0.0 0.1220±0.0 0.1220±0.0 0.1222±0.0 0.1222±0.0 0.1222±0.0 0.1222±0.0

FedTree 0.1040±0.0 0.1040±0.0 0.1040±0.0 0.1040±0.0 0.1035±0.0 0.1035±0.0 0.1035±0.0 0.1035±0.0
C-VFL 0.1270±0.0 0.1270±0.0 0.1270±0.0 0.1270±0.0 0.1910±0.0 0.1708±0.0 0.1878±0.0 0.1830±0.0

FedOnce 0.1110±0.0 0.1103±0.0 0.1080±0.0 0.1079±0.0 0.1100±0.0 0.1097±0.0 0.1089±0.0 0.1092±0.0

gisette

SplitNN 96.8±0.4% 96.8±0.3% 96.9±0.3% 96.9±0.2% 97.0±0.4% 96.9±0.6% 96.9±0.3% 96.7±0.3%
GAL 94.4±1.7% 95.7±0.6% 96.2±0.6% 96.1±0.6% 95.4±0.5% 95.5±0.5% 95.6±0.5% 95.4±0.6%

FedTree 97.0±0.3% 97.1±0.5% 97.1±0.5% 97.1±0.3% 97.0±0.4% 96.9±0.5% 97.0±0.3% 97.1±0.4%
C-VFL 91.0±11.5% 97.8±3.4% 90.1±11.8% 94.0±4.0% 95.0±1.9% 95.7±1.2% 95.0±1.2% 94.6±2.0%

FedOnce 91.0±9.8% 96.4±0.6% 96.3±0.5% 96.2±0.5% 95.6±0.4% 95.6±0.5% 96.0±0.7% 95.7±0.5%

realsim

SplitNN 97.1±0.0% 97.0±0.0% 97.0±0.1% 97.1±0.1% 96.9±0.2% 97.0±0.2% 97.0±0.1% 96.9±0.2%
GAL 92.4±0.7% 93.5±2.2% 96.1±0.4% 96.4±0.1% 96.5±0.2% 96.5±0.2% 96.5±0.2% 96.5±0.2%

FedTree 85.1±0.2% 85.2±0.2% 85.1±0.1% 85.1±0.2% 85.2±0.2% 85.2±0.3% 85.2±0.2% 85.1±0.2%
C-VFL 89.6±17.4% 88.6±16.7% 89.5±17.4% 87.8±16.1% 95.9±2.1% 96.5±0.8% 94.9±3.6% 93.8±3.7%

FedOnce 94.1±3.0% 95.1±0.4% 95.6±0.3% 95.2±0.2% 94.9±0.3% 94.9±0.3% 95.1±0.3% 94.7±0.2%

epsilon

SplitNN 86.3±0.1% 86.2±0.1% 86.3±0.0% 86.2±0.0% 85.9±0.1% 86.0±0.1% 86.1±0.1% 86.2±0.1%
GAL 88.2±0.6% 85.9±1.5% 85.7±0.4% 86.3±0.2% 85.8±0.4% 85.8±0.4% 85.8±0.4% 85.8±0.4%

FedTree 77.2±0.1% 77.3±0.1% 77.2±0.0% 77.2±0.1% 77.2±0.1% 77.2±0.1% 77.3±0.0% 77.2±0.1%
C-VFL 50.1±0.0% 53.5±4.9% 67.7±20.0% 61.6±16.4% 73.8±7.5% 65.0±11.1% 71.3±13.5% 69.3±14.8%

FedOnce 76.6±12.8% 79.5±3.0% 81.7±3.0% 80.7±1.7% 79.7±1.2% 80.1±1.6% 78.3±2.0% 77.7±1.0%

letter

SplitNN 95.5±0.3% 96.0±0.3% 96.1±0.2% 96.0±0.3% 95.0±0.3% 94.7±0.4% 94.7±0.4% 95.0±0.3%
GAL 57.9±4.1% 51.4±3.1% 52.0±4.3% 49.1±2.6% 48.9±1.9% 48.9±1.9% 48.9±1.8% 49.0±1.9%

FedTree 91.7±0.3% 91.9±0.4% 92.0±0.3% 92.0±0.3% 91.8±0.3% 91.9±0.4% 91.9±0.3% 92.0±0.3%
C-VFL 5.0±1.0% 12.6±8.3% 37.1±47.1% 43.8±4.5% 69.4±4.2% 70.4±2.4% 70.6±3.7% 68.1±5.7%

FedOnce 50.3±9.6% 55.6±3.9% 60.1±1.9% 60.0±1.1% 60.2±2.1% 59.8±3.6% 59.1±2.1% 60.4±2.2%

radar

SplitNN 99.7±0.0% 99.8±0.0% 99.8±0.0% 99.8±0.0% 99.8±0.0% 99.8±0.0% 99.8±0.0% 99.8±0.0%
GAL 90.0±3.6% 95.9±2.5% 97.5±0.4% 97.9±0.1% 96.5±0.1% 96.5±0.1% 96.5±0.1% 96.5±0.1%

FedTree 99.3±0.0% 99.3±0.0% 99.3±0.0% 99.3±0.0% 99.3±0.0% 99.3±0.0% 99.3±0.0% 99.2±0.0%
C-VFL 59.9±47.8% 53.4±38.5% 43.1±23.9% 37.3±15.7% 35.5±18.6% 44.5±17.9% 53.2±19.8% 40.0±15.0%

FedOnce 97.7±1.6% 98.4±0.2% 98.4±0.2% 98.4±0.1% 98.1±0.1% 98.1±0.1% 98.1±0.1% 98.3±0.1%
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Figure 17: Effect of dt on relative error and speedup

are replaced with the background color - black for MNIST (Figure 20,21) and white for CIFAR10
(Figure 18,19).

Visualization Insights. The processed images post-split elucidate the effects of α and β. Analyzing
by party importance, α, we observe that smaller α values result in certain parties retaining recog-
nizable image details (e.g., party 2), while others contain little meaningful information. Conversely,
a larger α distributes image data more equitably across parties. Addressing party correlation, β,
especially in the MNIST context, it is observed that a smaller β ensures each party is allocated distinct
parts of an image. For instance, with β = 0.0, party 3 predominantly possesses the left portion of
the digit “8”, while party 4 obtains its right portion. In contrast, a larger β induces high inter-party
correlation, with all parties vaguely representing the digit. This trend is less pronounced in CIFAR10
due to its narrower Icor range.

Experiments. In our experimentation on image datasets, we utilize the ResNet18 architecture.
Figure 22 presents the outcomes and suggests three new observations:

• GAL consistently has leading performance, particularly on CIFAR10. The performance
of GAL can be attributed to the relatively large number of parameters of ResNet18. In
contrast, the use of split-NN-based algorithms, which concatenate models, may introduce
excessive parameters leading to overfitting.

• On imbalanced VFL datasets, the efficacy of GAL is reduced. This decrease in per-
formance might be due to less-informative parties introducing noise during the boosting
process.

• C-VFL demonstrates a close performance to SplitNN in image classification tasks,
which is potentially rooted in the sparsity of image representations.
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Figure 18: Visualization of CIFAR10 split by different α

Figure 19: Visualization of CIFAR10 split by different β

Figure 20: Visualization of MNIST split by different α
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Figure 21: Visualization of MNIST split by different β
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Figure 22: The accuracy of MNIST and CIFAR10 using ResNet18 varying imbalance(α) and
correlation(β)
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G.8 PERFORMANCE CORRELATION: SYNTHETIC VS. REAL VFL DATASETS (ADDITIONAL)

In this subsection, we extend the experiments of Section 4.4 and showcase the detailed performance
on each dataset on real and synthetic datasets in Figure 23. Our experiments yield two primary
observations, suggesting the alignment of VeritBench scope and the real scope. Firstly, the relative per-
formance ranking of VFL algorithms remains consistent across real and synthetic datasets. Secondly,
for algorithms sensitive to data splits like VFL, the trends observed on synthetic datasets generally
align with real ones. For instance, C-VFL exhibits superior performance on the balanced two-party
Vehicle dataset compared to the imbalanced five-party NUS-WIDE. Similarly, it fares better on
balanced two-party synthetic data than on imbalanced five-party datasets, a pattern consistent across
synthetic datasets derived from both covtype and letter.
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Figure 23: Performance of VFL algorithms on real vs. synthetic datasets with consistent α, β

G.9 VARIANCE OF PERFORMANCE

In our experiment, we examined the performance variance of VFL algorithms under a consistent α
or β, revealing that VFL accuracy is affected by the randomness of feature partitioning. Figures 24
investigates the convergence of both mean and variance in algorithm performance as the number of
test repetitions increased. Figure 25 illustrate the performance distributions under the same α or β.

Figure 24 reveals that both mean and variance stabilize after 5-10 iterations, showcasing distinct
performance variance across different algorithms. Notably, C-VFL displays the highest variance,
while SplitNN and FedTree demonstrate consistently low variance, underscoring the algorithm-
dependent nature of performance variance. Additionally, Figure 25 illustrates that most algorithms
exhibit a concentrated distribution of results.
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Figure 24: Standard deviation of accuracy as number of seeds tested
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Figure 25: Accuracy distribution of VFL algorithms
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G.10 SPEARMAN RANK VS. PEARSON

In comparing Spearman rank and Pearson correlation coefficients, we find Spearman rank effective
for non-linear correlations, while Pearson is suitable for linear correlations. Figure 26 illustrates the
performance differences on datasets split using these metrics.

For linearly correlated datasets like gisette, Pearson’s coefficient is preferable. It accurately
captures the enhanced performance of C-VFL on highly correlated splits, a nuance Spearman rank-
based splitting misses. Conversely, for non-linearly correlated datasets such as radar, Spearman
rank-based correlation is more effective, highlighting variations in C-VFL performance that Pearson-
based splits overlook. Therefore, the choice of correlation coefficient should align with the dataset’s
correlation characteristics.
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Figure 26: Accuracy of VFL algorithms on different datasets varying correlation metrics

H DISCUSSION

This section discusses the limitations of VertiBench, shedding light on several areas where improve-
ment is needed. Additionally, we engage in a discussion surrounding potential negative social impacts
and personal privacy issues related to VertiBench.

H.1 LIMITATIONS

In this subsection, we outline the limitations of VertiBench, focusing on three primary aspects.

Scalability of correlation-based split. The correlation-based split method that we propose may
face efficacy and efficiency challenges when applied to a large number of parties. As the number
of parties increases, the potential feature splits proliferate exponentially. This complexity presents
a significant obstacle for optimization methods such as BRKGA (Gonçalves and Resende, 2011),
making it challenging to locate the minimum and maximum Icor, as well as the optimal split that
corresponds to the given β. This situation underscores the necessity for more advanced permutation-

42



based optimization algorithms that can enable the correlation-based split method to scale out to a
greater number of parties.

Relationship between importance and correlation. Within VertiBench, we regard importance
and correlation as two orthogonal factors impacting the feature split. However, this viewpoint might
overlook the potential correlation that could exist between these two factors. For instance, in cases
of highly imbalanced feature split, parties might demonstrate low inter-party correlation. As a
result, a comprehensive benchmarking framework that simultaneously considers both importance and
correlation is desired to provide a more rigorous evaluation of VFL algorithms.

Designing a benchmark that captures the intricate relationship between feature importance and
correlation presents significant challenges, as certain levels of correlation and importance may
be mutually exclusive. Designing a co-optimization algorithm for both feature importance and
correlation while maintaining efficiency and explainability presents a significant challenge. Balancing
the demands of these metrics could lead to compromises in both computational efficiency and the
explainability of the resulting data splits. Developing an approach that effectively integrates these
factors without sacrificing these key aspects remains a complex, yet crucial task in advancing VFL
benchmarking methodologies.

Evaluation of privacy. Although VertiBench assesses performance, efficiency, and communication
cost, it does not provide a quantitative evaluation of privacy. The high performance observed with
SplitNN could potentially come at the cost of privacy, while the markedly high overhead of Pivot
might be attributed to its robust privacy requirements. The task of quantitatively evaluating the
privacy of different VFL algorithms and models remains an open problem, which we aim to tackle in
future work.

H.2 SOCIAL IMPACTS

Negative social impact. While VertiBench primarily focuses on analyzing and comparing existing
methodologies, and hence is less likely to cause additional negative social impact, the potential
for biased interpretation of our experimental results could inadvertently mislead future research or
applications. Specifically, we emphasize that the superior performance of non-encrypted methods
such as SplitNN and GAL does not necessarily indicate that they are fit for immediate deployment
in real-world VFL applications. The privacy concerns arising from the transfer of residuals or
representations require further investigations. A quantitative benchmark on privacy is a critical
prerequisite to deploying VFL approaches in real-world applications, which we plan to explore in the
future research.
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