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Abstract

Vision-language models heavily rely on visual representations, yet ensuring its
efficiency remains a critical challenge. Most existing approaches focus on reduc-
ing visual tokens either at the visual encoder phase or during the LLM decoder
stage. Inspired by human visual cognition, where an initial global glance precedes
focused attention on semantically salient regions, we introduce Glance2Gaze, a
cognitively inspired framework that mimics the human two-stage attention process.
The framework consists of two key components: the Glance Fusion module, which
integrates multi-layer vision transformer features with text-aware attention to gen-
erate a semantically enriched global representation, and the Gaze Compression
module, which utilizes a novel query-guided mechanism to selectively compress
visual tokens based on their semantic relevance. Experimental results on widely
adopted benchmarks demonstrate that Glance2Gaze outperforms existing methods,
achieving superior performance with equal or lower computational cost. Further-
more, it generalizes well to high-resolution and video scenarios, showcasing robust
and scalable efficiency improvements in VLMs.

1 Introduction

Large Vision-Language Models (VLMs) [1H6] have made significant advances in image captioning,
visual question answering, and multimodal dialogue understanding driven by the rapid progress
of Large Language Models (LLMs) [7H11]. A typical VLM architecture consists of three key
components: (i) a pre-trained visual encoder responsible for extracting dense image representations;
(ii) a cross-modal projector that aligns visual features with textual embeddings; and (iii) a language
model backbone that processes the combined visual-textual tokens to generate task-specific outputs.
Central to this pipeline are visual tokens, whose quality critically impacts model performance and
efficiency, making them a core focus in VLM design.

Visual tokens are conventionally extracted from images using pre-trained vision backbones such
as CLIP-ViT [12], EVA [13], or Internlmage [14], which generate fixed-length sequences of visual
embeddings for downstream multimodal tasks. Recent advancements in large VLMs have shown
that increasing the number of visual tokens can significantly improve performance by capturing
finer visual details [4]} 15| [15, [16]. However, denser visual token representations pose substantial
computational challenges due to the quadratic complexity of attention mechanisms in LLMs, where
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Figure 1: Left: Cross-modal attention heatmaps between instructions and visual tokens from different
ViT layers, with numerical annotations indicating layer indices. Right: The pruning ratio-performance
trade-off curve under LLaVA[3]].

computational cost scales with the square of the total token count. Consequently, increasing token
density exacerbates inference latency, memory consumption, and scalability issues.

In response to increasing complexity, substantial research has explored visual token selection, an
approach that retains only the most informative tokens while discarding redundant or less relevant
ones. This strategy is driven by the insight that not all visual tokens contribute equally to downstream
tasks [17H23]]. Existing methods can be broadly classified into two paradigms based on the stage at
which pruning is applied. The first focuses on encoder-stage pruning [24]), where token
selection occurs within the visual encoder before fed into the language model. The second involves
LLM-stage pruning [18], 25127, where selection is performed alongside the language model
decoder, often leveraging the full attention matrix to assess token importance. By selecting a subset
of salient tokens, both paradigms aim to reduce token count while maintaining task performance,
thereby enhancing computational efficiency. This paper also focus on efficient visual representation,
providing novel insight from a cognitive perspective.

In this paper, we propose a novel framework for efficient vision-language models inspired by the
glance-to-gaze mechanism observed in human visual cognition. Our work draws on the human eye
movements that typically exhibit a two-stage pattern: initial fixations are broad and exploratory
in nature, serving to rapidly acquire a global understanding of a scene, while subsequent fixations
become increasingly focused [28]]. Intuitively, human first perform a glance to capture the global
layout and salient structures, followed by a gaze that zooms in on regions of interest for detailed
inspection [29-32]]. However, existing methods often aim to improve efficiency by selecting a subset
of salient tokens, overlooking the hierarchical nature of human attention.

Motivated by this insight, we propose Glance2Gaze, a hierarchical visual token processing frame-
work that emulates the dual-phase mechanism of rapid glancing followed by focused gazing. In
contrast, our approach begins with a lightweight global scan to identify candidate regions and then
progressively refines attention toward semantically rich subregions, enabling deeper cross-modal
interaction. Specifically, Glance2Gaze comprises two complementary modules: Glance Fusion and
Gaze Compression. Glance Fusion enables fast and holistic perception by dynamically aggregating
multi-layer features rather than solely the penultimate ViT layer used in conventional approaches. We
employ a text-aware attention to integrate hierarchical representations, enriching global semantics
without increasing token count. As shown in Figure|[T] (left), attention heatmaps across ViT layers
indicate that each layer contributes distinctively to cross-modal understanding, highlighting the
benefit of hierarchical feature aggregation for global context modeling. Building on the initial global
understanding, Gaze Compression shifts the focus toward localized visual cues by progressively
condensing visual tokens within the language model. This module is informed by the observation
that token redundancy varies with decoding depth: shallow decoder layers are sensitive to pruning,
whereas deeper layers remain robust under significant token reduction, as shown in Figure T] (right).



We introduce a novel query-guided mechanism to selectively compress visual tokens based on their
semantic relevance, facilitating a smooth transition from global to fine-grained visual reasoning.

We conduct extensive experiments to evaluate the effectiveness and efficiency of our proposed frame-
work. Empirical results demonstrate that it consistently outperforms state-of-the-art baselines on both
image and video understanding tasks, while maintaining comparable computational efficiency on
the LLaVA backbone series. To ensure a comprehensive evaluation, we include a detailed analysis
of computational cost, including inference latency comparison. Beyond empirical performance,
our framework is grounded in cognitive principles drawn from human visual perception. By align-
ing model behavior with established cognitive mechanisms, our approach provides a principled,
biologically inspired pathway toward more efficient vision-language models.

In summary, our key contributions are:

* We introduce a Glance2Gaze, a cognitively motivated two-stage visual token processing
framework that mirrors human eye movement patterns, initial global glancing followed by
focused gazing, to enhance efficiency in vision-language models.

* Building on the insight, we design a Glance Fusion module that aggregates multi-layer
ViT features using text-aware attention, enriching global semantic understanding without
increasing visual token count and a Gaze Compression module, an efficient iterative visual
token compression method that uses a shared query pool to condense visual tokens, emulating
the visual system’s gaze process.

* We present an in-depth analysis about each component of the proposed framework. Empiri-
cally we demonstrate our approach delivers superior performance comparing with state-of-
the-art baselines on both image understanding and video understanding tasks.

2 Related Work

Vision-Language models. Recent advances in LLMs like GPT [7]] and LLaMA [9] have driven the
emergence of VLMs [1H6,133]]. VLMs aim to process and understand information across multiple data
modalities, including text, images, videos. LLaVA [2] pioneered open-source VLMs by introducing
a visual-language instruction dataset and establishing a robust framework through the integration
of CLIP-ViT-L-336px [[12] visual encoder with the Vicuna [8] language model, thereby laying the
groundwork for future architectures. However, it resizes each image into fixed number of visual tokens,
hindering its performance in complex tasks. To enhance visual tokens, several methods [1} 4,110} [15]
have increased the number of image tokens to enhance model detail comprehension and reduce
hallucinations. LLaVA-NeXT [15]] dynamically divides images into patches, allowing the visual
encoder to process them independently before concatenating them to form the visual representation.
Meanwhile, Qwen2-VL [3]] introduces dynamic resolution to accommodate high-resolution inputs
and trains the visual encoder from scratch using extensive image-text pairs, resulting in improved
performance on fine-grained tasks. Furthermore, video-based VLMs [34} 35] extract multiple frames
to enhance video understanding, resulting in a substantial increase in token count. While increasing
visual tokens aids in managing complex scenarios, the excessive volume can significantly hinder
the practical application of VLMs in real-world settings. Recently, GG-Transformer [36] adopts a
glance-and-gaze concept to improve the modeling of long-range dependencies and local contexts
within ViTs. However, its objective differs fundamentally from ours, as it focuses on enhancing
unimodal representational capacity in ViT, whereas our goal is to improve efficiency in VLM.

Visual compression for VLMs. Recent methods have concentrated on reducing the visual token count
while aiming to preserve model performance. Prior works have explored compressing visual tokens
before interfacing with the LLM [l17, 19} 120} 22} 24} 13337, 138]]. Resampler [39] utilizes a learnable
query embedding to compress visual tokens from the vision encoder, while MQT [38]] introduces
random selection of queries to adapt token count to task needs. VisionZip [22] employs a training-free
pruning strategy using encoder attention to identify and remove redundant tokens, similar to LLaVA-
Prumerge [20]. These methods face challenges in optimizing performance and efficiency; excessive
token retention leads to redundancy, whereas aggressive compression compromises accuracy. Another
type of approaches [18} 21} 23 25| [27]] reduce token count in LLM decoders using attention matrices.
FastV [[18] proposes halving visual tokens post-second LLM layer, while Sparse VLM [23]] employs
a training-free method to prune tokens based on text relevance scores. These rely on full attention
matrices, making them incompatible with FlashAttn [40]. PDrop [21] attempts to address this by
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Figure 2: Diagram of the proposed Glance2Gaze framework. Glance Fusion combines hierarchical
ViT features, guided by instruction, to produce enriched text-aware visual representations. Gaze
Compression iteratively reduces visual tokens using a shared query embedding pool Q.

introducing a lightweight similarity calculation before attention. However, these methods miss the
human-like glance-to-gaze transition, which highlights the importance of capturing a global visual
context before compression—a crucial aspect often neglected.

Unlike these methods, the proposed Glance2Gaze framework is inspired by cognitive principles
and consists of two steps: Glance and Gaze, to efficiently compress visual tokens. The Glance step
enhances overall image perception by providing additional detail, while the Gaze step gradually
focuses on more relevant local areas with a novel query-guided compression.

3 Method

The Glance2Gaze architecture is depicted in Figure[2] Our design places the Glance Fusion module
before the LLM and embeds the Gaze Compression module within it. Glance Fusion enhances
text-aware visual representations by integrating ViT layers prior to token compression, while Gaze
Compression iteratively reduces visual tokens starting at a specific decoder layer, transitioning focus
from global scenes to local regions.

Revisiting VLMs. In VLMs, an image input I € R *W>3 i5 divided into N discrete tokens via
patch convolution and refined through K transformer layers, yielding visual tokens V' € REXNxdv
where d,, denotes the dimension of visual tokens. Typically, tokens from the penultimate layer are
selected for input to the projector and subsequently the LLM. R denotes the total number of decoder
layers in the LLM.

3.1 Glance Fusion

Building on the preceding analysis, we introduce Glance Fusion to enhance global context understand-
ing. While prior studies [41H43]] explored improving visual features using pre-trained visual encoders,
these methods overlook the crucial interplay between textual and visual signals, thus limiting their
performance gains. Dense Connector [41] divides ViT layers into groups, averages tokens within each
group, and concatenates them across channels. MMFuser [42]] utilizes deep ViT features as queries to
retrieve missing details from shallow features. In contrast, Glance Fusion employs text-conditioned
attention to dynamically integrates ViT’s multi-level features, enabling task-aware feature weighting
without incurring significant computational overhead or added token count.



Visual-instruction correlation. We first partition the ViT into distinct hierarchical stages to miti-
gate computational overhead while preserving representational diversity. We strategically sample
intermediate layers from ViT. Let L. = {l;,l5,...,ls} denote the predefined set of layer indices
(e.g., ls € [1,24] for a 24-layer ViT), where S = || specifies the number of selected layers. From
the full-layer image tokens V' € RE*N*dv e extract tokens corresponding to L, yielding a
lightweight hierarchical representation V' € RS*N*dv These tokens are then projected into the
LLM’s embedding space via the projector P,, yielding VQ:

V= concat(Vy,),ls € L, €))
Vo = Py(V) € RSN xd:, @)
where d; denotes the dimension of text tokens.

Let 75, denotes the input instruction tokens, we first generate its textual embedding E;,, s € RMxd:
using the LLM’s native embedding layer, ensuring parameter-sharing consistency with linguistic
processing, M equals to the number of instruction tokens. To adaptively align textual semantics
with hierarchical visual features, we introduce layer-specific projection layer {P;}5_,, where P}

transforms FE;, into a subspace tailored for the ‘75 Formally:

E;, =P} (Eins) e RM*U s =12 .8 (€)

ms

For each layer [, the projected text embedding E . is paired with its corresponding ViT feature

V5 to compute cross-modal correlation score, enabling granularity-aware fusion of visual semantics.

Specifically, we take ‘75 as query and E; . as key to compute scaled dot-product correlation score,

resulting in an attention matrix A%,, € RY*M_ We calculate the row-wise average to form the vector
g5, € RY, which represents the correlation of each image token in the I,-th ViT layer with all
instruction tokens. Then we concatenate all g5,, to form G5, € R¥*V:

7S s T
VS E;

Sa =~ €RVM 5 =1,2,. S, (4)
gth :G,’Ug(A,[SQt) ERNVSz 1727"'757 (5)
G ot = concat(gy,,) € RSN, (©6)

Instruction-oriented integration. To optimally extract visual features that enhance instruction com-
prehension, we apply Softmax to G,2; along the column dimension, yielding normalized correlation
scores for each visual token across S different layers. These scores act as dynamic weights to produce
task-enhanced visual tokens V{y, resulting in:

G ot = softmaz(G o, dim = 0), @)
Vo =0, V50 Gy € RV, ®)

where © denotes element-wise multiplication broadcasted along the token dimension. This method
employs the correlation between instructions and ViT layers as weights to fuse their outputs, yielding
task-enhanced visual features. These enhanced features, V{y, are then concatenated with text tokens
for processing by the LLM.

3.2 Gaze Compression

We propose Gaze Compression, a parameter-efficient mechanism that iteratively reduces visual token
count across decoder layers via a shared learnable query pool. Building on previous observation
that shallow decoder layers are sensitive to pruning, we retain all visual tokens in the shallow
decoder layers to fully understand them. Therefore, we decide to initiate the Gaze Compression
from a predefined layer . By retaining the full token count at shallow layers, we enable the LLM
to thoroughly understand visual tokens and enhance overall comprehension, thus laying a solid
foundation for subsequent compression.

Progressive gaze compression. To achieve token reduction, we define a monotonically decreasing
sequence P = [pr, pri1,-..,pR) With p. > p.11 > -+ > pgr, where p; (r <1 < R) represents the
number of compressed visual tokens at the [-th decoder layer, which is less than the number of initial



visual tokens, namely p, < N. Starting from layer 7, a query-based compression attention operation
compresses visual tokens before they are inputted to each decoder layer. At each [-th layer in the
LLM, a learnable query Q; € RP** % is initialized, with visual tokens from [-1-th layer H;_; serving
as key and value for cross-attention computation. The attention output yields compressed visual
tokens for the decoder layer’s processing. However, distinct queries across layers increase parameter
count and complicate optimization for discrete visual token extraction. To mitigate this, a learnable
query embedding Q, € RP~*% is shared across all pertinent decoder layers. Consequently, at the
I-th layer, the first p; queries Q. € RP**% are drawn from Q, and visual tokens are compressed as
follows:

Fy(PEQL)Fi(Hy—1)"

Vdy

where F,,/q/1/,» denotes four distinct linear projection layers, and P E refers to the 2D Rotary Po-
sitional Embedding [[10] applied to @, for spatial information perception. The resulting output
H,; € RP*4 replaces the input H;_1, yielding compressed visual tokens. By continually compress-
ing beyond layer r, visual tokens are reduced, lowering computational demands in the decoder layers.
This progressive reduction mimics the fine gazing process, focusing visual tokens on critical image
regions.

H; = Fo(softmam( )]:’U(Hl—l))a ©)

3.3 Efficiency Analysis

Following prior work [21} 22], we report the FLOPs of the image token component. Glance Fusion
accounts for less than 2.72% of the total FLOPs, which is therefore negligible compared to the
computational cost incurred by visual token processing within LLM. We thus provide additional
details in the supplementary material and here exclude it from further analysis.

Consequently, we focus solely on the FLOPs associated with the LLM’s processing of visual tokens,
evaluating efficiency from two perspectives: 1) the FLOPs required to process visual token sequences
through decoder layers, and 2) the overhead introduced by Gaze Compression, as outlined in Eq. [0}

For Vicuna [8] (featuring 3-layer MLP following attention), the FLOPs per layer is 4n;d? + 2nld; +
3n;did,,, where n; denotes the number of visual tokens (n; = N before layer r, n; = p; thereafter)
at [-th decoder layer and d,,, is the hidden dimension of FFN. The compression overhead in Eq.[9]
includes attention computation and four linear layers, resulting in 2(pld% + pl_ld% + pipi—1ds)
FLOPs, assuming p;_1 = N when [ = r. Then the overall computational cost is:

R R
C'=> dnd} +2nid; + 3mydydy, + > 2(pid} + pi_1d; + pipi—1dy). (10)

=1 l=r
For instance, by setting r to 9 and using an exponentially decaying sequence P = [256,...,2] in

LLaVA-1.5-7B, we maintain only 33.2% of the FLOPs while minimally affecting performance across
several benchmarks. To manage different compression ratios, pr is always set to 2, with adjustments
made to r and p,.. Additional details are provided in the supplementary material.

4 Experiments

4.1 Image Understanding Tasks

Benchmarks. To validate the effectiveness of our method in image understanding tasks, we con-
ducted experiments on ten mainstream datasets, including TextVQA [44], POPE [45], GQA [46]],
VQAV2 [47], SEEDBench [48]], MMBench [49], MME [50]], ScienceQA-IMG [51], MM Vet [52] and
LLaVA-Bench-in-the-wild [2].

Implementation details. We applied the proposed method to both LLaVA-1.5-7B [3]] and the high-
resolution backbone, LLaVA-NeXT-7B [[L3]], which increases the input image resolution to 4x more
pixels. For LLaVA, the vision encoder was frozen while the remaining parameters were fine-tuned
using the LLaVA-665k [3] dataset, adhering to the original training settings. For LLaVA-NeXT, all
parameters were unfrozen during fine-tuning. Given its proprietary code and training data, we used
the Open-LLaVA-NeXT [53], an open-source replication, for training, following PDrop [21]]. In the



Table 1: The performance of Glance2Gaze at various compression configurations on LLaVA-1.5-7B,
with FLOPs and the final column indicating the relative proportion of visual token computation and
performance compared to the original model. Bold for best and underline for second-best performers.

Method FLOPs|POPE SQA MME GQA SEED MMB VQAv2 TextVQA MMVet LLaVA-B  Avg.
LLaVA-1.5-7B 100% ‘ 859 695 1862 619 58.6 64.7 785 58.2 31.1 66.8 100%

FastV 33% | 64.8 673 1612 527 57.1 612 67.1 52.5 27.7 494  87.5%
SparseVLM  33% | 853 68.7 1787 59.5 587 64.1 75.6 57.8 33.1 66.1  99.0%
PDrop 33% | 82.3 70.2 1766 57.1 547 63.2 - 56.1 30.5 - 96.2%
VisionZip 33% | 849 68.2 1834 60.1 57.1 634 774 57.8 32.6 66.7 99.1%
Glance2Gaze 33% | 85.5 704 1812 61.5 58.7 64.5 77.6 57.2 32.7 664  99.9%

FastV 22% | 59.6 60.2 1490 49.6 559 56.1 61.8 50.6 28.1 52 83.2%
SparseVLM  22% | 85.0 68.6 1746 584 582 64.5 73.8 56.7 29.0 62.7  96.3%
PDrop 22% | 82.3 69.9 1664 56.0 533 61.1 - 55.1 30.8 - 94.4%
VisionZip 22% | 83.7 68.3 1823 58.9 558 626 76.6 57.0 329 648 97.9%
Glance2Gaze 22% | 84.5 70.2 1794 59.3 56.6 63.4 774 56.8 33.1 654 98.7%

FastV 11% | 48.0 51.1 1256 46.1 519 48.0 55.0 47.8 25.8 46.1  73.8%
SparseVLM  11% | 77.5 69.8 1589 53.8 522 60.1 68.2 534 249 575  89.0%
PDrop 11% | 559 69.2 1092 41.9 40.0 333 - 459 30.7 - 73.5%
VisionZip 11% | 80.9 68.8 1756 57.0 534 615 742 56.0 30.2 63.6 94.9%
Glance2Gaze 11% | 83.1 69.1 1722 56.9 539 61.7 749 55.7 314 641 95.6%

Q: what is the word on the ground? A: street army Q: what postbox number is it? A: srl 18

Figure 3: Visualization of different query embedding counts for compressing visual tokens from
TextVQA [44]]. Number within each image denotes p;.

Glance Fusion module, L is set to {7, 13, 19, 23}. We implement the Gaze Compression strategy
under different compression ratios. All experiments are conducted on 8§ NVIDIA-A100-80G GPUs.
Please refer to the supplementary material for more implementation details.

Results on LLaVA. Table [T] presents the performance of Glance2Gaze on LLaVA-1.5-7B [3],
benchmarked against state-of-the-art approaches FastV [[18], Sparse VLM [23]], PDrop [21]], and
VisionZip [22] across three FLOPs configurations, 33%, 22%, and 11%, indicating the computational
ratio of visual processing compared to full token retention. Overall, Glance2Gaze consistently
achieves top results at all compression levels and ranks as the best or second-best performer across
nearly all datasets, showcasing its strong competitiveness. At 33% FLOPs, Glance2Gaze outperforms
PDrop by 3.7% and VisionZip by 0.8%. Moreover, at 22% FLOPs, SparseVLM experience a 2.7%
drop in accuracy, whereas Glance2Gaze only loses 1.2%, surpassing VisionZip by 0.8%. At the
extreme compression ratio of 11%, Glance2Gaze retains 95.6% performance, exceeding VisionZip
by 0.7% and SparseVLM by 6.6%, demonstrating its robust performance across various compression
requirements.

Results on LLaVA-NEXT. LLaVA-NeXT extends LLaVA to handle high-resolution scenarios by
dividing images into up to five patches, creating up to 2880 image tokens. Glance Fusion and Gaze
Compression are applied independently to each sub-image. As shown in Table 2] Glance2Gaze ex-
hibits greater advantages in high-resolution scenarios compared to standard resolutions. Glance2Gaze
surpasses the second-best performer, VisionZip, with an average improvement of 1.2-1.3% across
three FLOPs setting. Furthermore, Glance2Gaze surpasses VisionZip on nearly all datasets, demon-



Table 2: The performance of Glance2Gaze on LLaVA-NeXT-7B.

Method FLOPs | TextVQA POPE SQA MME GQA MMB VQAv2 Avg.
LLaVA-NeXT-7B  100% ‘ 65.8 86.6 69.2 1801 63.8 672 80.5 100%
SparseVLM 22% 57.8 - 67.7 1772 60.3 65.7 77.1 95.4%
VisionZip 22% 60.8 87.6 67.9 1778 624 65.9 799  97.9%
Glance2Gaze 22% 62.1 89.2 699 1784 63.1 664 80.1 99.2%
SparseVLM 11% 55.9 - 673 1694 577 643 734 92.3%
VisionZip 11% 59.3 86.2 67.5 1770 61.0 644 784  96.3%
Glance2Gaze 11% 60.5 875 699 1771 62.0 64.3 788 97.6%
SparseVLM 5% 46.4 - 67.5 1542 512 63.1 66.3 85.0%
VisionZip 5% 57.3 834 67.5 1699 58.2 63.9 75.6  93.6%
Glance2Gaze 5% 58.6 844 688 1718 589 64.0 76.4 94.8%

Table 3: The performance of Glance2Gaze on Video-LLaVA at 6% FLOPs.
Method  TGIF MSVD MSRVTT ActivityNet Avg.

Video-LLaVA 47.1 69.8 56.7 43.1 100%
FastV 23.1 38.0 19.3 30.6 52.1%
SparseVLM  44.7 68.2 31.0 42.6 86.5%
VisionZip 42.4 63.5 52.1 430 93.2%
Glance2Gaze 45.0 66.5 524 438 96.2%

strating its robustness in preserving essential information during compression, especially in intricate
OCR tasks such as TextVQA and VQAv2. The superior performance of Glance2Gaze in high-
resolution scenarios likely stems from its ability to focus on spatially crucial details through the
glance-to-gaze process, which becomes increasingly important as image complexity escalates.

4.2 Video Understanding Tasks

Benchmarks. Beyond image understanding, we applied the proposed method to video comprehension
tasks, evaluating it on four widely adopted video-based question answering benchmarks: TGIF [54],
MSVD [55], MSRVTT [55], and ActivityNet [S6].

Implementation details. We use Video-LLaVA [34] to train a video VLM, which use Language
Bind [57] as the vision encoder, extracts 8 frames from a video, encoding each into 256 visual
tokens, culminating in 2048 image tokens in the end. To make a fair comparison with VisionZip and
Sparse VLM, r and p,. are set to 3 and 10 respectively to create a model with FLOPs reduced to 6%
of the original. Please refer to supplementary material for more training details.

Performance on Video-LLaVA. In video understanding tasks, a substantial degree of frame-to-frame
redundancy presents opportunities for computational efficiency without significantly compromis-
ing performance. Our method effectively capitalizes on this redundancy, achieving 96.2% of the
performance using only 6% of FLOPs, whereas FastV suffers a 47.9% performance drop. Notably,
Glance2Gaze outperforms VisionZip by 3% on average and ranks first on 3 out of 4 benchmarks,
making it particularly suitable for real-time and large-scale video analysis applications.

4.3 Efficiency Comparison

TableE]analyzes the computational costs, cuda time (i.e., the time required to generate the first token),
overall latency (i.e., the total time to complete the entire sequence), and throughput on the TextVQA
dataset, evaluated using a NVIDIA-A100-80G GPU, consistent across all compared baselines.

The results demonstrate that, under the same TFLOPs reduction ratio, Glance2Gaze not only delivers
superior performance but also achieves the fastest inference speed, with a 6.39x acceleration in pre-
filling time, a 3.15x speedup in overall latency, and a 3.14 x improvement in throughput, effectively
balancing efficiency and accuracy.



Table 4: Computational cost analysis comparison on LLaVA-NeXT-7B.
Method  TFLOPs Cuda Time (ms) Latency (ms) Throughput TextVQA
LLaVA-NeXT 53.83 313 475 10.884 65.8

FastV 2.76 170 (1.84x) 358 (1.33x) 12.272 (1.13x) -
SparseVLM  2.76 183 (1.71x) 379 (1.25 x) 13.233 (1.22x) 464
VisionZip 2.76 57 (5.49%x) 192 (2.47x) 26983 (2.48x) 57.3
Glance2Gaze 2.67 49 (6.39x) 151 (3.15x) 34.121 (3.14x) 58.6

Layer-specific Query Gaze Compression only Glance2Gaze
SEED GQA POPE SQA MMB LLaVA-B VQAvV2 TextVQA
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Figure 4: Ablation study evaluating the effect of a shared query pool in Gaze Compression comparing
layer-specific query and the effect of Glance Fusion.

4.4 Analysis and Discussion

Visualization of Gaze Compression. Figure [3illustrates the visual features learned by the query
embedding at 33% FLOPs on TextVQA. Initially, with more visual tokens retained, the query captures
broader global information. As compression progresses and fewer visual tokens are kept, focus shifts
to regions containing the answer, demonstrating how the query learns to localize important areas
through the gaze compression procedure, such as those involving text answers.

The effect of Gaze Compression compared to attention-based strategies. To rigorously assess the
advantage of Gaze Compression over attention-based pruning, we evaluate both methods under an
identical compression ratio. As shown in Table 5] attention-based pruning results in notable perfor-
mance degradation. Even with subsequent fine-tuning, the baseline remains inferior to Glance2Gaze,
underscoring that static pruning guided solely by local attention scores lacks the adaptability required
for task-specific compression.

The effect of a shared query pool. We investigate the effects of using layer-specific queries in Gaze
Compression, as shown in Figure |4 Using independent queries for each layer increases parameters
and significantly damages performance across all datasets. This may be because the shared queries
enhance pattern extraction from the same image, implicitly constraining the query’s optimization
domain. More ablations about Gaze Compression is available in the supplementary material.

The effect of Glance Fusion. Figure [ demonstrates the impact of applying Gaze Compression
alone and with Glance Fusion at 22% FLOPs on LLaVA-1.5-7B, resulting in substantial performance
enhancements across all datasets. Notably, Glance Fusion improves accuracy by 1.0 and 1.6 points on
TextVQA and VQAV2, respectively, where fine-grained image details are crucial for text understand-
ing tasks. We emphasize that the additional computational overhead introduced by Glance Fusion is
minimal, yet its effectiveness is substantial. More ablations about Glance Fusion is available in the
supplementary material.

Comparison with other fusion strategies. We compare Glance Fusion with two representative
fusion strategies, Dense Connector [41] and MMFuser [42]], on LLaVA [3]] with different scales, as
summarized in Table[6l Dense Connector was not evaluated on LLaVA-1.5-13B and is therefore
excluded from that setting. Glance Fusion consistently outperforms both baselines across model
scales. On LLaVA-1.5-7B, it exceeds Dense Connector by 0.1-1.1 points, despite using fewer
ViT layers (4 vs. 24), and surpasses MMFuser, which uses five layers, by 0.5-1.9 points. Similar



Table 5: Comparison of Gaze Compression with attention-based pruning methods.
Method POPE SQA MME GQA SEED MMB VQAv2 TextVQA MMVet LLaVA-B Avg.

w/o finetune 83.4 69.1 1775 59.7 547 63.0 74.6 55.8 30.6 620 96.1%
w finetune  84.7 69.1 1793 60.8 56.8 632 757 56.4 314 652  97.9%
Glance2Gaze 85.5 70.4 1812 61.5 58.7 645 77.6 57.2 32.7 664  99.9%

Table 6: Exploring the potential of Glance Fusion compared with other fusion strategies.

Method GQA  VQAV2 SQA  TextVQA POPE
LLaVA-7B 620 785 668 582 85.9

+Dense Connector 63.813T 795101 695271 592107 g6 071
+MMFuser 62.8981 79,1067 8. 71-9T 58.80-6T g6 3047
+Glance Fusion  64.1>'T 79.6"!T 70.638T 59427 87237
LLaVA-13B 633 800 716 613 85.9

+MMFuser 63.4%-17 80.10-1T 712044 599044 g7 5161

+Glance Fusion  64.5%2T 80.4%4T 71.9°31 61.8°5T 87.21:31

improvements are observed on LLaVA-1.5-13B. These results highlight Glance Fusion’s superiority
over task-agnostic fusion methods.

5 Conclusion and Limitation

This paper introduces a novel cognitive-inspired visual token compression through a two-stage
glance-to-gaze approach. First, Glance Fusion dynamically merges multi-layer ViT features using
a text-aware attention strategy to enhance image understanding. Next, Gaze Compression employs
a query-based approach using a shared query pool to selectively compress visual tokens within
LLM, mimicking the gaze process by progressively focusing on detailed local regions. Experimental
results show that Glance2Gaze surpasses existing methods in performance with equal or reduced
computational cost. While the overall framework is cognitively inspired, the internal mechanisms,
particularly the fusion and compression strategies, remain largely heuristic and lack explicit modeling
of cognitive processes. Future work could explore tighter integration with cognitive theories to further
enhance both interpretability and performance.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Detailed experimental settings are provided in Section 4] and supplementary
materials.
Guidelines:
» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be computationally expensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the hardware used (8 NVIDIA-A100-80G GPUs) in
Section ] FLOPs and inference latency per test samples is provided, allowing for estimation
of computational costs.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Both positive and negative societal impacts are discussed in supplementary
material.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release high-risk data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites the sources for existing methods and benchmarks and
respect their CC-BY-SA Licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve crowdsourcing experiments or research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper describes the usage of Vicuna [8] as a foundational component
of the core method in this research, acknowledging its importance and originality. The
authors have obtained the necessary authorization to use this model, ensuring compliance
with relevant guidelines and respecting intellectual property rights. Hence, the use of Vicuna
is integral to the methodology presented and is well-documented within the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Material

A.1 Broader Impact

The proposed Glance2Gaze advances vision-language models by introducing a cognitively inspired
framework that harmonizes efficiency and performance through its two-stage attention mechanism.
By mimicking human visual cognition—first capturing global context and then focusing on salient
details—the method significantly reduces computational overhead while maintaining or improving
accuracy across diverse tasks. This innovation broadens accessibility to advanced visual-language
systems, enabling deployment in resource-limited settings such as edge devices or real-time appli-
cations. Its scalability to high-resolution and video inputs further extends practical utility in fields
like medical imaging, autonomous systems, and multimedia analysis. Environmentally, the reduced
computational demand aligns with sustainable AI development by lowering energy consumption. As
a generalizable paradigm, Glance2Gaze also inspires future research in biologically inspired attention
mechanisms, fostering interdisciplinary advancements in efficient multimodal learning.

A.2 Efficiency Analysis

Previous works [[18, [21H23]] typically measure efficiency by the computational cost of visual tokens
in LLMs, a method we also adopt. Additionally, we analyze the extra computational load introduced
by Glance Fusion.

FLOPs within Glance Fusion. Considering the computational cost incurred by Glance Fusion,
we account for the FLOPs arising from all projection operations of both visual (Eq. [2) and textual
(Eq.[3) inputs, as well as the overhead introduced by the visual-text correlation computation (Eq. [).
Specifically, the visual mapping introduces SNd,d; FLOPs, while the text mapping contributes
S M d? FLOPs. Furthermore, the visual-text correlation involves S matrix multiplications, resulting
in SN Md; FLOPs. Overall, the total FLOPs within the Glance Fusion module can be expressed as:

Cylance = SNdydy + SMd; + SN Md;. (11)

FLOPs within LLM (Visual Tokens). We assess FLOPs of visual tokens within the LLM by
examining two factors: (i) the standard forward pass through the decoder, and (ii) the additional cost
introduced by the Gaze Compression module. For the visual token processing in Vicuna-7B [8]],
using a 3-layer MLP as FFN and 32 decoder layers, each layer incurs 4n;d? + Zn?dt + 3nydid,,
FLOPs, where n; and d,,, denote the number of visual tokens and the hidden dimension of the FFN,
respectively. In our framework, n; is 576 before layer r and p; thereafter, with [ representing the
LLM layer index. The FLOPs from Eq.[0]include 2 matrix multiplications and 4 linear projections,
totaling 2p; _1pyds + 2p;_1d? + 2p;d?. Therefore, the total FLOPs within LLM are:

R R
Ciim = »_Anyd} + 2nidy + 3mydydy, + > 2(piapide + pioadi + pidy). (12)

=1 l=r

We found Cyjqnee to be negligible compared to Cy;,,,. For instance, in LLaVA-1.5-7B, with r set
to 3 and p, to 100, Cy;,, amounts to 1.1T FLOPs while Cyjance is only 0.03T FLOPs, yielding a
proportion of 0.0272. Given its insignificance, Cyjqnce can be omitted from detailed computational
analysis, allowing us to concentrate on the more impactful Cy;,,, for performance assessment.

A.3 More Implementation Details
A.3.1 Image Understanding Tasks

Training Recipes. Following LLaVA [3], we employ a two-stage training strategy for Glance2Gaze.
In the first stage, we align image-text pairs by retaining the LLaVA architecture and training only the
projector on the LLaVA-558K dataset for one epoch with a batch size of 256 and a learning rate of
le-3. In the second stage, we incorporate Glance Fusion and Gaze Compression into LLaVA, training
all parameters except the visual encoder for one epoch with a batch size of 128 and a learning rate of
2e-5.

To train LLaVA-NeXT-7B [15]], we employ Open-LLaVA-NeXT [53]], an open-source replication, due
to proprietary restrictions on the original code and training sets. Our approach involves a two-stage
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Table 7: Compression configurations employed to LLaVA-1.5-7B.
FLOPs r P

[256, 209, 170, 139, 114, 93, 76, 62, 50, 41,

3% 9 3327,22,18,15,12,10,8,6,5, 4,3, 2, 2]
g 7 [121,103,88,75,64, 54,46, 40, 34, 29, 24,

° 21,18,15,13,11,9,8.7,6, 5.4, 3.3, 2,2]
119 3 1100.87.77.67, 59, 52,45, 40, 35, 30, 27,

23,20, 18, 16, 14, 12, 10,9, 8,7,6,5,4,4,3,3,2, 2, 2]

Table 8: Compression configurations employed to LLaVA-NeXT-7B.
FLOPs r P

[121, 103, 88, 75, 64, 54, 46, 40, 34, 29, 24,

22% T 5118.15.13.11,9.8.7.6.5.4.3.3.2.2]
1% 3 [100.87,7767,59,52, 45 40,35,30, 27,

o 23,20, 18. 16, 14,12, 10.9.8.7.6.5.4.4.3.3.2.2. 2]
s, o 12523211918, 16,15 14,13, 12, 11,

10,9,8,7,7,6,6,5,5,4,4,4,3,3,3,3,2,2,2,2]

training process. Similar to LLaVA-1.5-7B, the proposed Glance2Gaze is integrated only in the
second stage. In the first stage, we focus solely on training the projector with a batch size of 256 and a
learning rate of 1e-3 for one epoch using the LLaVA-558K dataset. In the second stage, Glance2Gaze
is embedded into the LLaVA-NeXT architecture, with all parameters including the visual encoder
unfrozen for training over two epochs with a batch size of 128 and a learning rate of 2e-5, utilizing
the same dataset as in [53]].

Implementation Details. In Glance Fusion, L is consistently set to {7,13,19, 23} to capture fine-
detailed features. For Gaze Compression, we adjust r and p, to manage different computation
configurations, as detailed in Table[7]and [§]

LLaVA-NeXT processes high-resolution images by dividing them into multiple sub-images (up to 5)
for individual handling by the visual encoder, which are subsequently concatenated within the LLM.
Both Glance Fusion and Gaze Compression are applied to each sub-image independently.

A.3.2 Video Understanding Tasks

Training Recipes. Following Video-LLaVA [34]], we employ a two-stage training strategy. In the first
stage, only the projector is trained for one epoch with a batch size of 256 and a learning rate of le-3,
using the LLaVA-558K dataset and a subset of Valley [58]], while retaining the original architecture.
In the second stage, we integrate Glance Fusion and Gaze Compression into Video-LLaVA, freeze
the vision encoder, and finetune all other parameters with a batch size of 128 and a learning rate of
2e-5, using the LLaVA-665K dataset and 100k video-text instructions from Video-ChatGPT [34]].

Implementation Details. In Video-LLaVA [34], 8 frames are sampled from each video, with each
frame encoded into 256 tokens, resulting in 2048 tokens per video. For Glance Fusion, L is set to
{7,13,19, 23} by default. Gaze Compression is applied to each frame, with » = 3 and p,, = 10,
yielding a model that operates at 6% of the FLOPs required for full token retention.

A.3.3 More Ablation Studies

More ablation on the effect of a shared query pool. Figure [5|presents additional ablation results
comparing layer-specific query embeddings with a shared query pool in Gaze Compression. While
the layer-specific approach increases parameters, it significantly degrades performance across all
datasets.

More ablation on the effect of Glance Fusion. To assess the importance of global glance fusion
prior to gaze compression, we compare Gaze Compression alone with the full Glance2Gaze in
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Layer-specific Query Gaze Compression only Glance2Gaze

SEED SQA POPE VQAV2 TextVQA

83.2 84.0 84.5 75.8 774 55.8 56.8

cq 69.2 70.2
558 56.6 68.4 04 oS

Accuracy

MM Vet MME MMB LLaVA-B GQA

1769.0 _1794.0
4 X 3. 65.4 5 5
1563.0 0 624 034 o, 00 587593

02 33.1
27.9

Figure 5: More ablation results on significance of shared query pool and the effect of Glance Fusion.

Table 9: Ablation studies on r and p,., evaluated on VQAv2 dataset.
pr=256 r=9

Me‘h"d‘ r=1 r=3 =9 r=17 r=25|p,=32 p,=128 p,=256 p,=529
FLOPs | 12% 17% 33% 56% 78% | 24% 28%  33%  42%
Acc |702 746 77.6 78.1 784 | 747 754 716 7119

Figure[5] Adding Glance Fusion before Gaze Compression significantly improves performance across
all datasets, with notable gains on fine-grained OCR tasks like TextVQA and VQAV2.

Ablation study on r and p,.. In Gaze Compression, the initial compression layer index r and the size
of query embedding p,. together shape the compression ratio. To evaluate the performance impact of
each variable independently, we varied one while holding the other constant, facilitating a comparative
analysis of their effects, as shown in Table[J] It reveals a direct proportional relationship between
accuracy and the starting compression layer when p, is constant; larger r corresponds to higher
accuracy. This is logical, as premature compression may prevent the LLM from fully processing
visual tokens. Similarly, opting for a larger query embedding size yields benefits, as it allows richer
information capture during compression.

Exploration on number of layers in Glance Fusion. We fuse different numbers of ViT layers, with
results displayed in Figure [6] (a). Interestingly, adding more ViT layers does not always result in
proportional performance gains. This aligns with observations in Figure 1, suggesting significant
redundancy across layers and certain intermediate layers in ViT not contributing to instruction
comprehension. To balance performance across all datasets, we selected 4 layers for fusion in this
study.

Necessity of Instruction in Glance Fusion. To demonstrate the significance of instruction in Glance
Fuse, we compared it with straightforward feature averaging across layers. As illustrated in Figure [6]
(b), indiscriminate fusion of ViT layers results in minimal improvement, whereas instruction-guided
fusion significantly enhances features and boosts performance.

A.3.4 More efficiency comparison

We provide comprehensive tables summarizing the training cost, inference latency, prefilling time,
and throughput across different frameworks and compression configurations, offering a clear overview
of the computational efficiency, as shown in Table [I0}
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Figure 6: Ablation studies on Glance Fusion module.

Table 10: Comparison of computational efficiency between Glance2Gaze and baseline models.
Metrics include training GPU hours, inference TFLOPs, latency, CUDA time, and throughput.

Method Training GPU Hours Inference TFLOPs Latency (ms) CUDA Time (ms) Throughput
LLaVA-1.5-7B family

LLaVA-1.5-7B 104 10.07 185.9 115 28.754
Glance2Gaze (33% FLOPs) 72 3.36 133.2 66 40.022
Glance2Gaze (22% FLOPs) 60 222 109.2 32 51.351
Glance2Gaze (11% FLOPs) 43 1.11 100.2 22 56.820
LLaVA-Next-7B family

LLaVA-Next-7B 366 53.83 475.2 313 10.884
Glance2Gaze (22% FLOPs) 242 11.84 262.0 100 19.741
Glance2Gaze (11% FLOPs) 173 5.53 191.9 90 30.719
Glance2Gaze (5% FLOPs) 87 2.67 151.2 49 34.121
Video-LLaVA family

Video-LLaVA 297 37.38 739.6 342.2 21.599
Glance2Gaze (6% FLOPs) 151 2.24 484.3 125.1 35.095
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