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Abstract

Large Language Models (LLMs) have signif-
icantly advanced the field of Artificial Intelli-
gence. However, their deployment is resource-
intensive, not only due to the large number of
model parameters but also because the (Key-
Value) KV cache consumes a lot of memory
during inference. While several works pro-
pose reducing the KV cache by evicting the
unnecessary tokens, these approaches rely on
accumulated attention score as eviction score
to quantify the importance of the token. We
identify the accumulated attention score is bi-
ased and it decreases with the position of the
tokens in the mathematical expectation. As
a result, the retained tokens concentrate on
the initial positions, limiting model’s access
to global contextual information. To address
this issue, we propose Adaptive holistic atten-
tion KV (AhaKV), it addresses the bias of the
accumulated attention score by adaptively tun-
ing the scale of softmax according the expecta-
tion of information entropy of attention scores.
To make use of the holistic attention informa-
tion in self-attention mechanism, AhaKV uti-
lize the information of value vectors, which
is overlooked in previous works, to refine the
adaptive score. We show theoretically that our
method is well suited for bias reduction. We de-
ployed AhaKV on different models with a fixed
cache budget. Experiments show that AhaKV
successfully mitigates bias and retains crucial
tokens across global context and achieve state-
of-the-art results against other related work on
several benchmark tasks.

1 Introduction

Transformer (Vaswani et al., 2017) has demon-
strated remarkable success in a wide range of
domains, including language modeling (Devlin
et al., 2019; Raffel et al., 2020), image recogni-
tion (Dosovitskiy, 2021; Xie et al., 2021), and
speech recognition (Dong et al., 2018; Karita et al.,
2019), owing to its powerful modeling capabili-

ties. In particular, in the field of natural language
processing, Transformer-base large language mod-
els (LLMs) (Achiam et al., 2023; Zhang et al.,
2022; Touvron et al., 2023a,b) have become defacto
method. With the rise of multi-turn conversations
and long document processing scenarios (Bai et al.,
2023; Chen et al., 2024b), the lengths of model’s
input text (Peng et al., 2024; Liu et al., 2024a) con-
tinue to grow, leading to a significant increase in
the deployment costs associated with large-scale
models. These costs arise not only from the com-
putational resources required for parameter load-
ing and attention computation, but also from the
memory consumption caused by the widely used
Key-Value (KV) cache strategy during the gener-
ation process (Pope et al., 2023). The KV cache
which stores precomputed keys and values, which
is designed avoid re-computation and improve in-
ference speed. However, this comes at the cost of
considerable memory overhead, making it a criti-
cal bottleneck in efficient model deployment. For
example, in LLaMA-2-7B (Touvron et al., 2023b),
when the input batch size is 8 and the context length
reaches 32K tokens, the KV cache alone can grow
to 128GB, which far exceeds the memory required
to store the model parameters themselves.

The substantial KV cache consumption poses
significant challenges for deployment on typical
consumer GPUs. Recent researches (Xiao et al.,
2024; Zhang et al., 2024; Li et al., 2024; Adnan
et al., 2024) have shown that retaining only a small
subset of crucial tokens’ keys and values during
generation can achieve performance comparable
to those of the full cache LLMs. StreamingL.LM
(Xiao et al., 2024) identified that initial tokens play
a critical role in maintaining model performance.
By retaining only the initial tokens and the most
recent tokens, Streamingl.LLM significantly reduces
the KV cache size with promising results. To avoid
losing vital information within the middle of the
input, H2O (Zhang et al., 2024) leveraged accumu-
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Figure 1: Left: The H>O-base method, which uses the
accumulated attention score as an eviction score, has
a higher eviction score for the token on the left side
of the sequence. Right: The AhaKV eviction strategy,
which focuses the attention scores on key tokens and
selects the attention scores of key tokens to calculate
the eviction scores, avoiding positional bias.

lated attention scores as the eviction score during
generation, enabling the dynamic removal of less
important key-value pairs. This flexible and highly
successful method has served as the foundation for
many research improvements, leading to the de-
velopment of new approaches. However, in long
context tasks, the cumulative attention score is sub-
ject to decay bias. SnapKV (Li et al., 2024) uses
the recent window’s attention score to retain im-
portant tokens to improve long context processing.
NACL (Chen et al., 2024a) introduces stochastic
eviction to reduce the eviction score bias to im-
prove long context performance. However, these
methods do not consider the flattening of attention
scores in long contexts, and they do not make full
use of numerical information.

However, the accumulated attention scores used
in existing methods be further optimized. Figure
1 illustrates the attention scores and accumulated
attention scores for a segment of a sentence, demon-
strating that the H,O-based approach tends to re-
tain tokens from the earlier part of the sequence.
Even when tokens in the middle are semantically
crucial, their importance is underestimated within
framework. The bias stems from the widely em-
ployed causal mask in Transformer-based archi-
tectures, which is designed to prevent information
leakage from future tokens. Specifically, the causal
mask zeros out all values after the current token
in the softmax input, ensuring that each token can
only attend to itself and preceding tokens. As the
sequence length increases, the average attention
score for each token decreases after the softmax
operation. As depicted in Figure 1, tokens on the
right side of the sequence are computed fewer times

Eviction Score

than those on the left. Furthermore, since tokens on
the right inherently receive lower attention scores
compared to those on the left during the initial
computation, their accumulated attention scores
are further diminished in expectation. This results
in a systematic bias where tokens on the right side
are more likely to be evicted, regardless of their ac-
tual importance. Second, the accumulated attention
score framework only uses information from the
queries and keys, neglecting the information about
the values in the self-attention mechanism. In fact,
values carry the contextual information prediction.
Effectively leveraging the information contained in
the values is therefore another key consideration
when designing an eviction strategy. By incorpo-
rating value-based insights, it may be possible to
develop a more balanced and context-aware evic-
tion approach that better preserves semantically
important tokens across the entire sequence.

In this paper, we propose Adaptive holistic atten-
tion KV (AhaKV), which addresses the bias of the
accumulated attention score by adaptively tuning
the scale of softmax and makes use of the holis-
tic attention information to evict redundant tokens,
reducing memory usage while preserving text pro-
cessing capacity. We analyze the reason of the bias
through theoretical derivation, highlighting that a
consistent number of cumulative entries is main-
tained for each token when computing the eviction
score. To counteract the flattening of the attention
score as the number of tokens increases, we pro-
pose setp gain softmax (SG-softmax) to adaptively
adjust the attention distribution to emphasize key
tokens. Additionally, we compute a prior weight
for each token using the modulus length of value
to enhance the eviction score. The eviction score
in AhaKV avoids positional bias and makes full
use of the information of queries, keys, and val-
ues (QKV) to maintain the text processing capacity
after eviction of the token, and achieves state-of-
the-art in comparison to other eviction methods.
Overall, Our main contributions are as follows:

(1) Analyses of self-attention mechanisms ex-
plain why cumulative attention scores retain
early tokens and provide a theoretical basis for
addressing bias. Meanwhile, we propose Re-
cent Accumulation and SG-softmax to avoid
bias.

(2) Our work pioneers the effective use of value
matrix information through a simple transfor-
mation that enhances the eviction score using



the value prior. This provides a possible idea
for future improvements.

2 Related Work

2.1 Efficient LLMs Inference

LLMs have a large inference computational cost.
This problem has inspired a lot of research in the
inference optimization for LLMs, such as the meth-
ods (Frantar and Alistarh, 2023; Ma et al., 2023;
Sun et al., 2024) adopting pruning to reduce the re-
dundant parameters of LLMs and thus improve the
inference speed. In addition to this, many research
(Frantar et al., 2023; Dettmers et al., 2022; Liu
et al., 2023) have used quantization for LLMs to
reduce the full-precision LLM parameters to those
of a few bits, thus speeding up the inference of the
model. In contrast to the above approaches of modi-
fying model parameters, some other works (Zaheer
et al., 2020; Wang et al., 2021; Zhang et al., 2024;
Hooper et al., 2024; Liu et al., 2024c; Dong et al.,
2024) start from the bottleneck of the attention
module of secondary computational complexity in
inference and speed up the inference process by
sparse attention. The approaches of these works
are orthogonal and can be integrated together. The
work studied in this paper, on the other hand, is
closely related to sparse attention and focuses on
reducing the memory bottleneck, KV cache, that
arises in the inference process.

2.2 Sparse Attention

Sparse attention mainly targets the prefill phase of
the transformer and omits certain attention opera-
tions to improve computational efficiency. Big bird
(Zaheer et al., 2020) combines random, local and
global attention to sparse attention while maintain-
ing accuracy of generation. Longformer (Beltagy
et al., 2020) introduces sliding windows and task-
driven global attention to reduce attention compu-
tation. Spatten (Wang et al., 2021) evaluates the
importance of each token by calculating the cumu-
lative attention to dynamically prune the token with
minimal attention. However, these sparse-attention
approaches do not focus on the growing memory
problem despite reducing self-attention computa-
tion. The KV cache generated by LLMs inference
has become a memory bottleneck for inference.

2.3 KV Cache Eviction

Research on KV cache optimization has focused
on compressing the out of memory that occurs as

the increasingly length of the prompt. In this paper,
we focus on KV cache eviction (Xiao et al., 2024;
Zhang et al., 2024; Chen et al., 2024a; Adnan et al.,
2024) which focuses on attention sparsity, and ex-
plore how to reduce redundantly labelled KVs to
reduce memory usage and improve inference effi-
ciency. Which can be subdivided into static evic-
tion and dynamic eviction according to the evic-
tion method. The static eviction is represented
by StreamingL LM (Xiao et al., 2024), which ob-
serves that the beginning token is very important
for the whole generation task, and therefore retains
the KVs of the 4 initial tokens and the most re-
cent token, and evicts the KVs of the remaining
tokens. The study of dynamic eviction focuses on
identifying the key tokens and constantly updat-
ing the KV cache. The HyO (Zhang et al., 2024)
method utilises the sum of cumulative attentions
as the eviction score and retains the token with the
highest score and the nearest token. SnapKV (Li
et al., 2024) proposed to compress the long context
prompt before calculating the expulsion score to
improve the comprehension of long text. NACL
(Chen et al., 2024a) introduces random evictions
thereby avoid bias in eviction scores. Distinguish-
ing from the above methods, AhaKV avoids the
bias of the Eviction Score and makes full use of
value to refine the eviction score.

3 Motivation

For Decoder-only Large Language Models, the in-
ference process consists of two phases, the prefill
phase and the generation phase. In the prefill phase,
input tokens are encoded as Key, Value, and Query
vectors to compute the self-attention. The Key and
Value vectors are typically cached for reusage to
accelerate inference. In the generation phase, the
model computes attention weights by multiplying
the current token’s Query with all cached Key vec-
tors, then applies these weights to the correspond-
ing Value vectors. With KV caching, only the Key
and Value of the new token are computed at each
step, while previous vectors are retrieved from the
cache. While this approach reduces computational
redundancy, it incurs significant memory overhead.

Attention computations exhibit inherent sparsity
in practice. Selective eviction of non-critical Key-
Value pairs from the cache can reduce memory
usage while preserving generation accuracy (Zhang
et al., 2024; Liu et al., 2024b; Adnan et al., 2024).
Current eviction strategies predominantly rely on
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Figure 2: (a,b) shows the eviction scores in different strategy. (c) shows the retention token index. (d) shows the
Comparision between Rretention Ratio in different threshold with and without value-prior

accumulated attention scores (Zhang et al., 2024).
However, we identify two critical limitations in
these approaches.

3.1 Positional Bias in Accumulated Attention
Scores

Figure 2 analyzes the eviction scores generated by
H>O (Zhang et al., 2024) for an attention head of a
layer in the LLaMA model, along with the distribu-
tion of retained token indices across a 3,600-token
sequence. The results reveal an intrinsic positional
bias: accumulated attention score has a intrinsic
bias, that they gradually decrease with token posi-
tion. Tokens beyond position 1,500 are dispropor-
tionately evicted, leading to the catastrophic loss of
nearly half of the context information. It highlights
the eviction strategies need to ensure more uniform
information retention across all positions.

3.2 Neglecting Values’ Effect

While Value vectors fundamentally shape self-
attention outputs, existing eviction strategies ignore
their contribution. We propose augmenting accu-
mulated attention scores with Value-derived prior
weights to refine eviction scores generated by HzO.
Figure 2(d) compares normalized retention rates
for thresholds applied to baseline scores versus
value-enhanced scores. Incorporating value priors
obtains lower retained token proportion at equiva-
lent thresholds. This demonstrates that value mag-
nitudes provide complementary signals for identi-
fying semantically important tokens.

4 Methodology

In this section, we analyze the limitations of accu-
mulated attention scores and the computation of
softmax mathematically. We identify the reason
of the bias and mitigate it through theoretical de-
duction. We further refine the eviction score using
the value-based prior to make use of the holistic

attention. A novel method Adaptive holistic at-
tention KV (AhaKV) that evicts tokens based on
unbiased eviction scores while preserving global
context information is proposed.

4.1 Analysis of the Accumulated Attention
Score

Denote the query matrix as Q € R™*¢, the key
matrix as K € R"*? and the hidden dimension as
d. The attention score between the i*" query and
the 5" key a; j is computed as following:

QT K;/Vd
23:1 QT Kj/Vd
(1)
The eviction score S; in H2O for the 4t token
is defined as:

Qi j = softmax(Q;prj/\/&) =

Si=Yai )
=1

Due to the casual mask, a;; = 0 when i < j.
Thus, Eq. (2) can be rewritten as:

S; = Z i j (3)
i=j

The number of cumulated term decreases as j
increases, leading to a monotonic decrease trend
in the eviction score, which will be proven in the
following. Following the previous works (Vaswani
et al., 2017; Chi et al., 2023; Kazemnejad et al.,
2024), we assume that the components of (J; and
K; are independent random variables with the
mean as 0 and the variance as 1. Under this assump-
tion, a; ; has the same expectation and variance for
the same row of the attention matrix. We prove the



monotonicity of the eviction score as follows:

E(Sj+1 —8j) = E(Sj+1)

— E(S))

i=j+1
n n
= 2 Blaig) ZE ais)
i=j+1 =
n
= > [Blaijn) — E(aij)] — B(aj;) 4

i=j+1

Since each element in row 7 has the same math-
ematical expectation, the first term of Eq. (4) is
0. However, the expectation of a; ; is a positive
value. Thus, E(Sj11 — Sj) < 0, which means
that the eviction score decreases monotonically in
expectation. This is validated empirically in Figure
2, where the accumulated attention score has an
clear positional bias.

To address this bias, we propose summing the
attention scores over the nearest r rows. This en-
sures that the eviction score is not influenced by
the number of accumulated terms. The modified
eviction score is computed as:

Si=> ai (5)

4.2 Rethink the Softmax Computation

We further analyze the decrease in attention scores
as the sequence length grows. As more tokens are
included in the softmax computation, the attention
scores become diluted, particularly for tokens in
later positions. This phenomenon arises because
the softmax normalization distributes a fixed total
probability mass (summing to 1) across a growing
number of tokens, leading to smaller average atten-
tion scores for each token. To better understand
the distribution of attention scores, we introduce
information entropy from information theory as a
complementary measure. Let H; be the informa-
tion entropy of the i*” row of the attention score
matrix, which is given by

[
—> aijlogai; (6)
=0

Information entropy quantifies the concentration
or dispersion of the attention score distribution. A
higher entropy value indicates a smoother, more
uniform distribution. We will analyze the variation

of H; as the number of rows i increases. Replacing
QT K; with w; ; for simplification and substituting
Eq. (1) into Eq. (6), we have

: S Wi - w;

y j irj
= log g Wi — =90 7
E -1 eWi,j
J=0 '

j—O

We further assume that w; ; follows the Gaussian
distribution. Then, we can deduct that the expecta-
tion of H; is

“logi— 2. ®)

E[H;] 5

Details of the deduction can be found in the ap-
pendix A. Eq. (8) shows that expectation of H;
increases with ¢. This indicates that as the num-
ber of tokens grows, the attention score distribu-
tion becomes flatter, and the maximum attention
score decreases. Consequently, tokens in later po-
sitions receive lower attention scores overall. To
tackle this, we introduce a scaling parameter \ to
adaptively adjust the smoothness of the distribu-
tion according to the number of tokens. Mathe-
matically, we transform the softmax function from
softmax(x;) = S = to step gain sofmax

)\l‘i

SG-SOftmaX(xi, )\’L) == W (9)
Then, the expectation of H; changes into
\2d
E[H;| =logi — -5 (10)

Assume that the token number of the budget is k.
The ideal case for a good eviction score is that the
there are only k attention score larger than zero. We
aim to make expected information entropy equals
to the maximum information entropy regardless of
the number of total tokens. Therefore, we have

: A2d K 1,1
0gl — —(/— = — —log— =
81T 25 %%

Jj=0

—logl. (11)

k

We can figure out that, when the number of total
tokens is 1,

2log(i/k) '

A=
d

(12)

Eq. (12) gives an estimation for the scaling param-
eter \ in practice.
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Figure 3: AhaKV consists of three main components: SG-softmax, Recent Accumulation, and Value-Prior Refine.
First, SG-softmax replaces the standard softmax to prevent attention score flattening. Then, cumulative eviction
scores are computed using attention scores from recent rows to ensure each token has the same number of cumulative
terms. Next, value-prior is used to refine eviction score selection, and pooling is applied to smooth scores and

prevent excessive text sparsification. Finally, tokens are retained based on their eviction scores.

4.3 Enhance the Eviction Score via
Value-prior

Through the steps outlined above, we have derived
unbiased eviction scores. However, since both at-
tention scores and value vectors play a critical role
in the computation of self-attention, it is essential
to account for their importance. In order to uti-
lize the holistic attention information, we refine the
accumulated attention scores by incorporating the
magnitude of the value vectors.

Let V € R™ denote the value matrix. The
square of the Ly norm of the i* token is computed
v; = ||Vi|>. However, in self-attention compu-
tation, the features of the current token are ob-
tained by weighting the value vectors using the
corresponding attention scores. To reflect this, we
use attention scores to computed the weighted sum
of v; that reflecting the importance of the i*" token:

i
Vi = E Qij * Vi
Jj=1

We then normalize it with the maximum value
among all ;.

(13)

_ Vi

"= max () 14)

Unlike the accumulated attention score which mea-
sures token importance based on inter-token cor-
relations, ; captures the importance derived from
the model’s parameterized weighting of tokens. We

use it as a prior weight to refine adaptive accumu-
lated attention score:

Si =7 S; (15)
The details of the AhaKV algorithm are shown in
Algorithm 1.

5 Experiments

5.1 Setup and Baseline

Our experiment are conducted based on 3 widely
used basic models, LLaMA (Meta, 2024), Qwen
(Qwen, 2024) and Gemma(Google, 2024). In or-
der to demonstrate the capability of AhaKV un-
der long text, we chose the LongBench frame-
work (Bai et al., 2023) for testing. There are 21
datasets in six areas in the LongBench framework,
including math, code completion, few-shot learn-
ing, multi-document QA, single-document QA,
summarization and synthetic tasks. By testing 21
datasets within the LongBench framework, we can
effectively demonstrate the efficacy of the AhaKV
method. In addition to testing within the Long-
Bench framework, we selected the ARC-E (Clark
et al., 2018), OpenBookQA (Mihaylov et al., 2018),
WiC (Pilehvar and Camacho-Collados, 2019), and
WinoGrande (Sakaguchi et al., 2020) datasets,
demonstrating that AhaKV is effective across a
diverse range of datasets. Results were averaged
over multiple seed results. All experiments are
conducted with NVIDIA A800 80GB GPU.



Table 1: Results in Longbench Datasets

Method Code Complete  Few Shot  Single-doc QA Multi-doc QA Summarization  Passage Retrieval ~ Average

z Full Cache 54.47 5775 41.55 3233 20.14 54.83 41.94
= Sink(Xiao et al., 2024) 56.59 53.03 30.31 26.88 17.75 26.50 33.55
2 H2O(Zhang et al., 2024) 58.88 54.57 38.61 30.76 19.75 41.70 38.93
‘é SnapKV(Li et al., 2024) 56.52 56.36 40.56 31.06 18.22 54.33 40.99
S NACL(Chen et al., 2024a) 56.62 54.78 40.32 31.39 18.49 54.33 40.77
3 TOVA(Oren et al., 2024) 53.45 57.29 38.6 30.74 17.63 53.30 40.18
~ AhaKV 58.20 57.08 41.18 31.82 18.74 54.83 41.74
o Full Cache 59.35 61.60 45.20 3435 22.65 39.33 4247
£ Sink(Xiao et al., 2024) 56.09 55.41 29.56 26.45 19.43 15.33 32.46
& H>O(Zhang et al., 2024) 52.72 56.14 37.82 31.77 21.15 22.67 36.24
::-. SnapKV(Li et al., 2024) 59.08 60.37 43.99 33.33 20.71 38.50 41.30
S NACL(Chen et al., 2024a) 58.67 53.67 41.80 32.02 20.83 38.00 39.27
5 TOVA(Oren et al., 2024) 56.91 56.65 37.97 30.69 19.00 35.61 37.99

AhaKV 59.01 61.01 44.24 33.99 22.12 38.33 41.83
E Full Cache 5572 51.99 2228 18.56 18.55 5.34 27.28
Q Sink(Xiao et al., 2024) 53.35 49.26 14.11 15.01 15.66 1.94 23.27
8 H>O(Zhang et al., 2024) 42.66 49.32 20.46 16.29 18.27 4.01 24.51
& SnapKV(Li et al., 2024) 55.32 50.95 21.50 17.65 16.82 5.57 26.39
g NACL(Chen et al., 2024a) 54.50 49.84 19.92 17.82 16.97 6.54 26.04
<  TOVA(Oren et al., 2024) 53.68 51.16 16.10 16.41 15.68 4.34 24.66
- AhaKV 55.98 51.49 2242 17.98 17.11 5.57 26.89
- Full Cache 46.91 5275 33.82 23.81 20.47 27.02 3325
= Sink(Xiao et al., 2024) 48.84 49.78 20.34 18.63 18.05 15.33 27.18
8@ Hy0(Zhang et al., 2024) 50.01 49.99 29.88 21.29 20.13 22.55 31.09
& SnapKV(Li et al., 2024) 47.66 5245 32.89 22.35 18.84 26.29 32.39
E NACL(Chen et al., 2024a) 47.09 50.35 31.81 21.93 19.12 26.69 31.77
K TOVA(Oren et al., 2024) 45.69 49.20 30.61 21.20 18.78 25.38 30.80

AhaKV 50.44 53.37 33.05 22.89 19.38 2691 33.16

Algorithm 1 AhaKV Algorithm

1: Total Cache Budget B(B = B, + B;), Recent Cache
Budget B, Selected Cache Budget B, Temperature /3

2: function PREFILL(Prompt)
3 for Layer-i in LLMs do
4: for Head-m in Layers do
5: Qm,th,iyVm,i eRnXd
kT
6 Amyi < 7@111,1 Komi
7 Sm.; < Recent B, Token
8 Fs <= popencst  SGsoftmax(A, B)
9: P« - Fs > In Section 4.3
10: Spe.i — TopK(Fs, Bs)
11 S:;fiefi” — SmiU S
12: end for
13: end for

14: end function

15: function GENERATION(S. "/ Maz Length)
16: SO ¢ grrefill ’

17: Zo < First Token

18: Fo < F,

19: for t < MaxLength do

20: for Layer-i in LLMs do

21: for Head-m in Layers do

22: K:r:ll, V;Til — Kgi-1,Vgi

23: Ky i< (KL WK i Zo)

24: Vini < (Vi Wi i Zo)
Wfi.ing 1K3:”

25: Ay i —

26: Fy < SGsoftmax(A, ) + Fi—1

27: Sm,; < Recent B, Token

28: Spu.i < TopK(F, By)

29: S T = S5 s U ST

30: end for 7 7

31: end for

32: end for

33: end function

We select H20O(Zhang et al., 2024) as the base-
line and primary improvement method. H20 use
accumulated attention score and discards the lower
value. In addition, we compare AhaKV with sev-
eral popular eviction strategies, including Sink
(Xiao et al., 2024), SnapKV (Li et al., 2024), NACL
(Chen et al., 2024a) and TOVA (Oren et al., 2024).

5.2 Comparison Results

5.2.1 Longbench Results

We conducted extensive testing on the LongBench
dataset, which consists of six categories of tasks
as in Table 1. LLAMA2-7B was assigned a total
budget of 720 due to its limited sequence length,
while other models received 1000, with a fixed
recent budget of 32 applied uniformly across all
models. We use Eq. 12 to initialize the parameter
A. As shown in Table 1, AhaKV achieved state-of-
the-art performance, attaining the highest average
accuracy across all tasks.

The AhaKV method demonstrates significant
performance advantages across multiple bench-
marks. In code-completion tasks, it achieved supe-
rior accuracy over the full cache baseline by 0.2%
and 3.53% on LLAMA2-7B-Chat and Gemma-
7B-Inst, respectively. For few-shot learning sce-
narios, AhaKV outperformed all competitors on
Gemma-7B-Inst with a 0.92% lead over the second-
best method, though trailing slightly on LLaMA3-
8B-Inst. It consistently dominated both single-
document and multi-document QA tasks across
all tested models, notably surpassing the full cache
baseline by 0.14% on LLAMA2-7B-Chat in single-
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Figure 4: Short-text results in different KV budget.

document QA. The method enhances summariza-
tion through context-aware extraction of highly rel-
evant tokens and shows strong retrieval capabili-
ties, outperforming rivals by 0.5% and 0.22% on
LLaMA3-8B-Inst and Gemma-7B-Inst in passage
retrieval. These key metrics demonstrate AhaKV’s
consistent performance advantages across diverse
tasks and model architectures.

5.2.2 Short-text Results

To validate the effectiveness of AhaKV in process-
ing short texts, we selected the OpenBook, ARC-E,
WiC, and WinoGrande datasets for testing and com-
parison against H2O(Zhang et al., 2024) and other
methods in Figure 4.

AhaKYV has been evaluated using LLAMA2-7B
and Qwen2-1.5B, with results obtained for a KV
Budget of 60%-4%. The experiments demonstrate
that AhaKV can achieve exceptional performance
with short text datasets. Notably, as the compres-
sion rate increases (resulting in a decreased Bud-
get), AhaKV shows a tendency to deliver higher
accuracy compared to H20 and others.

Compared to other methods, SampkeKV con-
sistently outperforms other expulsion schemes in
terms of accuracy in the most extreme compressed
case (only 4% budget). It shows that AhaKV is
able to give a high enough weight to crucial tokens
in the text to make them less likely to be evicted.

Table 2: Ablation study in subdatasets in LongBench of
llama2-7B.

Datasets | 2Wiki TriQA Multi-EN  lcc  Samsum  Avg
w/oRA | 287  84.17 31.01 5738 3949  48.15
w/o SGS | 29.78  81.23 29.67 50.32 4037 4625
w/o VPE | 29.54  82.94 33.96 58.16  41.06  49.13
AhaKV | 2996 83.61 34.6 58.4 40.55  49.42

5.3 Ablation Study

In AhaKV, we introduce three ways to improve
eviction strategies: Recent Accumulation, Step
Gain Softmax and Value-Prior Enhance. To eval-
uate the orthogonality of the three components and
assess their individual impact, we conducted ab-
lation experiments on LLAMA2-7B-Chat, exam-
ining each part separately. To simplify the pre-
sentation, we use the abbreviations RA for Recent
Accumulation, SGS for Step Gain Softmax, and
VPE for Value-Prior Enhance in the table.

Table 2 presents ablation results for LLAMAZ2-
7B-Chat on LongBench subsets (one dataset per
category). The principal findings are outlined as
follows. (i) Removing RA caused a 1.27% average
accuracy drop, confirming the necessity of stable
cumulative terms to reduce bias. (ii) Eliminating
SGS reduced accuracy by 3.17%, demonstrating
its critical role in eviction strategy enhancement.
(iii) Disabling VPE decreased accuracy by 0.29%,
proving its effectiveness in refining eviction scores
to prioritize essential tokens.

6 Conclusion

In this paper, we address the problem of KV cache
compression by proposing AhaKV, a KV cache
eviction algorithm that can identify important to-
kens and reason with a fixed KV cache budget,
solving the problem of KV cache growth at infer-
ence. Our approach selects key tokens based on the
attention score, and proposes Step Gain Softmax
and Sample Attention to eliminate the attention
bias problem caused by causal mask. Experimental
evaluations show that AhaKV achieves good per-
formance on both short text and long text datasets.



Limitations

The main limitations of the approach presented in
the paper are the following: firstly, due to resource
constraints, we did not conduct our experiments
on longer texts. However, we have derived our
method and evaluated our model on datasets of
different lengths in the paper, and we believe that
AhaKV can be adapted to reasoning with longer
texts. Second, for the choice of a constant number
of accumulators in prefill, we choose the recent
rows in the attention score for accumulation; in
practice, we do not think this choice is unique. For
example, we could also choose the Topk strategy
to select the same number of cumulants.

Ethics Statement

In this study, we utilize open-source data and tech-
nologies, which significantly mitigate privacy con-
cerns. With the polish of the Al assistant, we more
clearly define the problem and illustrate the ap-
proach. Our novel approach focuses on enhancing
the understanding of model contexts and improv-
ing inference efficiency, with the goal of creating
accessible and highly effective models capable of
handling extended contexts. This strategy is ex-
pected to advance the openness of NLP technolo-
gies and facilitate their practical deployment in
diverse applications. Crucially, our methodology is
independent of the training process, ensuring that
it does not perpetuate or introduce biases into the
models. By emphasizing state-of-the-art, resource-
efficient techniques, our research contributes to
the development of a more open and automated
Al pushing the boundaries of artificial intelligence
while ensuring that the benefits of these advance-
ments are widely accessible and applicable across
various fields. This represents a significant step
toward a more inclusive and automated Al-driven
future.
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A Derivation of the mathematical
expectation of H;

The mathematical expectation of H; is shown as
Eq.16

Ele"s - wy)

logi + logE "] — Flew]

(16)

Let z = w; ; and assume that x is a Gaussian
distribution with mean x and variance o2. Sym-
bolically, z ~ N(u,0?). Its probability density
function is shown as Eq. 17.

_(z-p)?
2052

1

oV 2T

fz) = e (17

The mathematical expectation of e* in Gaussian
distribution is shown as the Eq. 18.
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Combine the Equation 18 to the Equation 19.
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To simplify the Equation 19, we adjust the z —

(x;a ‘;)2 as follow.
o [(x—0%) —pJ?
—_—— 20
et 952 (20)
Combine the Equations 19 and 20 to Equation
21.
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Denote ¢ as © — o2, the Equation 21 could be
transformed as the Equation 22.

fod
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0 —w? .
The f, 202" dx is the cumulative dis-

0 o271 €
tribution function of random variable which obey
the Gaussian distribution with mean y and vari-
ance o. The result of the integral is 1. Thus, the
mathematical expectation of e” is represented as

follow.

B(e") = et % (23)



The computation of F(xze”) is shown as the
Equation 24.

1 o _@—p?
E(ze®) = ze® e =2 dr (24)
oV21 J_

1 o0 _(@=m)?
- / w7 dr (25)
—0o0
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To simplify the Equation 25, we adjust the z —
2
(IQ_U )” a5 shown in the Equation 20. Thus, the

Eugation 25 is transformed into the Equation 26.

2 oo 2y 12
o2 T _lz=0?)—y]
et 2 / e 222 dx (26)
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Denote u as © — o> — ju, the Equation 26 is
transformed into the Equation 27.

et [0 2 .z
[/ (02 + p)e 202du + / ue 202 dul
oV2T J—so —00
27
The first term of the Equation 27 is similar to the
integral of the Gaussian distribution and its result
is 0/27. The second term of the Equation 27 is an
odd function and its integral is 0. In summary, the
result of the Equation 27 is shown as follow.

E(ze®) = 5*“(# +0?) (28)

Combining the above derivations, we can obtain
the result of Eq. A as shown in Eq. 29.

logi — g (29)
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