

TOWARDS KNOWLEDGE-AND-DATA-DRIVEN ORGANIC REACTION PREDICTION: RAG-ENHANCED AND REASONING-POWERED HYBRID SYSTEM WITH LLMs

008 **Anonymous authors**

009 Paper under double-blind review

ABSTRACT

015 In organic reaction prediction, many recent approaches ranging from traditional
016 task-specific models to Large Language Models (LLMs), have demon-
017 strated notable success. However, these methods are inherently data-driven, ex-
018 hibit constrained interpretability, and have hit fundamental performance bottle-
019 necks. To overcome these limitations, we present **Reaction-Thinker**, a hy-
020 brid, knowledge-and-data-driven system that is enhanced by Retrieval-Augmented
021 Generation (RAG) and powered by advanced reasoning, improving both the inter-
022 pretability of prediction process and the explainability of results. We develop
023 a similar-case retrieval database and train a RAG-based LLM through supervised
024 fine-tuning (SFT) to apply both reaction types and similar reaction cases as knowl-
025 edge. We also construct a reaction reasoning chain-of-thought (CoT) dataset and
026 train a reasoning-based LLM through SFT, then further optimize it using Group
027 Relative Policy Optimization (GRPO). Experimental results show that our method
028 outperforms all compared LLMs and task-specific models, achieving the highest
029 accuracy (Exact Match) and fingerprint similarity (FTS). Ablation study indicates
030 improvements in relative accuracy of 7.5% and 13.9% for RAG and GRPO, re-
031 spectively. Further analysis of mispredictions reveals limitations in conventional
032 evaluation metrics, which motivates our proposed benchmarking refinement.

1 INTRODUCTION

036 In organic chemistry, predicting reaction outcomes has long been a core challenge. Traditionally,
037 expert chemists relied on years of hands-on experience and well-established principles to design
038 experiments and anticipate products. Today, artificial intelligence offers a powerful augment to this
039 approach, enhancing the efficiency and precision of prediction.

040 Current approaches to predicting organic reaction outcomes can be mainly categorized into template-
041 based and template-free methods. Template-based methods integrate machine learning with prede-
042 fined structural transformation rules, also known as reaction templates, either curated by experts
043 or extracted from atom-mapped datasets (Chen & Jung, 2022; Sacha et al., 2021). In contrast,
044 template-free methods employ data-driven architectures, such as graph neural networks (GNNs) or
045 Transformer-based sequence models, to infer reaction patterns directly from large reaction corpora
046 without relying on explicit templates. (Schwaller et al., 2018; Irwin et al., 2022). Recent advances
047 in large language models (LLMs) have garnered significant attention (Achiam et al., 2023; Team
048 et al., 2024; Bai et al., 2023; Liu et al., 2024). By undergoing large-scale pre-training followed
049 by fine-tuning or instruction tuning, these models acquire extensive knowledge, proficiently follow
050 instructions, and exhibit strong reasoning abilities. As a result, LLMs now achieve state-of-the-art
051 (SOTA) performance comparable to or even exceeding that of humans, in general Natural Language
052 Processing (NLP) tasks such as language understanding and question answering, as well as special-
053 ized applications including mathematical problem-solving and code generation. Hence, a natural
idea is to explore whether LLMs can replicate the cognitive processes of expert chemists, enabling
more accurate reaction predictions.

054 Human chemists predict organic reactions through a multi-step cognitive process. Initially, they an-
 055alyze molecular structures, identifying functional groups, bond connectivity, stereochemistry, and
 056 reactive sites, which are fundamental to mechanistic analysis (Smith, 2023). Then, they apply core
 057 principles to hypothesize bond cleavage and formation. They propose reaction pathways and eluci-
 058 date mechanistic steps, including identifying reaction centers, considering mechanisms such as SN1,
 059 SN2, or pericyclic, and evaluating thermodynamic and kinetic feasibility (Levy, 2017). Finally, they
 060 integrate insights to predict the main product and account for side reactions. Apart from that, known
 061 reaction cases are also frequently referenced to inform predictions.

062 Recent works have applied LLMs to chemistry, particularly targeting organic reactions prediction.
 063 Notable examples include the ChemDFM series (Zhao et al., 2024b;a), ChemLLM (Zhang et al.,
 064 2024), ChemCrow (M. Bran et al., 2024), and Coscientist (Boiko et al., 2023). Some approaches
 065 leverage large proprietary models such as GPT-4o (OpenAI, 2024) directly, exploiting their innate
 066 zero-shot reasoning capabilities. Others build on open-source LLMs such as LLaMA (Touvron et al.,
 067 2023) and fine-tune them on chemical literature and curated datasets, resulting in domain-specific
 068 models with enhanced accuracy on chemical question answering (Q&A) and prediction tasks.

069 However, current fine-tuning methods for LLMs in chemistry primarily rely on data-driven strate-
 070 gies, which are similar to traditional end-to-end deep learning approaches, and often fail to fully
 071 leverage the rich chemical knowledge embedded in the pre-trained parameters of LLMs, and fine-
 072 tuned models tend to underutilize their robust reasoning and in-context learning capabilities. Con-
 073 sequently, the predictions often lack interpretability and do not outperform established task-specific
 074 methods in accuracy. Although LLMs hold immense promise for organic reaction prediction, owing
 075 to their pre-trained chemical knowledge as well as robust in-context learning and reasoning capabili-
 076 ties, two critical bottlenecks must still be addressed before this potential can be fully realized.

077 First, high-quality, structured training data is severely scarce in chemistry. Domains like mathemat-
 078 ics benefit from extensive open-source communities (e.g., Lean Community) and web-scale datasets,
 079 whereas chemistry lacks publicly available resources for reaction reasoning. As a result, models un-
 080 dergo pre-training and fine-tuning with limited exposure to task-relevant chemical data, hindering
 081 their ability to develop advanced capabilities for complex reaction prediction tasks. Furthermore,
 082 creating large-scale, annotated chemical datasets is a time-consuming and labor-intensive process
 083 that demands substantial domain expertise.

084 Second, learning strategies for chemistry LLMs remain underdeveloped. Most existing chemical
 085 LLM frameworks rely on standard pre-training followed by supervised fine-tuning (SFT), which
 086 often fails to unlock the full potential of these models. Recent research highlights two advanced
 087 techniques, including Retrieval-Augmented Generation (RAG) (Ke et al., 2024; Chen et al., 2025),
 088 which can inject domain-specific knowledge as well as mitigating hallucinations, and reinforcement
 089 learning (RL) (Guo et al., 2025), which can further enhance reasoning and interpretability. How-
 090 ever, their adoption in chemical LLMs remains limited. Therefore, developing a hybrid learning
 091 framework that integrates SFT, RAG and RL, combining both data-driven and knowledge-driven
 092 paradigms, represents a promising direction for achieving interpretable, high-performance organic
 093 reaction prediction.

094 In this paper, we propose **Reaction-Thinker**, a hybrid knowledge-and-data-driven organic reaction
 095 prediction system, comprising both a RAG-based predictor and a reasoning-based predictor. The
 096 main contributions of our work can be concluded in the following parts.

- 097 • We categorize reactions based on the given reaction inputs, define a standardized similar-
 098 ity metric, and construct similar-case retrieval database for each type. Training and test
 099 samples are partitioned based on whether similar retrieved cases exist, and each subset is
 100 processed through a dedicated, specialized pipeline.
- 101 • For samples with similar cases retrieved, we inject reaction type and case-specific knowl-
 102 edge into user prompt and curate a customized SFT dataset for a RAG-based LLM. This
 103 enhances the ability of the LLM to retrieve domain-specific contextual information.
- 104 • For samples lacking similar reaction cases, we introduce a multi-stage reasoning enhance-
 105 ment pipeline. First, we construct a chain-of-thought (CoT) dataset for organic reaction
 106 reasoning. Then, we employ SFT as a cold-start to establish an initial foundation of
 107 high-accuracy CoT reasoning. Finally, we refine the deductive reasoning using reinforce-
 108 ment learning through Group Relative Policy Optimization (GRPO).

108

- The system outperforms all compared LLMs and even exceeds traditional task-specific
109 models, in both accuracy (Exact Match) and fingerprint similarity (FTS). The ablation
110 study indicates improvements in relative accuracy of 7.5% and 13.9% for RAG and GRPO,
111 respectively.
- A detailed error analysis reveals that some incorrect predictions correspond to chemically
112 plausible byproducts or alternative reaction pathways, despite not matching the canonical
113 ground truth. To better account for such chemically plausible outcomes, we propose a
114 novel evaluation paradigm by incorporating retrosynthetic validation. Notably, our analysis
115 indicates that 47.8% of these incorrect predictions are chemically reasonable.

116

118 2 METHODS

119

120 As illustrated in Figure 1, our proposed organic reaction predict system integrates four core modules:
121 (1) a reaction type classifier, (2) a similar-case retrieval database, (3) a RAG-based reaction predictor,
122 and (4) a reasoning-based reaction predictor. Given a set of reaction inputs including reactants,
123 solvent, and reagents, the system first applies the classifier to determine the most probable reaction
124 type. Based on the predicted type, it queries the similar-case retrieval database for analogous reaction
125 examples. If similar reaction cases are found, they are then incorporated alongside the user prompt
126 into the RAG-based predictor; otherwise, the reaction inputs are routed directly to the reasoning-
127 based reaction predictor for CoT-based analysis. Depending on the pathway, either RAG-enhanced
128 or reasoning-based module generates the final reaction outcome.

129

Figure 1: The system architecture, training process, and inference pipeline of **Reaction-Thinker**.

Subsequent sections detail the training process of reaction type classifier, the construction and usage of the similar-case retrieval database, the preparation of a CoT dataset for organic reaction reasoning, and the training strategies for both RAG-based and reasoning-based predictors.

2.1 REACTION TYPE CLASSIFIER

We implement a two-layer MLP as the classifier. The original reaction inputs, provided as SMILES strings, are processed with RDKit (Landrum, 2016) to compute multiple structural fingerprints. These fingerprints (*Mol-Fingerprint*) are then concatenated and fed into the MLP to predict reaction type (*Classifier-Out*).

Inspired by previous work (Safizadeh et al., 2021), we employ a combination of various molecular fingerprint methods to comprehensively capture molecular information, including RDKit (suitable for general molecular similarity searches) (Schneider et al., 2015b), LAYERED (useful for substructure screening) (RDKit-Book, 2025a), PATTERN (focused on identifying specific chemical features) (RDKit-Book, 2025b), AVALON (effective for both substructure screening and similarity matching in complex molecules) (Gedeck et al., 2006), and MORGAN fingerprints (especially suitable for cyclic substructure and comparing structural features) (Rogers & Hahn, 2010).

We train the reaction type classifier on the Schneider-50K dataset (Schneider et al., 2015a), which contains 50K reaction SMILES classified into 50 representative types, providing granularity well-suited for robust classification. After training, we extract the first layer output of the classifier as a compact representation of the reaction inputs, providing a molecular embedding (*Rea-Embedding*) of the reaction. The architecture of the reaction type classifier is described in Equation (1):

$$\begin{aligned} \text{Rea-Embedding} &= \text{Layer1} \text{ (Mol-Fingerprint)} \\ \text{Classifier-Out} &= \text{Layer2} \text{ (Rea-Embedding)} \end{aligned} \quad (1)$$

2.2 SIMILAR-CASE RETRIEVAL DATABASE FOR RAG

For each reaction in both training and test splits of Open Reaction Dataset (ORD) (Kearnes et al., 2021), we feed its reaction inputs (including reactants, solvents, and reagents, all formatted as SMILES) into our trained reaction type classifier. This yields two outputs: (1) a molecular embedding from the first layer, and (2) a predicted reaction type.

Using the ORD training set, we construct a similar-case retrieval library for each reaction type by computing the Euclidean distance (L_2 norm) between the molecular embedding of each query reaction and that of all other embeddings of the same type. Any training sample with an embedding distance smaller than M is considered similar, and its full reaction SMILES (including reactants, solvents, reagents, and products) will be added to the retrieval library for that type.

Based on this, we build a SFT dataset for RAG-based LLM, containing only reactions that successfully retrieve at least one similar case. Each SFT sample includes the reaction inputs, its predicted reaction type, the retrieved similar cases, and the target products.

During inference, we apply the same embedding and classification process to reaction inputs from the test set. If the system retrieves one or more training cases within distance M , it follows the RAG pathway; otherwise, it proceeds to the reasoning pathway without external context.

2.3 COT DATASET FOR REACTION REASONING

Figure 2: An example of chain-of-thought dataset for reasoning, including system prompt, user prompt, and supervised output.

Here a two-stage approach is adopted to generate CoT data for reaction reasoning, involving both the USPTO-MIT (Jin et al., 2017) and ORD. Finally, we merge CoT samples obtained from both stages into a unified dataset, serving as the primary CoT resource for this work. Some data are open-sourced (refer to link and details in **Appendix**).

216 2.3.1 STAGE 1: PRELIMINARY CONSTRUCTION
217

218 Following the methodology in HK-O1aw (Lab, 2024), we extract reaction SMILES from a random
219 subset of the USPTO-MIT training set. These SMILES were processed using Qwen2.5-72B-Instruct
220 (Qwen Team, 2024) with instructions to reconstruct the reaction mechanism through deductive rea-
221 soning, systematically deriving the products from the given reactants, solvents, and reagents through
222 a chain-of-thought reasoning process, even though the model has access to the final answer (refer
223 to **Appendix** for the prompt details). We then apply rigorous post-processing to refine the gener-
224 ated contexts, including format standardization and keyword-based validation, ultimately obtaining
225 119K high-quality CoT samples after careful filtering. An example of the dataset is shown in Fig-
226 ure 2. Although directly predicting reaction outcomes from conditions is challenging, our approach
227 leverages the observation that when provided with full reaction SMILES, LLMs can systematically
228 deduce the reaction pathway by analyzing the transformation from reactants to products.
229

229 2.3.2 STAGE 2: DISTILLATION AND VALIDATION
230

231 We first fine-tune DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI, 2025c) on the CoT samples gen-
232 erated from USPTO-MIT using SFT. Then, we further train the model on the ORD training set using
233 Group Relative Policy Optimization (GRPO) (see experimental results in **Appendix**). The GRPO
234 will be explained in detail in the following section. During this stage, only those generated reasoning
235 trajectories that lead to correct predicted products are retained. Overall, we collected 575K validated
236 CoT examples, covering approximately 55K unique samples from the original ORD dataset.
237

237 2.4 TRAINING STRATEGY OF RAG-BASED LLM
238239 2.4.1 SUPERVISED FINE-TUNING
240

241 We fine-tune RAG-based LLM on the dataset constructed from similar-case retrieval database, using
242 SFT with full parameter updates. The Qwen3-32B (Qwen Team, 2025) is selected as the backbone
243 model for this process.
244

244 2.5 TRAINING STRATEGY OF REASONING-BASED LLM
245

246 We employ a two-stage training strategy (SFT followed by RL) for our reasoning-based LLM, using
247 DeepSeek-R1-Distill-Qwen-32B (DeepSeek-AI, 2025b) as the backbone model due to its strong
248 reasoning performance compared to other LLMs of similar size.
249

250 2.5.1 SUPERVISED FINE-TUNING
251

252 First, we fine-tune the base model using SFT with full parameter updates on the generated CoT
253 dataset for reaction reasoning. Through this process, the model begins to internalize reasoning
254 patterns specific to organic reaction.
255

255 2.5.2 REINFORCEMENT LEARNING
256

257 Next, we perform RL with LoRA adapters (Hu et al., 2022) on the ORD training set to further
258 enhance reasoning accuracy as well as reliability.
259

260 Specifically, we use GRPO as the learning algorithm. Given an input query $q \sim P(Q)$, GRPO
261 samples a group of G responses $\{y_1, y_2, \dots, y_G\}$ from the current policy $\pi_{\theta_{\text{old}}}$. The core idea is to
262 update the policy π_{θ} by maximizing an objective function that encourages responses with higher-
263 than-average rewards within their group. The GRPO objective function is defined as follows:
264

$$\mathcal{J}(\theta) = \mathbb{E}_{q \sim P(Q), \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \min \left(c_{i,t}(\theta) \hat{A}_{i,t}, \text{clip} (c_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,t} \right) - \beta \mathbb{D}_{KL} [\pi_{\theta} \parallel \pi_{\text{ref}}] \right] \quad (2)$$

265 where ϵ is the clipping ratio, β is the coefficient for KL-divergence loss, and π_{ref} is the reference
266 policy. $c_{i,t}(\theta)$ is the importance sampling ratio for token $y_{i,t}$ (the t -th token of the i -th response y_i):
267

270
271
272
273

$$c_{i,t}(\theta) = \frac{\pi_\theta(y_{i,t}|q, y_{i,<t})}{\pi_{\theta_{\text{old}}}(y_{i,t}|q, y_{i,<t})} \quad (3)$$

274 $\hat{A}_{i,t}$ is advantage estimate for all tokens in response y_i and is calculated by normalizing the rewards
275 $\{r_1, r_2, \dots, r_G\}$ using the group mean and standard deviation:
276

$$\hat{A}_{i,t} = \frac{r_i - \text{mean}(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\})} \quad (4)$$

280 2.5.3 REWARD FUNCTIONS

281 Here we design a custom reward function for RL, specifically tailored to organic reaction reasoning,
282 composed of four components:
283

- 284 • **Format Reward:** Assess whether the response format strictly follows the user instructions,
285 awarding 0.1 for correct compliance; or otherwise zero.
286
- 287 • **Length Reward:** Encourages concise reasoning, awarding 0.1 if the chain-of-thought
288 length falls within a predefined range (500 to 2000 tokens); or otherwise zero.
289
- 290 • **Validity Reward:** Assess the validity of the generated product SMILES, awarding 0.1 for
291 chemically valid; or otherwise zero.
292
- 293 • **Accuracy Reward:** Canonicalize the SMILES of generated product and compare it to the
294 ground truth. Award 2.0 if the two match exactly; or otherwise zero.
295

296 The final reward is calculated as the sum of these components. This composite reward structure
297 ensures that the model is incentivized to produce well-formed, appropriately concise, and chemically
298 accurate reasoning.
299

300 3 EXPERIMENTS

301

302 In this section, we first present a comprehensive comparative evaluation between our method and
303 existing baselines. Next, we evaluate the contribution of RAG. We also conduct an ablation study
304 to assess how variations in reward function design and the use of cold-start strategy affect GRPO
305 performance in this task. Finally, through detailed analysis of mispredictions, we identify critical
306 limitations in conventional evaluation metrics. Leveraging these insights, we propose a novel refer-
307 ence metric and present its evaluation result. Additional details are provided in **Appendix**.
308

309

310 3.1 EXPERIMENTAL SETTING

311

312 3.1.1 DATASET AND METRICS

313

314 The raw Open Reaction Database (ORD) has been preprocessed by ORDerly (Wigh et al., 2024) and
315 split into 832K for training and 86K for testing. For evaluation, we employ various metrics includ-
316 ing Validity (whether the product SMILES can be successfully processed by RDKit), Exact Match
317 (after canonicalization) and molecular fingerprint similarity (FTS, including MORGAN, RDKit, and
318 AVALON fingerprints). We deliberately avoid relying on text-based similarity metrics (e.g., BLEU
319 and Levenshtein), since they poorly reflect actual molecular differences, even a single alteration in
320 a SMILES string can correspond to a substantial change in the chemical structure.
321

322

323 3.1.2 BASELINES

324

325 We compare our system with: (1) open-source LLMs including DeepSeek-R1 (Guo et al.,
326 2025), DeepSeek-R1-Distill-Llama-70B (DeepSeek-AI, 2025a), DeepSeek-R1-Distill-Qwen se-
327 ries (32B/14B/7B), and Qwen2.5-72B-Instruct; (2) chemical LLMs including ChemDFM-13B/8B
328 (OpenDFM Team, 2024) and Text-Chem-T5 (Christofidellis et al., 2023); and (3) traditional task-
329 specific models including Chemformer, which is reported to achieve the best Top-1 accuracy on
330 USPTO-MIT (Chen & Jung, 2022), and Molecular Transformer (Schwaller et al., 2019).
331

324 For open-source LLMs, we use the same user prompt template as our method, and for chemical
 325 LLMs, we adopt the training prompts specified in the relevant papers.
 326

327 3.2 MAIN RESULT 328

329 As shown in Table 1, our method outperforms all compared LLMs and traditional task-specific
 330 models, achieving the highest Exact Match and fingerprint similarity (FTS).
 331

332 Table 1: Comparison of our method with various baselines on the task of organic reaction prediction.
 333 The results for Molecular Transformer are directly taken from existing work (Wigh et al., 2024). The
 334 top results are marked in **bold**.
 335

336 Model	337 Model Type	338 Validity (%)	339 Exact Match (%)	340 FTS (%)		
				341 MORGAN	342 RDK	343 AVALON
344 Chemformer	345 Task-Specific Model	346 98.57	347 88.13	348 92.40	349 94.35	350 95.12
351 Molecular Transformer		352 99.66	353 85.84	354 -	355 -	356 -
357 DeepSeek-R1		358 68.54	359 11.68	360 55.71	361 64.09	362 64.98
363 Qwen2.5-72B-Instruct		364 35.27	365 0.54	366 37.46	367 45.95	368 46.01
369 DeepSeek-R1-Distill-Llama-70B	370 General LLM	371 66.42	372 7.20	373 49.06	374 59.17	375 59.67
376 DeepSeek-R1-Distill-Qwen-32B		377 57.58	378 6.52	379 50.50	380 61.05	381 61.05
382 DeepSeek-R1-Distill-Qwen-14B		383 43.72	384 1.69	385 32.72	386 40.92	387 40.95
389 DeepSeek-R1-Distill-Qwen-7B		390 47.74	391 1.21	392 43.50	393 54.58	394 53.77
396 ChemDFM-13B		397 98.29	398 52.41	399 77.27	400 82.03	401 82.15
403 ChemDFM-8B	404 Chemical LLM	405 97.80	406 48.02	407 74.69	408 79.85	409 80.02
411 Text-Chem-T5		412 95.67	413 47.88	414 76.45	415 81.81	416 81.81
419 Reaction-Thinker (Ours)	420 -	421 98.92	422 89.86	423 95.22	424 96.24	425 96.37

350 The final performance of our method is achieved through integration. In the test set, 81.7% of the
 351 samples have similar reaction cases available. For these, our RAG-based approach achieves an Exact
 352 Match of 94.70%. For the remaining 18.3% samples without similar cases, we apply reasoning-
 353 based approach and achieve an Exact Match of 68.24%. Combining these two approaches yields
 354 an overall accuracy of 89.86% across the entire test set. The FTS score is computed using the
 355 same weighted approach, combining the RAG-based and reasoning-based results according to their
 356 respective proportions.
 357

358 3.3 ABLATION STUDY

359 3.3.1 CONTRIBUTION OF RAG

360 The effectiveness of RAG has been widely documented in recent works. By grounding generation
 361 with retrieved context, it significantly reduces hallucinations and improves accuracy across many
 362 domains. To verify the benefit of RAG for current task, we continue to use Qwen3-32B as the
 363 base model and conduct a controlled comparison. Rather than following the conventional RAG
 364 setup that retrieves reaction types and similar cases for prompt augmentation, we perform a direct
 365 end-to-end supervised fine-tuning, mapping reaction input SMILES directly to product SMILES.
 366 As shown in Table 2, using RAG
 367 yields better performance, with a rel-
 368 ative accuracy improvement of 7.5%.
 369 This matches chemical intuition: just
 370 as chemists reference analogous reac-
 371 tions, LLMs benefit from RAG to im-
 372 prove prediction accuracy.
 373

374 3.3.2 INFLUENCE OF GRPO

375 GRPO is an effective reinforcement learning framework for LLMs, where the design of reward
 376 functions and selection of the base model critically determine its performance. To further explore
 377 its application in current task, we conduct two controlled experiments.

378 Table 2: Accuracy performance with and without RAG.

	w/ RAG	w/o RAG (End-to-End)
379 Exact Match (%)	380 83.13	381 77.35

378 1. Reward Function Ablation Study

380 Building on the baseline reward function (comprising format, length, validity, and accuracy re-
 381 wards), we introduce a MORGAN fingerprint similarity reward (FTS reward, ranging from 0.0 to
 382 1.0) in order to structurally align predictions with ground truths.

383 This modification aims to mitigate re-
 384 ward sparsity by guiding the LLM
 385 to generate outputs from structurally
 386 similar to fully accurate. We record
 387 the reward curves during training in
 388 Figure 3 and evaluate the resulting
 389 model with results presented in Ta-
 390 ble 3. The experiments reveal a
 391 paradoxical phenomenon, while the
 392 reward curve shows continuous im-
 393 provement, the evaluation accuracy
 394 actually declines. Through detailed
 395 analysis, we identify that the fine-
 396 tuned LLM tended to verbatim copy
 397 reactant SMILES in outputs. This
 398 indicates a suboptimal optimization
 399 strategy, since product and reactants
 400 structures share chemical similarities,
 401 directly copying reactants could still
 402 achieve relatively high reward.

403 Figure 3: The reward curves under different combinations
 404 of (i) whether SFT was applied before RL and (ii) whether
 405 the FTS reward is introduced.

406 Table 3: Accuracy performance with and without fingerprint similarity reward in GRPO.

	w/ FTS reward	w/o FTS reward
Exact Match (%)	56.83	68.24

407 To address this issue, we downweight the FTS reward and incorporate explicit penalties for reactant
 408 copying. However, subsequent experiments demonstrate these measures are insufficient to com-
 409 pletely prevent this behavior. This phenomenon exemplifies reward hacking, a well-documented RL
 410 failure mode where agents optimize the proxy reward in unintended ways, achieving higher scores
 411 while failing the true task objective. The tendency of LLM to cheat by exploiting structural corre-
 412 lations between reactants and products remains a significant challenge, now recognized as a critical
 413 focus for our ongoing optimization efforts.

414 2. Base Model Capability Analysis

415 To evaluate the impact of base model capability on GRPO performance, we conduct a controlled
 416 experiment comparing two approaches: (1) direct application of GRPO to the initial DeepSeek-R1-
 417 Distill-Qwen-32B, and (2) implementing GRPO following SFT on our reaction reasoning dataset.

418 The experimental results, including the reward curves in Figure 3 and final performance in Table 4,
 419 reveal markedly different outcomes between the two settings. This underscores that proper initial-
 420 ization through SFT is critical for unlocking the potential of GRPO in reaction reasoning tasks.

421 Table 4: Exact Match performance (%) under different SFT and GRPO settings. On the base model
 422 with enhanced initial reasoning capabilities (w/ SFT), applying GRPO yields a relative accuracy
 423 improvement of 13.9%.

	w/o SFT	w/ SFT
w/o GRPO	6.52	59.93
w/ GRPO	9.67	68.24

432 3.4 ANALYSIS OF INCORRECT PREDICTIONS
433

434 Through systematic error analysis comparing LLM predictions with ground truth, we identified
435 two major failure modes: (1) complex reactions involving multiple functional groups or multi-step
436 processes, and (2) incomplete reaction conditions (e.g., missing temperature or catalysts, which is
437 confirmed by GPT-4o). Figure 4 presents an example of incorrect prediction along with detailed
438 analysis using GPT-4o and retrosynthetic validation.

451 Figure 4: Analysis of incorrect prediction using GPT-4o and retrosynthetic validation. The key reaction
452 conditions influencing final product are marked in bold red. Both products are valid candidate
453 answers in the absence of specific condition constraints.

454 Fundamentally, many organic reactions inherently generate byproducts via parallel or competing
455 pathways, yet existing datasets typically record only one to three major products. This exposes a
456 critical limitation in current evaluation metrics for reaction prediction tasks, where exclusive com-
457 parison to a single ground truth fails to reflect chemical reality and may hinder LLMs from devel-
458 oping a genuine understanding of organic reaction mechanisms.

459 To address this, we propose a novel evaluation paradigm by incorporating retrosynthetic validation.
460 For each product predicted by reasoning-based LLM, we verify whether a plausible retrosynthetic
461 route exists based on the given reaction inputs. If chemically reasonable, a prediction is deemed
462 correct even if it does not match the ground truth. Applying the retrosynthetic analysis tool Retro*
463 (Chen et al., 2020) to our previously mispredicted examples, 47.8% of them are validated as chemi-
464 cally reasonable, bringing the total fraction of reactions passing retrosynthesis validation to 92.64%.

466 4 CONCLUSION
467

468 In this study, we introduce **Reaction-Thinker**, a hybrid, knowledge-and-data-driven system that
469 significantly advances organic reaction prediction by combining RAG-based LLM with reasoning-
470 based LLM. Experiments on ORD demonstrate that our system achieves state-of-the-art (SOTA) re-
471 sults in Exact Match and fingerprint similarity, outperforming all compared LLMs and task-specific
472 models. The result shows the potential of leveraging LLMs for addressing fundamental challenges
473 in chemical research. We also identify several promising directions for future enhancement. For
474 example, the reasoning-based LLM still has significant room for improvement. The optimization of
475 reward functions will be our focus in further research to help LLMs have better understanding of
476 organic reaction mechanisms. Moreover, enhanced CoT datasets incorporating chemical synthesis
477 processes will be developed and integrated into current training framework, enabling more rigorous
478 analysis of how reaction condition variations affect outcomes. Last but not least, current system
479 implements RAG and reasoning as separate LLM modules, and future work will integrate these
480 capabilities into a unified architecture.

481
482 REPRODUCIBILITY STATEMENT
483

484 To ensure reproducibility and facilitate the review process, we have included a subset of the code
485 and a dataset sample in the **Appendix**. The full code and complete dataset will be made publicly
486 available upon acceptance.

486 ETHICS STATEMENT
487488 This research complies with the ICLR Code of Ethics. Our study uses publicly available benchmark
489 data and does not involve human subjects or collection of sensitive information. The authors declare
490 no potential conflicts of interest or sponsorship that could influence the work reported in this paper.
491492 REFERENCES
493494 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
495 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
496 report. *arXiv preprint arXiv:2303.08774*, 2023.497 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
498 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.500 Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
501 with large language models. *Nature*, 624(7992):570–578, 2023.503 Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
504 can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
505 Improving language models by retrieving from trillions of tokens. In *International conference on
506 machine learning*, pp. 2206–2240. PMLR, 2022.507 Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: learning retrosynthetic planning
508 with neural guided a* search. In *International conference on machine learning*, pp. 1608–1616.
509 PMLR, 2020.511 Lun-Chi Chen, Mayuresh Sunil Pardeshi, Yi-Xiang Liao, and Kai-Chih Pai. Application of retrieval-
512 augmented generation for interactive industrial knowledge management via a large language
513 model. *Computer Standards & Interfaces*, 94:103995, 2025.514 Shuan Chen and Yousung Jung. A generalized-template-based graph neural network for accurate
515 organic reactivity prediction. *Nature Machine Intelligence*, 4(9):772–780, 2022.517 Dimitrios Christofidellis, Giorgio Giannone, Jannis Born, Ole Winther, Teodoro Laino, and Matteo
518 Manica. Unifying molecular and textual representations via multi-task language modelling. In
519 *International Conference on Machine Learning*, pp. 6140–6157. PMLR, 2023.520 DeepSeek-AI. Deepseek-r1-distill-llama-70b. <https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B>, 2025a. Distilled Llama-3.3-70B model optimized
521 for reasoning.524 DeepSeek-AI. Deepseek-r1-distill-qwen-32b. <https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B>, 2025b. Distilled Qwen2.5-32B model optimized for
525 reasoning.527 DeepSeek-AI. Deepseek-r1-distill-qwen-7b. <https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B>, 2025c. Distilled reasoning model based on
528 Qwen2.5-7B.531 Carl Edwards, Chi Han, Gawon Lee, Thao Nguyen, Bowen Jin, Chetan Kumar Prasad, Sara
532 Szymkuć, Bartosz A Grzybowski, Ying Diao, Jiawei Han, et al. mclm: A function-infused and
533 synthesis-friendly modular chemical language model. *arXiv preprint arXiv:2505.12565*, 2025.534 Hanyu Gao, Thomas J Struble, Connor W Coley, Yuran Wang, William H Green, and Klavs F
535 Jensen. Using machine learning to predict suitable conditions for organic reactions. *ACS central
536 science*, 4(11):1465–1476, 2018.538 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
539 Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. *arXiv preprint arXiv:2312.10997*, 2(1), 2023.

540 Peter Gedeck, Bernhard Rohde, and Christian Bartels. Qsar- how good is it in practice? comparison
 541 of descriptor sets on an unbiased cross section of corporate data sets. *Journal of chemical*
 542 *information and modeling*, 46(5):1924–1936, 2006.

543

544 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 545 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 546 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

547

548 Shailja Gupta, Rajesh Ranjan, and Surya Narayan Singh. A comprehensive survey of retrieval-
 549 augmented generation (rag): Evolution, current landscape and future directions. *arXiv preprint*
 549 *arXiv:2410.12837*, 2024.

550

551 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
 552 language model pre-training. In *International conference on machine learning*, pp. 3929–3938.
 553 PMLR, 2020.

554

555 Seung Hwan Hong, Seongok Ryu, Jaechang Lim, and Woo Youn Kim. Molecular generative model
 556 based on an adversarially regularized autoencoder. *Journal of chemical information and modeling*,
 556 60(1):29–36, 2019.

557

558 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 559 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

560

561 Ross Irwin, Spyridon Dimitriadis, Jiazen He, and Esben Jannik Bjerrum. Chemformer: a pre-
 562 trained transformer for computational chemistry. *Machine Learning: Science and Technology*, 3
 562 (1):015022, 2022.

563

564 Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
 565 Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In *Proceedings of the*
 565 *2023 Conference on Empirical Methods in Natural Language Processing*, pp. 7969–7992, 2023.

566

567 Wengong Jin, Connor Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic reaction
 568 outcomes with weisfeiler-lehman network. *Advances in neural information processing systems*,
 568 30, 2017.

569

570 YuHe Ke, Liyuan Jin, Kabilan Elangovan, Hairil Rizal Abdullah, Nan Liu, Alex Tiong Heng Sia,
 571 Chai Rick Soh, Joshua Yi Min Tung, Jasmine Chiat Ling Ong, and Daniel Shu Wei Ting. De-
 572 velopment and testing of retrieval augmented generation in large language models—a case study
 573 report. *arXiv preprint arXiv:2402.01733*, 2024.

574

575 Steven M Kearnes, Michael R Maser, Michael Wleklinski, Anton Kast, Abigail G Doyle, Spencer D
 576 Dreher, Joel M Hawkins, Klavs F Jensen, and Connor W Coley. The open reaction database.
 576 *Journal of the American Chemical Society*, 143(45):18820–18826, 2021.

577

578 HKAIR Lab. Hk-o1aw models: Leveraging o1 slow thinking in the development of hong kong legal
 579 large language models. <https://github.com/HKAIR-Lab/HK-O1aw>, 2024.

580

581 Greg Landrum. Rdkit: Open-source cheminformatics software. <https://www.rdkit.org>,
 581 2016. Version as of your usage date.

582

583 Daniel E Levy. *Arrow-pushing in organic chemistry: an easy approach to understanding reaction*
 584 *mechanisms*. John Wiley & Sons, 2017.

585

586 Junkai Li, Yunghwei Lai, Weitao Li, Jingyi Ren, Meng Zhang, Xinhui Kang, Siyu Wang, Peng
 587 Li, Ya-Qin Zhang, Weizhi Ma, et al. Agent hospital: A simulacrum of hospital with evolvable
 587 medical agents. *arXiv preprint arXiv:2405.02957*, 2024.

588

589 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 590 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint*
 590 *arXiv:2501.05366*, 2025.

591

592 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 593 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 593 *arXiv:2412.19437*, 2024.

594 Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
 595 Schwaller. Augmenting large language models with chemistry tools. *Nature Machine Intelligence*, 6(5):525–535, 2024.

596

597 OpenAI. Gpt-4o: Multilingual, multimodal foundation model. <https://openai.com/index/hello-gpt-4o/>, 2024. Released May 2024 (real-time text, vision, and audio inference).

598

599 OpenDFM Team. Chemdfm-13b/8b. <https://github.com/OpenDFM/ChemDFM>, 2024.

600 Open-source chemical LLM models.

601

602 MV Prakash, Ganesh Parab, Vishal Vaddina, Saisubramaniam Gopalakrishnan, et al. Synergistic fu-
 603 sion of graph and transformer features for enhanced molecular property prediction. *arXiv preprint arXiv:2310.03027*, 2023.

604

605 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
 606 and narrowing the compositionality gap in language models. *arXiv preprint arXiv:2210.03350*,
 607 2022.

608

609 Yujie Qian, Zhening Li, Zhengkai Tu, Connor Coley, and Regina Barzilay. Predictive chemistry
 610 augmented with text retrieval. In *Proceedings of the 2023 Conference on Empirical Methods in
 611 Natural Language Processing*, pp. 12731–12745, 2023.

612

613 Qwen Team. Qwen2.5-72b-instruct. <https://huggingface.co/Qwen/Qwen2.5-72B-Instruct>, 2024. Instruction-tuned Qwen2.5 model.

614

615 Qwen Team. Qwen3-32b. <https://huggingface.co/Qwen/Qwen3-32B>, 2025. Large
 616 language model with RAG-friendly architecture.

617

618 RDKit-Book. RDKit: Open-source cheminformatics. https://www.rdkit.org/docs/RDKit_Book.html, 2025a. Accessed: 2025-08-01.

619

620 RDKit-Book. RDKit: Open-source cheminformatics. https://www.rdkit.org/docs/RDKit_Book.html, 2025b. Accessed: 2025-08-01.

621

622 David Rogers and Mathew Hahn. Extended-connectivity fingerprints. *Journal of chemical information and modeling*, 50(5):742–754, 2010.

623

624 Mikołaj Sacha, Mikołaj Błaz, Piotr Byrski, Paweł Dabrowski-Tumanski, Mikołaj Chrominski, Rafał
 625 Łoska, Paweł Włodarczyk-Pruszynski, and Stanisław Jastrzebski. Molecule edit graph attention
 626 network: modeling chemical reactions as sequences of graph edits. *Journal of Chemical Information and Modeling*, 61(7):3273–3284, 2021.

627

628 Hamid Safizadeh, Scott W Simpkins, Justin Nelson, Sheena C Li, Jeff S Piotrowski, Mami
 629 Yoshimura, Yoko Yashiroda, Hiroyuki Hirano, Hiroyuki Osada, Minoru Yoshida, et al. Improving
 630 measures of chemical structural similarity using machine learning on chemical–genetic interactions.
 631 *Journal of chemical information and modeling*, 61(9):4156–4172, 2021.

632

633 Nadine Schneider, Daniel M Lowe, Roger A Sayle, and Gregory A Landrum. Development of a
 634 novel fingerprint for chemical reactions and its application to large-scale reaction classification
 635 and similarity. *Journal of chemical information and modeling*, 55(1):39–53, 2015a.

636

637 Nadine Schneider, Roger A Sayle, and Gregory A Landrum. Get your atoms in order—an open-source
 638 implementation of a novel and robust molecular canonicalization algorithm. *Journal of chemical
 639 information and modeling*, 55(10):2111–2120, 2015b.

640

641 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 642 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

643

644 Philippe Schwaller, Theophile Gaudin, David Lanyi, Costas Bekas, and Teodoro Laino. “found in
 645 translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-
 646 to-sequence models. *Chemical science*, 9(28):6091–6098, 2018.

648 Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A Hunter, Costas
 649 Bekas, and Alpha A Lee. Molecular transformer: a model for uncertainty-calibrated chemical
 650 reaction prediction. *ACS central science*, 5(9):1572–1583, 2019.

651

652 Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhanc-
 653 ing retrieval-augmented large language models with iterative retrieval-generation synergy. *arXiv*
 654 *preprint arXiv:2305.15294*, 2023.

655

656 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 657 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 658 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

659

660 David K Smith. Priority and selectivity rules to help students predict organic reaction mechanisms.
Journal of Chemical Education, 100(3):1164–1178, 2023.

661

662 Yuanbing Song, Jinghua Chen, Wenju Wang, Gang Chen, and Zhichong Ma. Double-head trans-
 663 former neural network for molecular property prediction. *Journal of Cheminformatics*, 15(1):27,
 664 2023.

665

666 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 667 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 668 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

669

670 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 671 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 672 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

673

674 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 675 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. *arXiv*
 676 *preprint arXiv:2212.10509*, 2022.

677

678 Donghan Wang, Xu Dong, Xueyou Zhang, and LiHong Hu. Gadiff: a transferable graph atten-
 679 tion diffusion model for generating molecular conformations. *Briefings in Bioinformatics*, 26(1):
 680 bbae676, 2025a.

681

682 Yu Wang, Chao Pang, Yuzhe Wang, Yi Jiang, Junru Jin, Sirui Liang, Quan Zou, and Leyi Wei.
 683 Mechretro is a chemical-mechanism-driven graph learning framework for interpretable retrosyn-
 684 thesis prediction and pathway planning. *arXiv preprint arXiv:2210.02630*, 2022.

685

686 Zihan Wang, Kangjie Lin, Jianfeng Pei, and Luhua Lai. Reacon: a template-and cluster-based
 687 framework for reaction condition prediction. *Chemical Science*, 16(2):854–866, 2025b.

688

689 Daniel S Wigh, Joe Arrowsmith, Alexander Pomberger, Kobi C Felton, and Alexei A Lapkin. Or-
 690 derly: data sets and benchmarks for chemical reaction data. *Journal of Chemical Information and*
 691 *Modeling*, 64(9):3790–3798, 2024.

692

693 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 694 learning. *Machine learning*, 8:229–256, 1992.

695

696 Nirmalie Wiratunga, Ramitha Abeyratne, Lasal Jayawardena, Kyle Martin, Stewart Massie,
 697 Ikechukwu Nkisi-Orji, Ruvan Weerasinghe, Anne Liret, and Bruno Fleisch. Cbr-rag: case-based
 698 reasoning for retrieval augmented generation in llms for legal question answering. In *Inter-
 699 national Conference on Case-Based Reasoning*, pp. 445–460. Springer, 2024.

700

701 Lin Yao, Wentao Guo, Zhen Wang, Shang Xiang, Wentan Liu, and Guolin Ke. Node-aligned graph-
 702 to-graph: elevating template-free deep learning approaches in single-step retrosynthesis. *JACS*
 703 *Au*, 4(3):992–1003, 2024.

704

705 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 706 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 707 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

702 Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan, Yuliang Yan, Jiatong Li, Weiran Huang,
703 Xiangyu Yue, Wanli Ouyang, et al. Chemllm: A chemical large language model. *arXiv preprint*
704 *arXiv:2402.06852*, 2024.

705

706 Peng-Cheng Zhao, Xue-Xin Wei, Qiong Wang, Qi-Hao Wang, Jia-Ning Li, Jie Shang, Cheng Lu,
707 and Jian-Yu Shi. Single-step retrosynthesis prediction via multitask graph representation learning.
708 *Nature Communications*, 16(1):814, 2025a.

709

710 Zihan Zhao, Bo Chen, Jingpiao Li, Lu Chen, Liyang Wen, Pengyu Wang, Zichen Zhu, Danyang
711 Zhang, Yansi Li, Zhongyang Dai, et al. Chemdfm-x: towards large multimodal model for chem-
712 istry. *Science China Information Sciences*, 67(12):1–2, 2024a.

713

714 Zihan Zhao, Da Ma, Lu Chen, Liangtai Sun, Zihao Li, Hongshen Xu, Zichen Zhu, Su Zhu, Shuai
715 Fan, Guodong Shen, et al. Chemdfm: Dialogue foundation model for chemistry. *arXiv e-prints*,
pp. arXiv–2401, 2024b.

716

717 Zihan Zhao, Bo Chen, Ziping Wan, Lu Chen, Xuanze Lin, Shiyang Yu, Situo Zhang, Da Ma, Zichen
718 Zhu, Danyang Zhang, et al. Chemdfm-r: An chemical reasoner llm enhanced with atomized
719 chemical knowledge. *arXiv preprint arXiv:2507.21990*, 2025b.

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 RELATED WORK**
759760 **A.1.1 RETRIEVAL-AUGMENTED GENERATION IN LLMs**
761

762 RAG can be an effective paradigm for infusing LLMs with non-parametric knowledge (Gao et al.,
763 Gupta et al., 2024; Li et al., 2025), with demonstrated impact in knowledge-intensive domains
764 such as medicine (Li et al., 2024) and law (Wiratunga et al., 2024). By retrieving and conditioning on
765 external documents, RAG significantly improves performance on generation tasks. RAG methods
766 can be broadly categorized into single-round and multi-round strategies. Basic RAG approaches
767 typically retrieves knowledge based solely on the initial query (Guu et al., 2020; Borgeaud et al.,
768 2022). Some works have also explored multi-round retrieval strategies that iteratively refine or
769 rewrite queries across steps (Shao et al., 2023; Jiang et al., 2023), interleave retrieval with reasoning
770 (Trivedi et al., 2022), or utilize multi-stage self-asking mechanisms (Press et al., 2022). Depending
771 on the task, either single-round or multi-round retrieval strategies can be employed.

772 **A.1.2 REINFORCEMENT LEARNING FOR COT REASONING**
773

774 Chain-of-Thought (CoT) reasoning (Trivedi et al., 2022) represents a significant methodological
775 advancement in enhancing the reasoning capabilities of LLMs. This approach prompts models to
776 explicitly generate intermediate reasoning steps before arriving at a final output. Such structured rea-
777 soning processes substantially improve prediction accuracy, as higher-quality intermediate contexts
778 often contribute to more reliable and consistent final results. Reinforcement learning (RL) has also
779 emerged as a powerful technique for improving the reasoning ability of LLMs, particularly in do-
780 mains such as mathematics, where structured reward signals allow models to learn beyond what SFT
781 alone can achieve. Recent developments have introduced RL frameworks with numerical feedback,
782 often relying on online policy optimization algorithms such as Proximal Policy Optimization (Schul-
783 man et al., 2017), Group Relative Policy Optimization (GRPO) (Shao et al., 2024), REINFORCE
784 (Williams, 1992), and Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO) (Yu
785 et al., 2025).

786 **A.1.3 ARTIFICIAL INTELLIGENCE APPLICATIONS IN CHEMISTRY**
787

788 Artificial intelligence has found extensive application in the chemistry domain, using deep learning
789 to learn from large-scale data and thereby accelerating research in complex tasks. The key areas
790 include molecular design, property prediction, and reaction-related applications. In molecular de-
791 sign, the goal is to generate small molecules with desired properties while maintaining synthetic
792 accessibility. Current approaches commonly use language models (Edwards et al., 2025), autoen-
793 coders (Hong et al., 2019), and diffusion models (Wang et al., 2025a), which together enable flexible
794 and targeted compound generation. For molecular property prediction, the task involves forecasting
795 properties based on molecular structure. State-of-the-art methods largely rely on pre-trained
796 Transformer models (Song et al., 2023) and GNNs (Prakash et al., 2023).

797 In reaction-related tasks, forward reaction prediction aims to predict reaction outcomes from given
798 reactants and reagents. Traditional Task-specific models for predicting organic reaction outcomes
799 can be mainly categorized into template-based and template-free methods. Template-based methods
800 integrate machine learning with predefined structural transformation rules, also known as reaction
801 templates, either curated by experts or extracted from atom-mapped datasets (Chen & Jung, 2022;
802 Sacha et al., 2021). In contrast, template-free methods employ data-driven architectures, such as
803 graph neural networks (GNNs) or Transformer-based sequence models, to infer reaction patterns
804 directly from large reaction corpora without relying on explicit templates (Schwaller et al., 2018;
805 Irwin et al., 2022). LLM-based reaction predictors combine chemical text pretraining with Seq2Seq
806 supervised fine-tuning to generate product SMILES from reactant inputs (Christofidellis et al., 2023;
807 Zhao et al., 2024b). Recent advances further integrate reasoning modules to enhance mechanistic
808 fidelity and prediction accuracy (Zhao et al., 2025b). Retrosynthesis planning works in reverse
809 by deducing viable starting materials and intermediates to propose synthetic routes (Wang et al.,
2022; Zhao et al., 2025a; Yao et al., 2024). Meanwhile, reaction condition recommendation seeks
to suggest catalysts, solvents, and other reaction parameters for a given transformation (Gao et al.,
2018; Wang et al., 2025b; Qian et al., 2023).

810 A.2 SUPPLEMENTARY MATERIAL
811812 An anonymous link¹ has been provided to open-source the code and data of our work.
813814 A.2.1 CHAIN-OF-THOUGHT DATASET
815816 Supplementary to Section **CoT Dataset for Reaction Reasoning**.
817818 **Data Generation Script**
819820 The data generation script and associated prompt template for Section **Stage 1: Preliminary Con-**
821 **struction** in the main text, has been made publicly available in *Cot-Gen.py* and *User-Prompt.txt*,
822 respectively.823 **Open-Source Samples**
824825 A curated subset of 100 randomly selected examples is provided in *Open-Source.jsonl* for demon-
826 stration purposes. The full dataset, consisting of 119K (from USPTO-MIT) and 575K (from ORD)
827 reaction reasoning samples, will be released upon the official acceptance of this paper.
828829 A.2.2 TRAINING DEEPSEEK-R1-DISTILL-QWEN-7B
830831 Supplementary to **Stage 2: Distillation and Validation** of **CoT Dataset for Reaction Reasoning** in
832 the main text. We document the experimental setting and training progress of DeepSeek-R1-Distill-
833 Qwen-7B during the CoT dataset construction process.834 **Experimental Settings and Results**
835836 The implementation details are specified in the scripts *SFT-DeepSeek-7B.sh* and *GRPO-DeepSeek-*
837 *7B.sh*. The experiments are run on 8 NVIDIA A800 GPUs.
838839 We record the reward curves during GRPO in Figure 5. We also evaluate the final models after
840 SFT and GRPO, with detailed results presented in Table 5. This is a preliminary study to validate
841 the integration of LLMs and RL for organic reaction prediction. This pilot study, which also yields
842 a dataset of CoT reasoning traces, provides compelling evidence for the viability of our method.
843 However, anticipating the limitations of a 7B model, we proceed with a more powerful DeepSeek-
844 R1-Distill-Qwen-32B in the main experiment.
845846 Figure 5: The reward curve during GRPO training for DeepSeek-R1-Distill-Qwen-7B.
847848 Table 5: The Validity and Exact Match performance of DeepSeek-R1-Distill-Qwen-7B on the
849 USPTO-MIT test set after SFT and GRPO, respectively.
850

	Validity (%)	Exact Match (%)
After SFT	86.4	22.4
After GRPO	91.9	35.9

851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
1001000
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
1

864 A.2.3 TRAINING REACTION TYPE CLASSIFIER
865866 Supplementary to Section **Reaction Type Classifier**.867 **Experimental Settings and Results**
868869 The training and test code, as well as parameter configurations are implemented in *Classifier.py* file.870 We randomly shuffled the raw Schneider-50K dataset and split it into a 40K training set and a 10K
871 validation set. The final classifier achieves a Top-1 accuracy of 94.35% on the validation set.
872873 A.2.4 TRAINING RAG-BASED LLM
874875 **Experimental Settings**
876877 The implementation details are specified in *RAG-Qwen-32B.sh*. All experiments are run on 8
878 NVIDIA A800 GPUs.
879880 A.2.5 TRAINING REASONING-BASED LLM
881882 **Experimental Settings**
883884 The SFT implementation details are specified in *SFT-DeepSeek-32B-1.sh*, *SFT-DeepSeek-32B-2.sh*. The GRPO implementation details are specified in *GRPO-DeepSeek-32B-1.sh* and *GRPO-DeepSeek-32B-2.sh*. All experiments are run on 16 NVIDIA A800 GPUs.
885886 A.3 ADDITIONAL EXPERIMENTS
887888 To facilitate evaluation, we have placed all newly added experimental results in this section.
889890 A.3.1 MAIN RESULTS
891892 We conduct additional comparisons with GPT-4o (marked red) on a sampled set of 500 instances
893 (marked †) from the Open Reaction Database (ORD) test set to validate its performance (in Table 6).
894 We restricted the evaluation to this subset due to API cost constraints. The results indicate that while
895 GPT-4o outperforms DeepSeek-R1, it still trails specialized chemical LLMs.
896897 We also conduct additional experiments for the baseline models using the new retrosynthetic val-
898 idation method (marked red) (in Table 6). Retro Validity assesses whether a plausible retrosyn-
899 thetic route exists based on the given reaction input for products predicted by LLM. It is necessary
900 to note that in our new experiment, Reaction Thinker records retrosynthesis validation for both
901 Reasoning-based and RAG-based LLMs. As a result, the score increases from 92.64% to 93.89%.
902 These results demonstrate the superior Retro Validity of our method.
903904 Table 6: Comparison of our method with various baselines on the task of organic reaction prediction.
905 The results for Molecular Transformer are directly taken from existing work (Wigh et al., 2024). The
906 top results are marked in **bold**.
907

908 Model	Validity (%)	Exact Match (%)	Retro Validity (%)	FTS (%)		
				MORGAN	RDK	AVALON
Chemformer	98.57	88.13	92.91	92.40	94.35	95.12
Molecular Transformer	99.66	85.84	—	—	—	—
GPT-4o †	83.05 †	28.26 †	31.32 †	64.93 †	72.13 †	72.09 †
DeepSeek-R1	68.54	11.68	13.89	55.71	64.09	64.98
Qwen2.5-72B-Instruct	35.27	0.54	1.44	37.46	45.95	46.01
DeepSeek-R1-Distill-Llama-70B	66.42	7.20	8.22	49.06	59.17	59.67
DeepSeek-R1-Distill-Qwen-32B	57.58	6.52	7.83	50.50	61.05	61.05
DeepSeek-R1-Distill-Qwen-14B	43.72	1.69	1.98	32.72	40.92	40.95
DeepSeek-R1-Distill-Qwen-7B	47.74	1.21	1.90	43.50	54.58	53.77
ChemDFM-13B	98.29	52.41	58.60	77.27	82.03	82.15
ChemDFM-8B	97.80	48.02	57.48	74.69	79.85	80.02
Text-Chem-T5	95.67	47.88	53.56	76.45	81.81	81.81
Reaction-Thinker	98.92	89.86	93.89	95.22	96.24	96.37

918 A.3.2 RESULTS ON USPTO-MIT
919

920 We add the evaluation results on the USPTO-MIT test set (in Table 7). Here, we focus on evaluating
921 task-specific models and chemical LLMs, and introduce LocalTransform (Chen & Jung, 2022)
922 (which also demonstrated excellent performance on the USPTO-MIT dataset) as a new baseline.

923 It is worth noting that approximately 65% of the USPTO-MIT test samples already appear in the
924 ORD training set. To ensure a fair comparison, we evaluated Reaction-Thinker in two settings, on
925 the full USPTO-MIT test set, and on a filtered version (marked †) that excludes all samples seen
926 during training.

927
928 Table 7: Performance comparison of our method and various baseline models on the organic reaction
929 prediction task using the USPTO-MIT test set. For task-specific models, we directly report the
930 results (Exact Match) from their original publications.

931 Model	932 Model Type	933 Validity (%)	934 Exact Match (%)	935 FTS (%)		
				MORGAN	RDK	AVALON
933 Chemformer		934 –	935 90.9	936 –	937 –	938 –
934 Molecular Transformer	935 Task-Specific Model	936 –	937 88.6	938 –	939 –	940 –
935 LocalTransform		936 –	937 90.8	938 –	939 –	940 –
936 ChemDFM-13B		937 98.45	938 50.83	939 76.96	940 81.89	941 82.04
937 ChemDFM-8B	938 Chemical LLM	939 98.08	940 48.76	941 74.88	942 80.03	943 80.16
938 Text-Chem-T5		939 98.27	940 50.15	941 76.67	942 81.93	943 81.96
939 Reaction-Thinker	940 –	941 99.04	942 92.13	943 95.92	944 96.91	945 96.98
940 Reaction-Thinker †	941 –	942 99.02 †	943 90.90 †	944 95.40 †	945 96.46 †	946 96.51 †

942 A.3.3 RESULTS ON RETRIEVED AND NON-RETRIEVED SUBSETS
943

944 We extend our evaluation to report baseline and ablation results on both subsets, including
945 Retrieved-case subset (reactions for which at least one similar-case was retrieved) and No-retrieval
946 subset (reactions for which no similar-case was found in the retrieval library) (in Table 8).

947
948 Table 8: The results indicate that RAG-based LLM clearly benefits when similar reaction cases
949 are retrieved, while on both subsets, the Reasoning-based LLM and other baselines show relatively
950 small performance differences.

951 Model	952 Exact Match (%)	
	953 Retrieved-case subset	954 No-retrieval subset
953 Chemformer	954 88.50	955 86.48
954 DeepSeek-R1	955 11.82	956 11.05
955 Qwen2.5-72B-Instruct	956 0.55	957 0.50
956 DeepSeek-R1-Distill-Llama-70B	957 7.17	958 7.33
957 DeepSeek-R1-Distill-Qwen-32B	958 6.58	959 6.25
958 DeepSeek-R1-Distill-Qwen-14B	959 1.61	960 2.05
959 DeepSeek-R1-Distill-Qwen-7B	960 1.08	961 1.79
961 ChemDFM-13B	962 52.93	963 50.09
962 ChemDFM-8B	963 48.37	964 46.46
963 Text-Chem-T5	964 47.91	965 47.84
964 Reaction-Thinker (RAG-based)	965 68.57	966 68.24
965 Reaction-Thinker (Reasoning-based)	966 94.70	967 31.19

968 A.3.4 PERFORMANCE ROBUSTNESS
969

970 We conduct a thorough analysis of base models with varying parameter sizes (e.g., 7B, 8B, 14B,
971 32B) to systematically evaluate performance robustness (in Table 9). We perform analysis on the
972 ORD dataset using the same training and test splits as Reaction-Thinker (32B).

972 The results demonstrate that our method (combining human-chemist-style reasoning and key LLM
 973 methodologies) performs robustly across various model scales, outperforms other chemical LLMs
 974 of similar size (ChemDFM-13B, ChemDFM-8B, and Text-Chem-T5), and shows consistent perfor-
 975 mance improvements as the number of model parameters increases.
 976

977 Table 9: Exact Match performance of RAG-based and Reasoning-based LLMs across various model
 978 parameter sizes on the ORD dataset. The Total Accuracy is the final result obtained by weighting
 979 Qwen3 and DeepSeek-R1-Distill-Qwen at 81.7% and 18.3%, respectively.
 980

Model Scaling	Model	Exact Match (%)	Total Accuracy (%)
32B	Qwen3-32B	94.70	89.86
	DeepSeek-R1-Distill-Qwen-32B	68.24	
14B	Qwen3-14B	91.08	85.89
	DeepSeek-R1-Distill-Qwen-14B	62.73	
8B	Qwen3-8B	90.61	84.53
	DeepSeek-R1-Distill-Qwen-8B	57.39	
7B	Qwen3-7B	89.87	83.69
	DeepSeek-R1-Distill-Qwen-7B	56.12	

A.3.5 RAG ABLATION STUDY

996 We explore how the embedding distance threshold M (which determines what reaction case counts
 997 as similar, and is detailed in **Section 2.2**) affects both the proportion of queries having similar cases
 998 and the RAG pathway performance (in Table 10).
 999

1000 Table 10: Exact Match performance under different RAG thresholds.
 1001

M	Proportion with similar cases (%)	RAG-based Exact Match (%)	Reasoning-based Exact Match (%)	Total Acc (%)
10	81.70	94.70	68.24	89.86
30	92.52	87.33	69.78	86.02
40	94.68	87.99	68.15	86.93
100	99.10	88.94	67.27	88.74

1009 The results show that tight thresholds (e.g. $M=10$) yield high Exact Match (94.70%) but for fewer
 1010 queries, while looser thresholds increase coverage yet degrade accuracy. This highlights the need to
 1011 identify an optimal operating point. Ultimately, we selected $M=10$ in this work because it yields the
 1012 highest overall accuracy (Total Acc).
 1013

A.4 INTERPRETABILITY ANALYSIS

1017 In this section, we try to give a detailed analysis of the interpretability advantages provided by the
 1018 Reaction-Thinker. We elucidate these advantages from two main perspectives.
 1019

A.4.1 HUMAN-CENTERED EXPLANATIONS

1022 Our method generates outputs specifically for human chemists, providing a reasoning process that
 1023 aligns with their professional mindset. It delivers not just a simple answer, but a step-by-step ra-
 1024 tionale. This allows users to quickly grasp the reaction mechanism and assess the credibility of
 1025 prediction by examining the correctness of the reasoning logic. Consequently, our interpretability
 directly serves mechanism-driven organic reaction research, going beyond prediction task.

1026
1027

A.4.2 RELIABILITY OF THE REASONING PROCESS

1028
1029
1030

It is well-known that LLM reasoning hallucinations are common. Even when the final answer is correct, the intermediate chain-of-thought may be unfaithful. We enforce CoT quality through three progressively stringent checks for this task:

1031
1032
1033
1034
1035
1036

- **Format Compliance:** Whether the reasoning follows a standard template.
- **Framework Conformance:** Whether it matches our predefined reasoning framework.
- **Detailed Correctness:** Whether the chain correctly tracks molecular structures, functional groups, and reaction mechanism.

1037
1038
1039

In practice, we concentrate on the first two levels (format and framework) because they can be efficiently filtered using keyword and structural checks during large-scale data cleaning. As detailed in **Section 2.3**, our data pipeline is as follows:

1040
1041
1042
1043
1044
1045
1046
1047

- **Design CoT Template:** We manually designed high-quality CoT templates. We used GPT to generate reasoning chains from selected samples, which were then reviewed and corrected by both human chemists and GPT.
- **Stage-1:** We generated numerous reasoning chains using these templates, and filtered out those violating format or framework requirements.
- **Stage-2:** We used the filtered CoT for SFT. Then we applied RL on the SFT-model, and collected correct reasoning chains as additional training data.

1048
1049
1050

In the analysis of cases where the final product prediction is correct, we find that some reasoning chains contain detail errors including:

1051
1052
1053
1054

- **Incorrect descriptions of molecular structures**
- **Misnaming or mis-functionality of functional groups**
- **Mistakes in the predicted reaction mechanism**

1055
1056
1057

We present a visualization of detailed analyses for two representative cases. One is the CoT Template case (in Figure 6), and the other is a case where the result is correct but the reasoning process contains the various issues listed above (in Figure 7).

1058
1059
1060
1061
1062
1063
1064
1065

Considering that verifying detailed mechanistic correctness at scale is extremely time-consuming, we test on a small sample of 50 chains. We observe that our fully trained model (SFT + RL) contained mechanistic errors in about 20% of the cases where the final product was correct. In contrast, the Stage-1 SFT-model had a significantly higher error rate of 40-60%. This indicates that our carefully constructed data and effective training methodology substantially reduce mechanistic errors while improving prediction accuracy. In other words, the explanations generated by Reaction-Thinker are highly consistent with the correct predictions, highlighting the reliability of the reasoning process.

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

{Analyzing the given reactants and reagents}

The reactants and reagents include CN(C)c1ccc(-c2cnc3ccc(O[Si](C)(C)C(C)(C)C)cc3n2)cc1, a molecule with a central aromatic ring substituted with a pyridine moiety, and [F-], a fluoride ion.

Analyze the reaction inputs

Verified as correct

{Hypothesizing the possible reaction mechanism}

The reaction may involve the following reaction centers: The silicon atom in the silyl ether group and its attached oxygen atom; The incoming fluoride ion interacts with the silicon. The reaction may include the transformation of a silyl ether to a hydroxyl group. This process typically involves a deprotection reaction where the silyl protecting group is removed, exposing the original alcohol. Here, the fluoride ion ([F-]) may act as a nucleophile in the mechanism, which is common for desilylation reactions.

Predict reaction mechanism

Verified as correct

{Predicting possible reactions}

Here are the possible mechanistic steps of this reaction. **Nucleophilic attack**: The fluoride ion attacks the silicon atom of the silyl ether. Silicon has a high affinity for fluorine due to its ability to form strong Si-F bonds. **Cleavage of Si-O bond**: As the Si-F bond forms, the Si-O bond is weakened and subsequently cleaved. This releases the Si group (usually as a volatile SiF compound), and the hydroxyl group is restored. **Reformation of hydroxyl group**: With the removal of the silyloxy group, a hydrogen from the solvent or environment can bond to the oxygen, completing the transformation to the hydroxyl group.

Predict reaction pathway

Verified as correct

{Validating the reaction pathway}

Fluoride ion ([F-]) acts as a nucleophile and attacks the silicon atom in the TBDMS group. Upon attack by fluoride, the silicon center forms a pentavalent transition state, which is relatively stable because silicon can accommodate five bonds due to its size and electronic structure. This intermediate is often depicted with a negatively charged fluoride attached to silicon, briefly forming a complex where the oxygen-silicon bond is weakened. As the intermediate collapses, the Si-O bond between the silyl group and the oxygen atom is cleaved, breaking the silyl ether linkage and releasing a free alcohol (-OH). After the Si-O bond has been cleaved, the molecule is left with a free hydroxyl group (-OH) in place of the silyl ether. The Si-F bond formation results in the formation of tert-butyldimethylsilyl fluoride (TBSF) as a byproduct. TBSF is relatively stable and does not interfere with the reaction further.

Alternative Possibilities

Verified as correct

{Considering alternative possibilities}

The first possible reaction is that the fluoride ion could attack the electron-deficient aromatic ring near the nitrogen atoms, potentially displacing a substituent in a nucleophilic aromatic substitution (SNAr) generally requires strong electron-withdrawing groups (e.g., -NO2) ortho or para to the leaving group, which are not present in this molecule. Fluoride is more likely to target the silicon atom in the silyl group due to silicon's affinity for fluoride and the relatively low activation energy required for Si-O bond cleavage. The second possible reaction is that the nucleophilic fluoride could theoretically attack the methyl groups attached to the tertiary nitrogen, leading to N-dealkylation and removing one or both methyl groups. However, N-dealkylation would typically require a more electrophilic carbon (such as a benzylic or allylic carbon) or harsher conditions, such as oxidation. In contrast, the silicon-fluoride interaction is very strong, making the silyl ether bond much more susceptible to fluoride attack than the N-C bonds in the tertiary amine. Fluoride ions could, under special conditions, participate in deprotonating an aromatic C-H bond or causing other activation of the aromatic ring. However, Aromatic C-H activation is highly unlikely under these conditions and would generally require a transition-metal catalyst and more stringent conditions. The Si-O bond in the silyl ether is far more reactive toward fluoride under mild conditions. The last possible reaction could be a fluoride-mediated deprotection of a tert-butyldimethylsilyl (TBDMS) group, restoring the free hydroxyl (-OH) functionality in the aromatic compound. The high affinity between silicon and fluoride drives the reaction forward. The formation of the strong Si-F bond makes the reaction favorable and specific for silyl deprotection. The fluoride ion selectively attacks the silicon center due to its high electrophilicity, leaving other functional groups (like the tertiary amine and aromatic rings) untouched.

Confirm the final output

Verified as correct

{Confirming the reasoning process}

After reasoning and validation, CN(C)c1ccc(-c2cnc3ccc([OH])cc3n2)cc1 is confirmed to be the final product.

{Final reasoning result}

Based on the above analysis, the reaction product is CN(C)c1ccc(-c2cnc3ccc([OH])cc3n2)cc1. Instead of the silyl ether group, there is a hydroxyl (-OH) group.

Figure 6: Detailed analyses for the CoT Template case. All critical parts are verified correct.

