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ABSTRACT

Learning the structure of Bayesian networks is a fundamental yet computationally
intensive task, especially as the number of variables grows. Traditional algorithms
require retraining from scratch when new variables are introduced, making them
impractical for dynamic or large-scale applications. In this paper, we propose an
extendable structure learning strategy that efficiently incorporates a new variable Y
into an existing Bayesian network graph G over variables X', resulting in an updated
P-map graph G on X = X U {Y'}. By leveraging the information encoded in G,
our method significantly reduces computational overhead compared to learning
G from scratch. Empirical evaluations demonstrate runtime reductions of up to
1300x without compromising accuracy. Building on this approach, we introduce a
novel iterative paradigm for structure learning over X. Starting with a small subset
U C X, we iteratively add the remaining variables using our extendable algorithms
to construct a P-map graph over the full set. This method offers runtime advan-
tages comparable to common algorithms while maintaining similar accuracy. Our
contributions provide a scalable solution for Bayesian network structure learning,
enabling efficient model updates in real-time and high-dimensional settings.

1 INTRODUCTION

Causal relationships between random variables can be represented by a directed acyclic graph (DAG),
where a link from variable A to B signifies that A causes B. When the DAG is coupled with the
conditional probability distribution (CPD) of each variable given its parents, it forms a causal Bayesian
network, which enables both probabilistic and causal queries. The joint probability distribution of the
variables then factorizes according to the DAG, meaning it becomes the product of the associated
CPDs.

Estimating the DAG from observational data, known as structure learning, is typically approached
using either constraint-based or score-based algorithms (Kitson et al., |2021). Constraint-based
methods, such as PC (developed by Peter Spirtes, Clark Glymour) (Spirtes et al., [2000) and Fast
Causal Inference (FCI) (Spirtes et al.,2000), rely on detecting dependencies between variables using
conditional independence (CI) tests (Guo et al.,[2020). In contrast, score-based methods search for
a DAG that maximizes a score function like the Bayesian Information Criterion (BIC) (Koller &
Friedman, [2009)).

A notable gap exists in current approaches: no algorithm efficiently updates an existing DAG when
new variables are introduced. This issue is particularly relevant in fields such as social science (Card)
1999), psychology (Primack et al.,[2017), and financial studies (Bollen et al.,[2011), where important
variables may be omitted in the initial stages of research but later recognized as critical. For instance,
in stock market prediction models, analysts might begin with historical stock prices, trading volumes,
and economic indicators, only to later discover the significant impact of social media sentiment
(Bollen et al., [2011). Incorporating such new variables would traditionally require re-learning the
entire DAG, a process that becomes computationally prohibitive as the number of variables grows.

While existing online (Kocacoban & Cussens| [2019) and incremental (Alcobe, 2005) structure
learning algorithms address scenarios where datasets are updated over time, they are not designed for
the problem of efficiently incorporating a new variable into a learned DAG without discarding the
original structure.
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We propose an extendable structure learning algorithm that avoids the need to re-learn the entire
graph when a new variable is added. Specifically, we investigate the effect of adding a node Y to
an already learned structure G over a set of variables X'. We present two algorithms to obtain the
extended structure for X U {Y'}. Our key finding is that adding a new variable can result in only
deleting links between the original variables, not adding new ones. Consequently, the search for the
highest-scoring DAG is confined to a reduced space, rather than the full space of all possible DAGs
over the extended set of variables.

This reduced search space informs the development of an extendable score-based algorithm, as well
as a constraint-based algorithm that leverages the existing CI tests from the learned structure. By
significantly reducing the number of CI tests compared to re-learning the structure from scratch, we
achieve a more computationally efficient solution. The complexity of the extendable constraint-based
algorithm is O(IN K™24) where N is the cardinality of X, d represents the maximum degree of nodes
in G, m is the degree of node Y in true DAG, and m < K < N. This is a substantial improvement
over the PC algorithm’s complexity of O((N + 1)M) where M = max{d, m}. Simulation results
demonstrate a runtime reduction of up to 200-fold, while also improving the accuracy of the learned
structure in terms of structural Hamming distance.

Furthermore, an iterative strategy has been developed to learn the structure of Bayesian networks by
the proposed extendable algorithms. At first, two random variables are learned and at each iteration
one of the remaining variables is added to the set of variables to learn by the proposed extendable
algorithms. The accuracy and speed of this iterative algorithm is comparable and sometimes better
than that of PC.

2 BACKGROUND

A Bayesian network is a probabilistic graphical model that represents a joint probability distribution
over a set of random variables X = X1, Xo, ..., X. The joint distribution P(X’) can be factorized
using the chain rule as TTYY, P(X; | X1, ..., X;_1). This factorization can be simplified by exploiting
conditional independencies among the variables. For example, if X; is conditionally independent of a
subset of preceding variables given some others, the corresponding conditional probability simplifies
accordingly.

Each such factorization corresponds to a Directed Acyclic Graph (DAG) G, where the nodes represent
the random variables in X', and edges represent direct dependencies. Specifically, for each conditional
term P(X; | Pay,), where Pax, C Xi,...,X;_ are the parents of X;, there is an edge from
each parent to X; in G. The concept of d-separation in a DAG formalizes the notion of conditional
independence among variables. A trail (or path) between two nodes X and Y in G is a sequence
of nodes (X = Xy, X1,...,X, = Y) such that each pair (X;, X;4+1) is connected by an edge
(regardless of direction). A node Z on a trail is called a collider if the edges on the trail meet at Z as
X1 = 72+ XiJrl.

Definition 1 (d-separation) (Koller & Friedman, 2009) Consider the DAG G with node set V. A
trail T between two nodes X andY in 'V is active relative to a set of nodes Z if, (i) every non-collider
on T is not a member of Z, and (ii) every collider on T is an ancestor of some member of Z. The
node subsets X and ) are d-separated given the subset Z, if there is no active trail between any node

X € X and anynodeY € ) given Z.

If X and Y are d-separated given Z, denoted d-sepg (X,Y | Z), we say that the paths between X
and ) are blocked by Z. Define Z(G) as the set of all d-separations in DAG G. Let Z(P) denote the
set of all conditional independencies implied by the distribution P. The Markov condition imposes
that Z(G) C Z(P) and the distribution P is said to be faithful to the DAG G if Z(P) C Z(G). If
Z(G) = Z(P), as implied by the two assumptions, then G is called a P-map (perfect-map) for P. Tt
has been proven that almost all distributions P admit some P-map G (Koller & Friedman, [2009). By
a P-map learner we mean an algorithm, such as PC, that outputs a P-map for a given distribution P
of random variables X’. Should the distribution P do not admit a P-map, then the output will be a
DAG ¢, that either violates the faithfulness or Markovness assumption.



Under review as a conference paper at ICLR 2025

3 EXTENDABLE LEARNING

Let ¥ = {Xy,---, Xy} be the set of primary variables with the joint probability distribution P’,
and G be an output of a P-map finder algorithm over X'. Now, suppose a new variable Y is added,
expanding the variable set to X = X’ U {Y '} whose joint distribution is denoted by P. We refer to X
and P as the extended variable set and distribution. Following the common practice in the literature,
we assume that there is a P-map for the joint distribution P of the extended variables X, but that is
not necessarily the case with the joint distribution P’ of the original variables X" as explained below.
The goal is to efficiently learn a P-map G for X', leveraging the information already encoded in G.

Problem 1 Consider random variables X and let G be the output of a P-map finder applied to X.
Consider random variable Y and the extended variable set X = X U {Y } with joint distribution P.
Find a P-map G for P.

A challenge is that the addition of Y may alter the dependencies among the variables in X'. Specifically,
P’(X) is the marginal distribution of P(X) over X'. However, since Y was unobserved when G was
learned, G may not accurately represent the dependencies in P’(X). In particular, G may not be a
P-map for P’(X’) due to hidden confounding introduced by Y. For example, when Y is a confounding
variable (hidden common cause) between two collider nodes in G over X', DAG G cannot represent all
independencies in P’, violating faithfulness (Spirtes, [1995). Consider X = {X;, X5, X3, X4} and
Gas X; — X5 <Y — X3 < X,. Marginalization over Y leads to having two adjacent collider
nodes X> and X3 which means we have two immoralities X; — X5 < X3 and X5 — X3 + X, in

G, which is impossible.

We investigate how the addition of Y affects the dependencies among the variables in X. Consider
two variables X; and X5 in X. There are three possible scenarios when Y is added:

1. Non-adjacent variables remain non-adjacent: If X; and X are not adjacent in G, they
remain non-adjacent in G, because due to faithfulness, the absence of an edge implies a
conditional independence given some subset i/ C X' \ X, X5 (Lemma , which remains
in force upon the inclusion of Y.

2. Spurious adjacencies may be removed: If X; and X are adjacent in G but become
conditionally independent given Y and some subset &/ C X\ {X, X}, the edge between
X, and X5 may be removed in G.

3. True adjacencies remain: If X; and X are adjacent in G and remain dependent given Y’
and any subset U C X\ { X1, X5}, the edge between them persists in G.

According to the first scenario, the proposition[T]is proved as a result of Lemmal4]

Proposition 1 Consider G is a P-map over X and G is a graph over X. If X is an adjacent of X;
in G, then X; is an adjacent of X; in G.

Proof. If X; and X;; are not adjacent in G, according to Lemmafd] there is a subset I C X'\ {X;, X}
such that X; 1 X |7L{ . Because G is a P-map and due to faithfulness assumption X; and X; are
d-separated by U/ in G. Then there is no edge between X; and X in G. |

An important result from Proposition [I] is that adding Y~ does not introduce new edges between
variables in X" that were not already connected in G. Therefore, we only need to examine existing
edges in G and consider potential new edges between Y and the variables in X'. We now present
our main theoretical results, which characterize how the addition of Y affects the structure of the
structure G.

Lemma 1 Consider variables X whose Jjoint distribution admits P-map G. LetY € X and DAG G
be the output of a P-map learner applied to X \ {Y }. Then every pair of non-adjacent nodes X1 and
X5 in G are adjacent in G only if

1. 'Y is a common cause or mediator of X1 and X5 in G; or

2. X is linked to some node W which in turn is linked to Xs, and Y is linked to both W and
Xo (or the same statement but when X1 and Xo are exchanged).
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Figure 1: Structures where not observing Y can lead to a spurious edge between X; and X5. The
dashed edge represents the possible direction of the spurious edge when the structure is learned by
a P-map finder algorithm and Y is an unobserved node. In (a) either X; — X5 or X; < X5 can
occur, and in the other structures, only one direction can occur.

Proof. X7 and X being adjacent in G implies that they remain dependent conditioned on any subset
of X, i.e.,
Yu'cx X; L X | U )

On the other hand, X and X, being non-adjacent in G implies the existence of a subset of X’ that
together with Y drive X; and X, independent, i.e.,

WUMCX X, LX,|UU{YY) @)

In view of equation |1} equation 2} and G being a P-map for X, it follows that there exists a path
T connecting X; and X5 in G that is active if Y is not observed, and every path connecting X,
and X5 becomes inactive if Y and U/ are observed. The distance of Y to X; does not exceed two.
Otherwise, for every path 7; connecting Y to X1, let W; be the neighbor of X; on 7; and V; be the
neighbor of W; on 7;. If Y is not a parent for X, considering[5] Y cannot impact the existence of an
edge between X; and X». If Y is a parent of X, two cases must be checked. i) There is no collider
node V; between X; and X7 by observing W; or V; the path will be inactive and the other paths are
blocked by parents nodes of X or X».ii) There is a collider node V; between X and X that W;
and V; are its children. In this case, either V; is a collider on the path between Y and X7, or there is a
collider between V; and Y that blocks the path; otherwise, a cycle would be formed in the graph. [J

Considering Lemma only three cases exist where observing Y in G can remove the edge between
X1 and X5: When Y is a confounding (Fig. E] (a)) or mediator variable between them (Fig. E] (b,c))
or Y is adjacent to X; and forms a collider with X» and W while W is a mediator node between X
and X, (Fig. [1](d,e)). Only in these cases is there an active path between X; and X, when Y is not
observed and where that path is blocked by observing Y in G.

Lemma 2 Let G be a P-map for P. If X1 L Xo|U ford C X \ {X1, X2}, then' Y cannot be a
mediator or common cause variable between them in G.

Proof. Consider Y as a mediator or common cause variable between X; and X5. Then the path
X1 =Y = Xy isactive when Y is a hidden variable and X; } Xo|U forallld C X\ {X1, X2}. O

Lemma 3 Let G be a P-map of P over X = X U{Y } and G is the output of a P-map finder algorithm.
If X € X is a collider node in G, then it is a collider node in G.

Proof. Consider an immorality X; — X5 + X3in G. Thereisald C X \ {X7, X3} so that
Xy & U and X7 L Xs|U. Also, forallif C X\ {X71, X3} we have X7 [ X3|Xo,U. Then
X1 L X3|Xo,U,)Y. If Xy, X5 and X, X3 are adjacent in G, then they form an immorality in G
and X; — X5 < X3 appears in G. Now, consider the edge X < X3 is removed by observing
Y. Therefore, X5, X3, and Y may form one of the structures shown in Fig. E} Of course, because
X1 [ X3| X5, we cannot have a direct path as X5 — Y — X3. As a result, three types of structures
might occur. If Y is a confounding variable for X, and X3 (Fig. 2] (a)) Lemma [2] means there is
no edge between Y and X; and we have X; } X3| X, which in turn means X, must be a collider
node between Y and X; and the edge between X7, X5 orients as X; — X5 in G. In the second case,
if we have X3 — Y — X, (Fig. [2](b)), similar to the previous case, we have X; — X,. Also, if
X; and Y are adjacent, the edge between them orients as X; — Y due to Lemma[2] In third case
(Fig. |2 (0)), if X1 < X5 then we have a direct path X3 — W — X5 — X that can be blocked
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Figure 2: Three structures that show the effect of the unobserved node Y on an immorality

by observing X5 or X5 1 X;|X5 which is a contradiction and similar to two first cases we have
X1 — Xs. Since we have X3 f X1|Xo,U it is impossible to have a structure with X3 adjacent
to Y and W a mediator node between X5 and X3 as Xo — W — Xj3. If we have an immorality
X1 — X2 < X3 but the edges between X, X» and X3, X5 are removed by observing Y, so there
are direct paths X5 - Y = Xoor Xs =W — Xs,and X7 - Y = Xoor X7 -V — X5 in§G
for some W, V' € X. Therefore, the direction between X1, X» or X3, X7 does not change when Y is
added to variables. As a result, the orientations of immoralities in G will be unchanged in G, and so
all orientations in G between nodes in X’ are similar to the orientations in G. ([l

3.1 CONSTRAINT-BASED APPROACH

Checking CI tests to detect independencies is the main idea in constraint-based algorithms. Two steps
are required to add the new variable Y to the previous structure. The first step is checking the relation
between Y and other nodes in X, and the second step is investigating the effect of Y on the edges in
the previous structure.

The PC algorithm is one of the most popular constraint-based algorithms to learn structure. An
extendable version of the PC algorithm has been shown in Algorithm [I] According to the PC
algorithm, the quantity of CI tests required to verify the existence of an edge between two nodes is
directly proportional to the number of adjacent nodes. Hence, to identify the existence of an edge
between Y and X € &, it is necessary to perform CI tests between Y and X while conditioning

on all subsets of both Adj(G, X) and Adj(G,Y"). Moreover, based on the PC algorithm, by adding

the node of Y into the graph G, all nodes in X’ must be connected to Y, forming an initial graph G.
Subsequently, the process involves refining the graph by eliminating any surplus or spurious edges.
The count of adjacent nodes to Y is | Adj(G,Y) |= N, whereas | Adj(G, X) |< N forany X € X.
Consequently, to determine the existence of edges between Y and each X € X, it is appropriate
to initially conduct CI tests on & C Adj(G, X ) and subsequently on &/ C Adj(G,Y’). Once the
true edges between Y and all X € X are detected, we can then identify the spurious edges between
X, Z e X.

If d represents the maximum degree of nodes in G, and m is the degree of node Y in true DAG,
employing the PC algorithm for all nodes in X = X U {Y'} imposes a bound on the number of CI
tests, which is (N + 1)M+! where M = max{d, m}. This bound is established because the PC
algorithm does not leverage information from the prior graph. However, applying the Extendable PC
algorithm when adding a new variable to the variable set can mitigate the number of required CI tests.
Table illustrates the count of CI tests at each step in the Extendable PC algorithm. N2¢ and md2¢
respectively constrain the number of CI tests in steps 2 and 4, and step 3 may require up to K™ CI
tests, where m < K < N denotes the number of adjacents of Y after step 2. Nevertheless, in step 2,
certain edges between Y and other nodes may be eliminated. If the number of nodes adjacent to Y’
decreases, the number of conditional independence tests will accordingly decrease in step 3. As a
result, we have proved that the number of CI tests for the Extendable PC algorithm is always fewer
than the PC one that is illustrated in Proposition[2} In addition, the Theorem [I] proves the output of
Algorithm[T]is a P-map.
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Table 1: The number of CI tests for each step of the Extendable PC Algorithm
Step 2 3 4

Number of Cl tests  O(N2%)  O(K™) O(md2?)

Algorithm 1: The Extendable PC Algorithm

Input: A new variable Y and graph G obtained from the PC algorithm over X’;
Output: New graph G over the set of variables X = X U {Y};

Connect Y to all nodes in G and construct the graph G;
Adj(G,Y) = X;
// Step 1: Initializing G and the adjacent sets
Adj(G, X) = Adj(G, X) U{Y},forall X € X;
Sepset(X,Y) = 0; for X € X;
m =20
while maximum degree of nodes X in G is greater than m do
for X e X // Step 2: Checking edges between the new variable
and other nodes by conditioning on the neighbors of nodes in

X.
for U C Adj(G,X) and | U |=m
ifX LY |U
Remove the edge X — Y from g;
‘ Sepset(X,Y) « U;

m=m-+1;
m = 0;
while degree of Y in G is greater than m do

for X € Adj(G,Y) // Step 3: Checking the remaining edges

between the new node and its neighbors by conditioning on
the neighbors of the new node.
for U C Adj(G,Y)\{X}and |U |=m
ifY LX|U
Remove the edge X — Y from G;
‘ Sepset(X,Y) <+ U;
m=m-+1;
m = 0;
while maximum node degree in G is greater than m do
for X € Adj(G,Y) // Step 4: Checking edges between nodes in X
with observing new variable Y
for Z € Adj(G, X) \ {Y}
if Z € Adj(G,Y) or Adj(G, X) N Adj(G, Z) N Adj(G,Y) # 0
for U C Adj(G, X))\ {Z}and | U |=m
iftX LZ|{Y}uU
‘ Remove the edge X — Z from G;

Sepset(X, Z) «+ U,

m=m+1;
if X,Z e Adj(G,Y),and X ¢ Adj(G,Z) // Step 5 : Immorality detection
ifX Y Z|YandY ¢ Sepset(X,Z)
| Orient X =Y =Zas X =Y «+ Z.
Orient the other edges by orientation rules in (Spirtes et al.,|2000). // Step 6

Proposition 2 The number of CI tests of Algorithm[l|is fewer than the PC algorithm.

Theorem 1 The output of Algorithms|[I|and[3is a P-map.
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Proof. The proof is a straightforward conclusion using Lemma 1, Lemma 3, and Lemma 4 (in
Appendix). Lemma 4 shows that adding a new variable cannot add an edge between two nodes.
Hence, according to Lemma 1, the output skeleton of the proposed extendable algorithm finds the
skeleton of the true DAG. Then, Lemma 3 shows that all collider nodes were found correctly by the
proposed algorithm. So the output PDAG for constraint-based algorithms such as Algorithm 1 is a
P-map structure. ]

In addition, we use a straightforward modification of the PC algorithm using Proposition[I} According
to our discussion adding a new variable cannot add any edge to the previous structure. Therefore, we
can use the previous skeleton G as the input graph of the PC algorithm and check the other CI tests to
obtain G. This algorithm is called the Initialized PC algorithm (IPC).

3.2 SCORE-BASED APPROACH

In the score-based approach, a score function is used to find an optimal structure over all possible
DAGs or a sub-optimal solution over a subset of possible DAGs. Therefore, the number of DAGs in
the search space has a key role in the complexity of the structure learning algorithm. If a DAG G
was obtained by a score-based algorithm over X, the search space for learning a new structure that
includes Y could be estimated by Lemmas and this point that the adding a new variable cannot
add an edge between nodes in X'. This means the number of DAGs in this search space will be lower
than all possible DAGs on X.

Let S be a search space on X'. The DAGs G in Sy must satisfy following conditions:

1. If X;, X; € & are not adjacent in G, then they are not in G.
2. If X, € X is a collider node in G, it is a collider node in G.

3. If X;, X; are adjacent to each other in G, if X;, X; and Y form a structure similar to one of
the structures in Fig. |1} then the edge between them can be deleted in G.

4. If X;, X; € & are not adjacent to each other in G, elnd both of them are adjacent to Y in g,
then Y must be a collider (i.e., X; — Y < X, in G).

5. If X;, X; € & are adjacent to each other in G, and both of tl}em are collider nodes in G,
then Y must be a confounding variable as X; <~ Y — X;in G.

Algorithms [2]and [3|are developed for extendable score-based structure learning approach. Algorithm
[2represents a general extendable score-based algorithm that includes:(1) a search space trimming
function (T-function in Algorithm 3 that restricts the graph search space, based on the analysis from
Lemmas [1] - [3} and (2) a score-based P-map finder (for example global minimization of the BIC
score), that finds the best graph within the restricted search space.

Algorithm 2: The Extendable Score-based Algorithm

Input: A new variable Y and a structure G over X
Output: A P-map G over X = X U {Y'}

S/\?<—T(§';,Y,S;g) // By T-function in algorithm

G« PF(S%) // PF is a score-based P-map finder

3.3 ITERATIVE STRUCTURE LEARNING APPROACH

We developed a new structure learning paradigm using the extendable approach, allowing standard
algorithms to be modified to reduce the run-time. This is achieved through an iterative process where
the extendable structure learning algorithm is applied at each step. As shown in Algorithm 4] starting
with two randomly selected variables from X, denoted as X; and X5, a structure G is learned. Then,
a third variable X3 is selected from X'\ { X7, X}, and a new structure G, is formed by incorporating
X3 using the extendable algorithm. This process is repeated iteratively, with each new variable, such
as Xy € X'\ {X1, Xy, X3}, being added to the current set to form the next structure. The procedure
continues until all N variables are included, resulting in a P-map graph over &X'. Using an iterative
approach, at each step, we leverage information about the relationships between nodes from the
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previous graph to determine the current graph. Since the number of nodes impacts the number of
CI tests, fewer nodes result in fewer CI tests when applying Lemma [T} which restricts the space of
possible graphs. Also, the performance of the iterative algorithms depends on the order of selecting
variables. According to Lemma [I]and Figure[I] if the ordering is close to topological causal ordering
the performance of the iterative will be better. For example, consider a naive Bayes structure with n
children {X;,---, X,,} and a parent node Y. With ordering like (X1, - , X,,,Y"), before dealing
with Y, the iterative algorithm will first produce the complete graph over { X7, - - - , X, }. However,
with this ordering (Y, X1, , X,,) the number of CI tests for Algorithm ] will be fewer than the
previous ordering.

Theorem 2 There is an ordering over X, such that the number of CI tests for Algorithm 4| with
Algorithm[l|as the extendable P-map learner is fewer than the PC algorithm.

Algorithm 3: T-function (search space trimming)

Input: Y, graph structure Q over X, and set of initial DAGs over X denoted as S ©
Output: S for ¥ = XY U{Y}

for G € Sy

for X;, Xj eX

if X; ¢ Adj(G, X;) and X; € Adj(g_7Xj)

| Delete G from Sy
if (X; > X; + X3) € Gand (X; + Xj + Xi) € Gor (X; + X; — X3) €3)
| Delete G from Sy
if X; € Adj(G, X;) and X; ¢ Adj(G, X;)
if Edges between X;, X; and'Y do not form a structure similar to any of the

structures in Fig.

| Delete G from S
| Delete G from S
if X; € Adj_(Q7 X;) and X;, X; are collider nodes in G and (X; <Y — X;) € G
| Delete G from S
Return S5

Algorithm 4: The Iterative P-map learner Algorithm

Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph
X ={X1, X5}
G < P — map learner(X)
while X'\ X # () do
Xex\x
G < Extendable P — map learner(G, X)
X« XU{X}
GG

4 NUMERICAL RESULTS

We now compare the results of our Extendable PC algorithm with the PC, and Initialized PC
algorithms on the data sets ASIA (Lauritzen & Spiegelhalter, |1988), CANCER (Korb & Nicholson)
2010), SURVEY (Scutari & Denis|, [2021)), EARTHQUAKE (Korb & Nicholson, [2010), ALARM
(Beinlich et al.}[1989), INSURANCE (Binder et al.,[1997), CHILD (Spiegelhalter & Cowell, |1992),
WATER (Jensen et al.,|{1989), SACHS (Jensen & Jensen, 2013), MILDEW (Jensen & Jensen, [2013)),
WINOISPTS (Jensen & Jensenl 2013)), HEPAR2 (Oniskol 2003). 10000 instances were drawn from
distributions for use in structure learning algorithms. For each data set a variable is chosen randomly
and a structure is learned over the other variables by the PC algorithm. Then the chosen variable
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Table 2: Number of CI tests

DATASET EXTENDABLE PC  INITIALIZED PC PC
EARTHQUAKE 15 48 57
CANCER 12 39 45
SURVEY 11 49 55
ASIA 26 87 124
CHILD 184 1242 2124
SACHS 618 682 971
ALARM 103 745 3283
MILDEW 200 670 3629
WINI9SPTS 86 1975 12501
INSURANCE 147 1571 5078
WATER 71 278 1346
HEPAR?2 536 5108 23202
ANDES 277 11426 68375

Table 3: Run-Time (sec)

DATASET EXTENDABLE PC INITIALIZED PC PC

EARTHQUAKE 0.033 0.116 0.283
CANCER 0.029 0.115 0.294
SURVEY 0.022 0.186 0.425
ASIA 0.071 0.244 0.744
CHILD 6.11 33.76 65.71
SACHS 15.39 15.86 34.16
ALARM 1.45 17.95 22.10
MILDEW 28.13 31.01 316

WIN9SPTS 0.688 77.81 111

INSURANCE 2.36 36.9 58.28
WATER 0.289 1.38 5.77
HEPAR2 47.57 474 1832
ANDES 1.97 532 2652

is added to the data set and the learned structure is considered as the input of the Extendable PC
algorithm and Initialized PC to learn the new structure. For iterative PC, the first two variables are
chosen randomly, and the iterative PC is used to estimate the structure over the whole of variables.
The number of CI tests for the PC, Initialized PC, and Extendable PC algorithms are shown in Table@]
and the runtime in Table 3| In addition, by considering the structural hamming distance, we recorded
the number of incorrect edges either missing or extra compared to the true graph and divided it by the
total number of edges in the true DAG (Table d). These results suggest that the extendable approach
can significantly reduce both the number of required CI tests and the runtime, particularly in large
networks. Additionally, Table E] shows the number of CI tests for iterative PC and PC algorithms,
and Tables [6] and [7)illustrate the runtime and error of them. The iterative approach applied to the
PC algorithm demonstrates a reduced runtime across most datasets compared to the standard PC
algorithm and the error did not change.

5 CONCLUSION

The proposed extendable structure learning approach results in adding new variables to the model
with a significantly lower computational burden compared with learning a new structure from scratch.
The proposed approach can be applied to all constraint-based and score-based algorithms. The main
challenge is to use P-map finder algorithms while there is a hidden variable. In this case, the output of
the algorithms is not a P-map and even in some situations the faithfulness assumption is violated. We
proposed Lemmas to detect situations in which unfaithfulness can occur while there is an unobserved
variable. Then, we proposed an extendable strategy for constructing a P-map when a new variable
is added to the set of variables. We applied the extendable approach to the PC algorithm. The
extendable PC algorithm could reduce the runtime up to 1300 times compared with the PC when a
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Table 4: Structural Hamming Distance divided by the total number of true edges (%)

DATASET EXTENDABLE PC  INITIALIZED PC PC

EARTHQUAKE 0 0 0

CANCER 0 0 0

SURVEY 0 0 0

ASTA 12.5 12.5 12.5

CHILD 4 4 4

SACHS 0 0 0

ALARM 8.7 8.7 8.7

MILDEW 13 17.4 17.4

WINI9SPTS 38.4 38.4 38.4

INSURANCE 30.8 30.8 30.8

WATER 57.6 59.1 59.1

HEPAR2 51.2 51.2 51.2

ANDES 19.5 19.5 19.5

Table 5: Number of CI tests Table 6: Run-Time (sec)

DATASET ITERATIVE PC PC DATASET ITERATIVE PC ~ PC
EARTHQUAKE 31 57 EARTHQUAKE 0.09 0.283
CANCER 27 45 CANCER 0.06 0.294
SURVEY 37 55 SURVEY 0.09 0.425
ASIA 66 124 ASITA 0.15 0.744
CHILD 3344 2124 CHILD 124 65.71
SACHS 1276 971 SACHS 35.5 34.16
ALARM 4847 3283 ALARM 81 22.1
MILDEW 2597 3629 MILDEW 715 316
WINO9SPTS 10412 12501 WINI9SPTS 144 111
INSURANCE 2589 5078 INSURANCE 39.5 58.28
WATER 872 1346 WATER 3.11 5.77
HEPAR2 8371 23202 HEPAR2 597 1832
ANDES 35327 68375 ANDES 307 2652

Table 7: Structural Hamming Distance divided by the total number of true edges (%)

DATASET ITERATIVE PC PC
EARTHQUAKE 0 0
CANCER 0 0
SURVEY 0 0
ASIA 12.5 12.5
CHILD 4 4
SACHS 0 0
ALARM 17.4 8.7
MILDEW 54.3 17.4
WINISPTS 31.25 38.4
INSURANCE 26.9 30.8
WATER 47 59.1
HEPAR2 46.3 51.2
ANDES 23.4 19.5

new variable is added to the set of variables and up to 270 times compared with the Initialized PC
algorithm. In addition, the iterative paradigm for structure learning based on the extendable approach
was developed. The proposed approach can be used for all types of structure learning algorithms.
The structure learning starts with two variables, and then a third variable is added to the previous
structure using the extendable approach, This iterative would continue until all variables are added to
the graph and finally, a P-map is constructed. The iterative PC algorithm can reduce the number of
CI tests and the runtime for most datasets, while also increasing accuracy in some cases.

10
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A APPENDIX

Lemma 4 (Based on (Spirtes et al.,|2000)) Consider random variables X with joint distribution P
that admits a P-map G. Vertices X andY are not adjacent in G if and only if X LY | U for some
uckax.

Lemma 5 [Lemma 3.2 in (Koller & Friedman, |2009)] Consider random variables X with joint
distribution P that admits a P-map G. Vertices X and Y are not adjacent in G if and only if
X 1LY |PaxorX LY |Pay.

Algorithm 5: The Extendable Constraint-based Algorithm

Input: A new variable Y and a structure Q over X
Output: APDAG G over X = XY U{Y'}

Form the G over nodes X’ by connecting Y to all nodes G by undirected edge;

for X e X // Step 1:
| Check the edge between Y and X

for X € Adj(G,Y) // Step 2

for Z € Adj(G, X)

if Z € Adj(G,Y) or Adj(G, X) N Adj(G, Z) N Adj(G.Y) # 0
| Check the edge between X and Z

Orient the new edges using the orientation rules in (Spirtes et al.,[2000). // Orientation

R N N I

Algorithm 6: The Iterative PC Algorithm

Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph

Sepset = )
2 A? = {Xl,XQ}
G, Sepset «+ PC/(X)
while X'\ X # () do
Xex\x
G, Sepset «— ExtendablePC(G, X, Sepset)
X« XU{X}
GG

Orient the edges using the orientation rules in (Spirtes et al., [2000). // Orientation

—

DR e . T )

Algorithm 7: The PC Algorithm

Input: A set of variables A" and their joint probability distribution P
Output: A partially directed acyclic graph

1 Form the complete undirected graph G over nodes X’;

2 Sepset(X,Y) =@ forall X,V € X;

3m=20

4 while maximum node degree in G is greater than m do

5 for X ¢ X // CI tests
6 for Y € Adj(G, X)

7 fort CAJj(G, X)\{Y}and | U |=m

8 ifX LY |U

9 Remove the edge X — Y from G;

10 ‘ Sepset(X,Y) «+ U,
1 m=m+1;
12 Orient the edges using the orientation rules in (Spirtes et al., | 2000). // Orientation

12
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Algorithm 8: The Extendable Hill-climbing structure learning algorithm

Input: A new variable Y and a structure Q over X
Output: A P-map G over ¥ = X U {Y'}
Form G as the union of G and one-point graph Y’
=1
while i < I do ~
Ng < Neibourhood Finder(G)
Ng T(G,KNg) // By T-function in algorithm
G « arg maxgen;; Scorepic(9)
141+ 1

Proof of Theorem 2] Consider a topological causal ordering over X. It means that in Algorithm 4]
in every iteration, when a variable is added all its parents had been added in the previous iterations.
Thus the structures shown in Figure [T]do not occur in each iteration. So step 4 in Algorithm I]is
not used in any iteration. The other part of the Algorithm [I]is similar to the PC algorithm except
that it uses the information of the number of adjacent of each node in the previous graph. So, as we
discussed in section 3.1, the number of required CI tests is fewer than the PC algorithm to check
edges between each two nodes. As a result, the number of CI tests for all iterations will be fewer than
the PC algorithm. |
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