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Abstract
Cognitive maps play a crucial role in facilitat-
ing flexible behaviour by representing spatial and
conceptual relationships within an environment.
The ability to learn and infer the underlying struc-
ture of the environment is crucial for effective
exploration and navigation. This paper intro-
duces a hierarchical active inference model ad-
dressing the challenge of inferring structure in the
world from pixel-based observations. We propose
a three-layer hierarchical model consisting of a
cognitive map, an allocentric, and an egocentric
world model, combining curiosity-driven explo-
ration with goal-oriented behaviour at the differ-
ent levels of reasoning from context to place to
motion. This allows for efficient exploration and
goal-directed search in room-structured mini-grid
environments.

1. Introduction
Understanding and navigating through complex environ-
ments is a fundamental capability for intelligent agents.
Traditional approaches rely on metrical or topological maps
to guide agent movement. However, in order for an agent to
be truly autonomous, it must possess the ability to learn and
adapt to its surroundings. In order to understand a complex
and possibly aliased world and navigate in it, both spatial
hierarchy, i.e. capturing spatial structures and relationships,
and temporal hierarchy are required to plan long-term navi-
gation schemes.

Several approaches have been proposed to learn the structure
of the world in the context of navigation. George et al.
(2021) proposes a clone structured graph representation
of the environment to disambiguate aliased observations.
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Figure 1. Example of a 3 × 3 rooms mini-grid environment and
our model navigation in it during an exploration and goal-reaching
task, where the starting position is the red triangle. Noise on
the visualised path was added in post-processing for observing
superposed visits on a single tile.

Neacsu et al. (2022) presents a deep hierarchical model
based on active inference and casts structure learning as a
Bayesian model reduction problem. Stoianov et al. (2022)
introduces a hierarchical generative model learning and
recognising maze structures based on specific localisation in
a global prefixed frame. While all these generative models
aim to capture the underlying structure and dynamics of the
world, these are typically limited to small simulations with
discrete state and observation spaces.

Addressing this aspect, recent approaches like G-SLAM
(Safron et al., 2021) and Dreamer (Hafner et al., 2020) use
deep neural networks to learn generative world models from
high-dimensional observations such as pixels. However, as
these capture the world in a flat latent state space, these mod-
els struggle with long-term planning, especially in aliased
environments.

This paper proposes a pixel-based hierarchical model ex-
hibiting both spatial and temporal hierarchies. The model is
geared towards learning the structure of maze mini-grid envi-
ronments (Chevalier-Boisvert et al., 2018). A maze consists
of interconnected, visually similar rooms with variations in
shape, size, and colour as depicted in Fig 1. Within the maze,
there is one white goal tile, which the agent must find. Our
model consists of amortised inference models at the lower
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Figure 2. The left shows the graphical model of the 3-layer hierarchical Active inference model consisting of a) the cognitive map, b) the
allocentric model, and c) the egocentric model, each operating at a different time scale. The orange circles represent latent states that have
to be inferred, the blue circles denote observable outcomes and the white circles are random variables to be inferred by planning. The right
part visualises the representation at each layer. The cognitive map is represented as d) a topological graph composed of all the locations
(l) and their connections, in which each location is stored in a distinct node. The allocentric model e) infers place representations (z)
by integrating sequences of observations (s) and poses (p), from which the room structure can be generated. The egocentric model f)
imagines future observations given the current position, state (s), and possible actions (a). Here o) depicts an actual observation (o) and
the predicted observations of the possible actions left i), forward ii), and right iii).

levels, which are trained on pixel data, for representing
movement and pose in egocentric resp. allocentric reference
frames, combined with a graph-structured model at the top
to capture the maze structure. The model navigation is based
on a principled active inference approach, which balances
goal-directed behaviour and epistemic foraging through in-
formation gain (Friston et al., 2016). Moreover, the planning
happens at different temporal time scales at each level in the
hierarchy, allowing for long-term decision-making.

2. Method
The active inference framework (Parr et al., 2022) is built
on the premise that intelligent agents minimise their sur-
prise. An active inference agent entails an internal gener-
ative model aiming to best explain the causes of external
observation and the consequences of its actions through the
minimisation of surprise or prediction error, which is also
known as free energy (FE). Agents minimise this quantity

with respect to model parameters in learning and with re-
spect to action in planning (Friston et al., 2016; Kaplan &
Friston, 2017).

We propose a hierarchical generative model consisting of
three layers functioning at nested timescales (see Fig 2).
From top to bottom: the cognitive map, creating a coherent
topological map, the allocentric model, representing space,
and the egocentric model, managing motions. The structure
of the environment is inferred over time by agglomerating
visual observations into representations of distinct places
(e.g. rooms) at higher levels discovering the connectivity
structure of the maze as a graph.

The cognitive map: The top layer in the generative model,
illustrated in Fig 2a functions at the coarsest time scale (T ),
each tick at this time scale corresponds to a distinct location
(lT ) integrating the initial positions (pT0 ) of the place (zT ).
These locations are depicted as nodes in a topological graph,
as shown in Fig 2d. Edges between nodes are added as
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the agent moves from one location to another, effectively
learning the maze structure. In order to maintain the spatial
structure between locations, the agent keeps track of its
relative rotation and translation using a continuous attractor
network (CAN) as in (Milford et al., 2004). Hence the
cognitive map forms a comprehensive representation of the
environment, enabling the agent to navigate by formulating
believes over its surroundings.

The allocentric model: The middle layer, illustrated in
Fig 2b, plays a crucial role in constructing a coherent un-
derstanding of the environment, denoted as zT . This model
functions at a finer time scale (t), forming a belief over the
place by integrating a sequence of observations (sTt ) and
poses (pTt ) to generate this representation (Eslami et al.,
2018; Van de Maele et al., 2021). Fig 2e and Fig 3 showcase
the resulting place defining the environment given accumu-
lated observations. As the agent moves from one place to
another, once the current observations do not align with the
previously formed prediction about the place, the allocentric
model resets its place description and gathers new evidence
to construct a representation of the newly discovered room
(zT+1), advancing by one tick on the coarser time scale and
resetting the mid-level time scale t to 0.

The egocentric model: The lowest layer, illustrated in
Fig 2c, has the finest time scale (τ ). To evolve in time this
model requires the prior state (stτ ) and current action (atτ+1)
to infer the current observation (otτ+1) (Çatal et al., 2020).
Based on its current position, the model generates possible
future trajectories while considering the constraints imposed
by the environment, such as the inability to pass through
walls (achieved by discerning the cause-effect relationship
between actions and observations). Fig 2f illustrates the
current observation in the middle o) and shows the imagined
potential observations if the agent were to turn left i), right
iii), or move forward ii).

The model operates within a hierarchical active inference
scheme, planning at different time scales. The cognitive
map plays a vital role in long-term navigation by handling
place connectivity, allowing the model to plan the locations
to visit (π) at a high level, the poses to visit within each
place (πl) at a mid-level, and determining the best action
policy (πp) at the low level while considering obstacles such
as walls. To infer the best navigation strategy to reach a
desired objective, the agent employs active inference and
utilises the concept of Expected Free Energy (EFE). EFE is
a measure of the agent’s projected uncertainty or surprise
about future states. By minimising EFE, the agent aims
to reduce uncertainty and make accurate predictions about
future outcomes, thus determining an optimal path to the
objective (Kaplan & Friston, 2017). This hierarchical ac-
tive inference process, coupled with the integration of EFE,
allows the agent to effectively explore new rooms at the

highest level, navigate within the rooms at the mid-level,
and execute actions seamlessly at the low level.

The complete generative model is formalised in Appendix B,
for which we parameterise the likelihood, transition, and
approximate posterior mappings of the allocentric and ego-
centric levels using deep neural networks. These are trained
on a dataset of pixel observations collected by sampling
random actions in a 3 by 3 rooms mini-grid environment as
depicted in Fig1, within or across rooms respectively. For
more details on the models and training procedure we also
refer to Appendix A and B.

3. Results
3.1. Exploration and goal-oriented search

We evaluate to what extent the hierarchical active infer-
ence model enables our agent to efficiently explore the en-
vironment, as well as to then adopt the inferred model for
goal-directed planning. Note that our agent is trained task
agnostic, and goal-directed behaviour is induced by setting a
preferred observation (i.e. the white tile) as typically done in
active inference (Friston et al., 2016). When the preference
is omitted, the agent will be purely driven by epistemic for-
aging, i.e. maximising information gain, effectively driving
exploration.

The exploration task is considered successful when an agent
observes 95% of the visible tiles in the maze, while for the
goal-reaching task, the agent must step on the white tile for
the task to be considered successful.

We compare our method with four other exploration meth-
ods: C-BET (Parisi et al., 2021), Random Network Distil-
lation (RND) (Burda et al., 2018), Curiosity (Pathak et al.,
2017), and Count (Bellemare et al., 2016) on both the explo-
ration and goal-seeking task. All baselines are trained in the
same conditions as our agent on the same 30 3 by 3 rooms
environments.

Table 1 presents the difference in the mean number of steps
(number of movements from one tile to the next) between
each model and the number of steps needed by the oracle,
an A-star algorithm with complete knowledge of the envi-
ronment layout and agent position. The other models are

Table 1. The model’s deviation from the mean number of steps
(tiles physically covered) provided by the Oracle is evaluated in
two tasks within 3 × 3 rooms environments: full exploration of
the maze and reaching the single white tile in the environment.

TASK OURS C-BET RND CURIOSITY COUNT
EXPLO-
RATION

67 195 177 146 334

GOAL
REACH

34 105 109 121 150
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limited to the information they can observe and must infer
the layout and connectivity of the maze. These results indi-
cate that our model outperforms the baselines by requiring
fewer steps for both exploration and goal-driven behaviour.
Details about the other models’ training can be found in
Appendix A. Our model reaches objectives faster thanks to
its long-term memory capturing the structure of the maze.

3.2. Qualitative results

Figure 3 illustrates the inference process of place descrip-
tions. Within approximately three steps, the main features
of the environment are captured and reasonably accurate
based on the accumulated observations. Even when encoun-
tering a new aisle for the first time at step 11, the model is
able to adapt and generate a well-imagined representation.
Each observation corresponds to the red agent’s clear field
of view, as depicted in the agent position row of the figure.

More results are added in appendix. For instance, Appendix
C Fig4 shows the agent consistently achieving a stable place
description within around three observations in room sizes
that were part of its training. Interestingly, the agent also
exhibits the ability to accurately reconstruct larger rooms,
even though it did not encounter such sizes during training.
In particular, stable place descriptions for 8-tile wide rooms
are attained in approximately five steps. This showcases the
agent’s allocentric model generalisation abilities beyond the
limits of its training.

Moreover, our model is able to disambiguate between visu-
ally similar places through the combination of accurate place
inference by the allocentric model and the agent location in
the cognitive map. This capability is evident in Appendix C
Fig 6, where the rooms share a similar appearance (shape
or colour). Despite this visual aliasing, the agent success-
fully distinguishes between them, and a single graph node
is created for each room, even when entering from a differ-
ent door than the initial entry point. This demonstrates the
robustness of the agent’s perceptual and spatial reasoning
abilities in disambiguating similar environments.

Figure 3. Evolution of the place representation in a room as new
observations are provided by the moving agent (red triangle). The
model is able to correctly reconstruct the structure of the room as
observations are collected.

Finally, our hierarchical model also enables accurate predic-
tions over long timescales crossing different rooms, whereas
recurrent state space models typically fail when the agent
needs to predict across room boundaries. Appendix C Fig7
depicts each layer’s prediction ability over a long-term imag-
ined trajectory.

4. Discussion
Our hierarchical active inference model demonstrates profi-
ciency in learning the maze-like structure of the mini-grid
environment and establishing connections between rooms
by leveraging the cognitive map’s ability to retain spatial
locations and their relative relationships. The allocentric
model contributes to inferring and learning the structural
layout of rooms based on observed positions, while the ego-
centric model facilitates informed decision-making during
actions. In this work, we focused on comparing to other
methods that encourage exploration like C-BET (Parisi et al.,
2021), Random Network Distillation (RND) (Burda et al.,
2018), Curiosity (Pathak et al., 2017) or Count (Bellemare
et al., 2016). However, further testing against other mod-
els in more diverse environments, including larger environ-
ments and bigger rooms is called for, as our model has the
capacity to scale to new maze sizes without the need for
re-training. In future work, we also intend to benchmark
against model-based RL methods (Hafner et al., 2020), espe-
cially the ones that also learn hierarchical structure in their
world model (Mazzaglia et al., 2023).

One limitation of the current system is that we explicitly
train the allocentric model on data collected within one
room, which yields proper space representations. To mit-
igate this, and generalise to arbitrary environments, we
could consider splitting the data by unsupervised cluster-
ing (Asano et al., 2020), or by using the model’s prediction
error to chunk the data into separate spaces (Verbelen et al.,
2022).

While our navigation exhibits strong exploration and goal-
reaching abilities, there is still room for improvement. For
instance, every time the agent enters a new room, it needs
a few steps to relocate in the allocentric reference frame.
Adopting a more precise prior on where the agent will enter
the room, given the previous room, would further improve
this. We could also learn a prior over topological map struc-
tures, which would better drive exploration as the agent
would expect to discover new rooms, encouraging more
information gain at the highest level, and allowing the agent
to imagine shortcuts beforehand (Tinguy et al., 2023). Addi-
tionally, while the current design is pixel-based and provides
a top-down view of the agent, applying this model to a 3D
first-person view environment, such as the Memory maze
(Pasukonis et al., 2022), would bring us closer to real-world
applications.
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A. Training Environment
In this paper all models were trained on a mini-grid environment (Chevalier-Boisvert et al., 2018) consisting of 3 by 3
squared rooms of 4 to 7 tiles wide connected by aisles of fixed length randomly placed, separated by a closed door in
the middle. Each room is assigned a color at random from a set of four: red, green, blue, and purple. In addition, white
tiles may be present at random positions in the map. The agent’s perspective of the environment is represented as a top
view, encompassing a window of 7 by 7 tiles. This window includes the tile on which the agent is currently located.
However, the agent has no visibility behind itself, and it cannot perceive through walls or closed doors. The observation
interpreted by our model is a 3x56x56 RGB pixel rendering, while other models such as C-BET (Parisi et al., 2021), Random
Network Distillation (RND) (Burda et al., 2018), Curiosity (Pathak et al., 2017) and Count (Bellemare et al., 2016) utilize a
hot-encoded list of 7x7 where each number represents a tile type (wall, floor, goal...). The agent motion in this environment
is limited to three actions: going one tile forward or turn 90 degree either left or right.

Both the allocentric and egocentric models underwent independent training using a shared dataset consisting of 400
environments, with 100 environments per room size. The goal of the training process was to efficiently acquire knowledge
about the composition of a room and comprehend the dynamic constraints present in the environment, such as walls and
doors. The allocentric model was trained on random sequences of varying lengths within a single room, whereas the
egocentric model considered the entire random motion spanning 400 steps within the environment. Throughout the training
phase, the trajectories followed by the agent were entirely random.

To ensure a fair and rigorous comparison, all other models included in the study were trained and tested on an identical
set of environments. These models used their respective policy networks to guide their trajectories, with the objective
of maximising performance according to their specific criteria, as specified in (Parisi et al., 2021). By training on the
same environments, any differences in performance between the models can be attributed to their distinct approaches and
architectures, allowing a meaningful comparison.

B. Our Model Details
B.1. Model description

Results wise we gained in efficiency by keeping the allocentric and egocentric models running and training independently
on the same data. Thus in practice, we have the egocentric model learning its latent state through the joint probability of
the agent’s observations, actions, policies, belief states and its corresponding approximate posterior. It is composed of the
transition model pθ to incorporate action in its reasoning, the likelihood models pξ to construct pixel-based observations,
and the posterior model pϕ to incorporate past events to future state.

P (õ, c̃, s̃, ã) = P (sθ)

T∏
t=1

pθ(st|st−1,aa1 )︷ ︸︸ ︷
P (st|st−1, at−1)

T∏
t=1

pξ(otct|st)︷ ︸︸ ︷
P (ot, ct|st) (1)

In parallel, the allocentric model forms an internal belief about the world and updates its belief by interacting with it,
resulting in a place (latent state z) structured upon positions (p) and corresponding observations (o) (Eslami et al., 2018;
Van de Maele et al., 2021) . The corresponding true posterior of this allocentric model is:

P ′(z, õ, p̃) = P (z)

i∏
k=1

P (ok|pk, z)P (pk) (2)

The cognitive map integrates successive action over time steps to obtain the estimated translation and rotation of the agent
into a 3D grid using an Attractor Network (CAN) (Milford et al., 2004). When the current place being defined by the
allocentric model differs significantly from any other, a new experience cell is created.

B.2. Model Hyperparameters
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Layer Neurons/Filters Stride
Positional Encoder Linear 9

Posterior
Convolutional 16 1 // (kernel:1)
Convolutional 32 2
Convolutional 64 2
Convolutional 128 2
Linear 2*32

Likelihood

Concatenation
Linear 256*4*4
Upsample
Convolutional 128 1
Upsample
Convolutional 64 1
Upsample
Convolutional 32 1
Upsample
Convolutional 3 1

Positional Decoder

Concatenation
Linear 2048
Linear 512
Linear 128
Linear 64
Linear 9

Table 2. allocentric model parameters

Layer Neurons/Filters Stride

Prior
Concatenation
LSTM 256
Linear 2*32

Posterior

Convolutional 8 2
Convolutional 16 2
Convolutional 32 2
Concatenation
Linear 256
Linear 64

Image Likelihood

Linear 256
Linear 32*7*7
Upsample
Convolutional 16 1
Upsample
Convolutional 8 1
Upsample
Convolutional 3 1

Collision Likelihood
Linear 16
Linear 8
Linear 1

Table 3. egocentric model parameters

B.3. Navigation details

During navigation, the cognitive map takes into account the context to avoid looping back to already visited places. If
the current understanding of the environment matches a previously encountered place, the corresponding view cell gets
activated. However, to avoid ambiguities due to the agent’s changing position, the system duplicates the place if it is far
from the previous experience, and adapts it to new visual stimuli while preserving the original view cell. In this way, the
problem of aliases is effectively resolved.

Moreover, to avoid being trapped in a local minimum while navigating through a large environment with multiple rooms, the
agent may encounter a situation where it returns to a known place with no apparent links to unexplored areas. In such cases,
the agent is encouraged to visit the least explored or oldest connected place to prevent it from stopping exploration. A decay
parameter associated with the view-cell is utilised to achieve this, causing the activity of the current view-cell to decay over
time as it is solicited, and all past view-cells to diminish gradually as they are no longer stimulated. This approach ensures
that the agent continues to explore new areas and avoids getting stuck in a particular part of the environment.
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C. Supplementary results
Supplementary tests showed how fast and accurately the allocentric model predicts observations from un-visited positions in
a new room. Starting from its place generation and no observation up to 6 observations in several rooms of increasing size,
the agent is able to come to a general description of the place in about 3 steps, having an MSE under 0.2 (Fig. 4), which is
visually close looking as is demonstrated in Fig. 5. The agent is also able to solve bigger environments it never encountered
in training as 8 tiles wide rooms given more observations (in average 5).

Figure 4. Prediction error of unvisited positions over
min 5 tests per 5 environments by room size starting
from step 0 where the models has no observation.

Figure 5. Observation queries, sampled prediction over unvisited po-
sition and mean MSE over 5 samples of predictions

We placed an agent in a new environment consisting of interconnected rooms with similar appearances (in terms of color
and/or shape), arranged in a 2x2 pattern, as shown in Figure 6 A. The agent’s task was to move clockwise until it returned to
the starting point, and then move anti-clockwise through the previously visited rooms.

Whenever the agent identified a new location, it created a new view-cell and experience ID to store the information, as
depicted in Figure 6 B. If the prediction error increased above a threshold of 0.5 MSE, indicating that the previous place
description didn’t match the current observation, the agent would rely on the previously known view-cells, based on their
probability, to describe the current room, as shown in Figure 6 C. The bars in the figure represent the amount of hypotheses
being considered simultaneously to explain the agent’s observations. We can see that upon entering a new place, the agent
started investigating around 600 different hypotheses to determine its current position, with a third of the worst hypotheses
being erased at each step. As the agent’s best hypothesis converged to an understanding of the place, some new hypotheses
were also considered. The blue line in Figure 6 C. represents the probability of the best new hypothesis compared to the
known places’ hypotheses. The agent usually converged to a precise understanding of a new place within four steps, whereas
it took about two steps in an already known room, thanks to the probability of the previous place outweighing any new place
description, which matched observations more precisely.

Figure 6 D. depicts the imagined rooms used for hypothesis creation when entering a new room, with all door entries being
considered to create new hypotheses, which were immediately discarded if they did not match observations. The associated
probability of the view-cell was proportional to the precision of the predictions, and a single view-cell could have several
hypotheses running at once. In the figure, only the best hypothesis was considered. The imagined rooms were almost
correctly inferred, with experience 1 having a less precise reconstruction, although it was still sufficient to recognize it when
entering from a new door.
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Figure 6. Navigation samples of the agent looping clockwise and anti-clockwise (thus entering from a different door) in a new environment
of 2 by 2 rooms over 142 steps. The clockwise navigation corresponds to a fully new exploration generating new places (see C.) while the
anti-clockwise loop leads through explored places. A.) a new world composed of 4 close looking rooms (colour or/and shapes), B.) the
model associated each room to a different experience id corresponding to the place C.) the probability of a new place being created (in
blue, the most probable place among all possibilities) or an existing place being deemed the most probable to explain the environment.
The grey bars represent how many new places are considered at once, the number of simultaneous hypothesis being considered can be
read on the right part of the plot. D.) the imagined place generated for each experience id. We can see that experience 1 is not fully
accurate, yet it is enough to distinguish it from the other rooms given real observations of it.

Figure 7. An imagined trajectory by each level of a path leading toward an already visited room . The egocentric model has a short-term
memory therefore it forgets information as time passes, as can be observed starting step 2, the front aisle is already missing after the agent
turned a few times without seeing it. The allocentric model however doesn’t forget the place description over time but gets lost once
leaving the place it is currently in. While the cognitive map knows the link between locations and is able to correctly infers the place to be
expected behind the door giving a result much similar to the ground truth.


