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Joint Homophily and Heterophily Relational Knowledge
Distillation for Efficient and Compact 3D Object Detection

Anonymous Author(s)

ABSTRACT
3D Object Detection (3DOD) aims to accurately locate and iden-
tify 3D objects in point clouds, facing the challenge of balancing
model performance with computational efficiency. Knowledge dis-
tillation emerges as a vital method for model compression in 3DOD,
transferring knowledge from complex, larger models to smaller,
efficient ones. However, the effectiveness of these methods is con-
strained by the intrinsic sparsity and structural complexity of point
clouds. In this paper, we propose a novel methodology termed
Joint Homophily and Heterophily Relational Knowledge Distilla-
tion (H2RKD) to distill robust relational knowledge in point clouds,
thereby enhancing intra-object similarity and refining inter-object
distinction. This unified strategy encompasses the integration of
Collaborative Global Distillation (CGD) for distilling global rela-
tional knowledge across both distance and angular dimensions, and
Separate Local Distillation (SLD) for a focused distillation of local
relational dynamics. By seamlessly leveraging the relational dy-
namics within point clouds, the H2RKD facilitates a comprehensive
knowledge transfer, significantly advancing 3D object detection
capabilities. Extensive experiments on KITTI and unScenes datasets
demonstrate the effectiveness of the proposed H2RKD.

CCS CONCEPTS
• Computing methodologies → Object detection; Computer
vision representations.
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1 INTRODUCTION
Lidar-based 3D Object Detection (3DOD) [20, 30], leveraging point
clouds for precise object identification and location, is a fundamen-
tal task in computer vision. Offering depth information beyond
2D detection, it’s crucial for applications in robotics, autonomous
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Collaborative Homophily and Heterophily

Separate Homophily and Heterophily

(a) Distillation of Region Representations (b) Distillation of Local Structural Relation

(c) Ours: Distillation of Homophily and Heterophily Relations

Object 1 Object 2 BackgroundTeacher Feature Student Feature 

CGD&SLD

𝑺 𝑯

𝑫

𝑨

Optimization

Figure 1: Comparison of different distillation methods. (b)
acquires structural knowledge of the point clouds compared
to (a). Our (c) refines the incomplete relationships obtained in
(b), incorporating both homophily and heterophily relations.

vehicles, and augmented reality. However, increased detection ca-
pabilities come with higher computational costs. To mitigate this,
Knowledge Distillation (KD) has been applied to balance perfor-
mance with computational efficiency, transferring knowledge from
larger to smaller models.

Despite advancements in Knowledge Distillation (KD)[6, 28, 36]
for streamlining image understanding models, their application
to 3D Object Detection (3DOD) faces significant challenges. The
primary obstacles stem from the inherent characteristics of point
clouds, such as sparsity, irregularity, and geometric complexity,
which hinder the generalization capabilities of these KD methods.
To alleviate these issues, previous work [13] has focused on reduc-
ing the representational gap between teacher and student models by
enhancing mutual information across pairs of regions, as illustrated
in Figure 1(a). To boost the transfer of structural information of
objects, the other works tend to further distill relational knowledge.
Concisely, PointDistiller [32] aims to distill the local geometric
structures captured in K-Nearest Neighbor(KNN) graphs to up-
hold neighborhood relations, as shown in Figure 1(b). However,
the graph construction, heavily based on homophily, concentrates
the learning within similar classes failing to embrace the multi-
ple structural relationships present. More specifically, as Figure 2
demonstrates, the features extracted by the teacher show obvious
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(a) PointDistiller (b) Ours

Teacher Student Student

Figure 2: Visualization of the relations among voxel features
from the teacher and the student distilled by (a) and (b) on
KITTI, respectively. The relations are demonstrated by the
similarity matrix, where the white box represents high simi-
larity, and the yellow box represents weak similarity.

similarity and difference relations, as marked by white and yellow
boxes respectively. Unfortunately, after distillation, PointDistiller
[30] only retains high similarity relations and significantly destroys
most difference relations between voxel features. In contrast, our
method emphasizes simultaneously distilling both relations to ef-
fectively imitate the teacher.

Obviously, a robust relational knowledge should encompasses
both homophily and heterophily, i.e., similarity relations within
the same object and difference relations between different objects,
respectively beneficial for enhancing the intra-class consistency
and inter-class discrimination. Driven by the above analysis, in
this paper, we propose a novel Joint Homophily and Heterophily
Relational Knowledge Distillation method (H2RKD) for lidar-based
3D object detection, as illustrated in Figure 1(c). H2RKD models
and transfers relational knowledge in two ways, i.e., collaborative
global distillation module (CGD) which distills global relations si-
multaneously, and separate local distillation module (SLD) which
distills local homophily and heterophily separately. Specifically,
CGD models distance-wise relations between pairs and angle-wise
relations among triplets of features, implicitly collaborating both
homophily and heterophily into global relations. Then two kinds of
global relation consistency losses, including distance-wise relational
knowledge distillation loss and angle-wise relational knowledge
distillation loss, distill long-range semantic correlations buried in
point clouds. Furthermore, to capture subtle dynamic local relations,
SLD is proposed to separately embed local structure information
into homophilic graphs and heterophilic graphs. Subsequently, SLD
encodes and propagates intra-class and inter-class relations in dy-
namic graphs. Finally, a local relational knowledge distillation loss
is adopted to distill local semantic relations and geometry informa-
tion from teacher to student. Through the collaboration of CGD
and SLD, our student model comprehensively learns the relational
knowledge from the teacher, which preserves structural relations
of point clouds, enhancing intra-class similarity and promoting
inter-class discrimination simultaneously. We conduct extensive
experiments on KITTI and large-scale nuScenes datasets to verify
the effectiveness of the proposed approach.

The main contributions can be summarized as follows:
• We propose a novel Joint Homophily and Heterophily Re-

lational Knowledge Distillation method (H2RKD) to distill

robust relational knowledge in point clouds, thereby en-
hancing intra-object similarity and refining inter-object
distinction.

• We explore transferring homophily and heterophily rela-
tional knowledge in two ways: Collaborative Global Distil-
lation module (CGD) distills global relational knowledge
across both distance and angular dimensions, and Separate
Local Distillation module (SLD) distills subtle local correla-
tions and differences.

• Extensive experiments demonstrate the effectiveness of the
above contributions, and our proposed method achieves
state-of-the-art performance on the challenging 3DOD task.

2 RELATEDWORK
2.1 Lidar-based 3D Object Detection
Lidar-based 3D object detection aims to localize and classify 3D ob-
jects from point clouds. These methods can be briefly categorized as
point-based [3, 21, 29], pillar-based[12, 25], and voxel-based[7, 38].
(1)Point-based methods[21] leveraged pointnet [17] or pointnet++
[18] to extract sparse point features for 3D object detectors. (2)As a
Pillar-based method, [12] utilized the pointnet to learn the repre-
sentations of multiple-pillar point clouds, and convert these repre-
sentations into a pseudo image, which can be processed with 2D
convolutional layers. (3)For the voxel-based method, [38] proposed
a single-stage detector that divides point clouds into equally spaced
3D voxels and processes them with voxel feature encoding layers.

Recently, somemethods combining the aforementioned approaches
have achieved notable performance, such as [20, 30]. However, as
performance improves, lidar-based 3D detection models are likely
to bury heavier computation costs. Hence, in this work, we focus on
exploring knowledge distillation methods to boost the performance
of lightweight 3D detectors.

2.2 Knowledge Distillation for Lidar-based 3D
Object Detection

Knowledge distillation was originally proposed for model com-
pression in [1] and focused on emulating the knowledge derived
from a teacher network. Recently, knowledge distillation methods
have demonstrated significant advancements in 2D object detection
[23, 24, 33] and have also been leveraged to transfer knowledge in
multi-modality setup [11, 37] or multi-frame to single-frame setup
[35] in the 3D detection area.

Existing knowledge distillation methods in lidar-based 3D de-
tection tend to transfer knowledge representations or structural
relationships within point clouds. In the first line, most methods pri-
oritize transferring knowledge in crucial regions to acquire robust
knowledge representations. [27] leverages cues in teacher predic-
tion to determine the important areas for distillation. [13] maxi-
mizes the mutual information between intermediate features by
bilaterally transferring. Another line is embedded with transferring
structural relationships to learn more discriminative representa-
tions. [4] distill 3D representation under the consideration of the
correlation among the multiple detection head components.[32]
encodes the semantic information in the local geometric structure
based on a local topology map using KNN.
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Figure 3: The framework of the proposed joint homophily and heterophily relational knowledge distillation method (H2RKD)
for 3D object detection. (a) Teacher-student 3D object detection models. (b) Collaborative global distillation module (CGD)
transfers both distance-wise and angle-wise global relations. (c) Separate local distillation module (SLD) distills local homophily
and heterophily.

Nevertheless, current methods often focus solely on the relation-
ships among objects or the structural relationship within locally
similar point clouds, overlooking the global relationships. Therefore,
we delve into global relationships and seek more comprehensive
local structural relationships.

3 METHOD
3.1 Formulation and Overview
Problem Formulation. Given a set of point clouds
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and the corresponding ground truth labels
(GT labels) 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑚}, the 3D object detector can be
formulated as 𝐷 = 𝐿 ◦ 𝐻 , including feature encoding layers 𝐿 and
detection head 𝐻 for prediction. In this paper, our goal is to train a
student detector 𝑆 under the supervision of a pre-trained teacher
detector𝑇 , which is optimized by both 3DOD task loss and KD loss.

Framework Overview. Figure 3 illustrates the architecture of
the proposed H2RKD method, comprising three key components:
teacher-student 3D object detection models, collaborative global
distillation (CGD) module, and separate local distillation (SLD) mod-
ule. During training, teacher and student models extract two sets
of point cloud features, 𝐹𝑇 = {𝑡𝑖 }𝑀𝑖=1 and 𝐹𝑆 = {𝑠𝑖 }𝑀𝑖=1, for total
𝑀 points/voxels. Based on 𝐹𝑆 , the student detection head predicts
detection results, for calculating task loss and evaluation. To en-
hance feature robustness and simplify the relation complexity in
𝐹𝑇 and 𝐹𝑆 , we follow [32] to sample 𝑁 features 𝐹𝑇 = {𝑡𝑖 }𝑁𝑖=1 and
𝐹𝑆 = {𝑠𝑖 }𝑁𝑖=1. Subsequently, relational knowledge is distilled in two
ways: (1) CGD represents distance-wise and angle-wise relations
within 𝐹𝑇 or 𝐹𝑆 by the Global Relation Modeling (GRM) module and

distills global relations through distance-wise RKD loss and angle-
wise RKD loss, respectively. (2) SLD first constructs KNN graphs
to model local relations within 𝐹𝑇 and 𝐹𝑆 , reconstructs them into
homophilic graphs and heterophilic graphs by Separate Relation
Modeling (SRM), and encodes and propagates relations within each
graph. Then SLD aggregates homophily and heterophily within
𝐹𝑇 or 𝐹𝑆 and employs local RKD loss to distill these local relations.
Finally, the overall framework is jointly optimized with 3DOD task
loss, two global RKD losses, and a local RKD loss. During inference,
the trained student model predicts detection results for performance
evaluation.

Subsequently, we provide a detailed description of the CGD
module, SLD module and loss functions.

3.2 Collaborative Global Distillation
Collaborative global distillation implicitly embeds homophily and
heterophily into two global relations, including second-order and
third-order relations within point clouds. Specifally, the second-
order relation is modeled by the distance-wise relation between
pairs of features and the third-order relation is modeled by the
angle-wise relation among ternary features.

Drawing inspiration from the concept proposed in [15], we em-
ploy two straightforward yet effective potential functions to capture
these global relations, considering distance-wise and angle-wise
relations. Correspondingly, we propose the distance-wise RKD loss
and angle-wise RKD loss to distill the global relations.

Global Relation Modeling. We define𝜓 as a relational poten-
tial function for modeling each 𝜒𝑁 , where 𝜒𝑁 = {(𝑥𝑖 , ..., 𝑥 𝑗 ) |𝑖, 𝑗 ∈
𝑁, 𝑖 ≠ 𝑗} represents a set of 𝑁 -tuples of distinct data. Thus, we

3
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denote the second-order relation in 𝐹𝑇 as 𝜒2
𝑇
= {(𝑡𝑖 , 𝑡 𝑗 ) |𝑖 ≠ 𝑗} and

in 𝐹𝑆 as 𝜒2
𝑆
= {(𝑠𝑖 , 𝑠 𝑗 ) |𝑖 ≠ 𝑗}, respectively. Similarly, we denote the

the third-order relation in 𝐹𝑇 as 𝜒3
𝑇

= {(𝑡𝑖 , 𝑡 𝑗 , 𝑡𝑘 ) |𝑖 ≠ 𝑗 ≠ 𝑘} and
in 𝐹𝑆 as 𝜒3

𝑆
= {(𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘 ) |𝑖 ≠ 𝑗 ≠ 𝑘}. Then we model pairwise and

ternary relations of 𝐹 by distance-wise and angle-wise relations.
(1) Given a pair of point/voxel features 𝜒2

𝑇
from 𝐹𝑇 , distance-wise

potential function𝜓𝐷 measures the Euclidean distance between the
two features in the representation space:

𝜓𝐷 (𝑡𝑖 , 𝑡 𝑗 ) =
1
𝜇
∥𝑡𝑖 − 𝑡 𝑗 ∥2,

𝜇 =
1

|𝐹𝑇 |
∑︁

(𝑡𝑖 ,𝑡 𝑗 ) ∈𝜒2
𝑇

∥𝑡𝑖 − 𝑡 𝑗 ∥2 .
(1)

where 𝜇 is a normalization factor for distance. To focus on relative
distances among other pairs, we set 𝜇 to be the average distance
between pairs from 𝜒2 in the mini-batch.

(2)Given a triplet of point/voxel features 𝜒3
𝑇

= {(𝑡𝑖 , 𝑡 𝑗 , 𝑡𝑘 ) |𝑖 ≠
𝑗 ≠ 𝑘} from 𝐹𝑇 , an angle-wise relational potential measures the
angle formed by the three examples in the representation space:

𝜓𝐴 (𝑡𝑖 , 𝑡 𝑗 , 𝑡𝑘 ) = ⟨𝑒𝑖 𝑗 , 𝑒𝑘 𝑗 ⟩, (2)

where 𝑒𝑖 𝑗 = 𝑡𝑖−𝑡 𝑗
∥𝑡𝑖−𝑡 𝑗 ∥2 , 𝑒

𝑘 𝑗 =
𝑡𝑘−𝑡 𝑗

∥𝑡𝑘−𝑡 𝑗 ∥2 .

Global Relation Distillation Loss. We leverage two kinds
of global relation consistency losses: Distance-wise RKD loss and
Angle-wise RKD loss to transfer global relations for improving the
perception of similarity and distinction in point clouds.

(1)Distance-wise relation is measured in both the teacher and
the student, a distance-wise distillation loss is defined as:

L𝐷 =
∑︁

𝑙𝛿
(
𝜓𝐷 (𝑡𝑖 , 𝑡 𝑗 ),𝜓𝐷 (𝑠𝑖 , 𝑠 𝑗 )

)
, (3)

where (𝑡𝑖 , 𝑡 𝑗 ) ∈ 𝜒2𝑇 and (𝑠𝑖 , 𝑠 𝑗 ) ∈ 𝜒2𝑆 .
(2)Angle-wise relation is measured in both the teacher and the
student, an angle-wise distillation loss is defined as:

L𝐴 =
∑︁

𝑙𝛿
(
𝜓𝐷 (𝑡𝑖 , 𝑡 𝑗 , 𝑡𝑘 ),𝜓𝐷 (𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘 )

)
. (4)

where (𝑡𝑖 , 𝑡 𝑗 , 𝑠 𝑗 ) ∈ 𝜒3𝑇 and (𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘 ) ∈ 𝜒3𝑆 . 𝑙𝛿 is Huber loss [10].
The distance-wise distillation transfers the relationship of exam-

ples by penalizing distance differences between their representation,
while the angle-wise distillation loss transfers the relationship of
training example embeddings by penalizing angular differences.
Therefore, the CGD implicitly distills both homophily and het-
erophily into global relations.

3.3 Separate Local Distillation
Separate Local Distillation explicitly model local homophily and
heterophily relations by homophilic graphs and heterophilic graphs.
SLD encodes and propagates relations in each graph by a mixed
filter and dynamic graph convolutional layers, respectively. Cor-
respondingly, we propose the local knowledge distillation loss to
distill the local relations.

SeparateRelationModeling.Define graph data as𝐺 = {V, �̃�, 𝑓 },
whereV represents the set of 𝑛 nodes, 𝑓 is the feature matrix from
𝐹𝑇 or 𝐹𝑆 . We initialize graph structure �̃� based on these voxels or
points clustered by KNN (K-Nearest Neighbours). The normalized
adjacency matrix is 𝐴 = 𝐷− 1

2 (�̃� + 𝐼 )𝐷
1
2 , where 𝐷 represents the

degree matrix. The corresponding graph Laplacian is 𝐿 = 𝐼 − 𝐴.
1.is a matrix with all 1. Subsequently, we will provide a detailed
description of constructing two graphs.

(1)Firstly, we construct a heterophilic graph by selecting the
nodes that are far away from each other in both feature space
and structure space as negative pairs. Specifically, we use comple-
mentary graphs of similarity graph𝑊 and topology graph 𝐴 to
construct a heterophilic graphH . The procedure is formulated as
follows:

𝑊 = 1. −𝑊,

𝐴 = 1. −𝐴,

H =𝑊 ⊙ 𝐴.

(5)

where the similarity matrix𝑊 is obtained through the cosine simi-
larity of node features, which characterizes the closeness among
nodes in feature space 𝑓 . ⊙ represents the Hadamard product, which
is used to describe non-neighbor relations in both feature space
and topology space.

(2)Simultaneously, we could further improve the homophily level
of the raw graph byminimizing the distances among adjacent nodes,
which is formulated as:

min
S𝑖 :

𝑁∑︁
𝑗=1

S𝑖 𝑗 ∥𝑡𝑖 − 𝑡 𝑗 ∥2 + S2
𝑖 𝑗 , (6)

where S𝑖:represents the i-th row of S. Graph S will be more ho-
mophilic when edges are defined by nodes sharing high similarity.
Furthermore, we use a regularization term to integrate the 1-hop
and 2-hop neighbor relations. Let ∥𝑡𝑖 − 𝑡 𝑗 ∥2 = 𝐾𝑖 𝑗 , then we con-
struct a homophilic graph S by solving the following optimization
problem:

min
S𝑖 𝑗

S𝑖 𝑗𝐾𝑖 𝑗 + S2
𝑖 𝑗 + (S (2)

𝑖 𝑗
− S𝑖 𝑗 )2,

𝑠 .𝑡 . S𝑖 𝑗 > 0,
𝑁∑︁
𝑗=1

S𝑖 𝑗 = 1
(7)

where S (2) is the 2-hop graph, i.e.,S (2) = S × S.
Extracting Dynamic Local Relation.We introduce a graph

data mixture filter designed to handle diverse types of graphs, as
follows:

F = 𝛽 ( 1
2
𝐿H)𝑘 𝑓 + (1 − 𝛽) (𝐼 − 1

2
𝐿S)𝑘 𝑓 . (8)

where 𝐿S and 𝐿H are the normalized Laplacian matrices of recon-
structed homophilic and heterophilic graphs, and 𝑓 is the feature
matrix. Then, we apply a dynamic graph convolution G as the ag-
gregation operation upon the final representation F to align the
dimensions of the F𝑇 and F𝑠 .

Local Relation Distillation Loss. With the reweighting strat-
egy, the local relation distillation can be formulated as:

L𝑙𝑜𝑐𝑎𝑙 =
1
𝑛

𝑛∑︁
𝑖=1

𝜙𝑖 · ∥G𝑇
𝑖 (F𝑡 ) − G𝑆

𝑖 (F𝑠 )∥. (9)

where 𝜙𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐼 ). 𝐼 represents the importance score acquired
during the sampling of the N feature samples, as outlined in [32].
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Table 1: Comparison between our method and previous knowledge distillation methods on the KITTI dataset with PointPillars.
The teacher and the student have 4.8M and 1.3M parameters, respectively. mAP indicates the mean average precision of
moderate difficulty. The best and the sub-optimal results are marked in bold and blue, respectively.

Task Method Car Pedestrians Cyclists mAPEasy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BEV

Teacher w/o KD 94.3 88.1 83.6 57.9 51.8 47.6 86.5 65.0 61.1 68.3
Student w/o KD 92.4 88.2 83.6 53.0 47.9 44.1 81.8 63.1 59.0 66.4
𝐶𝑅𝐷[22] 92.7 87.8 83.2 56.6 50.4 46.8 80.3 61.9 57.9 66.7
𝑆𝐸-𝑆𝑆𝐷[36] 92.7 87.9 83.2 57.7 51.0 46.8 78.1 61.8 57.9 66.9
𝐹𝑖𝑡𝑛𝑒𝑡𝑠 [19] 91.5 85.6 83.1 57.5 51.0 46.3 82.8 65.1 61.1 67.2
𝐹𝐵𝐾𝐷[34] 92.3 85.7 83.0 59.7 52.0 47.6 71.0 64.3 60.5 67.5
𝑃𝐴𝑇𝐴 [31] 92.7 88.0 83.6 56.7 50.9 47.3 81.4 64.4 60.5 67.7
𝑅𝐷𝐷[13] 92.4 88.0 83.5 57.9 51.6 47.6 82.3 64.6 60.8 68.2
𝑃𝑜𝑖𝑛𝑡𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑒𝑟 [32] 92.3 88.0 83.6 57.1 50.8 46.1 84.8 66.7 62.4 68.5
+Ours 93.0 88.4 83.8 59.2 53.0 47.8 84.6 67.7 63.4 69.6

3D

Teacher w/o KD 87.3 75.9 71.1 52.0 45.9 41.4 78.6 59.2 55.8 60.3
Student w/o KD 87.4 75.9 71.0 48.2 43.0 38.7 74.1 57.2 53.3 58.7
𝐶𝑅𝐷[22] 85.6 74.2 71.0 49.5 43.5 39.0 76.4 58.4 54.7 58.7
𝑆𝐸-𝑆𝑆𝐷[36] 87.3 75.5 71.5 52.6 45.6 40.8 74.9 58.6 54.9 59.9
𝐹𝑖𝑡𝑛𝑒𝑡𝑠 [19] 84.9 73.4 70.6 50.9 44.2 39.3 75.9 58.5 54.6 58.7
𝐹𝐵𝐾𝐷[34] 87.5 75.8 71.6 53.4 45.8 40.9 76.1 59.0 55.2 60.2
𝑃𝐴𝑇𝐴 [31] 87.6 75.7 71.4 51.0 44.8 40.7 74.4 57.8 54.2 59.5
𝑅𝐷𝐷[13] 87.5 76.0 71.4 50.7 44.0 40.0 80.0 60.1 56.2 60.9
𝑃𝑜𝑖𝑛𝑡𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑒𝑟 [32] 87.6 76.5 73.5 52.7 45.7 40.6 79.4 61.6 57.5 61.2
+Ours 87.9 76.8 73.9 53.5 46.6 43.3 82.3 62.6 59.2 62.2

3.4 Loss Function
As shown in Figure 3, our model is optimized by task loss and KD
loss. The overall objective function is calculated as follows:

L = L𝐷 + L𝐴 + L𝑙𝑜𝑐𝑎𝑙 + L𝑡𝑎𝑠𝑘 . (10)

The task loss will be different for different models. For voxels-
based and point-based methods, task loss refers to [12, 30] and [21],
respectively.

4 EXPERIMENTS
4.1 Dataset and metrics
Our experiments are conducted both on KITTI [8] and unScenes
[2], which consist of samples that have both lidar point clouds and
images. Our models are trained with only the lidar point clouds.
The KITTI dataset consists of 7481 training samples and 7518 test-
ing samples, with annotated objects in the car, pedestrians, and
cyclists categories. The training samples were divided into 3712
training samples and 3769 testing samples. For KITTI, we report
the average precision calculated by 40 sampling recall positions
for BEV (Bird’s Eye View) object detection and 3D object detec-
tion on the validation split. Following the typical protocol, the IoU
threshold is set as 0.7 for class Car and 0.5 for class Pedestrians
and Cyclists. Besides, the nuScenes dataset is another large-scale
dataset used for autonomous driving, containing 1,000 driving se-
quences, where 700, 150, and 150 sequences are used for training,

validation, and testing, respectively. Each sequence is captured in
approximately 20 seconds with 20 FPS using the 32-lane lidar. Its
evaluation metrics are the average precision (mAP) and nuScenes
detection score (NDS). NDS is a weighted average of mAP and true
positive metrics which measures the quality of the detections in
terms of box location, size, orientation, attributes, and velocity.

4.2 Implementation Details
Wehave evaluated ourmethod in both voxels-based object detectors
PointPillars [12] and CenterPoint [30], and the raw points-based
object detector PointRCNN [21]. Following the PointPillars as the
teacher network on KITTI, we use an AdamW optimizer [14] with
a weight decay of 0.01 and a cyclic momentum update strategy to
adjust the learning rate. We set 0.0001 for the initial learning rate, 1
for cyclic update time, and 0.90 for momentum. Following the Point-
Pillars as the teacher network on unScenes, we use a step strategy
to adjust the learning rate. The networks have been trained on RTX
3090 GPUs. All the experiments are conducted with mmdetection3d
[5] and PyTorch[16]. We keep the evaluation settings in mmdetec-
tion3d as default. The teacher model is the origin model before
compression. The student model shares the same architecture and
depth as its teacher but with fewer channels. We have mainly com-
pared our methods with previous knowledge distillation methods,
including methods proposed by Fitnets[19], PATA[31], CRD[22],
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Table 2: Experimental results of our method for BEV (Bird-Eye-View) and 3D object detection on KITTI dataset, respectively. F
indicates the number of float operations(/G) . P indicates the parameters (/M) of the detector. KD indicates whether our method
is utilized. mAP indicates the mean average precision of moderate difficulty. The reported result in the first line of each detector
is the performance of the teacher detector

Task Model F(/G) P(/M) KD Car Pedestrians Cyclists mAP
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

BEV

PointPillars

31.5 4.8 × 94.3 88.1 83.6 57.9 51.8 47.6 86.5 65.0 61.1 68.3

8.4 1.3 × 92.4 88.2 83.6 53.0 47.9 44.1 81.8 63.1 59.0 66.4
✓ 93.0 88.4 83.8 59.2 53.0 47.8 84.6 67.7 63.4 69.6+3.2

2.3 0.3 × 91.3 84.8 82.2 50.1 44.4 41.6 74.2 56.1 52.5 61.8
✓ 92.3 85.6 83.0 49.8 44.5 40.8 77.1 60.0 56.0 63.7+1.9

PointRCNN

103.6 4.1 × 95.0 86.7 84.3 69.8 64.5 58.1 92.8 74.6 70.4 75.3

13.1 0.5 × 93.5 85.9 83.5 71.6 65.4 59.1 91.1 71.0 67.2 74.1
✓ 94.3 86.7 84.1 75.2 68.2 62.3 93.9 71.8 68.1 75.8+1.7

6.8 0.3 × 95.8 85.4 81.7 72.9 65.5 58.6 91.8 69.3 65.9 73.4
✓ 95.6 86.9 82.8 74.2 66.2 59.7 93.3 70.0 66.5 74.6+1.2

3D

PointPillars

31.5 4.8 × 87.3 75.9 71.1 52.0 45.9 41.4 78.6 59.2 55.8 60.3

8.4 1.3 × 87.4 75.9 71.0 48.2 43.0 38.7 74.1 57.2 53.3 58.7
✓ 87.9 76.8 73.9 53.5 46.6 43.3 82.3 62.6 59.2 62.2+3.5

2.3 0.3 × 83.1 69.8 65.4 44.0 38.7 35.3 70.9 52.1 48.7 53.5
✓ 84.2 70.8 67.8 44.2 39.0 35.0 71.4 54.1 50.6 55.1+1.6

PointRCNN

103.6 4.1 × 92.1 80.1 77.4 66.8 60.3 54.3 92.1 72.3 67.8 70.9

13.1 0.5 × 89.8 76.8 72.7 67.9 60.9 54.0 88.1 68.0 64.4 68.6
✓ 91.5 77.2 73.2 70.0 63.1 57.1 91.0 67.6 62.8 69.3+0.7

6.8 0.3 × 89.8 75.3 70.7 68.7 60.7 53.4 91.1 67.2 63.9 67.7
✓ 90.0 75.6 71.2 70.0 62.5 54.8 91.2 69.0 65.3 68.9+0.6

Table 3: Ablation study on n KITTI dataset with 4× compressed PointPillars students. L𝑔𝑙𝑜𝑏𝑎𝑙 and L𝑙𝑜𝑐𝑎𝑙 indicate global
distillation loss, including Distance-wise RKD loss and Angle-wise RKD loss, and local RKD loss, respectively.L𝑘𝑛𝑛indicates we
reproduced the loss of the method in the [32]. mAP indicates the mean average precision of moderate difficulty.

Model Task L𝑔𝑙𝑜𝑏𝑎𝑙 L𝑙𝑜𝑐𝑎𝑙 L𝑘𝑛𝑛
Car Pedestrians Cyclists mAP

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointPillars

BEV

× × × 92.4 88.2 83.6 53.0 47.9 44.1 81.8 63.1 59.0 66.4
× × ✓ 91.9 87.3 83.2 57.9 50.9 46.8 82.4 65.3 61.5 67.8+1.4
× ✓ × 92.4 88.0 83.5 57.9 51.6 47.6 82.3 64.6 60.8 68.2+1.8
✓ × × 92.3 88.0 83.6 57.1 50.8 46.1 84.8 66.7 62.4 68.7+2.3
✓ ✓ × 93.0 88.4 83.8 59.2 53.0 47.8 84.6 67.7 63.4 69.6+3.2

3D

× × × 87.4 75.9 71.0 48.2 43.0 38.7 74.1 57.2 53.3 58.7
× × ✓ 85.2 73.9 70.7 52.6 45.5 40.8 76.4 57.4 53.9 59.7+1.0
× ✓ × 85.2 75.2 68.7 53.7 47.0 42.4 75.3 60.8 56.9 61.0+2.3
✓ × × 84.9 75.9 68.9 51.4 45.4 41.4 78.5 61.3 57.8 60.9+2.2
✓ ✓ × 87.9 76.8 73.9 53.5 46.6 43.3 82.3 62.6 59.2 62.2+3.5

SE-SSD[36], FBKD[34], RDD[13], PointDistiller[32] on KITTI, and
CRD[22], OFD[9], MTS[26], PointDistiller[32] on nuSecens.

4.3 Comparison with State-of-the-arts
Results on KITTI. Experiments of 4× compressed PointPillars
on KITTI. Table 1 shows the performance between our method
and previous knowledge distillation method for BEV detection and

3D detection, respectively. Our proposed H2RKD method shows
good performance, outperforming most existing methods. It is ob-
served that on BEV and 3D detection, our method outperforms
the second-best knowledge distillation method by 1.1% and 1.0%
moderate mAP, respectively. Furthermore, our method empowers
the student detector to surpass the teacher detector, resulting in per-
formance improvements of 1.3% and 1.9% in BEV and 3D detection,
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Figure 4: Qualitative comparison between the detection results of students trained with and without knowledge distillation.

Figure 5: On the BEV detection, the left side shows the ground truth and the original image, while the right side displays the
detection results.

respectively. Besides, our method attains the highest performance
across all difficulty levels for car categories. It is worth mentioning
that we performed optimally in each category on 3D detection. The
above results validate the efficacy of our method in 3D Lidar-based
object detection.

Resluts on nuScenes. Experiments of around 2× and 4× com-
pressed PointPillars and CenterPoint on nuScenes are shown in
Table 4. It is observed that our method leads to 0.5% and 0.6 %
improvements on mAP and NDS on average, respectively for the
compressed PointPillars model. Besides, the compressed Center-
Point also shows 0.6 % improvements on NDS. These observations
indicate that our method is also effective on the large-scale dataset.

In summary, the effectiveness of ourmethod can be demonstrated
on both two datasets.

4.4 Ablation Study
Effects on different Detectors. Table 2 shows the performance of
the voxel-based and point-based detectors trained with and with-
out our method for BEV detection and 3D detection, respectively.
On average, 2.6% and 1.5% moderate mAP improvements can be

observed for the voxel and raw points-based detectors for BEV de-
tection, respectively. Additionally, the voxel and raw points-based
detectors exhibit moderate mAP improvements for 3D detection,
averaging 2.6% and 0.7%, respectively. It demonstrates the advance-
ments achieved by our approach in the voxel-based detector.

Specifically, in BEV detection, ourmethod demonstrated superior
performance with the 4× compressed and accelerated PointPillars
detector student surpassing its teacher by 1.3% mAP. Additionally,
the 8× compressed and accelerated PointRCNN detector student,
trained with our method, outperformed its teacher by 0.5% mAP.
Similarly, for the 3D detection of PointPillars detectors, the 4× com-
pressed and accelerated student, trained with our method, achieved
a notable improvement of 1.9% mAP compared to its teacher. Fur-
thermore, the compressed and accelerated PointRCNN detector
student, trained with our method, exhibited enhancements of 0.7%
and 0.6% in mAP on 3D detection, respectively.

Consistent average precision boosts can be observed in the de-
tection results of all categories. For instance, on BEV detection
of 4× compressed PointPillars students, 0.3%, 4.4% and 3.7% mAP
improvements can be observed for cars, pedestrians, and cyclists,
respectively. Additionally, Consistent average precision boosts can
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Table 4: Experimental results on nuScenes dataset with Point-
Pillars andCenterPoint. mAP indicates themean average pre-
cision of moderate difficulty. NDS indicates nuScenes detec-
tion score. The best and the sub-optimal results are marked
in bold and blue, respectively.

Model F(/G) P(/M) Method mAP(↑) NDS(↑)

PointPillars

31.5 4.8 Teacher w/o KD 39.3 53.2

16.8 2.4(2x)

Student w/o KD 36.0 50.5
CRD[22] 35.7 50.4
OFD[9] 36.2 50.6
MTS[26] 36.2 50.7
𝑃𝑜𝑖𝑛𝑡𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑒𝑟 [32] 36.5 51.0
Ours 37.2 51.6

8.4 1.3(4x)

Student w/o KD 32.3 47.3
CRD[22] 32.3 47.2
OFD[9] 32.4 47.6
MTS[26] 32.5 47.8
𝑃𝑜𝑖𝑛𝑡𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑒𝑟 [32] 32.5 48.0
Ours 32.7 48.6

CenterPoint

110.2 9.2 Teacher w/o KD 57.3 65.6

45.8 4.6(2x)

Student w/o KD 55.2 64.0
CRD[22] 55.6 64.4
OFD[9] 55.7 64.4
MTS[26] 55.8 64.6
𝑃𝑜𝑖𝑛𝑡𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑒𝑟 [32] 56.2 65.1
Ours 56.3 65.7

be observed in the detection results of all difficulties. For instance,
on 3D detection of 16× compressed PointRCNN students, 0.5%, 1.3%,
and 1.1% mAP improvements can be observed for easy, moderate,
and hard difficulties, respectively.

In summary, these observations demonstrate that our method
can successfully transfer teacher knowledge to the voxel-based and
point-based student detectors. Furthermore, it also validates that
our method is capable of learning an effective and lightweight 3D
detector.

Effects of CGD and SLD Modules. Our H2RKD is mainly com-
posed of two components, including collaborative global distillation
(CGD) and separate local distillation (SLD). Ablation studies with
4× compressed PointPillars students on KITTI are shown in Table
3. We also compare with the local distillation in [12].

It is observed that on BEV detection and 3D detection, 2.3%
and 2.2% mAP improvements can be obtained by only using CGD
to distill the global relation within the point cloud, respectively.
Moreover, the category of cyclists on easy demonstrates its optimal
performance solely with the application of the CGD module.

Additionally, 2.2% and 2.3% mAP boosts can be gained by using
SLD on BEV detection and 3D detection, respectively. Moreover, the
pedestrian category on easy and moderate demonstrate the optimal
performance solely using the SLD module, respectively. Further-
more, Compared to the approach of solely constructing the KNN
graph, the SLD module enhances its performance by 0.4% and 1.3%
in BEV and 3D detection, respectively. From the aforementioned

analysis, we observe that the SLD module plays a more significant
role in 3D detection, indicating the importance of local structural
relationships among point clouds.

In summary, these observations indicate that each module in
H2RKD has its individual effectiveness and their merits are orthog-
onal. Besides, the CGD module proves to be more effective in BEV
detection, whereas the SLD module demonstrates greater efficacy
in 3D detection.

4.5 Visualization Analysis
In this subsection, we have visualized the detection results of the
student model trained with and without our method, as shown
in Figure 4. Furthermore, we visualized the detection results and
conducted a comparison with the ground truth, as shown in Figure
5. Note that both student models are 4× compressed PointPillars
trained on KITTI. The green boxes indicate the boxes of the model
prediction. The visualization clearly demonstrates the strengths of
our approach. Specifically, as shown in Figure 4, a model with our
H2RKD exhibits the capability to detect object in distant regions
thanks to our global relation distillation. when compared with the
ground truth shown in Figure 5, our method proficiently identified
the majority of objects and gained substantial local knowledge, as
indicated by the red points.

5 CONCLUSION
In this paper, we aim to simultaneously transfer both homophily and
heterophily relational knowledge of point clouds, enhancing intra-
object similarity and inter-object discrimination. To this end, we pro-
pose a novel joint homophily and heterophily relational knowledge
distillationmethod(H2RKD), which distills the relational knowledge
by collaborative global distillation (CGD) and separate local distil-
lation (SLD). Specifically, CGD transfers both distance-wise and
angle-wise global relations, implicitly collaborating homophily and
heterophily. To further transfer subtle correlations and differences,
SLD explicitly distills local homophily and heterophily by recon-
structed graphs, separately. Extensive experiments on KITTI and
unScenes datasets demonstrate the effectiveness of the proposed
H2RKD.
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