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Abstract
Deep learning-based structure-based drug design
aims to generate ligand molecules with desirable
properties for protein targets. While existing mod-
els have demonstrated competitive performance in
generating ligand molecules, they primarily focus
on learning the chemical distribution of training
datasets, often lacking effective steerability to en-
sure the desired chemical quality of generated
molecules. To address this issue, we propose a
multi-reward optimization framework that fine-
tunes generative models for attributes, such as
binding affinity, validity, and drug-likeness, to-
gether. Specifically, we derive direct preference
optimization for a Bayesian flow network, used as
a backbone for molecule generation, and integrate
a reward normalization scheme to adopt multi-
ple objectives. Experimental results show that
our method generates more realistic ligands than
baseline models while achieving higher binding
affinity, expanding the Pareto front empirically
observed in previous studies.

1. Introduction
Designing ligand molecules that simultaneously optimize
multiple objectives – such as binding affinity, synthetic ac-
cessibility, and strain energy – is a central challenge in
structure-based drug design (SBDD). Conventional deep-
learning approaches typically address only one or two ob-
jectives at a time, most commonly focusing on high binding
affinity and basic chemical feasibility, e.g., through simple
validity checks via the valency rule. While these methods
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Figure 1. Comparison of the median Vina docking score (lower is
better) against Synthetic accessibility (SA, higher is better) and
Strain Energy (SE, lower is better). The dashed blue line represents
a Pareto front obtained from previous works.

have advanced the generative capabilities of molecular mod-
els (Huang et al., 2024; Qu et al., 2024; Guan et al., 2023),
they often neglect other crucial factors like ease of conforma-
tion stability such as strain energy or synthesis. In practice,
drug discovery demands a careful balance of many proper-
ties, making single-objective or narrowly focused solutions
insufficient.

In current deep generative modeling for SBDD, standard
strategies generally concentrate on minimizing the discrep-
ancy between a generated ligand and a training set of protein-
ligand complexes. Although this can lead to strong bind-
ing affinities, improving multiple objectives beyond bind-
ing, e.g., synthetic accessibility, usually requires careful
tuning of loss terms or elaborate constraints. As a result,
purely likelihood-based approaches can struggle to expand
the Pareto front, which captures trade-offs among distinct
objectives.

Figure 1 illustrates the trade-offs among Vina docking score
measuring binding affinity to target protein, synthetic acces-
sibility (SA), and strain energy (SE) using results from nine
different generative models, along with a reference dataset
included in the test set. Although recently proposed meth-
ods such as MolCRAFT (Qu et al., 2024), IPDiff (Huang
et al., 2024), and AliDiff (Gu et al., 2024), outperform the
reference data in terms of Vina docking score, they under-
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perform on SA and SE. Ideally, a design process would push
the Pareto frontier toward both lower docking scores and
higher SA (or lower SE). In contrast, these findings show
that existing models remain overly focused on improving
affinity, thus calling into question the practical utility of
their generated molecules.

Our Approach Building on recent developments in
preference-based reinforcement learning, we introduce a
multi-reward Direct Preference Optimization (DPO) frame-
work adapted for Bayesian Flow Networks (BFNs), which
recently show promising performance on ligand genera-
tion tasks (Qu et al., 2024). DPO refines a pretrained gen-
erative model using feedback from external software or
metrics, enabling fine-grained control over multiple proper-
ties (Rafailov et al., 2024; Kim et al., 2024). In our setting,
we treat each property, such as binding affinity, synthetic
accessibility, and strain energy, as a separate reward. We
then apply softmax-based normalization to ensure commen-
surability of metrics with different ranges and adopt an
uncertainty-regularized ensemble strategy to penalize high
variance in multi-reward predictions. This multi-reward
scheme expands the trade-off frontier between objectives,
thereby improving molecular candidates across multiple
dimensions.

2. Related Work
Preference Alignment and Direct Preference Optimiza-
tion (DPO) Preference alignment has emerged as a power-
ful paradigm for adjusting pretrained models to better reflect
desired behaviors. Originally adopted in large language
models (LLMs) to align with human feedback (Ouyang
et al., 2022), DPO (Rafailov et al., 2024) provides a more
direct means of incorporating user or expert preferences
compared to traditional reinforcement learning. Subse-
quently, DPO-based methods have been extended to text-
to-image generative models (Wallace et al., 2023), show-
ing that preference alignment is not limited to language
domains. In multi-objective settings, Kim et al. (2024) pro-
pose a confidence-based or variance-penalized approach to
combine heterogeneous reward signals, further enhancing
stability and interpretability.

Structure-Based Drug Design Structure-based drug de-
sign (SBDD) focuses on generating or modifying small-
molecule ligands to exhibit strong binding affinity for a
target protein while maintaining favorable pharmacological
properties. Classical computational approaches rely on de
novo design or docking-based virtual screening (Schneider
& Fechner, 2005) to identify candidate molecules, followed
by iterative refinement and validation through experimental
assays.

Recent deep learning methods cast SBDD as a conditional
generative modeling task, leveraging protein-ligand com-
plex data to learn a distribution over valid 3D conforma-
tions. Autoregressive approaches place atoms or fragments
within protein pockets in a sequential manner (Luo et al.,
2021; Peng et al., 2022), while diffusion models gener-
ate candidate molecules by denoising from random noise,
learning continuous atom positions and discrete atom types
jointly (Guan et al., 2023; Huang et al., 2024; Guan et al.,
2024; Zhou et al., 2024). Most recently, Qu et al. (2024)
introduced MolCRAFT, which uses Bayesian Flow Net-
works (BFNs) (Graves et al., 2023) to sample in parameter
space rather than directly in data space, leading to improved
binding affinity and more stable 3D molecular structures.
To further improve the quality of binding affinity, Gu et al.
(2024) introduced AliDiff, which fine-tunes a diffusion-
based generative model via DPO.

On the other hand, Harris et al. (2023) raises questions about
the evaluation practices with the deep generative models for
SBDD. They find that many generated molecules from re-
cent generative models violate physical constraints and call
for an expanded evaluation of SBDD. A similar observation
is made for deep learning based binding affinity prediction
in Buttenschoen et al. (2024). Our approach builds upon
this foundation by adopting a multi-reward perspective that
jointly optimizes for binding affinity and other molecu-
lar properties (e.g., synthetic accessibility, strain energy),
thereby expanding the Pareto frontier in multi-objective
SBDD.

3. Preliminaries
We first introduce the problem formulation of structure-
based drug design with notations used throughout this
manuscript. We then provide an overview of Bayesian Flow
Networks (BFNs)(Graves et al., 2023) and MolCRAFT(Qu
et al., 2024), where the latter leverages BFNs to generate
target molecules.

3.1. Problem Formulation

In structure-based drug design (SBDD), the goal is to gen-
erate ligand molecules conditioned on a given protein tar-
get. We denote a protein target by P = {(x(i)

P ,v
(i)
P )}NP

i=1,

where x
(i)
P ∈ R3 is the three-dimensional coordinate of

the i-th atom, and v
(i)
P ∈ RDP is a one-hot vector en-

coding the atom type. A molecule is analogously repre-
sented as M = {(x(i)

M,v
(i)
M)}NM

i=1 , where x
(i)
M ∈ R3 and

v
(i)
M ∈ RDM denote the three-dimensional coordinate and

the atom-type vector, respectively. For convenience, we
denote each molecule by m = [x,v] where [·, ·] is the con-
catenation of x ∈ RNM×3 and v ∈ RNM×DM given target
protein as p.
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SBDD aims to discover a molecule m given protein and its
binding site p. During training, a set of protein–reference
molecule pairs is provided. As a primary performance met-
ric, external software such as AutoDock Vina (Eberhardt
et al., 2021) is employed to estimate the binding affinity
between the protein and generated molecules. Along with
affinity scores, additional molecular properties (e.g., valid-
ity, synthesizability, and drug-likeness) can be evaluated to
assess the quality of the generated compounds further.

3.2. Bayesian Flow Networks

Bayesian flow network (BFN) (Graves et al., 2023) is a class
of generative models that integrate core ideas from both
diffusion models (Ho et al., 2020) and Bayesian inference.
Unlike traditional diffusion models that operate directly in
the data space, BFNs perform their forward and reverse
“diffusion” in the parameter space of the data distribution.
This process ensures the generative process is continuous
and differentiable regardless of whether data is discrete or
continuous, making BFNs particularly suitable for molecule
generation, where atom coordinates are continuous, and
atom types are discrete. MolCRAFT (Qu et al., 2024) adopts
the BFN as a backbone for conditional molecule generative
model given proteins. Below, we outline the details of BFNs
in the context of MolCRAFT.

At a high level, BFNs can be conceptualized as an iterative
message exchange between two components: a sender and a
receiver. In each round, the sender transmits a noisy sample
to the receiver, akin to the forward diffusion process in a
standard diffusion model. The receiver then attempts to
infer the sender’s parameters from the noisy input, effec-
tively performing a reverse “denoising” step analogous to
the reverse diffusion phase. This iterative cycle continues
until reaching the final estimate of the data distribution in
parameter space.

Sender distribution Formally, given a molecule m =
[x,v], the sender injects continuous noise for both coordi-
nates and types independently according to a predefined
noise schedule. We denote the resulting noise-injected
molecule by m̃ = [x̃, ṽ]. The sender distribution is then
factorized as:

pS(m̃|m, t) =

NM∏
i

p(x̃(i)|x(i), αx
t )

NM∏
i

p(ṽ(i)|v(i), αv
t ),

(1)

where αt is an accuracy parameter such that the sender
samples are entirely uninformative about x when α = 0
and become more informative as α increases. One can use
different schedules for the coordinate αx

t and atom type αv
t .

Receiver distribution At time t, the receiver uses pa-
rameters θt−1 from the previous step and the noisy sam-
ple m̃ from the sender to reconstruct a denoised m. Let
Φ
(
θt−1,p, t

)
be an SE(3)-equivariant neural network that

outputs m̂ from parameters θt−1, the protein pocket p, and
time t. Given that the distribution and noise schedule of
the sender distribution is known, the receiver distribution is
defined as

pR
(
m̃ | θt−1,p, t

)
= pS

(
m̃ | Φ

(
θt−1,p, t

)
, αt

)
. (2)

Hence the receiver distribution becomes close to the
sender distribution as Φ accurately reconstructs the orig-
inal molecule m.

Bayesian update To ensure that distribution parameters
θt can be updated in a tractable way, BFNs employ Bayesian
inference. Given the previous parameter θt−1 and the noisy
sample m̃t, the updated parameter θt can be obtained via
a Bayesian update function h(θt−1, m̃t, αt) = θt. The
update function infers the posterior after observing noisy
sample m̃t from the sender distribution pS(m̃t|m, αt) and
an input distribution pI(m|θt−1), often selected as a conju-
gate prior of the sender distribution.

This induces the Bayesian update distribution pU , which
is a push-forward distribution of pS under transformation
h, i.e., pU (θ′) := pS({m̃ | h(m̃) = θ′}), where we omit
the conditions for brevity. By marginalizing out θ1:t−1, one
obtains the Bayesian flow distribution:

pF
(
θt | m,p, t

)
= pU

(
θt | θ0,m,p, α0:t

)
, (3)

where θ0 is the initial parameter used to define a simple
distribution such as the standard normal for continuous or
uniform for discrete. A key advantage of BFNs is that, with
suitable noise injections and the input distribution, θt can
be calculated recursively without explicit simulation.

Training objective Training proceeds by minimizing the
Kullback–Leibler divergence between the sender distribu-
tion pS and the receiver distribution pR:

L(m,p) = Et∼U(1,T ), m̃t∼pS , θt−1∼pF

[
DKL

(
pS ∥ pR

)]
.

(4)

For the continuous-time extension of BFNs and additional
technical details, we refer readers to Graves et al. (2023).

3.3. Direct Preference Optimization

Reinforcement learning with human feedback (RLHF)
has been proposed to align the large language models
with human preference (Ouyang et al., 2022). Let D =
{(c,xw,xl)} be a preference dataset, where xw and xl are
winning and losing responses given prompt c. In standard
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RLHF pipelines, one first trains a reward model to capture
these preferences and then uses policy optimization meth-
ods (e.g., PPO) to fine-tune the model such that it produces
higher-scoring outputs.

Direct Preference Optimization (DPO) offers an alternative
that bypasses the need for an explicit reward-model approx-
imation in the training loop (Rafailov et al., 2024). Let
pθ(x) be a model to be fine-tuned. Given a reference model
pref, DPO is derived from the optimal solution to the RLHF
objective and can be expressed as

LDPO(θ) =

− Ec,xw,xl

[
log σ

(
β log

pθ (x
w)

pref (xw)
− β log

pθ
(
xl
)

pref (xl)

)]
,

(5)

where we omit the condition c for brevity. Minimizing this
loss encourages the fine-tuned model pθ to assign higher
relative likelihood to the winning samples than to the losing
samples, while remaining close to pref. Recently, Diffusion-
DPO extends DPO to diffusion-based generative models
by expanding the reward model over the entire diffusion
trajectory, enabling preference-driven fine-tuning in multi-
step generative processes (Wallace et al., 2023).

4. Multi-Reward Optimization for BFNs
In this section, we present our Direct Preference Optimiza-
tion for Bayesian Flow Networks (BFN-DPO), an end-to-
end framework for controllable molecule generation. Our
method draws on recent advances in DPO and adapts these
ideas to BFNs. We then extend DPO-BFN to handle multiple
reward signals via a softmax-based normalization strategy
and an uncertainty-regularized ensemble, allowing fair com-
parisons among rewards with different numerical scales.

4.1. Direct Preference Optimization on BFNs

We consider a preference dataset D = {(p,mw,ml)},
where each triplet consists of a protein target p, a “winning”
molecule mw, and a “losing” molecule ml. These prefer-
ences are determined by pre-computed reward values (e.g.,
binding affinity). We denote by pref(·) and pϕ(·) the
reference and fine-tuned BFN models, respectively. Draw-
ing on Diffusion-DPO (Wallace et al., 2023), we define the
BFN-DPO objective for a single preference pair (mw,ml)
as

LBFN-DPO(ϕ) = −E
[
log σ

(
β log

pϕ
(
m̂w

1:T | θw
0:T−1

)
pref
(
m̂w

1:T | θw
0:T−1

)
−β log

pϕ
(
m̂l

1:T | θl
0:T−1

)
pref
(
m̂l

1:T | θl
0:T−1

))],
(6)

where m̂t is a noisy sample drawn at time step t (the “re-
ceiver” output), governed by the BFN’s sender/receiver dis-
tributions, and θt are parameters sampled from the Bayesian
flow distribution pF , which performs Bayesian updates in
parameter space.

Unlike Diffusion-DPO, the reconstruction at time t depends
on the parameter θt−1. Expanding the ratio into a sum over
time steps with Jensen’s inequality, one obtains an upper
bound involving differences of KL terms at each time step.
By approximating the receiver distribution in expectation
with the sender distribution, we can obtain the following
loss:

LBFN-DPO(ϕ) = − E
[
Lx
t + Lv

t

]
, (7)

which is separated into two parts: atom loss Lx
t and type

loss Lv
t . A complete derivation is provided in Appendix A.

Let xw and xl be the clean coordinates for the winning and
losing molecules at time t = 0. Then the atom loss has the
form of

Lx
t = −E

[
log σ

(
−β T

αx
t

2

[
∆w

ϕ −∆l
ϕ

])]
, (8)

with

∆w
ϕ =

∥∥xw − Φx
ϕ(θ

x,w
t−1)

∥∥2 −
∥∥xw − Φx

ref(θ
x,w
t−1)

∥∥2,
and analogously for ∆l

ϕ. Here, Φx
ϕ(·) and Φx

ref(·) generate
coordinate predictions under the fine-tuned and reference
BFNs, and αx

t is a concentration parameter for the coordi-
nates at step t.

For the discrete atom types, we have a similar construction
based on KL divergences. Each “winning” and “losing”
noisy type v̂w

t and v̂l
t is compared to the true one-hot type

vector vw or vl. The derivation yields:

Lv
t = − E

[
log σ

(
−β T

[(
∆w

ϕ

)
v

−
(
∆l

ϕ

)
v

])]
, (9)

where

(∆w
ϕ )v =

ln pS(v̂
w
t |vw, αv

t )− ln pR(v̂
w
t |Φv

ϕ(θ
v,w
t−1), α

v
t )

− [ln pS(v̂
w
t |vw, αv

t )− ln pR(v̂
w
t |Φv

ref(θ
v,w
t−1), α

v
t )],

and similarly for (∆l
ϕ)v. In practice, these log-likelihood

terms could be implemented as cross-entropy or KL diver-
gences for categorical predictions.

By minimizing LBFN-DPO(ϕ), the model pϕ is driven to gen-
erate noisy samples m̂w

t that better align with automated
preferences than m̂l

t, all while remaining close to pref .
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4.2. Multi-Reward Normalization

While one can fine-tune a Bayesian Flow Network (BFN)
solely using a single reward signal (e.g., validity), doing so
may degrade other desirable properties like binding affin-
ity. To address this limitation, we adopt a multi-reward
BFN-DPO scheme inspired by Kim et al. (2024), where
multiple reward signals (e.g., binding affinity, validity) are
simultaneously optimized.

Suppose we have K reward functions that evaluate a
molecule–protein pair (p,m). Since these rewards may
have different numerical ranges and may be preferred in dif-
ferent directions (e.g., negative for binding affinity, positive
for strain energy), direct averaging can be misleading. To
handle scale discrepancies, we normalize each reward via a
softmax over a mini-batch of size B:

r̂
(j)
i =

exp
(
fj(r

(j)
i )
)∑B

b=1 exp
(
fj(r

(j)
b )
) , (10)

where r
(j)
i is the j-th reward for the i-th molecule, and

fj(·) is a simple transformation based on the j-th reward,
so that higher values consistently indicate better rewards
across different metrics. This maps each reward to the
(0, 1) interval, ensuring that distinct reward signals become
comparable despite inherently different numerical ranges.

After normalization, one still must combine the m rewards
into a single score. Following Kim et al. (2024), we reduce
the influence of high-variance reward profiles by subtracting
a variance-based penalty. Specifically, let µr̂i be the mean
of the normalized rewards for molecule i. The final multi-
reward score for that molecule is

r̄i = µr̂i − γ
1

K

K∑
j=1

(r̂
(j)
i − µr̂i)

2 (11)

where γ is a hyperparameter controlling how strongly to
penalize high reward variance. This strategy promotes
molecules that achieve balanced performance across all re-
ward dimensions, rather than excelling at some while failing
at others. More details on the hyperparameters can be found
in Appendix B.

We further stabilize training by adopting the E2PO, a vari-
ant of DPO (Gu et al., 2024), to avoid excessive focus on
winning samples when their advantage is already large. Con-
cretely, we replace the standard BFN-DPO loss LBFN-DPO
with

LBFN-E2PO = − E
[
σ
(
r̄w − r̄l

)
LBFN-DPO

+
(
1− σ(r̄w − r̄l)

)
(2− LBFN-DPO)

]
,

(12)

where r̄w and r̄l denote the final multi-reward scores for the
winning and losing molecules, respectively. If the difference

r̄w − r̄l becomes too large (close to 1), the second term is
nullified; thus, over-optimizing already “high-scoring” win-
ners is discouraged. In effect, E2PO enables more balanced
training and helps prevent mode collapse onto a narrow set
of winning samples.

5. Experiment
In this section, we provide the result of the multi-object
optimization approach with empirical experiments. Due to
the space limit, missing implementation details are provided
in Appendix B.

5.1. Experimental Setting

Datasets We fine-tune a pretrained model on the Cross-
Docked dataset (Francoeur et al., 2020). The CrossDocked
dataset comprises 100K training pairs and 100 target pro-
teins for testing. For each protein, win-lose pairs are selected
based on multi-reward scores described in Section 4.2 from
molecules generated by the pretrained model. These pairs
serve as input for fine-tuning via our proposed BFN-DPO
procedure. We generate 100 new molecules per target pro-
tein in the test set for evaluation.

Baselines We compare our method to the following base-
lines: AR (Luo et al., 2021) and Poket2Mol (Peng et al.,
2022) generate molecules autoregressive, and FLAG (Zhang
& Liu, 2023) generates at the fragment level. TargetD-
iff (Guan et al., 2023), DecompDiff (Guan et al., 2024), De-
compOpt (Zhou et al., 2024), and IPDiff (Huang et al., 2024)
are diffusion-based generative models. IPDiff incorporates
protein-ligand interactions as a priori in the forward process.
MolCRAFT (Qu et al., 2024) employs BFNs, where noise
and denoise processes are performed in a fully continuous
parameter space. AliDiff (Gu et al., 2024) applies a single
reward optimization to improve the binding affinity based
on IPDiff.

Evaluation metrics We evaluate the generated molecules
from three different perspectives: binding affinity, conforma-
tion validity, and molecular properties. For binding affinity,
we use Vina Score, Vina Min, and Vina Dock measured by
AutoDock Vina (Eberhardt et al., 2021) following the setup
used in Ragoza et al. (2022). The Vina Score measures
the binding affinity of the generated molecule as is. Vina
Min measures the affinity after optimizing the molecular
structure without changing the docking position. Vina Dock
measures the binding affinity after re-docking the molecule;
hence, reconsider the molecule’s position and orientation.
Low scores indicate stronger protein-ligand binding affinity.
We report average and median scores for all Vina metrics.
For conformation validity, we report strain energy (SE) mea-
suring molecule conformation energy and protein-ligand
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Table 1. Performance comparison across different reward methods. We mark the best, and the second-best performances in bold and
underline, respectively. (↓)/(↑) indicate whether a smaller/larger number is better, respectively.

Method

Binding Affinity Conformation Stability Molecular Properties

Vina Score (↓) Vina Min (↓) Vina Dock (↓) SE (↓) Clash (↓) SA (↑) QED (↑) Avg. size

Avg. Med. Avg. Med. Avg. Med. 25% 50% 75% Avg. Avg. Avg.

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 1.98 3.98 6.23 5.51 0.73 0.48 22.8
AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 2.79 7.39 16.34 4.46 0.64 0.51 17.7
Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 0.22 1.50 4.82 6.24 0.74 0.57 17.7
FLAG 16.48 4.53 1.21 -4.04 -5.63 -6.61 1.32 4.96 16.84 40.83 0.70 0.49 21.5
TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 7.48 16.85 33.70 10.84 0.58 0.48 24.2
DecompDiff -5.19 -5.27 -6.03 -6.00 -7.03 -7.16 4.17 10.81 22.77 8.16 0.66 0.51 21.2
DecompOpt -5.67 -6.04 -7.04 -7.09 -8.39 -8.43 12.34 21.37 37.69 14.56 0.61 0.45 29.4
IPDiff -6.70 -7.53 -7.63 -7.71 -8.41 -8.39 10.30 27.05 65.49 8.79 0.61 0.52 24.3
AliDiff -6.97 -7.75 -7.87 -7.94 -8.65 -8.64 10.09 27.60 67.00 8.76 0.56 0.50 24.4
MolCRAFT -6.59 -7.04 -7.27 -7.26 -7.92 -8.01 3.10 7.92 14.87 7.09 0.69 0.50 22.7
Ours -7.18 -7.38 -7.89 -7.77 -8.62 -8.64 2.05 5.56 11.62 6.69 0.74 0.55 22.8

clash measuring the number of potential overlaps between
ligand atoms and protein (Harris et al., 2023). For molecular
properties, we use synthetic accessibility (SA) (Ertl & Schuf-
fenhauer, 2009) and quantitative estimation of drug-likeness
(QED) (Bickerton et al., 2012).

Multi-reward optimization We choose MolCRAFT (Qu
et al., 2024) as a backbone for the multi-reward optimization.
In the following analysis, we report the results of the fine-
tuned model with Vina Score, SE, and QED. Although it is
possible to optimize all seven evaluation metrics together
with BFN-DPO, we find that this generally degrades the
model performance. A more detailed analysis of reward
selection is provided in Section 5.4.

5.2. Results

Table 1 shows the overall performance of ligand molecules
generated by our method and baselines. Our approach
achieves four best and four second-best results in eight
metrics, indicating robust and well-rounded performance in
SBDD. While autoregressive models ensure stable confor-
mations and molecular properties but struggle with binding
affinity, and diffusion-based models achieve high binding
affinity at the cost of conformation stability and synthetic ac-
cessibility, MolCRAFT with BFNs balances both effectively.
Qu et al. (2024) observes that binding affinity scores can be
artificially boosted by generating larger molecules, which
present more surface area for binding. The average size
of our generated molecules remains comparable to those
produced by MolCRAFT, indicating that no affinity hacking
occurs. Note that smaller molecules often excel in SE and
SA, which helps explain why AR and Pocket2Mol, both of
which generate relatively smaller ligands, report particularly
high SE and SA scores.
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Figure 2. Comparison between the median Vina docking score and
QED, and SE and SA.

Figure 1 illustrates how different models balance their aver-
age Vina Dock scores against SA and SE. In both subplots,
previous approaches occupy a curve where improving one
metric typically comes at the expense of the other. In con-
trast, our multi-reward method moves beyond this frontier
by achieving stronger binding affinity while simultaneously
preserving higher SA and lower SE. This outcome high-
lights the effectiveness of our framework in expanding the
Pareto front for multi-objective structure-based drug design.

We further illustrate the comparison between Vina Dock and
QED in Figure 2a and SE and SA in Figure 2b. A similar
trend can be observed from the Vina Dock and QED, but no
clear trade-off between SE and SA is observable. Instead,
we observe a strong correlation between SE and SA.

5.3. Analysis

Validity of generated molecules Although the confor-
mation stability and molecular property metrics show the
validness of generated molecules by our method, we con-
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Figure 3. Validity check of the generated molecules from different models through PoseBuster (Buttenschoen et al., 2024).
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Figure 4. Comparison of strain energy (SE) distributions for
molecules generated by different methods.

duct a more comprehensive validity check through the 20
validity tests proposed by PoseBuster (Buttenschoen et al.,
2024). The test considers both intra-molecular and inter-
molecular validity with the protein. Figure 3a shows the
percentage of molecules that pass all validity tests on the
generated 10K molecules for the test proteins. Our multi-
reward method generates significantly more valid ligands
compared to other generative models. AliDiff, a fine-tuned
IPDiff (Huang et al., 2024) with Vina Dock as a single re-
ward, is known to achieve the best binding performance so
far. However, the model fails to generate valid molecules in
many cases. Figure 3b shows which test each model fails
to satisfy the validity over 20 validity tests. Notably, many
models, including IPDiff and AliDiff, fail to satisfy proper
bond angles between atoms of generated molecules. Some
models fail to keep a proper distance from the protein.

Strain Energy (SE) Recent studies (Buttenschoen et al.,
2024; Harris et al., 2023) caution that deep learning-based
SBDD models may artificially inflate binding scores by
producing ligands with unrealistically high SE. To examine

Table 2. Comparison between different opitmization approaches.
GS is short for gradient surgery. A model fine-tuned with multi-
rewards shows better binding affinity scores than the model with
gradient surgery.

Binding Affinity Conformation Stability Molecular Properties

Vina Score SE Clash SA QED
Med. (↓) Med. (↓) Avg. (↓) Avg. (↑) Avg. (↑)

Reference -7.46 3.96 5.51 0.73 0.48
Pretrained -7.04 7.62 7.09 0.69 0.50

3 GS -6.80 9.69 7.18 0.66 0.50
6 GS -6.87 8.62 7.11 0.69 0.52
Multi-Stage -7.16 5.15 7.54 0.74 0.54
Ours -7.38 5.56 6.69 0.74 0.55

this issue, Figure 4 presents the SE distributions for different
methods. Lower SE values correspond to more physically
plausible, stable 3D conformations. Our method clearly
generates molecules with lower SE distributions, indicating
structurally sound ligands. These improvements do not
come at the expense of binding affinity.

Synthetic Accessibility (SA) Figure 5 presents the me-
dian SA scores of molecules generated by AliDiff, IPDiff,
and MolCRAFT with reference molecules across target pro-
teins in the test set. The compared models are recent state-
of-the-art models for binding affinity. The results show that
our model consistently generates molecules with high SA
across all targets. We also report the proportion of proteins
for which each model generated molecules with the highest
median SA score. Our model obtains the best SA scores for
44% of proteins.

5.4. Ablation Studies

Different optimization approaches Multi-reward opti-
mization can be framed as a multi-task learning problem
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Figure 5. The median Synthetic Accessibility (SA) scores of the molecules generated for each of the 100 target proteins in the test set.
We compare our model to the top three models from the highest median binding affinity (AliDiff, IPDiff, MolCRAFT), as well as the
reference. The values in parentheses represent the proportion of the best SA score for each protein

Table 3. Comparison based on the number of rewards. A model fine-tuned with three rewards shows better binding affinity scores than the
model with all seven rewards.

# Rewards
Binding Affinity Conformation Stability Drug-like Properties

Vina Score Vina Min Vina Dock SE Clash SA QED
Avg. (↓) Avg. (↓) Avg. (↓) Med. (↓) Avg. (↓) Avg. (↑) Avg. (↑)

No Pretrained -6.59 -7.27 -7.92 7.62 7.09 0.69 0.50

Single

Score -6.63 -7.36 -8.01 6.85 7.25 0.71 0.53
Min -6.61 -7.43 -8.02 6.88 7.36 0.71 0.53
Dock -6.63 -7.40 -8.1 6.99 7.34 0.71 0.53
SE -6.51 -7.25 -7.79 6.79 7.40 0.70 0.50
Clash -6.44 -7.09 -7.58 9.87 7.16 0.66 0.48
QED -6.45 -7.31 -7.80 6.13 7.38 0.72 0.54
SA -6.50 -7.29 -7.80 7.33 7.47 0.71 0.53

Multi (Ours) Dock+SE+QED -7.18 -7.89 -8.62 5.56 6.69 0.74 0.55
All 7 rewards -6.50 -7.28 -7.86 7.22 7.28 0.53 0.70

when each reward is treated as a separate task. To explore
this perspective, we adopt the widely used multi-task op-
timization technique known as gradient surgery (Yu et al.,
2020). Specifically, we apply the gradient surgery to DPO
losses of Vina score, SE, and QED (3GS). Since the DPO
loss consists of atom and type losses as in Equation (7), we
further apply the gradient surgery to these losses separately,
resulting in six losses in total (6GS). In addition, we exam-
ine a multi-stage optimization procedure, wherein the model
is iteratively fine-tuned using newly generated molecules
from each preceding iteration. We report the result of the
two-stage approach.

Table 2 compares the performance of each approach to our
uncertainty-based reward optimization. We only report the
Vina Score among all Vina metrics, but they share similar
trends. Neither the gradient surgery nor the multi-stage

approach outperforms our uncertainty-based reward opti-
mization. The gradient surgery methods perform worse than
the reference model in all metrics except QED.

Multi-reward selection Table 3 show the performances
with different choices of metrics as rewards. Trying to op-
timize all seven rewards at once underperforms in several
categories, implying the complex loss landscape with all
rewards. In general, optimizing Vina metrics shows a strong
correlation, i.e., optimizing one Vina metric can improve the
performance of the other two Vina metrics. The optimiza-
tion over QED improves the performance of SA, leading
to our final choice of rewards. Note that Clash cannot be
improved even by the corresponding single reward. We
leave the improvement of Clash for future work.
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6. Conclusion
In this work, we propose a multi-reward optimization frame-
work to enhance deep learning-based structure-based drug
design. Our method addresses the limitations of previous
approaches by fine-tuning generative models to optimize
multiple attributes, including binding affinity, validity, and
drug-likeness. By utilizing direct preference optimization
within a Bayesian flow network and integrating a reward
normalization scheme, we enable the generation of more
realistic ligands with improved binding affinity. Experimen-
tal results demonstrate that our approach outperforms the
baseline models, offering a more robust solution for drug
discovery tasks.
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A. Complete Derivation of BFN-DPO
Given a preference molecular dataset as D = {(p,mw,ml)} where p is the target proteins and mw,ml are winning-losing
pair of molecules based on pre-computed rewards. With the similar argument used in Diffusion-DPO, one can define an
objective for BFN over the entire timesteps as:

LBFN-DPO(ϕ) = −Emw,ml,p∼D log σ

(
βEpϕ(mw

1:T |mw)pϕ(ml
1:T |ml)

[
log

pϕ(m
w
1:T )

pref(mw
1:T )

− log
pϕ(m

l
1:T )

pref(ml
1:T )

])
(13)

= −Emw,ml,p∼D log σ

βEpϕ(m
w
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0:T−1)pϕ(θ
w
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− log
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l
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] (14)

= −Emw,ml,p∼D log σ
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= −Emw,ml,p∼D log σ
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(16)

where we approximate the intractable pϕ(θ|mw) via Bayesian flow distribution pF and pϕ(m
w
1:T | mw, θw0:T−1) via the

sender distribution. We omit the conditioning on the proteins p for brevity.

By applying Jensen’s inequality and dropping constant, we have

LBFN-DPO(ϕ) = −Emw,ml,p∼D,t∼U(1,T ),

pF (θw
i |mw),pF (θl

i|m
l)

log σ
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Expanding the equation further gives us

LBFN-DPO(ϕ) = −E
[
log σ

(
− βT

(
DKL

(
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. (18)

The latent parameters θt = [θxt , θ
v
t ], from which the noisy samples mt = [xt,vt] are drawn with the noise factors

αt = [αx
t , α

v
t ], are assumed to follow distinct continuous distributions for each atom coordinates x and atom types v. With

the neural network Φ representing the predicted atom coordinates and types as [Φx,Φv], we can reformulate each of the
above KL divergence terms as:

DKL
(
pS(mt | x) | p(mt | θt−1)

)
= Dx

KL

(
pS(xt | x) | p(xt | θxt−1)

)
+ Dv

KL

(
pS(vt | v) | p(vt−1 | θvt−1)

)
(19)

=
αx
t

2
∥x− Φx(θ)∥2 +

(
log pS(vt | v, αv

t )− log pR(vt | Φv(θt−1), α
v
t )
)
. (20)

As a result, we can show that the objective can be represented as a summation of the atom coordinates and atom type
preference losses as follows:

LBFN-DPO(ϕ) = −E(p,mw,ml)∼D,t∼[0,T ],θw
t ∼pF (·|mw

t ,p;t),θl
t∼pF (·|ml

t,p;t)

[
Lx
t−1 + Lv

t−1

]
. (21)
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The atom coordinates loss is designed to directly train the model output Φx
0 (θ

x
t ) to approximate the clean coordinate values

x0. The concentration parameter α for each time t is multiplied during training:

Lx = −E
(p,xw,xl)∼D,t∼[0,T ],
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))]
. (22)

Similarly, the atom types loss is designed to directly train the model output Φv(θvt ) to approximate the clean atom types v,
which is the NM ×K matrix with each row as K-dimensional one-hot vector:

Lv = −E
(p,vw,vl)∼D,t∼[0,T ],
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. (23)

B. Implementaton Details
B.1. SE-(3) Equivariant Network

To model the interaction between ligand and protein pocket atoms, we employ an SE(3)-equivariant network, PosNet3D
(Guan et al., 2022), as the foundational architecture Φ in the receiver distribution. A protein-ligand graph is initially
constructed by performing a k-nearest neighbor search on the atomic coordinates, represented as G = ⟨V,E⟩. At each layer,
the atomic hidden states hl and coordinates xl are iteratively updated as follows:

hl+1
i = hl

i +
∑

j∈NG(i)

ϕh

(
dij ,h

l
i,h

l
j , eij , t

)
∆xi =

∑
j∈NG(i)

(xl
j − xl

i)ϕx

(
dij ,h

l+1
i ,hl+1

j , eij , t
)

xl+1
i = xl

i +∆xi · 1mol

where NG(i) represents the neighborhood of atom i in graph G, while hi,xi and hj ,xj denote the hidden states and
coordinates of atoms i and j, respectively. The term dlij represents the Euclidean distance between atoms i and j, and eij
indicates whether the interaction is between protein atoms, ligand atoms, or a combination of both. The indicator function
1mol ensures that only ligand atom positions are updated. The functions ϕh and ϕx act as attention mechanisms, utilizing hl

i

as a query and [hl
i,h

l
j , eij ] as keys and values.

For the initial layer, the atomic positions and hidden states are initialized as x0 = [µ,xP ] and h0 = linear(θv,vP , t). In the
final layer, the network produces an estimation x̂ = Φx. Additionally, for the discrete variable v(d), the function Φ applies a
softmax operation to yield the probability distribution:

v̂(d) = softmax
(
(Φv)(d)

)
.

B.2. Data Featurization

Each protein atom is characterized by multiple features to effectively capture its structural and biochemical properties.
These features include a one-hot encoded element identifier (comprising H, C, N, O, S, and Se) to specify the atomic type, a
one-hot encoded amino acid type indicator of 20 dimensions to classify the amino acid identity, a binary flag to distinguish
backbone atoms, and a one-hot encoded arm/scaffold region indicator that designates whether the atom is part of an arm or
scaffold region based on its spatial proximity to the arm prior center.
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Similarly, ligand atoms are represented using a one-hot encoded element type indicator (spanning C, N, O, F, P, S, and Cl)
and a one-hot encoded arm/scaffold indicator to differentiate between aromatic and non-aromatic atoms.

For efficient message passing within the protein-ligand complex, two dynamically constructed graphs are employed: a
k-nearest neighbors (k-NN) graph linking ligand and protein atoms and a fully connected graph for ligand atoms. The
edge features in the k-NN graph are derived from the outer products of the distance embeddings, which are computed via
radial basis function expansion, and a four-dimensional one-hot encoded edge type vector that classifies different types
of atomic interactions. In contrast, the ligand graph represents ligand bonds through a one-hot encoded bond type vector,
which categorizes bond types as non-bonded, single, double, triple, or aromatic.

Following the existing work (Guan et al., 2023), proteins and ligands are represented through atomic coordinates alongside
one-hot encoded atomic type vectors. Protein atoms are characterized by a one-hot encoded vector distinguishing among
20 amino acid types, while ligand atoms are encoded using a one-hot vector that identifies various elements, including H,
C, N, O, F, P, S, and Cl. Additionally, a binary flag is incorporated to distinguish between protein and ligand atoms. To
further refine these representations, two separate single-layer multi-layer perceptrons (MLPs) are applied, each mapping the
input features into a 128-dimensional latent space, ensuring a compact yet informative feature embedding for subsequent
computational processing.

B.3. Preference Pair Generation

For each protein binding site, we initially generate ten molecular candidates from the pretrained model. The reward for each
synthesized molecule is then evaluated based on a user-defined reward function specific to the corresponding binding site.
To construct preference data, we identify a lower-performing sample with a comparatively lower reward and establish a
preference ranking. The detailed procedure for reward computation and preference selection is provided in Section 4.2.

B.4. Model Hyperparameters

For the SE(3)-equivariant network, we utilize k-nearest neighbors (kNN) graphs with a 32-nearest neighbor search to
construct the graph. The model consists of nine layers, each with a hidden dimension of 128, employing a 16-head attention
mechanism. ReLU activation functions are used in conjunction with Layer Normalization (Ba et al., 2016) to enhance
stability and performance.

Regarding the noise schedules, we set the parameters as follows: β1 = 1.5 for atom types and σ1 = 0.03 for atom
coordinates. The model is trained using a discrete-time loss function over 1000 training steps.

For pretraining, we adopt the same architecture as MolCRAFT, which is based on Bayesian Flow Networks (Graves et al.,
2023).

For finetuning, we employ the Adam optimizer with a learning rate of 0.005 and a batch size of 32. Additionally, an
exponential moving average (EMA) of model parameters is maintained with a decay factor of 0.999. Training converges
within two epochs on a single RTX 4090 GPU, requiring approximately six hours for completion. For sampling, we generate
100 sample steps using a noise-reduced sampling strategy.

To ensure a higher value corresponds to a better reward across different metrics, we use a transformation function in Equa-
tion (10) as normalizing each rewards.

r̂
(j)
i =

exp
(
fj(r

(j)
i )
)∑B

b=1 exp
(
fj(r

(j)
b )
)

fj(r) =


−r, if j corresponds to the Vina Dock,
10
r , if j corresponds to strain energy,
r, if j corresponds to QED.

where r
(j)
i is the j-th reward for the i-th molecule, and fj(·) is a simple transformation function to ensure each reward is

reasonable. This maps each reward to the (0, 1) interval, ensuring that distinct reward signals become comparable despite
inherently different numerical ranges. We set γ = 0.4 in Equation (11)
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B.5. Computation Time

We report the time required for one epoch of pretraining and fine-tuning our model, comparing it to the AliDiff baseline
trained with DPO. To measure the computation time, we use the official source code provided by the author and run the
code on a single NVIDIA A6000 GPU.

Table 4. Time needed for training per one epoch (in seconds)
Model Pretraining Finetuning only
AliDiff (DPO with diffusion model) 7461.73 22,884
Ours (DPO with BFN model) 5695.40 16,354

This shows applying DPO to a pre-trained model takes 16,354 seconds with our method per one epoch, compared to 22,884
seconds for AliDiff, representing a 28.5% reduction. Our approach does not significantly increase overall training time;
however, obtaining rewards from an external tool can be time-consuming. To address this, we preprocess and store rewards
in advance, but this requires an offline DPO framework. A promising future direction for SBDD is reducing reliance on
external tools, enabling a more iterative and efficient online training loop.
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