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Abstract
Algorithmic recourse aims to provide a recourse
action for altering an unfavorable prediction given
by a model into a favorable one (e.g., loan ap-
proval). In practice, it is also desirable to ensure
that an action makes the real-world outcome better
(e.g., loan repayment). We call this requirement
improvement. Unfortunately, existing methods
cannot ensure improvement unless we know the
true oracle. To address this issue, we propose a
framework for suggesting improvement-oriented
actions from a long-term perspective. Specifi-
cally, we introduce a new online learning task of
assigning actions to a given sequence of instances.
We assume that we can observe delayed feedback
on whether the past suggested action achieved
improvement. Using the feedback, we estimate
an action that can achieve improvement for each
instance. To solve this task, we propose two ap-
proaches based on contextual linear bandit and
contextual Bayesian optimization. Experimental
results demonstrated that our approaches could
assign improvement-oriented actions to more in-
stances than the existing methods.

1. Introduction
Machine learning models have been applied to real-world
critical decision-making tasks like loan approvals, where
predictions significantly impact human users (Rudin, 2019).
Thus, decision-makers are expected to explain how users
can alter undesired predictions (Miller, 2019; Wachter et al.,
2018). Algorithmic Recourse (AR) aims to provide such
information (Ustun et al., 2019). For a classifier h : X → Y ,
a desired class y∗ ∈ Y , and an instance x ∈ X , AR provides
a perturbation vector a that leads the instance x to the
desired class y∗, i.e., h(x+a) = y∗, with a minimum effort
measured by some cost function c. The user corresponding
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to x can regard the perturbation a as a recourse action for
obtaining the desired decision result y∗ from the classifier
h (Karimi et al., 2022). For example, let us consider a
situation where a bank deploys a model h for predicting
whether a loan applicant will repay the loan or default, and
a user x gets the loan application rejected by h. To help
the user x get the loan approved, AR suggests an action
a that changes the prediction result of h from “default” to
“repayment.” We call such an action a as valid with respect
to h, or h-valid for short, across the paper.

While conventional AR methods focus on providing ac-
tions that change the prediction result by a model h (i.e., h-
validity), they often overlook whether the user’s real-world
outcome actually improves. This gap is critical in real-world
applications. For example, in the loan approval scenario,
even if the prediction of h changes from “default” to “re-
payment” by executing the suggested action a, the user x
may fail to repay the loan if the suggested action a does not
actually improve the user’s underlying payment capability.
Such a gap between the prediction result and real-world out-
come can result in degrading the quality and reliability of
decision-making (Hardt et al., 2016; Rosenfeld et al., 2020;
Estornell et al., 2023; Friedbaum et al., 2024).

To fill this gap, (König et al., 2023) introduced improvement
as an additional requirement for AR, which focuses on pro-
viding actions that improve the user’s real-world outcome.
Let h∗ : X → Y be the unknown oracle that returns the real-
world outcome corresponding to a given input. (König et al.,
2023) claims that actions should be valid with respect to the
oracle h∗, which we refer to as h∗-validity to distinguish it
from the validity for the classifier h. While the classifier h
is commonly trained to be a proxy h∗, it is not completely
equivalent to h∗ in practice due to various factors such as
data limitations, model complexity, and evolving real-world
conditions. Thus, since completely filling the gap between
h and h∗ is unrealistic, h-validity does not always imply
h∗-validity. It indicates that ensuring h∗-validity is funda-
mentally difficult for the conventional formulation of AR
that relies solely on h.

To address this issue, this paper aims to introduce a new
framework of AR for ensuring improvement from a long-
term perspective. While the oracle h∗ is unknown, it is
natural to assume that we can observe the outcome h∗(x+a)
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Figure 1. Outline of our proposed framework. For a given instance
x corresponding to a user, our agent suggests an action a that is
estimated as h∗-valid for x. Then, the user determines whether
to execute a based on its cost. If the user executes a, the agent
observes the delayed feedback on its outcome h∗(x+ a). Using
the observed feedback, the agent estimates a h∗-valid action a′ for
the subsequent instance x′. The agent repeats this procedure.

after a user x executes a suggested action a. In the loan
approval example, a bank cannot know in advance whether
a user x will successfully repay the loan. However, once
the loan is approved after executing the suggested action a,
the bank can monitor whether the user x truly manages to
repay it. Thus, we consider a situation in which instances
arrive one by one, and for each instance x, we suggest an
action a and later observe its outcome h∗(x+a), as shown
in Figure 1. Our goal is to suggest h∗-valid actions with
low costs for as many instances as possible by exploring
potentially improvement-oriented actions and exploiting the
sequentially observed outcomes, which we refer to as long-
term improvement. To this end, we aim to train an agent
that can suggest h∗-valid actions for each instance with high
probability as the agent obtains more feedback.

1.1. Our Contributions

In this paper, we propose Algorithmic Recourse for Long-
Term IMprovement (ARLIM), a new framework of AR for
ensuring improvement. Our contributions are summarized
as follows:

• We introduce a new online learning task where an agent
aims to provide h∗-valid actions a1, . . . ,aT to a given
sequence of instances x1, . . .xT . In each round t, the
agent can observe delayed feedback on whether the
suggested action as was h∗-valid for the instance xs

of the past round s < t if xs has executed as. Using
the feedback, the agent estimates an action at that is
h∗-valid for the current instance xt with a low cost.
The goal of the agent is to assign h∗-valid actions with
reasonable costs to as many instances as possible.

• For our formulated task, we propose an efficient ap-
proach based on the contextual linear bandit (CLB). We
show that our task can be reduced to a CLB problem
under delayed feedback (Vernade et al., 2020a) if we

know the costs of candidate actions a for each instance
xt. Then, we apply the existing efficient algorithm
based on LinUCB (Li et al., 2010) to solve our task.
We also show that the average improvement achieved
by our algorithm is guaranteed to increase with high
probability as the number of rounds t progresses.

• We also propose a heuristic approach based on the
contextual Bayesian optimization (CBO) that can be
applicable even if we do not know the cost function c.
We show that our task can be regarded as a CBO prob-
lem under delayed feedback (Verma et al., 2022). To
alleviate the scalability issue of the existing algorithm
based on the Gaussian process, we propose a scalable
algorithm by leveraging a surrogate model based on
the extremely randomized trees (Kim & Choi, 2022).

• Our experimental results on real datasets demonstrated
that our approaches could achieve improvement for
more instances than the existing AR methods. Further-
more, our CLB-based approach could provide actions
with comparable costs to the existing methods in the
situation where we know the cost function c. We also
confirmed that when the cost function c includes un-
certainty, the performance of our CBO-based approach
is close to or better than our CLB-based approach.

1.2. Related Work

Algorithmic Recourse (AR) (Ustun et al., 2019), also referred
to as Counterfactual Explanation (Wachter et al., 2018), has
attracted increasing attention in recent years. While the pre-
vious studies have proposed several extended formulations
of AR (Kanamori et al., 2020; 2021; 2022; 2024), almost
all of the existing AR methods focus on providing actions
that achieve only h-validity (Karimi et al., 2022; Verma
et al., 2020; Guidotti, 2022). To the best of our knowledge,
(König et al., 2023) and (Friedbaum et al., 2024) are the two
exceptions. (König et al., 2023) first introduced the concept
of improvement, or h∗-validity. To evaluate the h∗-validity,
their proposed method uses a causal graph between features
and the target class. However, their method can be applica-
ble only to situations where we are given a true causal graph
of the underlying data (Karimi et al., 2020). (Friedbaum
et al., 2024) trains a verifier that estimates the h∗-validity
of each action. As we demonstrate in the experiments, the
quality of the verifier hinders the accuracy of this approach.

There exist a few papers that study the online setting of AR.
For example, (Creager & Zemel, 2023) proposed the setting
of online AR where the model h is updated dynamically.
However, they focus on updating the model and do not
consider long-term improvement. Another example is the
work by (Cao et al., 2025) that proposed AR for CLB. In
contrast, we study AR for a model h trained by a supervised
learning method and use CLB to suggest h∗-valid actions.
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2. Algorithmic Recourse
For a positive integer n ∈ N, we write [n] := {1, . . . , n}. As
with the previous studies, we consider a binary classification
task between undesired and desired classes. Let X ⊆ RD

and Y = {0, 1} be input and output domains, respectively.
We call a vector x = (x1, . . . , xD) ∈ X an instance, and a
function h : X → Y a classifier. Without loss of generality,
we assume that h(x) = 1 is a desirable result. For example,
in a loan approval task, h(x) = 1 means that a classifier h
predicts a user x has the capability to repay the loan.

For an instance x ∈ X , we define an action as a perturbation
vector a ∈ RD such that x + a ∈ X . Let A(x) be a set
of feasible actions for x such that A(x) ⊆ {a ∈ RD |
x + a ∈ X}. For a classifier h, an action a is valid with
respect to h, or h-valid for an instance x if h(x+ a) = 1.
For x ∈ X and a ∈ A(x), a cost function c : A(x) → R≥0

measures the required effort for x to execute a.

Given a classifier h : X → Y and instance x ∈ X , Algo-
rithmic Recourse (AR) aims to find a feasible action a that
is h-valid and minimizes its cost c(a | x) for x. It can be
formulated as follows (Karimi et al., 2022):

mina∈A(x) c(a | x) s.t. h(x+ a) = 1. (1)

Throughout this paper, we assume that a set of feasible
actions can be expressed as A(x) = [l1, u1]×· · ·×[lD, uD]
with lower and upper bounds ld, ud ∈ R for d ∈ [D]. For
example, we can express an immutable feature (e.g., gender)
by setting ld = ud = 0, and a feature that is allowed to be
only increased (e.g., education level) by ld = 0 and ud > 0,
respectively. We also assume that a classifier h is fixed.

3. Problem Formulation
The goal of this paper is to suggest an action a that achieves
improvement (König et al., 2023) for a given instance x.
Let h∗ : X → Y be the unknown oracle that maps an input
to its real-world outcome. Then, ensuring improvement is
equivalent to satisfying h∗(x+ a) = 1, i.e., h∗-validity. In
practice, however, we can not evaluate the h∗-validity for
arbitrary x and a in advance. Thus, it is fundamentally diffi-
cult for the existing formulation (1) to ensure improvement.

To ensure improvement, we extend the existing problem set-
ting of AR from the long-term perspective. While the oracle
h∗ is unknown, it is natural to assume that we can observe
the outcome h∗(x+ a) after a user x executes a suggested
action a, as described in Section 1. Thus, we consider a
situation in which instances x1,x2, . . . ,xT arrive one by
one. For each instance xt, we suggest an action at and later
observe delayed feedback on its outcome h∗(xt + at), as
shown in Figure 1. By exploring potentially improvement-
oriented actions and exploiting the sequentially observed

outcomes, we aim to suggest actions that are both h- and
h∗-valid with low costs for as many instances as possible,
which we refer to as long-term improvement. In this section,
we formulate this task as an online learning problem.

3.1. Reward Model and Stochastic Delay

To formulate our task, we define our criterion for evaluating
an action at assigned to an instance xt as a reward. In
this paper, we assume that we can observe the outcome
h∗(xt + at) following the unknown distribution P (Y |
X = xt + at) if the suggested action at is executed by xt.
However, the user xt may not execute at if its cost c(at |
xt) is higher than expected (Wu et al., 2024), which makes
its outcome h∗(xt + at) unobservable. To encourage the
user xt to execute the suggested action at, its cost c(at | xt)
should be as low as possible. Therefore, our reward model
needs to take into account the cost c, as well as h∗-validity.

Based on the above motivation, we define our reward model.
Let B(p) be the Bernoulli distribution with p ∈ [0, 1]. Then,
we define a reward Rt ∈ {0, 1} of assigning an action at to
an instance xt of a round t as follows:

Rt ∼ B(E(at | xt) · I(at | xt)), (2)

where E(a | x) and I(a | x) are the probabilities that an
instance x executes a and that an action a achieves im-
provement (i.e., h∗-validity) for x, respectively. Following
the existing work (Fokkema et al., 2024), we define the for-
mer as E(a | x) := exp(−ν · c(a | x)) with a parameter
ν > 0. By definition, the executing probability E(a | x) of
an action a decreases exponentially in its cost c(a | x). We
define the latter as I(a | x) := P (Y = 1 | X = x + a),
which is unknown for us. Note that the we can relax the
definition of the improvement probability I(a | x) to the
deterministic one by setting I(a | x) = h∗(x+ a), which
is a special case of our definition of I(a | x). In a nutshell,
if an action at is h∗-valid for an instance xt and its cost
c(at | xt) is low, its reward Rt takes 1 with high probability.

In our scenario, it is natural that we can not immediately
observe the reward Rt after assigning at to xt. This is
because there are delays until the instance xt executes at

and its outcome h∗(xt+at) becomes observable. To model
such delays, we consider the stochastic delayed feedback
setting (Vernade et al., 2017) where we observe the reward
Rt of a round t at the future round t+Dt, where Dt ∈ N
is a delay variable drawn from an unknown distribution D.

3.2. Overall Problem Setup

Using our reward model, we formulate our task as an online
learning problem between an agent and an environment. In
each round t ∈ [T ], the agent receives an instance xt and
selects an action at among feasible and h-valid actions (i.e.,
at ∈ A(xt) and h(xt + at) = 1). Then, the environment
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samples a reward Rt following our reward model defined in
(2). The goal of the agent is to maximize the mean expected
reward R(T ) := 1

T

∑T
t=1 E[Rt]; that is, to assign actions at

that achieve h∗-validity with low costs to as many instances
xt as possible. Our task, named Algorithmic Recourse for
Long-Term IMprovement (ARLIM), is formulated as follows.

Problem 3.1 (Algorithmic Recourse for Long-Term IM-
provement (ARLIM)). We assume a classifier h : X → Y .
For each round t ∈ {1, 2, . . . , T}, the following procedure
is repeated between an agent and environment:

1. The agent receives an instance xt ∈ X with h(x) = 0
from the environment, and constructs a set of candidate
actions At that are feasible and h-valid for xt.

2. The agent selects an action at ∈ At based on past
observations and sends it to the environment.

3. The environment samples a reward Rt and delay Dt

from B(E(at | xt) · I(at | xt)) and D, respectively.

4. The agent observes a set of the past rewards {Rs |
s+Ds = t}t−1

s=1 that become observable at round t.

The goal of the agent is to maximize the mean expected
reward R(T ) = 1

T

∑T
t=1 E[Rt] over the total rounds T .

By solving Problem 3.1, we are expected to suggest recourse
actions that achieve improvement with reasonable costs for
as many instances as possible. In Sections 4 and 5, we
propose two practical approaches for solving Problem 3.1.

4. Contextual Linear Bandit Approach
In this section, we propose an algorithm to solve Problem 3.1
based on the contextual linear bandit (CLB) approach. We
show that Problem 3.1 can be reduced to the contextual lin-
ear bandit problem under stochastic delayed feedback (Ver-
nade et al., 2020a) if we can compute the executing proba-
bility E of each candidate action a ∈ At. Then, we apply
the existing efficient algorithm based on LinUCB to solve
Problem 3.1 and provide its theoretical analyses. All the
proofs of the statements are presented in Appendix A.

4.1. Basic Idea

To show that Problem 3.1 can be reduced to a CLB problem,
we make some assumptions on the candidate actions At and
the executing probability E. First, to construct At in each
round t, we follow the existing AR methods based on the
prototypes (Van Looveren & Klaise, 2021) or nearest unlike
neighbors (Brughmans et al., 2024). We assume that the
agent is given a fixed set of K instances X̃ = {x̃1, . . . , x̃K}
with h(x̃k) = 1 for any k ∈ [K], which we call recourse
instances. For k ∈ [K], we denote by a

(t)
k := x̃k − xt.

Using X̃ , we construct At as follows:

At = A(xt) ∩ {a(t)
1 . . .a

(t)
K }. (3)

Note that any action a ∈ At is feasible and h-valid for xt

by definition. We also assume that the agent knows the cost
function c and parameter ν. It means that the agent can
compute E(a | xt) for any a ∈ At. Note that any existing
cost function can be used as c, such as ℓ1-norm (Wachter
et al., 2018) or max percentile shift (Ustun et al., 2019).

Under the above assumptions, we show that Problem 3.1
can be reduced to a variant of the CLB problem.

Proposition 4.1. We assume that At of each t ∈ [T ] is
constructed as (3) and the cost function c and parameter ν
are known. Then, Problem 3.1 is reduced to a CLB problem
under stochastic delayed feedback (Vernade et al., 2020a).

Proof (sketch). We denote At = {a1, . . . ,aL}. By def-
inition, there exists a mapping πt : [L] → [K] such that
xt + al = x̃πt(l) for any l ∈ [L]. Let ϕt(al) := E(al |
xt) · eπt(l), where ek ∈ {0, 1}K is the binary vector
where its k-th element is 1 and the others are 0. By defi-
nition, we have I(al | xt) = P (Y = 1 | X = x̃πt(l)).
We denote θ := (P (Y = 1 | X = x̃1), . . . , P (Y =
1 | X = x̃K)) and At := ϕt(at). Then, we have
A⊤

t θ = E(at | xt) · I(at | xt). Therefore, our reward
Rt of the round t can be expressed as Rt ∼ B(A⊤

t θ). Fur-
thermore, ϕt(a)

⊤θ ∈ [0, 1] and ∥ϕt(a)∥2 ≤ 1 hold for
any a ∈ At. The above facts and the definition imply that
Problem 3.1 is reduced to the CLB problem under stochastic
delayed feedback defined in (Vernade et al., 2020a).

Proposition 4.1 shows that Problem 3.1 can be reduced
to the CLB problem under stochastic delayed feedback if
how to construct the candidate actions At is limited to (3)
and the executing probability E is known for the agent. It
implies that we can apply the existing algorithm with a regret
guarantee (Vernade et al., 2020a) to solve Problem 3.1.

4.2. Algorithm

Algorithm 1 presents our algorithm for Problem 3.1 based
on the CLB. As with the proof of Proposition 4.1, we define
ϕt(al) := E(al | xt) · eπt(l). Algorithm 1 is based on
the OTFLinUCB algorithm proposed by (Vernade et al.,
2020a), which is an extension of the well-known LinUCB
algorithm (Abbasi-Yadkori et al., 2011) to the stochastic
delayed feedback setting. In the delayed feedback setting, it
is not suitable to wait for the rewards of all the past actions
until they are observed. Hence, the OTFLinUCB algorithm
uses a sliding window of size m and ignores an unobserved
reward Rs whose delay Ds exceeds m by regarding Rs =
0. Using such censored rewards, Algorithm 1 estimates
the unknown parameter θ by ℓ2-regularized least squares
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Algorithm 1 LinUCB
Input: Set of K recourse instances X̃ , window parameter m > 0,

regularization parameter λ > 0, and confidence level δ > 0.
1: V −1

1 ← λ · I; b1 ← 0;
2: for t = 1, . . . , T do
3: Receive xt and construct At by (3);

4: V −1
t ← V −1

t−1 +
V −1
t−1At−1A

⊤
t−1V

−1
t−1

1+A⊤
t−1V

−1
t−1At−1

;

5: θ̂t ← V −1
t bt;

6: αt ←
√
λ+

√
2 · log (1/δ) +K · log (1 + t/Kλ);

7: κt ← 2 · αt +
∑t−1

s=t−m A⊤
s V

−1
t As;

8: at ← argmaxa∈At ϕt(a)
⊤θ̂t + κt · ϕt(a)

⊤V −1
t ϕt(a);

9: Suggest at and set At ← ϕt(at);
10: Observe {Rs | s+Ds = t}t−1

s=t−m;
11: bt+1 ← bt +

∑t−1
s=t−m Rs · I[s+Ds = t] ·As;

12: end for

with a given parameter λ > 0. Then, it determines an
action at with the estimated parameter θ̂ and a modified
upper confidence bound that considers the bias caused by
unobserved rewards.

4.3. Theoretical Analysis

Using the regret bound of the OTFLinUCB algorithm (Ver-
nade et al., 2020a), we show a lower bound on the mean
expected reward R(T ) that can be achieved by Algorithm 1.

Proposition 4.2. Algorithm 1 satisfies the following inequal-
ity with probability 1− δ for any δ > 0:

R(T ) ≥ R∗
T − ΓT , (4)

where R∗
T = 1

T

∑T
t=1 maxa∈At

E(a | xt) · I(a | xt),
ΓT = 4

T ·τm (αT

√
2KT log γT + mK log γT ), τm =

P (D1 ≤ m), αT =
√
λ +

√
2 log (1/δ) +K log γT , and

γT = 1 + T/Kλ.

Proposition 4.2 implies that the mean expected reward at-
tained by Algorithm 1 converges to its upper bound with
high probability as increasing T . The first term R∗

T is the
empirical average of the best expected reward, which is
the upper bound of R(T ). In addition, we have roughly
ΓT = O(log T/

√
T ) and thus ΓT converges to 0 as increas-

ing T . This result indicates that the longer our algorithm
is deployed, the higher its probability of suggesting actions
that achieve improvement with reasonable costs is.

Note that the delay distribution D impacts the term τm in our
bound of Proposition 4.2. This term increases as the delay
D1 ∼ D for the first instance x1 tends to be smaller than
the window parameter m of our algorithm, which makes
our bound better. In essence, the more quickly feedback is
received, the better our algorithm performs. In addition, if
the delay Dm of each round t is some fixed value and we
know it in advance, we can set our window parameter m to

that value. This adaptation would likely lead to improved
performance compared to the stochastic delay setting.

Time Complexity. We can analyze the time complexity
of Algorithm 1 in each round t ∈ [T ] as follows. From the
equation (3) and assumption on A(xt), we can construct
At in O(K ·D) time. In addition, by the definition of ϕt,
we can compute (i) V −1

t and θ̂t in O(K2); (ii) κt and bt+1

in O(m); (iii) at in O(K). In total, the time complexity of
Algorithm 1 in each round is O(K ·D +K2 +m).

5. Contextual Bayesian Optimization
Approach with BwO Forest

In this section, we propose an algorithm to solve Problem 3.1
based on the contextual Bayesian optimization (CBO) ap-
proach. In contrast to the CLB approach in Section 4, this
approach does not require the executing probability E to
be known. To this end, we regard Problem 3.1 as the con-
textual Bayesian optimization problem under stochastic de-
layed feedback (Verma et al., 2022). Then, we propose
a UCB-based heuristic algorithm that leverages extremely
randomized trees as a surrogate model (Kim & Choi, 2022).

5.1. Basic Idea

Let g : X × A → [0, 1] be an unknown function such that
Rt = g(xt,at)+εt, where A = A1∪· · ·∪AT and εt ∈ R
is a sub-Gaussian noise. Then, we can regard Problem 3.1 as
the CBO problem under stochastic delayed feedback (Verma
et al., 2022) with the unknown objective function g. It indi-
cates that we are expected to apply the existing algorithm
that is based on the Gaussian process (GP) and has the-
oretical guarantees (Verma et al., 2022) to Problem 3.1.
Unfortunately, in our preliminary experiments shown in Ap-
pendix B, we confirmed that the existing algorithm based
on GP was significantly slower compared to Algorithm 1.

To improve scalability, we employ the bagging with over-
sampling (BwO) forest (Kim & Choi, 2022) as a surrogate
model instead of GP. The BwO forest is a variant of tree-
based ensemble models that elaborates prediction uncer-
tainty estimation. Tree-based surrogate models are known
to have practical merits over GP due to their scalability and
ability to naturally deal with categorical features (Hutter
et al., 2011). While the BwO forest was originally pro-
posed for sequential model-based optimization, it is also
suitable as a surrogate model in the CBO problem since it
can estimate the mean and variance of the reward for an
instance-action pair (x,a) ∈ X ×A.

Each decision tree f : X × A → [0, 1] in the BwO forest
is trained by bootstrap sampling with oversampling. In
each node of the tree, both a split feature and threshold
are selected randomly, as with the extremely randomized
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Algorithm 2 BwOUCB
Input: Set of K recourse instances X̃ , window parameter m > 0,

and number of trees B.
1: Initialize a BwO forest F = {f1, . . . , fB} with B trees;
2: Z ← ∅;
3: for t = 1, . . . , T do
4: Receive xt and construct At;
5: κt ←

√
(1/t) · log t;

6: at ← argmaxa∈At µ̂(xt,a;F) + κt · σ̂(xt,a;F);
7: zt ← (xt,at, 0); Z ← Z ∪ {zt};
8: Suggest at;
9: Observe {Rs | s+Ds = t}t−1

s=t−m;
10: for s = t−m, . . . , t− 1 do
11: if s+Ds = t and Rs = 1 then
12: Z ← Z \ {zs}; Z ← Z ∪ {(xs,as, Rs)};
13: end if
14: end for
15: Train F using Z;
16: end for

trees (Geurts et al., 2006). Such a randomized strategy is
known to improve scalability without significantly degrad-
ing generalization performance. Using an ensemble of B
trained trees F = {f1, . . . , fB}, the BwO forest estimates
the mean and variance of the reward of (x,a) as follows:

µ̂(x,a;F) =
1

B

∑B

b=1

∑Lb

l=1
µb,l · πb,l(x,a),

σ̂2(x,a;F) =
1

B

∑B

b=1

∑Lb

l=1

(
σ2
b,l + µ2

b,l

)
· πb,l(x,a)

− (µ̂(x,a;F))2,

where Lb is the total number of leaves in fb, πb,l : X ×A →
{0, 1} is the indicator whether a sample (x,a) reaches the
leaf l of fb, and µb,l and σ2

b,l are the mean and variance of
the training samples that reach the leaf l of fb, respectively.

5.2. Algorithm

Algorithm 2 presents our algorithm for Problem 3.1 based on
the CBO with the BoW forest. Algorithm 2 is an extension
of the GP-UCB-SDF algorithm proposed by (Verma et al.,
2022). We replace its surrogate model based on GP with
that based on the BoW forest (Kim & Choi, 2022) so as
to handle our problem. The surrogate model F is trained
using the past histories Z , which is a set of tuples consisting
of an instance xs, action as, and reward Rs for the past
round s < t. As with OTFLinUCB, GP-UCB-SDF uses a
sliding window of size m and replaces unobserved rewards
whose delays exceed m with Rs = 0. In each round t,
Algorithm 2 determines an action at based on the upper
confidence bound score estimated by the BwO forest F .

5.3. Comparison to Contextual Linear Bandit Approach

Here, we discuss the pros and cons of Algorithm 2 compared
to Algorithm 1. One main advantage of Algorithm 2 is that

it does not require the executing probability E to be known,
which is often difficult to estimate due to user preferences
and uncertainties in the cost function c (Laugel et al., 2023;
Toni et al., 2024). The BwO forest in Algorithm 2 estimates
both E and I from past observations. We also note that
Algorithm 2 has no constraints on constructing At.

However, Algorithm 2 lacks the theoretical guarantees that
Algorithm 1 has, as shown in Proposition 4.2. Additionally,
Algorithm 2 requires retraining the BwO forest F in each
round, which is computationally expensive compared to the
ℓ2-regularized least squares of Algorithm 1. In summary,
Algorithm 2 is more practical in situations where estimat-
ing E is challenging, such as when the user’s demographic
features are diverse (Tominaga et al., 2024; Venkatasubra-
manian & Alfano, 2020; Sullivan & Verreault-Julien, 2022).
In contrast, Algorithm 1 is more suitable for tasks with less
uncertainty due to its theoretical guarantees and efficiency.

6. Experiments
To investigate the efficacy of our framework, we conducted
experiments on real datasets. All the code was implemented
in Python 3.10 and is available at https://github.
com/kelicht/arlim. All the experiments were con-
ducted on macOS Sequoia with Apple M2 Ultra CPU and
128 GB memory. Our experimental evaluation aims to an-
swer the following questions: (i) How are the improvement
and cost of the recourse actions suggested by our algorithms
compared to the existing baselines? (ii) Can our algorithms
become to suggest better actions as the round progresses?
(iii) In which situations is the performance of our CBO-
based algorithm (Algorithm 2) close to that of our CLB-
based algorithm (Algorithm 1)? Due to page limitations, the
complete results are shown in Appendix B.

6.1. Experimental Settings

Datasets. We used three real-world datasets: Credit (N =
30000, D = 13) (Yeh & hui Lien, 2009), Diabetes (N =
769, D = 8) (Dua & Graff, 2017), and COMPAS (N =
6167, D = 9) (Angwin et al., 2016). All the categorical
features in each dataset were one-hot encoded, and all the
numerical features were normalized to [0, 1]. Details of the
datasets and our preprocessing are shown in Appendix B.

Protocol. Since we do not know the oracle h∗ in each real
dataset, we can not evaluate the outcome h∗(xt + at) if we
allow arbitrary actions xt for at. However, if there exists a
sample (x̃, y) in the dataset such that x̃ = xt + at, we can
regard the label y of x̃ as a proxy for the oracle outcome
h∗(xt + at). Based on this idea, we restrict the candidate
actions at ∈ At to those that can shift to one of the recourse
instances x̃ ∈ X̃ . More precisely, we randomly collect
some instances x̃ from the dataset as X̃ and construct At
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Figure 2. Experimental results of baseline comparison under the noiseless cost evaluation situation. Our LinUCB and BwOUCB attained
higher improvement than the baselines, and their the mean expected reward increased as the round progressed.
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Figure 3. Experimental results of baseline comparison under the noisy cost evaluation situation with the noise level ξ = 0.25. Compared
to the results under the noiseless situation, we observed that the performance of BwOUCB was better than or close to that of LinUCB.

by following (3) with X̃ . By constraining each method to
select an action at from At, we can evaluate h∗(xt + at)
by the label y of x̃ such that x̃ = xt + at. To simulate the
noise of the outcome, we set its improvement probability
I(at | xt) by adding a random noise ε to y and scaling it in
[0, 1]. In summary, we conducted the following procedures:

1. We randomly split the dataset S = {(xn, yn)}Nn=1 into
the training set Str, recourse set Sre, and test set Ste

with a ratio of 2 : 1 : 1.

2. We trained a classifier h on the training set Str. As
h, we used a random forest (RF) with 100 trees or a
two-layer neural network (NN) with 100 neurons.

3. We constructed the recourse instance set X̃ with max-
imum size K = 200 by randomly collecting the in-
stances xn in the recourse set Sre such that h(xn) = 1.
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Figure 4. Sensitivity analyses of the noise level ξ. BwOUCB does
not use the executing probability E, its performance is independent
of ξ. We can see that the performance of BwOUCB became close
to or better than the other methods as ξ increased.

For each xn ∈ X̃ , we set P (Y = 1 | X = xn) =
max(min(yn + 0.1 · ε, 1.0), 0.0), where ε ∼ N (0, 1).

4. We obtained a sequence of instances x1, . . . ,xT with
T = 1000 by randomly sampling the instances xn in
the test set Ste such that h(xn) = 0 and yn = 0. Then,
we started the procedure of Problem 3.1.

We repeated the above procedures 10 times. We used the
ℓ1-norm ∥a∥1 as the cost function c and set ν = 1/D for
computing the executing probability E. In each round t ∈
[T ], all the methods receive the instance xt and its candidate
actions At constructed by (3). In addition, the methods other
than BwOUCB receive the execution probability E(a | xt)
for each a ∈ At. As the delay distribution D, we used the
geometric distribution with the parameter 0.2. We measured
the average of (i) improvement (i.e., h∗-validity), (ii) cost
c(at | xt), and (iii) mean expected reward (MER) R(t) in
each round t. Due to the page limitation, we report the
results on RF here, and those on NN in Appendix B.

Baseline and Our Algorithm. To the best of our knowl-
edge, there is no existing AR method that ensures improve-
ment from the long-term perspective. Thus, we compare
our algorithms (LinUCB and BwOUCB) with two existing
methods as baselines. One baseline is a method that max-

imizes E over At, which is equivalent to the standard AR
method that solves the problem (1). By the definition of At,
it can be regarded as the existing AR method based on the
class prototypes (ProtoAR) (Van Looveren & Klaise, 2021).
Another baseline is the trustworthy actionable perturbation
(TAP) (Friedbaum et al., 2024) that solves (1) under the con-
straint on trustworthiness, which is the true label probability
of x+ a. The trustworthiness is estimated using a verifier
that is trained to predict whether a given instance is an ad-
versarial example. For both LinUCB and BwOUCB, we set
m = 10. We also set λ = 20.0 for LinUCB and B = 50 for
BwOUCB, respectively. The sensitivity analyses of these
parameters are shown in Appendix B.

6.2. Comparison under Noiseless Cost Evaluation

First, we evaluate the improvement and cost of actions ob-
tained by each method. Figure 2(a) presents the results on
the average improvement and cost. From Figure 2(a), we
observe that (i) both LinUCB and BwOUCB stably outper-
formed the baselines in terms of the average improvement
on all the datasets; (ii) LinUCB attained comparable aver-
age cost to the baselines. These results indicate that our
methods could suggest actions that stably achieve higher
improvement than the baselines, and our LinUCB achieved
higher improvement while maintaining comparable costs.

Figure 2(b) shows the average mean expected reward of
each round. From Figure 2(b), we see that the average
mean expected rewards of LinUCB and BwOUCB increased
as the number of rounds progressed, which are consistent
with Proposition 4.2. Therefore, we confirmed that our
methods became to suggest better actions in the sense of
their improvement and cost as the round progressed.

6.3. Comparison under Noisy Cost Evaluation

Next, we examine each method under the noisy cost eval-
uation situation. To simulate the uncertainty in the cost
evaluation, we added a noise ξ · ε to the execution probabil-
ity E(a | xt) and scaled it in [0, 1], where ξ ≥ 0 is a noise
level parameter and ε ∼ N (0, 1). Such noisy information
on E was passed to methods other than BwOUCB. Figure 3
presents the results with the noise level ξ = 0.25. From
Figure 3(a), we can see that both LinUCB and BwOUCB
tended to achieve higher average improvement than the base-
lines, as with the results shown in Figure 2(a). On the other
hand, the gap between the average cost of BwOUCB and the
others decreased compared to the results under the noiseless
situation. Furthermore, from Figure 3(b), we observe that
BwOUCB achieved higher average mean expected rewards
than LinUCB on all the datasets in the final round.

Finally, we analyze the sensitivity of the performance of
each method to the noise level ξ. Figure 4 shows the results
of the sensitivity analyses of the average improvement, cost,
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and mean expected reward in the final round by varying
ξ. Note that since BwOUCB does not use the executing
probability E, its performance is independent of the noise
level ξ. From Figures 4(a) and 4(b), we can see that the av-
erage improvement and cost of LinUCB were worse than or
close to those of BwOUCB as ξ increased. In addition, from
Figure 4(c), we observed that the average mean expected
reward of LinUCB became lower than BwOUCB as ξ in-
creased. In summary, we confirmed that the performance of
BwOUCB was close to or better than that of LinUCB in the
situation where the cost evaluation includes uncertainty.

7. Conclusion
This paper proposed algorithmic recourse for long-term
improvement (ARLIM), a new framework for providing
recourse actions that alter not only the undesired prediction
results but also improve the real-world outcomes. We intro-
duced a new problem setting in which instances arrive one
by one, and the agent suggests an action for each instance
and later observes delayed feedback on its outcome. By
exploiting such feedback, we aimed to train an agent for
suggesting an action that improves the real-world outcome
for each instance. We formulated our task as an online learn-
ing problem and proposed two practical algorithms based
on contextual linear bandit and contextual Bayesian opti-
mization. Experimental results demonstrated the efficacy of
our methods in comparison to the existing baselines.

Limitations and Future Work

Our framework has some limitations that should be ad-
dressed in future work. One major limitation is the inherent
challenges posed by the long-term nature of recourse im-
plementation. There exist real-world applications where it
may take several years until we observe the feedback on
the outcomes of suggested recourse actions. Such situations
correspond to the case where the delay variable Dt ∼ D
of each round t is large. Because such a long-delayed feed-
back may lead to a lack of sufficient data for training the
agent, it can be problematic for our framework. Note that
we are the first to demonstrate the feasibility of suggesting
improvement-oriented actions by exploiting feedback, even
when only delayed feedback is available. Even if it takes
a long time to observe the first feedback, our framework is
expected to work well once it starts to observe feedback.
However, to ensure improvement-oriented actions for in-
stances in the early rounds, we need to address long delays
(e.g., by exploiting intermediate observations (Vernade et al.,
2020b; Esposito et al., 2023)), but such an extension of our
framework is non-trivial and remains a challenge.

In addition, there are several interesting directions to make
our framework more practical. First, while we assume that
a classifier h is fixed over all the rounds, it is often updated

over time (Upadhyay et al., 2021). While we empirically
confirmed that our methods work better than the baselines
even in the scenario where the classifier is frequently up-
dated in Appendix B.5, extending our framework so as to
adaptively handle such a non-stationary setting is interest-
ing. Second, our framework implicitly assumes that users
execute their suggested actions completely if they accept to
execute the actions. In practice, users may execute the ac-
tions partially or incorrectly (Pawelczyk et al., 2023), which
can lead to a gap between the observed feedback and the
true outcomes. Finally, deriving better theoretical guaran-
tees for our algorithms is important for practical applica-
tions. While we show a theoretical bound of Algorithm 1
in Proposition 4.2, it depends on the total number of arms
K, which is weak in the literature of CLB (Vernade et al.,
2020a). It is also important to derive a theoretical guarantee
for Algorithm 2 by extending the existing regret bound of
CBO (Verma et al., 2022). Furthermore, since our model
and algorithm are direct applications of the previous studies
on CLB and CBO, it is an interesting direction for future
research to design more suited models and algorithms for
Problem 3.1 (Bouneffouf et al., 2020; Wang et al., 2023).
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Karimi, A.-H., von Kügelgen, J., Schölkopf, B., and Valera,
I. Algorithmic recourse under imperfect causal knowl-
edge: a probabilistic approach. In Proceedings of the 34th
Conference on Neural Information Processing Systems,
pp. 265–277, 2020.

Karimi, A.-H., Barthe, G., Schölkopf, B., and Valera, I. A
survey of algorithmic recourse: Contrastive explanations
and consequential recommendations. ACM Computing
Surveys, 55(5):1–29, 2022.

Kim, J. and Choi, S. On uncertainty estimation by tree-based
surrogate models in sequential model-based optimization.
In Proceedings of The 25th International Conference
on Artificial Intelligence and Statistics, pp. 4359–4375,
2022.

König, G., Freiesleben, T., and Grosse-Wentrup, M.
Improvement-focused causal recourse (ICR). In Pro-
ceedings of the 37th AAAI Conference on Artificial Intel-
ligence, pp. 11847–11855, 2023.

10

http://archive.ics.uci.edu/ml


Algorithmic Recourse for Long-Term Improvement

Laugel, T., Jeyasothy, A., Lesot, M.-J., Marsala, C., and
Detyniecki, M. Achieving diversity in counterfactual
explanations: a review and discussion. In Proceedings of
the 2023 ACM Conference on Fairness, Accountability,
and Transparency, pp. 1859–1869, 2023.

Li, L., Chu, W., Langford, J., and Schapire, R. E. A
contextual-bandit approach to personalized news arti-
cle recommendation. In Proceedings of the 19th Inter-
national Conference on World Wide Web, pp. 661–670,
2010.

Miller, T. Explanation in artificial intelligence: Insights
from the social sciences. Artificial Intelligence, 267:1–38,
2019.

Pawelczyk, M., Datta, T., van-den Heuvel, J., Kasneci,
G., and Lakkaraju, H. Probabilistically robust recourse:
Navigating the trade-offs between costs and robustness
in algorithmic recourse. In Proceedings of the 11th
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=sC-PmTsiTB.

Rosenfeld, N., Hilgard, A., Ravindranath, S. S., and Parkes,
D. C. From predictions to decisions: Using lookahead
regularization. In Proceedings of the 34th Conference on
Neural Information Processing Systems, pp. 4115–4126,
2020.

Rudin, C. Stop explaining black box machine learning
models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence, 1:206–215,
2019.

Sullivan, E. and Verreault-Julien, P. From explanation to rec-
ommendation: Ethical standards for algorithmic recourse.
In Proceedings of the 2022 AAAI/ACM Conference on AI,
Ethics, and Society, pp. 712–722, 2022.

Tominaga, T., Yamashita, N., and Kurashima, T. Reassess-
ing evaluation functions in algorithmic recourse: An em-
pirical study from a human-centered perspective. In Pro-
ceedings of the 33rd International Joint Conference on
Artificial Intelligence, pp. 7913–7921, 2024.

Toni, G. D., Viappiani, P., Teso, S., Lepri, B., and Passerini,
A. Personalized algorithmic recourse with preference
elicitation. Transactions on Machine Learning Research,
2024. URL https://openreview.net/forum?
id=8sg2I9zXgO.

Upadhyay, S., Joshi, S., and Lakkaraju, H. Towards ro-
bust and reliable algorithmic recourse. In Proceedings of
the 35th Conference on Neural Information Processing
Systems, pp. 8512–8519, 2021.

Ustun, B., Spangher, A., and Liu, Y. Actionable recourse in
linear classification. In Proceedings of the 2019 Confer-
ence on Fairness, Accountability, and Transparency, pp.
10–19, 2019.

Van Looveren, A. and Klaise, J. Interpretable counterfactual
explanations guided by prototypes. In Proceedings of
the Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 650–665, 2021.

Venkatasubramanian, S. and Alfano, M. The philosoph-
ical basis of algorithmic recourse. In Proceedings of
the 2020 Conference on Fairness, Accountability, and
Transparency, pp. 284–293, 2020.

Verma, A., Dai, Z., and Low, B. K. H. Bayesian optimization
under stochastic delayed feedback. In Proceedings of the
39th International Conference on Machine Learning, pp.
22145–22167, 2022.

Verma, S., Boonsanong, V., Hoang, M., Hines, K. E., Dick-
erson, J. P., and Shah, C. Counterfactual explanations and
algorithmic recourses for machine learning: A review.
arXiv, arXiv:2010.10596, 2020.
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A. Omitted Proofs
A.1. Proof of Proposition 4.1

We show that Problem 3.1 is an instance of the contextual linear bandit problem under stochastic delayed feedback defined
as follows (Vernade et al., 2020a).

Problem A.1 (Contextual Linear Bandit Problem under Stochastic Delayed Feedback (Vernade et al., 2020a)). We assume a
number of rounds T ∈ N and unknown parameter θ ∈ RP with ∥θ∗∥2 ≤ 1. For each round t ∈ [T ], the following procedure
is repeated between an agent and environment:

1. The agent receives a set of Kt candidate arms Vt ⊂ RP with v⊤θ ∈ [0, 1] and ∥v∥2 ≤ 1 for any v ∈ Vt.

2. The agent selects an arm Vt ∈ Vt based on past observations and sends it to the environment.

3. The environment samples a reward Rt ∈ {0, 1} and delay Dt ∈ N from B(V ⊤
t θ) and D, respectively.

4. The agent observes a set of the past rewards {Rs | s+Ds = t}t−1
s=1 that becomes observable at round t.

The goal of the agent is to minimize the cumulative regret regret(T ) =
∑T

t=1

(
θ⊤V ∗

t − θ⊤Vt

)
, where V ∗

t =
argmaxv∈Vt

θ⊤v.

Proof of Proposition 4.1. For Problem 3.1, we denote At = {a1, . . . ,aL}. Recall that there exists a mapping πt : [L] →
[K] such that xt + al = x̃πt(l) for any l ∈ [L] by definition. Let ϕt(al) = E(al | xt) · eπt(l), where ek ∈ {0, 1}K is the
binary vector where its k-th element is 1 and the others are 0. By definition, we have I(al | xt) = P (Y = 1 | X = x̃πt(l)).
We denote θ = (P (Y = 1 | X = x̃1), . . . , P (Y = 1 | X = x̃K)) and At = ϕt(at) for at in Problem 3.1. Then,
we have A⊤

t θ = E(at | xt) · I(at | xt). Therefore, our reward Rt of the round t can be expressed as Rt ∼ B(A⊤
t θ).

Furthermore, ϕt(a)
⊤θ ∈ [0, 1] and ∥ϕt(a)∥2 ≤ 1 hold for any a ∈ At. Finally, minimizing our mean expected reward

R(T ) is equivalent to maximizing
∑T

t=1

(
θ⊤A∗

t − θ⊤At

)
, where A∗

t = argmaxal∈At
θ⊤ϕt(al). In summary, we can see

that Problem 3.1 is reduced to Problem A.1 by replacing (i) Vt with {ϕt(a1), . . . , ϕt(aL)}; (ii) Vt with ϕt(at); (iii) θ with
(P (Y = 1 | X = x̃1), . . . , P (Y = 1 | X = x̃K)), respectively.

A.2. Proof of Proposition 4.2

Proof. By definition, E[Rt] = E(at | xt) · I(at | xt) holds. Let R∗
t = maxa∈At

E(a | xt) · I(a | xt) be the maximum
expected reward in a round t. Then, by applying Theorem 2 of (Vernade et al., 2020a), we have

T∑
t=1

(R∗
t − E[Rt]) ≤

4

τm
·

(
αT

√
2KT log

(
Kλ+ T

Kλ

)
+mK log

(
Kλ+ T

Kλ

))

⇐⇒ 1

T

T∑
t=1

R∗
t −

1

T

T∑
t=1

E[Rt] ≤
4

τm
· 1
T

·

(
αT

√
2K log

(
Kλ+ T

Kλ

)
+mK log

(
Kλ+ T

Kλ

))

⇐⇒ R∗
T −R(T ) ≤ 4

τm
· ΓT

⇐⇒ R(T ) ≥ R∗
T − 4

τm
· ΓT ,

which concludes the proof.

B. Additional Experimental Results
B.1. Details of Datasets and Preprocessing

Table 1 presents the details on the value type, minimum value, mean value, maximum value, and immutability of each
feature of the datasets that we used in our experiments. For numerical immutable features such as age in each dataset, we
transformed them into binary features by comparing them with their medians. All the categorical features were transformed
into binary features by one-hot encoding. All the numerical features were normalized to [0, 1].
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B.2. Complete Experimental Results of Section 6

Figures 5 to 8 present the complete experimental results of the baseline comparison for random forests (RF) and two-layer
neural networks (NN) under the noiseless and noisy cost evaluation situations, respectively. Figures 9 and 10 show the
sensitivity analyses of the noise level ξ for RF and NN, respectively.

B.3. Problem Settings beyond Assumptions

Here, we examine our methods under the scenarios beyond the assumptions of Problem 3.1. First, we consider the situation
where the cost function c that each method knows is different from that is used to compute the reward. In this case, each
method receives the executing probability E computed by one cost function c and the reward Rt computed by another
cost function c′. We used the ℓ1-norm as c and the max percentile shift (Ustun et al., 2019) as c′. Figures 11 to 14 present
the results of the cost-mixture scenario. We can see that the performance of BwOUCB was close to or better than that of
LinUCB, even in the noiseless cost evaluation situation.

Second, we consider the situation where the delay Dt depends on the instance xt. In this case, we sample Dt from the
geometric distribution with the parameter p = 0.2 · xt,d + 0.05 · (1− xt,d), where xd,i ∈ {0, 1} is the feature value of xt

that indicates whether its age is younger than the median of the dataset or not. That is, the delay variable Dt is sampled
from different distributions depending on the age of the instance xt. Figures 15 and 16 present the results of the adaptive
delay scenario. We observed that LinUCB and BwOUCB performed similarly to the results under the delay distribution that
is independent of the instance shown in Figures 5 and 7.

B.4. Sensitivity Analyses of Parameters

Figures 17 and 18 show the sensitivity analyses of the total number of recourse instances K. Figures 19 and 20 present
the sensitivity analyses of the window parameter m. Figures 21 to 24 show the sensitivity analyses of the regularization
parameter λ of LinUCB. Figures 25 and 26 present the sensitivity analyses of the number of trees B of BwOUCB.

B.5. Comparison under Non-stationary Setting

We examine the performance of each method under a non-stationary setting where the classifier h is updated over time.
To simulate this situation, we updated the classifier h using the set of the past instance-reward pairs (xs + as, Rs) that
become observable until a round t > s. By varying the frequency of the update, we examined the performance of each
method. Figures 27 and 28 present the results of the model update scenario where the update frequency is once every 25
rounds. Figures 29 and 30 show the sensitivity analyses of the update frequency. We can see that the performance of each
method was not significantly affected by the update frequency and that these results were not so different from those of the
stationary setting.

B.6. Comparison to Algorithm Based on Gaussian Process

We compare our methods with the existing algorithm based on the Gaussian process (CGPUCB) (Verma et al., 2022) under
the same setting with Figure 2. For CGPUCB, we used the radial basis function (RBF) kernel and optimized the kernel
parameters once every 10 rounds. Figures 31 and 32 present the results of the comparison. We observed that the performance
of CGPUCB was close to or worse than that of BwOUCB. Table 2 shows the average running time of each method in each
round. We can see that the running time of CGPUCB was significantly longer than that of BwOUCB. In summary, we
confirmed that the performance of BwOUCB was close to or better than that of CGPUCB and BwOUCB was significantly
faster than CGPUCB.

C. Additional Comments on Existing Assets
All the code used in our experiments was implemented in Python 3.10 with scikit-learn 1.5.2. Scikit-learn 1.5.2 is
publicly available under the BSD-3-Clause license. All the scripts and datasets are available in our GitHub repository at
https://github.com/kelicht/arlim. All the datasets used in our experiments are publicly available and do not
contain any identifiable information or offensive content. As they are accompanied by appropriate citations in the main
body, see the corresponding references for more details. All the experiments were conducted on macOS Sequoia with Apple
M2 Ultra CPU and 128 GB memory.
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Table 1. Details of the datasets used in the experiments.

(a) Credit (Yeh & hui Lien, 2009)

Feature Type Min Mean Max Immutable

Married Binary 0 0.455300 1 Yes
Single Binary 0 0.532133 1 Yes
Age lt 40 Binary 0 0.724200 1 Yes
EducationLevel Numerical 0 2.157733 3 No
MaxBillAmountOverLast6Months Numerical 0 1849.565000 50810 No
MaxPaymentAmountOverLast6Months Numerical 0 483.785333 51430 No
MonthsWithZeroBalanceOverLast6Months Numerical 0 0.788833 6 No
MonthsWithLowSpendingOverLast6Months Numerical 0 2.833133 6 No
MonthsWithHighSpendingOverLast6Months Numerical 0 1.208333 6 No
MostRecentBillAmount Numerical 0 1564.743000 29450 No
MostRecentPaymentAmount Numerical 0 172.783000 26670 No
TotalOverdueCounts Numerical 0 0.371600 3 No
TotalMonthsOverdue Numerical 0 1.687700 36 No

(b) Diabetes (Dua & Graff, 2017)

Feature Type Min Mean Max Immutable

Pregnancies lt 3 Binary 0.000 0.454427 1.00 Yes
Glucose Numerical 44.000 121.681605 199.00 No
BloodPressure Numerical 24.000 72.254807 122.00 No
SkinThickness Numerical 0.000 20.536458 99.00 No
Insulin Numerical 0.000 79.799479 846.00 No
BMI Numerical 18.200 32.450805 67.10 No
DiabetesPedigreeFunction Numerical 0.078 0.471876 2.42 No
Age gt 29 Binary 0.000 0.484375 1.00 Yes

(c) COMPAS (Angwin et al., 2016)

Feature Type Min Mean Max Immutable

juv fel count Numerical 0 0.059186 20 No
juv misd count Numerical 0 0.091292 13 No
juv other count Numerical 0 0.110751 9 No
priors count Numerical 0 3.247446 38 No
c charge degree:F Binary 0 0.643100 1 No
c charge degree:M Binary 0 0.356900 1 No
age lt 31 Binary 0 0.512567 1 Yes
gender Binary 0 0.809794 1 Yes
race Binary 0 0.514513 1 Yes
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Figure 5. Experimental results of baseline comparison for RF under the noiseless cost evaluation situation.
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Figure 6. Experimental results of baseline comparison for RF under the noisy cost evaluation situation with the noise level ξ = 0.25.
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Figure 7. Experimental results of baseline comparison for NN under the noiseless cost evaluation situation.
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Figure 8. Experimental results of baseline comparison for NN under the noisy cost evaluation situation with the noise level ξ = 0.25.
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Figure 9. Sensitivity analyses of the noise level ξ for RF.
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Figure 10. Sensitivity analyses of the noise level ξ for NN.
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Figure 11. Experimental results of the cost-mixture scenario for RF under the noiseless cost evaluation situation.
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Figure 12. Experimental results of the cost-mixture scenario for RF under the noisy cost evaluation situation with the noise level
ξ = 0.25.
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Figure 13. Experimental results of the cost-mixture scenario for NN under the noiseless cost evaluation situation.
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Figure 14. Experimental results of the cost-mixture scenario for NN under the noisy cost evaluation situation with the noise level
ξ = 0.25.
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Figure 15. Experimental results of the adaptive delay scenario for RF.
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Figure 16. Experimental results of the adaptive delay scenario for NN.
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Figure 17. Sensitivity analyses of the total number of recourse instances K for RF.
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Figure 18. Sensitivity analyses of the total number of recourse instances K for NN.
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Figure 19. Sensitivity analyses of the window parameter m for RF.
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Figure 20. Sensitivity analyses of the window parameter m for NN.
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Figure 21. Sensitivity analyses of the regularization parameter λ of Algorithm 1 for RF under the noiseless cost evaluation situation.
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Figure 22. Sensitivity analyses of the regularization parameter λ of Algorithm 1 for RF under the noisy cost evaluation situation with the
noise level ξ = 0.25.
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(b) Average Mean Expected Reward in Each Round (higher is better)

Figure 23. Sensitivity analyses of the regularization parameter λ of Algorithm 1 for NN under the noiseless cost evaluation situation.
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Figure 24. Sensitivity analyses of the regularization parameter λ of Algorithm 1 for NN under the noisy cost evaluation situation with the
noise level ξ = 0.25.
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(b) Average Mean Expected Reward in Each Round (higher is better)

Figure 25. Sensitivity analyses of the total number of trees B of Algorithm 2 for RF.
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Figure 26. Sensitivity analyses of the total number of trees B of Algorithm 2 for NN.
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Figure 27. Experimental results of the model update scenario for RF where the update frequency is once every 25 rounds.
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Figure 28. Experimental results of the model update scenario for NN where the update frequency is once every 25 rounds.
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(c) Average Mean Expected Reward of Final Round (higher is better)

Figure 29. Sensitivity analyses of the model update frequency for RF.
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Figure 30. Sensitivity analyses of the model update frequency for NN.

27



Algorithmic Recourse for Long-Term Improvement

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average Improvement

0.5

1.0

1.5

2.0

2.5

A
ve

ra
ge

C
os

t

Credit

ProtoAR

TAP

LinUCB

BwOUCB

CGPUCB

0.2 0.4 0.6 0.8 1.0

Average Improvement

0.6

0.8

1.0

1.2

A
ve

ra
ge

C
os

t

Diabetes

0.4 0.6 0.8 1.0

Average Improvement

0.5

1.0

1.5

2.0

A
ve

ra
ge

C
os

t

COMPAS

(a) Average Improvement (higher is better) and Average Cost (lower is better)

0 200 400 600 800 1000

Number of Rounds

0.5

0.6

0.7

0.8

A
ve

ra
ge

M
E

R

Credit

ProtoAR

TAP

LinUCB

BwOUCB

CGPUCB

0 200 400 600 800 1000

Number of Rounds

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

M
E

R
Diabetes

0 200 400 600 800 1000

Number of Rounds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

M
E

R

COMPAS

(b) Average Mean Expected Reward in Each Round (higher is better)

Figure 31. Experimental results of comparison to the algorithm based on the Gaussian process (CGPUCB) for RF.
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Figure 32. Experimental results of comparison to the algorithm based on the Gaussian process (CGPUCB) for NN.
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Table 2. Experimental results on the average running time [s] per round of each method. We can see that the running time of LinUCB
was not significantly different from those of ProtoAR and TAP. In addition, BwOUCB was significantly faster than CGPUCB, while their
performance was close to each other.

(a) RF

Dataset ProtoAR TAP LinUCB BwOUCB CGPUCB

Credit 0.000496± 0.0002 0.00045± 0.0001 0.00099± 0.0023 0.01782± 0.0125 4.524303± 3.3757
Diabetes 0.000406± 0.0002 0.000389± 0.0 0.000952± 0.0046 0.017913± 0.0124 4.984736± 3.955
COMPAS 0.000447± 0.0006 0.000379± 0.0001 0.000871± 0.0028 0.017919± 0.0126 4.92054± 3.8675

(b) NN

Dataset ProtoAR TAP LinUCB BwOUCB CGPUCB

Credit 0.000506± 0.0002 0.00053± 0.0002 0.000936± 0.0024 0.017705± 0.0128 4.813339± 3.7733
Diabetes 0.000439± 0.0003 0.000443± 0.0002 0.000835± 0.0026 0.017724± 0.0126 4.765345± 3.5786
COMPAS 0.000427± 0.0003 0.00038± 0.0003 0.000938± 0.0027 0.017427± 0.0124 5.024779± 3.896
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