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Abstract

Large Language Models (LLMs) have signif-001
icantly advanced the field of Artificial Intelli-002
gence. However, their deployment is resource-003
intensive, not only due to the large number of004
model parameters but also because the (Key-005
Value) KV cache consumes a lot of memory006
during inference. While several works pro-007
pose reducing the KV cache by evicting the008
unnecessary tokens, these approaches rely on009
accumulated attention score as eviction score010
to quantify the importance of the token. We011
identify the accumulated attention score is bi-012
ased and it decreases with the position of the013
tokens in the mathematical expectation. As014
a result, the retained tokens concentrate on015
the initial positions, limiting model’s access016
to global contextual information. To address017
this issue, we propose Adaptive holistic atten-018
tion KV (AhaKV), it addresses the bias of the019
accumulated attention score by adaptively tun-020
ing the scale of softmax according the expecta-021
tion of information entropy of attention scores.022
To make use of the holistic attention informa-023
tion in self-attention mechanism, AhaKV uti-024
lize the information of value vectors, which025
is overlooked in previous works, to refine the026
adaptive score. We show theoretically that our027
method is well suited for bias reduction. We de-028
ployed AhaKV on different models with a fixed029
cache budget. Experiments show that AhaKV030
successfully mitigates bias and retains crucial031
tokens across global context and achieve state-032
of-the-art results against other related work on033
several benchmark tasks.034

1 Introduction035

Transformer (Vaswani et al., 2017) has demon-036

strated remarkable success in a wide range of037

domains, including language modeling (Devlin038

et al., 2019; Raffel et al., 2020), image recogni-039

tion (Dosovitskiy, 2021; Xie et al., 2021), and040

speech recognition (Dong et al., 2018; Karita et al.,041

2019), owing to its powerful modeling capabili-042

ties. In particular, in the field of natural language 043

processing, Transformer-base large language mod- 044

els (LLMs) (Achiam et al., 2023; Zhang et al., 045

2022; Touvron et al., 2023a,b) have become defacto 046

method. With the rise of multi-turn conversations 047

and long document processing scenarios (Bai et al., 048

2023; Chen et al., 2024b), the lengths of model’s 049

input text (Peng et al., 2024; Liu et al., 2024a) con- 050

tinue to grow, leading to a significant increase in 051

the deployment costs associated with large-scale 052

models. These costs arise not only from the com- 053

putational resources required for parameter load- 054

ing and attention computation, but also from the 055

memory consumption caused by the widely used 056

Key-Value (KV) cache strategy during the gener- 057

ation process (Pope et al., 2023). The KV cache 058

which stores precomputed keys and values, which 059

is designed avoid re-computation and improve in- 060

ference speed. However, this comes at the cost of 061

considerable memory overhead, making it a criti- 062

cal bottleneck in efficient model deployment. For 063

example, in LLaMA-2-7B (Touvron et al., 2023b), 064

when the input batch size is 8 and the context length 065

reaches 32K tokens, the KV cache alone can grow 066

to 128GB, which far exceeds the memory required 067

to store the model parameters themselves. 068

The substantial KV cache consumption poses 069

significant challenges for deployment on typical 070

consumer GPUs. Recent researches (Xiao et al., 071

2024; Zhang et al., 2024; Li et al., 2024; Adnan 072

et al., 2024) have shown that retaining only a small 073

subset of crucial tokens’ keys and values during 074

generation can achieve performance comparable 075

to those of the full cache LLMs. StreamingLLM 076

(Xiao et al., 2024) identified that initial tokens play 077

a critical role in maintaining model performance. 078

By retaining only the initial tokens and the most 079

recent tokens, StreamingLLM significantly reduces 080

the KV cache size with promising results. To avoid 081

losing vital information within the middle of the 082

input, H2O (Zhang et al., 2024) leveraged accumu- 083
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Figure 1: Left: The H2O-base method, which uses the
accumulated attention score as an eviction score, has
a higher eviction score for the token on the left side
of the sequence. Right: The AhaKV eviction strategy,
which focuses the attention scores on key tokens and
selects the attention scores of key tokens to calculate
the eviction scores, avoiding positional bias.

lated attention scores as the eviction score during084

generation, enabling the dynamic removal of less085

important key-value pairs. This flexible and highly086

successful method has served as the foundation for087

many research improvements, leading to the de-088

velopment of new approaches. However, in long089

context tasks, the cumulative attention score is sub-090

ject to decay bias. SnapKV (Li et al., 2024) uses091

the recent window’s attention score to retain im-092

portant tokens to improve long context processing.093

NACL (Chen et al., 2024a) introduces stochastic094

eviction to reduce the eviction score bias to im-095

prove long context performance. However, these096

methods do not consider the flattening of attention097

scores in long contexts, and they do not make full098

use of numerical information.099

However, the accumulated attention scores used100

in existing methods be further optimized. Figure101

1 illustrates the attention scores and accumulated102

attention scores for a segment of a sentence, demon-103

strating that the H2O-based approach tends to re-104

tain tokens from the earlier part of the sequence.105

Even when tokens in the middle are semantically106

crucial, their importance is underestimated within107

framework. The bias stems from the widely em-108

ployed causal mask in Transformer-based archi-109

tectures, which is designed to prevent information110

leakage from future tokens. Specifically, the causal111

mask zeros out all values after the current token112

in the softmax input, ensuring that each token can113

only attend to itself and preceding tokens. As the114

sequence length increases, the average attention115

score for each token decreases after the softmax116

operation. As depicted in Figure 1, tokens on the117

right side of the sequence are computed fewer times118

than those on the left. Furthermore, since tokens on 119

the right inherently receive lower attention scores 120

compared to those on the left during the initial 121

computation, their accumulated attention scores 122

are further diminished in expectation. This results 123

in a systematic bias where tokens on the right side 124

are more likely to be evicted, regardless of their ac- 125

tual importance. Second, the accumulated attention 126

score framework only uses information from the 127

queries and keys, neglecting the information about 128

the values in the self-attention mechanism. In fact, 129

values carry the contextual information prediction. 130

Effectively leveraging the information contained in 131

the values is therefore another key consideration 132

when designing an eviction strategy. By incorpo- 133

rating value-based insights, it may be possible to 134

develop a more balanced and context-aware evic- 135

tion approach that better preserves semantically 136

important tokens across the entire sequence. 137

In this paper, we propose Adaptive holistic atten- 138

tion KV (AhaKV), which addresses the bias of the 139

accumulated attention score by adaptively tuning 140

the scale of softmax and makes use of the holis- 141

tic attention information to evict redundant tokens, 142

reducing memory usage while preserving text pro- 143

cessing capacity. We analyze the reason of the bias 144

through theoretical derivation, highlighting that a 145

consistent number of cumulative entries is main- 146

tained for each token when computing the eviction 147

score. To counteract the flattening of the attention 148

score as the number of tokens increases, we pro- 149

pose setp gain softmax (SG-softmax) to adaptively 150

adjust the attention distribution to emphasize key 151

tokens. Additionally, we compute a prior weight 152

for each token using the modulus length of value 153

to enhance the eviction score. The eviction score 154

in AhaKV avoids positional bias and makes full 155

use of the information of queries, keys, and val- 156

ues (QKV) to maintain the text processing capacity 157

after eviction of the token, and achieves state-of- 158

the-art in comparison to other eviction methods. 159

Overall, Our main contributions are as follows: 160

(1) Analyses of self-attention mechanisms ex- 161

plain why cumulative attention scores retain 162

early tokens and provide a theoretical basis for 163

addressing bias. Meanwhile, we propose Re- 164

cent Accumulation and SG-softmax to avoid 165

bias. 166

(2) Our work pioneers the effective use of value 167

matrix information through a simple transfor- 168

mation that enhances the eviction score using 169
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the value prior. This provides a possible idea170

for future improvements.171

2 Related Work172

2.1 Efficient LLMs Inference173

LLMs have a large inference computational cost.174

This problem has inspired a lot of research in the175

inference optimization for LLMs, such as the meth-176

ods (Frantar and Alistarh, 2023; Ma et al., 2023;177

Sun et al., 2024) adopting pruning to reduce the re-178

dundant parameters of LLMs and thus improve the179

inference speed. In addition to this, many research180

(Frantar et al., 2023; Dettmers et al., 2022; Liu181

et al., 2023) have used quantization for LLMs to182

reduce the full-precision LLM parameters to those183

of a few bits, thus speeding up the inference of the184

model. In contrast to the above approaches of modi-185

fying model parameters, some other works (Zaheer186

et al., 2020; Wang et al., 2021; Zhang et al., 2024;187

Hooper et al., 2024; Liu et al., 2024c; Dong et al.,188

2024) start from the bottleneck of the attention189

module of secondary computational complexity in190

inference and speed up the inference process by191

sparse attention. The approaches of these works192

are orthogonal and can be integrated together. The193

work studied in this paper, on the other hand, is194

closely related to sparse attention and focuses on195

reducing the memory bottleneck, KV cache, that196

arises in the inference process.197

2.2 Sparse Attention198

Sparse attention mainly targets the prefill phase of199

the transformer and omits certain attention opera-200

tions to improve computational efficiency. Big bird201

(Zaheer et al., 2020) combines random, local and202

global attention to sparse attention while maintain-203

ing accuracy of generation. Longformer (Beltagy204

et al., 2020) introduces sliding windows and task-205

driven global attention to reduce attention compu-206

tation. Spatten (Wang et al., 2021) evaluates the207

importance of each token by calculating the cumu-208

lative attention to dynamically prune the token with209

minimal attention. However, these sparse-attention210

approaches do not focus on the growing memory211

problem despite reducing self-attention computa-212

tion. The KV cache generated by LLMs inference213

has become a memory bottleneck for inference.214

2.3 KV Cache Eviction215

Research on KV cache optimization has focused216

on compressing the out of memory that occurs as217

the increasingly length of the prompt. In this paper, 218

we focus on KV cache eviction (Xiao et al., 2024; 219

Zhang et al., 2024; Chen et al., 2024a; Adnan et al., 220

2024) which focuses on attention sparsity, and ex- 221

plore how to reduce redundantly labelled KVs to 222

reduce memory usage and improve inference effi- 223

ciency. Which can be subdivided into static evic- 224

tion and dynamic eviction according to the evic- 225

tion method. The static eviction is represented 226

by StreamingLLM (Xiao et al., 2024), which ob- 227

serves that the beginning token is very important 228

for the whole generation task, and therefore retains 229

the KVs of the 4 initial tokens and the most re- 230

cent token, and evicts the KVs of the remaining 231

tokens. The study of dynamic eviction focuses on 232

identifying the key tokens and constantly updat- 233

ing the KV cache. The H2O (Zhang et al., 2024) 234

method utilises the sum of cumulative attentions 235

as the eviction score and retains the token with the 236

highest score and the nearest token. SnapKV (Li 237

et al., 2024) proposed to compress the long context 238

prompt before calculating the expulsion score to 239

improve the comprehension of long text. NACL 240

(Chen et al., 2024a) introduces random evictions 241

thereby avoid bias in eviction scores. Distinguish- 242

ing from the above methods, AhaKV avoids the 243

bias of the Eviction Score and makes full use of 244

value to refine the eviction score. 245

3 Motivation 246

For Decoder-only Large Language Models, the in- 247

ference process consists of two phases, the prefill 248

phase and the generation phase. In the prefill phase, 249

input tokens are encoded as Key, Value, and Query 250

vectors to compute the self-attention. The Key and 251

Value vectors are typically cached for reusage to 252

accelerate inference. In the generation phase, the 253

model computes attention weights by multiplying 254

the current token’s Query with all cached Key vec- 255

tors, then applies these weights to the correspond- 256

ing Value vectors. With KV caching, only the Key 257

and Value of the new token are computed at each 258

step, while previous vectors are retrieved from the 259

cache. While this approach reduces computational 260

redundancy, it incurs significant memory overhead. 261

Attention computations exhibit inherent sparsity 262

in practice. Selective eviction of non-critical Key- 263

Value pairs from the cache can reduce memory 264

usage while preserving generation accuracy (Zhang 265

et al., 2024; Liu et al., 2024b; Adnan et al., 2024). 266

Current eviction strategies predominantly rely on 267
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(a) H2O (b) AhaKV (c) Retain token index. (d) Sparsity Comparision

Figure 2: (a,b) shows the eviction scores in different strategy. (c) shows the retention token index. (d) shows the
Comparision between Rretention Ratio in different threshold with and without value-prior

accumulated attention scores (Zhang et al., 2024).268

However, we identify two critical limitations in269

these approaches.270

3.1 Positional Bias in Accumulated Attention271

Scores272

Figure 2 analyzes the eviction scores generated by273

H2O (Zhang et al., 2024) for an attention head of a274

layer in the LLaMA model, along with the distribu-275

tion of retained token indices across a 3,600-token276

sequence. The results reveal an intrinsic positional277

bias: accumulated attention score has a intrinsic278

bias, that they gradually decrease with token posi-279

tion. Tokens beyond position 1,500 are dispropor-280

tionately evicted, leading to the catastrophic loss of281

nearly half of the context information. It highlights282

the eviction strategies need to ensure more uniform283

information retention across all positions.284

3.2 Neglecting Values’ Effect285

While Value vectors fundamentally shape self-286

attention outputs, existing eviction strategies ignore287

their contribution. We propose augmenting accu-288

mulated attention scores with Value-derived prior289

weights to refine eviction scores generated by H2O.290

Figure 2(d) compares normalized retention rates291

for thresholds applied to baseline scores versus292

value-enhanced scores. Incorporating value priors293

obtains lower retained token proportion at equiva-294

lent thresholds. This demonstrates that value mag-295

nitudes provide complementary signals for identi-296

fying semantically important tokens.297

4 Methodology298

In this section, we analyze the limitations of accu-299

mulated attention scores and the computation of300

softmax mathematically. We identify the reason301

of the bias and mitigate it through theoretical de-302

duction. We further refine the eviction score using303

the value-based prior to make use of the holistic304

attention. A novel method Adaptive holistic at- 305

tention KV (AhaKV) that evicts tokens based on 306

unbiased eviction scores while preserving global 307

context information is proposed. 308

4.1 Analysis of the Accumulated Attention 309

Score 310

Denote the query matrix as Q ∈ Rn×d, the key 311

matrix as K ∈ Rn×d, and the hidden dimension as 312

d. The attention score between the ith query and 313

the jth key ai,j is computed as following: 314

ai,j = softmax(QT
i Kj/

√
d) =

eQ
T
i Kj/

√
d∑i

j=1 e
QT

i Kj/
√
d

(1) 315

The eviction score Sj in H2O for the jth token 316

is defined as: 317

Sj =
n∑

i=1

ai,j (2) 318

Due to the casual mask, ai,j = 0 when i < j. 319

Thus, Eq. (2) can be rewritten as: 320

Sj =

n∑
i=j

ai,j (3) 321

The number of cumulated term decreases as j 322

increases, leading to a monotonic decrease trend 323

in the eviction score, which will be proven in the 324

following. Following the previous works (Vaswani 325

et al., 2017; Chi et al., 2023; Kazemnejad et al., 326

2024), we assume that the components of Qi and 327

Kj are independent random variables with the 328

mean as 0 and the variance as 1. Under this assump- 329

tion, ai,j has the same expectation and variance for 330

the same row of the attention matrix. We prove the 331
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monotonicity of the eviction score as follows:332

E(Sj+1 − Sj) = E(Sj+1)− E(Sj)333

=E(
n∑

i=j+1

ai,j+1)− E(
n∑

i=j

ai,j)334

=
n∑

i=j+1

E(ai,j+1)−
n∑

i=j

E(ai,j)335

=
n∑

i=j+1

[E(ai,j+1)− E(ai,j)]− E(aj,j) (4)336

Since each element in row i has the same math-337

ematical expectation, the first term of Eq. (4) is338

0. However, the expectation of aj,j is a positive339

value. Thus, E(Sj+1 − Sj) < 0, which means340

that the eviction score decreases monotonically in341

expectation. This is validated empirically in Figure342

2, where the accumulated attention score has an343

clear positional bias.344

To address this bias, we propose summing the345

attention scores over the nearest r rows. This en-346

sures that the eviction score is not influenced by347

the number of accumulated terms. The modified348

eviction score is computed as:349

Sj =

n∑
i=r

ai,j (5)350

4.2 Rethink the Softmax Computation351

We further analyze the decrease in attention scores352

as the sequence length grows. As more tokens are353

included in the softmax computation, the attention354

scores become diluted, particularly for tokens in355

later positions. This phenomenon arises because356

the softmax normalization distributes a fixed total357

probability mass (summing to 1) across a growing358

number of tokens, leading to smaller average atten-359

tion scores for each token. To better understand360

the distribution of attention scores, we introduce361

information entropy from information theory as a362

complementary measure. Let Hi be the informa-363

tion entropy of the ith row of the attention score364

matrix, which is given by365

Hi = −
i∑

j=0

ai,j log ai,j (6)366

Information entropy quantifies the concentration367

or dispersion of the attention score distribution. A368

higher entropy value indicates a smoother, more369

uniform distribution. We will analyze the variation370

of Hi as the number of rows i increases. Replacing 371

QT
i Kj with wi,j for simplification and substituting 372

Eq. (1) into Eq. (6), we have 373

Hi = log
i∑

j=0

ewi,j −
∑i−1

j=0 e
wi,j · wi,j∑i−1

j=0 e
wi,j

(7) 374

We further assume that wi,j follows the Gaussian 375

distribution. Then, we can deduct that the expecta- 376

tion of Hi is 377

E[Hi] = log i− d

2
. (8) 378

Details of the deduction can be found in the ap- 379

pendix A. Eq. (8) shows that expectation of Hi 380

increases with i. This indicates that as the num- 381

ber of tokens grows, the attention score distribu- 382

tion becomes flatter, and the maximum attention 383

score decreases. Consequently, tokens in later po- 384

sitions receive lower attention scores overall. To 385

tackle this, we introduce a scaling parameter λ to 386

adaptively adjust the smoothness of the distribu- 387

tion according to the number of tokens. Mathe- 388

matically, we transform the softmax function from 389

softmax(xi) = xi∑n
i=0 e

xi
to step gain sofmax 390

SG-softmax(xi, λi) =
λxi∑n
i=0 e

λxi
. (9) 391

Then, the expectation of Hi changes into 392

E[Hi] = log i− λ2d

2
. (10) 393

Assume that the token number of the budget is k. 394

The ideal case for a good eviction score is that the 395

there are only k attention score larger than zero. We 396

aim to make expected information entropy equals 397

to the maximum information entropy regardless of 398

the number of total tokens. Therefore, we have 399

log i− λ2d

2
= −

k∑
j=0

1

k
log

1

k
= − log

1

k
. (11) 400

We can figure out that, when the number of total 401

tokens is i, 402

λ =

√
2 log(i/k)

d
. (12) 403

Eq. (12) gives an estimation for the scaling param- 404

eter λ in practice. 405
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Figure 3: AhaKV consists of three main components: SG-softmax, Recent Accumulation, and Value-Prior Refine.
First, SG-softmax replaces the standard softmax to prevent attention score flattening. Then, cumulative eviction
scores are computed using attention scores from recent rows to ensure each token has the same number of cumulative
terms. Next, value-prior is used to refine eviction score selection, and pooling is applied to smooth scores and
prevent excessive text sparsification. Finally, tokens are retained based on their eviction scores.

4.3 Enhance the Eviction Score via406

Value-prior407

Through the steps outlined above, we have derived408

unbiased eviction scores. However, since both at-409

tention scores and value vectors play a critical role410

in the computation of self-attention, it is essential411

to account for their importance. In order to uti-412

lize the holistic attention information, we refine the413

accumulated attention scores by incorporating the414

magnitude of the value vectors.415

Let V ∈ Rn×d denote the value matrix. The416

square of the L2 norm of the ith token is computed417

νi = ∥Vi∥2. However, in self-attention compu-418

tation, the features of the current token are ob-419

tained by weighting the value vectors using the420

corresponding attention scores. To reflect this, we421

use attention scores to computed the weighted sum422

of νi that reflecting the importance of the ith token:423

γi =

i∑
j=1

ai,j · νi. (13)424

We then normalize it with the maximum value425

among all γi.426

γ̄i =
γi

max(γ)
. (14)427

Unlike the accumulated attention score which mea-428

sures token importance based on inter-token cor-429

relations, γ̄i captures the importance derived from430

the model’s parameterized weighting of tokens. We431

use it as a prior weight to refine adaptive accumu- 432

lated attention score: 433

Ŝi = γ̄i · Si (15) 434

The details of the AhaKV algorithm are shown in 435

Algorithm 1. 436

5 Experiments 437

5.1 Setup and Baseline 438

Our experiment are conducted based on 3 widely 439

used basic models, LLaMA (Meta, 2024), Qwen 440

(Qwen, 2024) and Gemma(Google, 2024). In or- 441

der to demonstrate the capability of AhaKV un- 442

der long text, we chose the LongBench frame- 443

work (Bai et al., 2023) for testing. There are 21 444

datasets in six areas in the LongBench framework, 445

including math, code completion, few-shot learn- 446

ing, multi-document QA, single-document QA, 447

summarization and synthetic tasks. By testing 21 448

datasets within the LongBench framework, we can 449

effectively demonstrate the efficacy of the AhaKV 450

method. In addition to testing within the Long- 451

Bench framework, we selected the ARC-E (Clark 452

et al., 2018), OpenBookQA (Mihaylov et al., 2018), 453

WiC (Pilehvar and Camacho-Collados, 2019), and 454

WinoGrande (Sakaguchi et al., 2020) datasets, 455

demonstrating that AhaKV is effective across a 456

diverse range of datasets. Results were averaged 457

over multiple seed results. All experiments are 458

conducted with NVIDIA A800 80GB GPU. 459
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Table 1: Results in Longbench Datasets

Method Code Complete Few Shot Single-doc QA Multi-doc QA Summarization Passage Retrieval Average

L
L

aM
A

3-
8B

-I
ns

t Full Cache 54.47 57.75 41.55 32.33 20.14 54.83 41.94
Sink(Xiao et al., 2024) 56.59 53.03 30.31 26.88 17.75 26.50 33.55
H2O(Zhang et al., 2024) 58.88 54.57 38.61 30.76 19.75 41.70 38.93
SnapKV(Li et al., 2024) 56.52 56.36 40.56 31.06 18.22 54.33 40.99

NACL(Chen et al., 2024a) 56.62 54.78 40.32 31.39 18.49 54.33 40.77
TOVA(Oren et al., 2024) 53.45 57.29 38.6 30.74 17.63 53.30 40.18

AhaKV 58.20 57.08 41.18 31.82 18.74 54.83 41.74

Q
w

en
2-

7B
-I

ns
t Full Cache 59.35 61.60 45.20 34.35 22.65 39.33 42.47

Sink(Xiao et al., 2024) 56.09 55.41 29.56 26.45 19.43 15.33 32.46
H2O(Zhang et al., 2024) 52.72 56.14 37.82 31.77 21.15 22.67 36.24
SnapKV(Li et al., 2024) 59.08 60.37 43.99 33.33 20.71 38.50 41.30

NACL(Chen et al., 2024a) 58.67 53.67 41.80 32.02 20.83 38.00 39.27
TOVA(Oren et al., 2024) 56.91 56.65 37.97 30.69 19.00 35.61 37.99

AhaKV 59.01 61.01 44.24 33.99 22.12 38.33 41.83

L
L

A
M

A
2-

7B
-C

ha
t Full Cache 55.72 51.99 22.28 18.56 18.55 5.34 27.28

Sink(Xiao et al., 2024) 53.35 49.26 14.11 15.01 15.66 1.94 23.27
H2O(Zhang et al., 2024) 42.66 49.32 20.46 16.29 18.27 4.01 24.51
SnapKV(Li et al., 2024) 55.32 50.95 21.50 17.65 16.82 5.57 26.39

NACL(Chen et al., 2024a) 54.50 49.84 19.92 17.82 16.97 6.54 26.04
TOVA(Oren et al., 2024) 53.68 51.16 16.10 16.41 15.68 4.34 24.66

AhaKV 55.98 51.49 22.42 17.98 17.11 5.57 26.89

G
em

m
a-

7B
-I

ns
t Full Cache 46.91 52.75 33.82 23.81 20.47 27.02 33.25

Sink(Xiao et al., 2024) 48.84 49.78 20.34 18.63 18.05 15.33 27.18
H2O(Zhang et al., 2024) 50.01 49.99 29.88 21.29 20.13 22.55 31.09
SnapKV(Li et al., 2024) 47.66 52.45 32.89 22.35 18.84 26.29 32.39

NACL(Chen et al., 2024a) 47.09 50.35 31.81 21.93 19.12 26.69 31.77
TOVA(Oren et al., 2024) 45.69 49.20 30.61 21.20 18.78 25.38 30.80

AhaKV 50.44 53.37 33.05 22.89 19.38 26.91 33.16

Algorithm 1 AhaKV Algorithm
1: Total Cache Budget B(B = Br + Bs), Recent Cache

Budget Br , Selected Cache Budget Bs, Temperature β
2: function PREFILL(Prompt)
3: for Layer-i in LLMs do
4: for Head-m in Layers do
5: Qm,i,Km,i, Vm,i ∈ Rn×d

6: Am,i ←
Qm,i·KT

m,i√
d

7: Sr
m,i ← Recent Br Token

8: Fs ←
∑

Token∈Sr
m,i

SGsoftmax(A, β)

9: F̂s ← γ̄ · Fs ▷ In Section 4.3
10: Ss

m,i ← TopK(Fs, Bs)

11: SPrefill
m,i ← Ss

m,i

⋃
Sr
m,i

12: end for
13: end for
14: end function
15: function GENERATION(SPrefill

m,i ,MaxLength)
16: S0 ← Sprefill

17: Z0 ← First Token
18: F0 ← F̂s

19: for t < MaxLength do
20: for Layer-i in LLMs do
21: for Head-m in Layers do
22: Kt−1

m,i , V
t−1
m,i ← K

St−1
m,i

, V
St−1
m,i

23: Kt
m,i ← (Kt−1

m,i ,W
K
m,iZ0)

24: V t
m,i ← (V t−1

m,i ,W
V
m,iZ0)

25: Am,i ←
W

Q
m,iZ0

m,i
·KT

m,i
√
d

26: Ft ← SGsoftmax(A, β) + Ft−1

27: Sr
m,i ← Recent Br Token

28: Ss
m,i ← TopK(Fs, Bs)

29: SPrefill
m,i ← Ss

m,i

⋃
Sr
m,i

30: end for
31: end for
32: end for
33: end function

We select H2O(Zhang et al., 2024) as the base- 460

line and primary improvement method. H2O use 461

accumulated attention score and discards the lower 462

value. In addition, we compare AhaKV with sev- 463

eral popular eviction strategies, including Sink 464

(Xiao et al., 2024), SnapKV (Li et al., 2024), NACL 465

(Chen et al., 2024a) and TOVA (Oren et al., 2024). 466

5.2 Comparison Results 467

5.2.1 Longbench Results 468

We conducted extensive testing on the LongBench 469

dataset, which consists of six categories of tasks 470

as in Table 1. LLAMA2-7B was assigned a total 471

budget of 720 due to its limited sequence length, 472

while other models received 1000, with a fixed 473

recent budget of 32 applied uniformly across all 474

models. We use Eq. 12 to initialize the parameter 475

λ. As shown in Table 1, AhaKV achieved state-of- 476

the-art performance, attaining the highest average 477

accuracy across all tasks. 478

The AhaKV method demonstrates significant 479

performance advantages across multiple bench- 480

marks. In code-completion tasks, it achieved supe- 481

rior accuracy over the full cache baseline by 0.2% 482

and 3.53% on LLAMA2-7B-Chat and Gemma- 483

7B-Inst, respectively. For few-shot learning sce- 484

narios, AhaKV outperformed all competitors on 485

Gemma-7B-Inst with a 0.92% lead over the second- 486

best method, though trailing slightly on LLaMA3- 487

8B-Inst. It consistently dominated both single- 488

document and multi-document QA tasks across 489

all tested models, notably surpassing the full cache 490

baseline by 0.14% on LLAMA2-7B-Chat in single- 491

7



Figure 4: Short-text results in different KV budget.

document QA. The method enhances summariza-492

tion through context-aware extraction of highly rel-493

evant tokens and shows strong retrieval capabili-494

ties, outperforming rivals by 0.5% and 0.22% on495

LLaMA3-8B-Inst and Gemma-7B-Inst in passage496

retrieval. These key metrics demonstrate AhaKV’s497

consistent performance advantages across diverse498

tasks and model architectures.499

5.2.2 Short-text Results500

To validate the effectiveness of AhaKV in process-501

ing short texts, we selected the OpenBook, ARC-E,502

WiC, and WinoGrande datasets for testing and com-503

parison against H2O(Zhang et al., 2024) and other504

methods in Figure 4.505

AhaKV has been evaluated using LLAMA2-7B506

and Qwen2-1.5B, with results obtained for a KV507

Budget of 60%-4%. The experiments demonstrate508

that AhaKV can achieve exceptional performance509

with short text datasets. Notably, as the compres-510

sion rate increases (resulting in a decreased Bud-511

get), AhaKV shows a tendency to deliver higher512

accuracy compared to H2O and others.513

Compared to other methods, SampkeKV con-514

sistently outperforms other expulsion schemes in515

terms of accuracy in the most extreme compressed516

case (only 4% budget). It shows that AhaKV is517

able to give a high enough weight to crucial tokens518

in the text to make them less likely to be evicted.519

Table 2: Ablation study in subdatasets in LongBench of
llama2-7B.

Datasets 2Wiki TriQA Multi-EN lcc Samsum Avg
w/o RA 28.7 84.17 31.01 57.38 39.49 48.15
w/o SGS 29.78 81.23 29.67 50.32 40.37 46.25
w/o VPE 29.54 82.94 33.96 58.16 41.06 49.13
AhaKV 29.96 83.61 34.6 58.4 40.55 49.42

5.3 Ablation Study 520

In AhaKV, we introduce three ways to improve 521

eviction strategies: Recent Accumulation, Step 522

Gain Softmax and Value-Prior Enhance. To eval- 523

uate the orthogonality of the three components and 524

assess their individual impact, we conducted ab- 525

lation experiments on LLAMA2-7B-Chat, exam- 526

ining each part separately. To simplify the pre- 527

sentation, we use the abbreviations RA for Recent 528

Accumulation, SGS for Step Gain Softmax, and 529

VPE for Value-Prior Enhance in the table. 530

Table 2 presents ablation results for LLAMA2- 531

7B-Chat on LongBench subsets (one dataset per 532

category). The principal findings are outlined as 533

follows. (i) Removing RA caused a 1.27% average 534

accuracy drop, confirming the necessity of stable 535

cumulative terms to reduce bias. (ii) Eliminating 536

SGS reduced accuracy by 3.17%, demonstrating 537

its critical role in eviction strategy enhancement. 538

(iii) Disabling VPE decreased accuracy by 0.29%, 539

proving its effectiveness in refining eviction scores 540

to prioritize essential tokens. 541

6 Conclusion 542

In this paper, we address the problem of KV cache 543

compression by proposing AhaKV, a KV cache 544

eviction algorithm that can identify important to- 545

kens and reason with a fixed KV cache budget, 546

solving the problem of KV cache growth at infer- 547

ence. Our approach selects key tokens based on the 548

attention score, and proposes Step Gain Softmax 549

and Sample Attention to eliminate the attention 550

bias problem caused by causal mask. Experimental 551

evaluations show that AhaKV achieves good per- 552

formance on both short text and long text datasets. 553
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Limitations554

The main limitations of the approach presented in555

the paper are the following: firstly, due to resource556

constraints, we did not conduct our experiments557

on longer texts. However, we have derived our558

method and evaluated our model on datasets of559

different lengths in the paper, and we believe that560

AhaKV can be adapted to reasoning with longer561

texts. Second, for the choice of a constant number562

of accumulators in prefill, we choose the recent563

rows in the attention score for accumulation; in564

practice, we do not think this choice is unique. For565

example, we could also choose the Topk strategy566

to select the same number of cumulants.567

Ethics Statement568

In this study, we utilize open-source data and tech-569

nologies, which significantly mitigate privacy con-570

cerns. With the polish of the AI assistant, we more571

clearly define the problem and illustrate the ap-572

proach. Our novel approach focuses on enhancing573

the understanding of model contexts and improv-574

ing inference efficiency, with the goal of creating575

accessible and highly effective models capable of576

handling extended contexts. This strategy is ex-577

pected to advance the openness of NLP technolo-578

gies and facilitate their practical deployment in579

diverse applications. Crucially, our methodology is580

independent of the training process, ensuring that581

it does not perpetuate or introduce biases into the582

models. By emphasizing state-of-the-art, resource-583

efficient techniques, our research contributes to584

the development of a more open and automated585

AI, pushing the boundaries of artificial intelligence586

while ensuring that the benefits of these advance-587

ments are widely accessible and applicable across588

various fields. This represents a significant step589

toward a more inclusive and automated AI-driven590

future.591
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A Derivation of the mathematical 819

expectation of Hi 820

The mathematical expectation of Hi is shown as 821

Eq.16 822

logi+ logE[ewi,j ]− E[ewi,j · wi,j ]

E[ewi,j ]
(16) 823

Let x = wi,j and assume that x is a Gaussian 824

distribution with mean µ and variance σ2. Sym- 825

bolically, x ∼ N(µ, σ2). Its probability density 826

function is shown as Eq. 17. 827

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (17) 828

The mathematical expectation of ex in Gaussian 829

distribution is shown as the Eq. 18. 830

E(ex) =
1

σ
√
2π

∫ ∞

−∞
ex · e−

(x−µ)2

2σ2 dx (18) 831

Combine the Equation 18 to the Equation 19. 832

E(ex) =
1

σ
√
2π

∫ ∞

−∞
ex−

(x−µ)2

2σ2 dx (19) 833

To simplify the Equation 19, we adjust the x− 834
(x−µ)2

2σ2 as follow. 835

µ+
σ2

2
− [(x− σ2)− µ]2

2σ2
(20) 836

Combine the Equations 19 and 20 to Equation 837

21. 838

eµ+
σ2

2

∫ ∞

−∞

1

σ
√
2π

e−
[(x−σ2)−µ]2

2σ2 dx (21) 839

Denote t as x − σ2, the Equation 21 could be 840

transformed as the Equation 22. 841

eµ+
σ2

2

∫ ∞

−∞

1

σ
√
2π

e−
(t−µ)2

2σ2 dt (22) 842

The
∫∞
−∞

1
σ
√
2π
e−

(t−µ)2

2σ2 dx is the cumulative dis- 843

tribution function of random variable which obey 844

the Gaussian distribution with mean µ and vari- 845

ance σ. The result of the integral is 1. Thus, the 846

mathematical expectation of ex is represented as 847

follow. 848

E(ex) = eµ+
σ2

2 (23) 849
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The computation of E(xex) is shown as the850

Equation 24.851

E(xex) =
1

σ
√
2π

∫ ∞

−∞
xex · e−

(x−µ)2

2σ2 dx (24)852

=
1

σ
√
2π

∫ ∞

−∞
x · ex−

(x−µ)2

2σ2 dx (25)853

To simplify the Equation 25, we adjust the x−854
(x−µ)2

2σ2 as shown in the Equation 20. Thus, the855

Euqation 25 is transformed into the Equation 26.856

eµ+
σ2

2

∫ ∞

−∞

x

σ
√
2π

e−
[(x−σ2)−µ]2

2σ2 dx (26)857

Denote u as x − σ2 − µ, the Equation 26 is858

transformed into the Equation 27.859

eµ+
σ2

2

σ
√
2π

[

∫ ∞

−∞
(σ2 + µ)e−

u2

2σ2 du+

∫ ∞

−∞
ue−

u2

2σ2 du]

(27)860

The first term of the Equation 27 is similar to the861

integral of the Gaussian distribution and its result862

is σ
√
2π. The second term of the Equation 27 is an863

odd function and its integral is 0. In summary, the864

result of the Equation 27 is shown as follow.865

E(xex) = e
σ2

2
+µ(µ+ σ2) (28)866

Combining the above derivations, we can obtain867

the result of Eq. A as shown in Eq. 29.868

log i− d

2
(29)869
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